06 convex combinaLLovu 06

17 downloads 0 Views 8MB Size Report
reflects, in fact, a special case of the Julia-Wolff Theorem. It is known as. Jack's Lemma C261: ...... 1 z l a = ~ l . Note that in this range. (2.38). %CS+Ra. 2. 1.
CONVOLUTIONS IN GEOMETRIC FUNCTION THEORY

Notes du cours de Monsieur Stephan Ruscheweyh a la vingtitme session du SCminaire de mathkmatiques supCrieures ISCminaire scientifique OTAN (AS1 81 /62), tenue au DCpartement de mathkmatiques et de statistique de 1'Universit6 de MontrCal du 3 au 21 aoDt 1981. Cette session avait pour titre general ( 1.

for a certain

c R

A

Thus c o n s i d e r

A,

C

The

C V**,

*

1, Then

lzl

i s analytic in Since

G * fx)(l)

f)(x) =

( " R * f ) ( z ) # 0.

This proves ( 1 . 3 ) .

Our assumption on

i n particular i n a point

f ) (xo) # 0.

we g e t

lzl < R .

A

and

By compactness we conclude t h a t t h e same i s

t r u e i n a c e r t a i n neighborhood o f 1c x

1 A([/**)

t h e n shows t h a t

i s a compact s e t of a n a l y t i c f u n c t i o n s i n (1.1) g i v e s

1 z1

To prove t h e i n v e r s e i n -

Now assume

V

x

0

with and f o r

5 1

f C V

i s comoletq we have f o r

# 0.

Thus

2

The c h o i c e

-

E V*

and f o r a r b i -

z = l/x

co (V) # G ( v * * ) .

0

then gives

Then by a sepa-

r a t i o n theorem i n l o c a l l y convex s e p a r a t e d t o p o l o g i c a l v e c t o r spaces (compare C30, s e c t i o n 20, 7 . ( 1 ) ; s e c t i o n 16, 3 , ( 1 ) 1 ) t h e r e e x i s t s ments of

V**

from

V.

X E A

which s e p a r a t e s e l e -

This i s i m p o s s i b l e by ( 1 . 3 ) .

Although (1.4) i n d i c a t e s a c e r t a i n connection of d u a l i t y and c o n v e x i t y i t t u r n s out t h a t t h e second d u a l

V**

i s i n g e n e r a l more c l o s e l y r e l a t e d t o a s e t

V

than

=(V).

The f o l l o w i n g c o r o l l a r y i s f a l s e with

Let

COROLLARY 1.1:

f h2(V).

0

PROOF: h = h f

0

C

1

V

Then doh any

-

r e p l a c e d by

Fob

hl,h2 C h

co(V).

Moume

.them e u l x an f o C V ouch .that

f C V**

h2 C h

(hl(f)/h2(f)) with

be compacX and complete.

V

A2(f) # 0

F i r s t note t h a t

V**

by ( 1 . 3 ) .

we have

For t h e f u n c t i o n a l

0 C h(V**).

Again u s i n g (1.3) we f i n d

A(fo) = 0.

The f o l l o w i n g two theorems d e a l with t h e r e l a t i o n between second d u a l s and convex h u l l s .

I n t h i s d i s c u s s i o n we u s e some elementary c o n v e x i t y t h e o r y as

d i s c u s s e d i n C70, Appendix A]. a given s e t .

By

E(-)

Note t h a t f o r compact s e t s

we d e n o t e t h e s e t of extreme p o i n t s of

V c A.

we have (Krein-Milman Theorem)

= cow)

,

(1 6 )

co

(~(coV))

€ ( c o ( ~ ) )c V

(1.7) THEOREM 1 . 2 C741:

L&

.

g(zl,z2,...,zn)

be andy.tic i n .the p l q d i 6 c

un

and

Then doti any

PROOF:

V

f C V**

.thtl..ehe exina2 a ptiobabdLty m m m e

i s compact and complete.

it s u f f i c e s t o show t h a t

u on

( 3 ~ ) " ouch .that

I n view of ( 1 . 4 ) , (1.5) and Choquetls Theorem

Consider

g(xlz,

. . . ,xnz)

t V

with

Without l o s s of g e n e r a l i t y assume

Ixk/ < 1 f o r a c e r t a i n k = 1.

l a t h a t t h e r e i s a p r o b a b i l i t y measure

For

.,Zn

z2 ,

The c h o i c e

Since not i n

v

z

j

C U

J

€(=(I)))

1)

Let

( 1 € (f

. ., n ,

on

aU

such t h a t

then gives

(excluding t h e t r i v i a l c a s e when

li c A.

Let

f C V*.

be t h e union of

*

g) (U)

g

does not depend on t h e

(1.7) now g i v e s ( 1 . 8 ) .

f o r any

be compuc.t and complete.

We wish t o show t h a t t h e r e i s a

Ig F U:

(1.11) A

I t i s a consequence of H e r g l o t z ' formu-

i s n o t c o n c e n t r a t e d i n one p o i n t we conclude t h a t t h e f u n c t i o n (1.10) i s

THEOREM 1 . 3 :

Let

. . ,n}.

f i x e d we o b t a i n by convolution with (1.9) t h e r e l a t i o n

= x.z, j = 2,.

f i r s t variable).

PROOF:

v

k F {I,.

(f

*

Re eiY(f

*

g)(U), g C U,

g C If).

Then

y = y(f) F R

If = V * * ,

such t h a t

g ) ( z ) > 0, z C U. and n o t e t h a t

A

Assume (1.11) t o be f a l s e .

i s a domain Then t h e r e i s a

straight line origin.

X~'Yo

(f

Let

E U.

p

through t h e o r i g i n which i n t e r s e c t s

* g) (xo) ,

(f

2)

V**



U

From (1.11) we deduce

by Theorem 1.1, f o r

*

h ) (yo)

Then t h e r e e x i s t s

But (1.12) i s i m ~ o s s i b l es i n c e

Re eiY(f

*

(tg

+

i s convex.

g E V**.

If

(1 - t)h))(z) > 0

A

on both s i d e s of t h e

p,

be such p o i n t s on

(0,l)

g,h € U ,

such t h a t

i s complete and Re eiY (f

*

f C V*.

g) (2) > 0, z € U,

g,h € V**, t € C O , l l , in

where

U,

for

g € V

and,

we t h e r e f o r e have

and t h i s shows

tg

+

(1

-

t ) h f V**:

From (1.4) we o b t a i n

and t h u s t h e a s s e r t i o n .

Note t h a t C o r o l l a r y 1.1 a p p l i e s t o t h e s i t u a t i o n d e s c r i b e d i n Theorem 1.3.

I t i m p l i e s t h a t i n complete and compact convex s e t s i n

t h e form

X,/X2,

X 1, A 2



A,

Ao,

f u n c t i o n a l s of

a r e extremized by convex l i n e a r combinations of a t

most two extreme 7 o i n t s and t h e i r r o t a t i o n s .

A similar result for analytic

S t i e l t j e s i n t e g r a l s i n [51] h a s found many a p p l i c a t i o n s ( f o r i n s t a n c e C871, C791).

1.2.

Test s e t s The most d i f f i c u l t p a r t i n t h e a p p l i c a t i o n o f t h e d u a l i t y p r i n c i ~ l ei s

t h e d e t e r m i n a t i o n of t h e second d u a l f o r a given interesting set be a p p l i e d , i . e . ,

U c A.

t o f i n d a (small) s e t

U c V**.

V c A. V c U,

o r , i n t u r n , f o r a given such t h a t Theorem 1.1 can

This l a t t e r problem i s somewhat e a s i e r t o h a n d l e and

l e a d s t o t h e i n t r o d u c t i o n of t e s t s e t s . DEFINITION:

Let

If c Ao.

Then

T c A.

i s called a X a X

for

U

(written

T -> U)

if

The f o l l o w i n g s i m p l e o b s e r v a t i o n w i l l be u s e f u l :

a set

U c A.

is a

d u a l s e t i f and o n l y i f

In particular,

for arbitrary

V c Ao.

THEOREM 1 . 4 :

The i(ol?.louLng

k e e a t i o m hold

c T => 2

(1.16)

T

(1.17)

T1 -> T ---, T* = T* 2 1 2 ' T1 c T2 c T3

(1.18)

and

T* 1

( U Tk)* =

(1.20)

3

Tk, Uk

T

T

1

-> T2 -> T3

1 -> Tg

T1 = T2

o f (1.15) g i v e s ( 1 . 1 7 ) .

c T** 2

Mi

,

9

and (1.16) i m p l i e s

From ( 1 . 1 6 ) we o b t a i n

Ao:

,

(1.16) f o l l o w s from t h e d e f i n i t i o n o f d u a l s e t s .

(1.17) we have

C

T* 2 '

T1 -> T => 3

T1 -> T2 -> T => 3

(1.19)

PROOF:

1

604

T* 1

T; 3

3

T* 2

From t h e assumption i n T* 2 3

3

T;,

T***. 1

An a p p l i c a t i o n

w h i l e (1.17) g i v e s

T* = T* 1 3'

Thus

T2 c T;*

= T** 1

T; = T I

T i * = T** = T;* 2

and

T3 c T** = T**. 3 2

and

From t h e a s s u m p t i o n we have T3 c T i *

( m k ) *

3

(

serve t h a t

U Ti*

3

(

U Ti)*

u T;)** (

3

U Tk)**

and t h u s

T I * c T**** = TT*. 1

T3 c T i * . Since

( 1 . 2 0 ) i s immediate from t h e d e f i n i t i o n o f d u a l i t y ,

fl

=

U T;,

= (

To Drove ( 1 . 1 9 ) we h a v e t o show

T2 c T;"

t h e r e s u l t follows.

and t h i s i m p l i e s

and (1.18) f o l l o w s from

Ti*

n Tk.

3

An a p p l i c a t i o n of (1.16) g i v e s

which i s ( 1 . 2 1 ) .

n Ti)*

3

F o r t h e p r o o f o f (1.22) we ob-

U T i * by ( 1 . 2 0 ) , ( 1 . 2 1 ) .

( 1 . 2 2 ) f o l l o w s from

U u,. For

U , V c A.

THEORE!!

(1.24)

1.5 :

Tk

let

Let

U

V

Tk, Ifk,

-> U k , k = 1 , 2

be t h e d i r e c t product

V

C

AO, Tk

=>

T

cumpXete.

Then

T2 -> U1 ' U 2

1

.

I n t h e proof o f t h i s theorem and on o t h e r o c c a s i o n s we u s e t h e n o t a t i o n

* z ' * x' i f t h e c o n v o l u t i o n i s t o be performed w . r .

etc.

t o the variable

z , x,

etc.

Note t h a t

convolution involving v a r i o u s v a r i a b l e s is a s s o c i a t i v e :

f ( x ) *x ( F ( z , x ) * z g ( z 1 ) = ( f ( x 1 *x F ( z , x ) ) * z g ( z )

PROOF o f Theorem 1 . 5 :

To p r o v e ( 1 . 2 3 ) we may assume t h a t

j u s t one e l e m e n t , s a y

g.

f 6 T1, h C (TI

such t h a t f o r any

V)*

. V

contains

The g e n e r a l c a s e t h e n f o l l o w s by a p p l y i n g ( 1 . 2 2 ) .

1x1

5 1

(completeness!)

Let

This shows t h a t t h e f u n c t i o n

(z

fixed) i s i n

T;.

+

C,

f C U1 c T i *

For a r b i t r a r y

Thus (1.25) h o l d s w i t h t h e new

x,z C U .

with Hurwitz' theorem g i v e s f g € (T1

V)**

(h

and f i n a l l y

c a t i o n o f (1.23) :

1.3.

U

FZ:

T1

*

T2 -> T,

FZ(x) *x f ( x ) # 0,

t o o , and t h e l i m i t

g ) ) ( z ) # 0, z 6 U.

(f

U1

f,

we o b t a i n

V c (TI

V)**.

U 2 -> U1

U2.

(1.24)

x

+

1 together

This i m p l i e s

i s an i t e r a t e d a p p l i -

S p e c i a l c a s e s (1) In t h e next two s e c t i o n s we s h a l l d e t e r m i n e a f a i r l y b i g c l a s s o f s e t s i n

A.

t o which t h e above c o n c e p t s a n p l y . THEOREM 1 . 6 :

LeA

V = ((1

+

A s i m p l e but c r u c i a l r e s u l t i s :

xz)/(l

+

yz)

I

1x1 = l y l = 1 ) .

V** = H.

H denotes t h e c l a s s of functions

for a certain PROOF:

y C

R.

We w r i t e -l t-x z -

ltyz

f C A.

f C A.

is in

V*

i f and only i f

(1

-

x 1 X t-. Y l+yz Y

-)-

such t h a t

T~QM

f

for

z E U , 1x1 =

For

y

lyl

* -lt-xz

ltyz

= 1,

f i x e d and v a r y i n g

t

X

-2 Y

0

t h e r i g h t hand s i d e of (1.27) r e p r e s e n t s t h e

Thus

f (U)

Re f (2) > $, z € U.

f (0) = 1:

X

( 1 - --)f(-yz)

or

x,

i.

Re w =

straigth line

-

cannot i n t e r s e c t t h a t l i n e and because of f 6 V*.

This c o n d i t i o n i s a l s o s u f f i c i e n t f o r

Any such (and no o t h e r ) f u n c t i o n has a H e r g l o t z r e p r e s e n t a t i o n

where

i s a p r o b a b i l i t y measure on

such t h a t t h e range implies

0

1

(f

*

(f

g)(U)

*

g ) (U)

satisfies

0 C (fo

*

1-1 0

g) (U)

g € tf

Now i f

we have

i s c o n t a i n e d i n t h e i n t e r i o r of

and t h u s :

f i n d a two-point measure

aU.

g C V**.

If

g C

A.

is not i n

such t h a t t h e c o r r e s p o n d i n g f u n c t i o n

and t h i s shows

g

{

V**.

g(U).

U,

This

one can

f o € V*

We omit t h e d e t a i l s .

The f o l l o w i n g r e s u l t which g e n e r a l i z e s Theorem 1 . 6 w i l l be r e f i n e d i n t h e next s e c t i o n .

T h e r e f o r e we s t a t e it a s a lemma.

Note t h a t f o r

a , @> 0

we have

f f a - u B = t f a+B ,

For

a

7

0

we u s e t h e n o t a t i o n

and t h a t 1+xz 1t y z

Fah

LEMMA 1 . 1 :

a

2

c H, x,y c U

.

we have

1

Cal PROOF: 1.6,

TI V1 and V1 k=l An i t e r a t e d a p p l i c a t i o n of (1.23) g i v e s We have

Va = Va-Cal

complete w i t h (la

->

va-Cal

V1 -> H

ffw

If

by Theorem F C Haw1,

we have

and t h u s

(1.18) i m p l i e s

Va -> V1

f o l l o w s now from (1.19) THEOREM 1 . 7 :

p-1

Fa& al ,. . .

n

(1tx.z) 3 j =1

PROOF:

For

f C V**, x C U,

x C U

let

V1

Ha-1

-

Ha.

.

V={n Then do& any

and (1.23) g i v e s

ak

c c ee/t CAo

we have

1

xj

cUa

j = 1 ,..., n ] .

The r e s u l t

be automorphisms of

x. C

U,

Note t h a t

C

For

J

w € U,

U.

These f u n c t i o n s a r e c o r r e l a t e d by

put

a(wx.) I

=

such t h a t with (1.31)

with

i s independent of

-

z.

Thus f o r a r b i t r a r y

a

(ltXZ) *z 1-b(z)w

Since t h i s i s t r u e f o r a r b i t r a r y

a

n

t

n

( i t X . W )j w j=1 I

z,w C U

g € V*

we o b t a i n from

.

we deduce t h a t t h e f u n c t i o n

FZ(w) C AO

with

F (w) = z

is in

V*.

We n o t e t h a t

Now l e t

f # 0

f € V**

in

(ltxqa g ( z ) *z 1-b(z)w g(z) *z (1+xda

such t h a t

U by t h e d u a l i t y p r i n c i p l e , i n p a r t i c u l a r

f (Y) # 0 .

Thus we may a p p l y Hurwitzl theorem (1.33)

g(z)

*

(1

-t

1)

t o deduce

~ z ) ~ f ( b ( z )# ) 0, z € U ,

t

# 0

because t h e f u n c t i o n (1.33) i s g t V*

(w

in

z = 0.

(1.33) h o l d s f o r a r b i t r a r y

and t h i s i m p l i e s

This r e s u l t h a s a number of u s e f u l a p p l i c a t i o n s .

A v e r y important

s p e c i a l case is contained i n t h e next c o r o l l a r y . COROLLARY 1 . 2 :

k = 1,

...,m,

PROOF:

Since

Let

a

Let

(1

be

an in inheaxem

Bk t C,

Fax ce.ktcLin

1.7.

anawne

f € U.

Using (1.31) we can w r i t e t h e f u n c t i o n (1.34) a s

i s an automorphism o f

U

t h e proof i s complete.

An i m ~ r e s s i v edemonstration of t h e power of C o r o l l a r y 1 . 2 i s t h e proof of o u r n e x t theorem which, i n f a c t , i s e q u i v a l e n t t o SzegB1s theorem ( 0 . 1 ) . p, deg p 5 n ,

denote t h e s e t of polynomials P 6 pn¶ p

nonvanishing i n THEOREM 1 . 8 :

p

and

is in

pn

i f and only i f

U.

Fan n



N let

Vn = ( ( 1

t

xzln

I

x t

v).

Let

Then

Pn

PROOF:

1)

Using t h e f u n c t i o n a l s V** c Pn U0. n

p r i n c i p l e we s e e :

h k ( f ) = f ( k ) (0) C A , k > n , The f u n c t i o n a l

V** n

used t o show t h a t t h e f u n c t i o n s i n remains t o show:

Pn n

A(f) = f (zo) , z

cannot v a n i s h i n

V* ;

U:

0

C U,

c

can be

nnAo.

It

Ao.

The n e x t s t e p i s t o prove

2) in

Vn ->

and t h e d u a l i t y

V;

3

V;.

In f a c t , i f

f € V;,

we have

Thus

lfr(0)151

U:

(1.35)implies

z k 1 , k = l

.

n,

n

1 fr(0)=;

and

1

zk.

k=1 and (1

trivial. therefore

Assume i t h o l d s f o r (1

+ V

y z ) C Vi*, y C

n A

(1.37)

Vn-l

f = 1

+

x f l ( 0 ) z # 0, z C U

Now we proceed by mathematical i n d u c t i o n .

(1.36) Since

*

xz)

,

f € V;.

which g i v e s 3)

+

->

-> { ( l

n

vl

+

"

n - 1.

n = 1 t h e claim i s

For

V;* c V** n "

From 2) we know t h a t

U. C o r o l l a r y 1.2 a p p l i e d t o

xz)"-l(l

+

yz)

I

x,y C U } =

v1

V =

Vn-l

and

gives Vn ' U = V**, 1

.

we can apply (1.23) t o o b t a i n A

-> Vl

Pn-ln

A

A ~ =) pn

n

.

The r e s u l t f o l l o w s from (1.19).

C 741.

The i d e a t o t h i s proof a s w e l l a s C o r o l l a r y 1 . 2 a r e due t o Sheil-Small n k Note t h a t a polynomial akz C A. i s in i f and o n l y i f k= 0

Vi

Thus Theorem 1 . 8 shows t h a t f o r every This i s SzegE's Theorem 0 . 1 .

q C

Pn

fl A.

we have

*

p

q

# 0, z

C U.

Of c o u r s e , Theorem 1 . 7 c a r r i e s more i n f o r m a t i o n

since the duality principle applies t o t h i s situation.

1.4.

S p e c i a l c a s e s (2) For

a,f3

r 0 let

T(a,B) = (

( l t x z ) Cal ( l t y z ) a - ~ a l ( l + u z )B

I

x,y,uCm

The aim of t h i s s e c t i o n i s t o d e t e r m i n e f a i r l y l a r g e s e t s T(a,B)

are test sets.

.

K(a,G)

f o r which

The f i n a l r e s u l t (Theorem 1 . 9 ) i s due t o Sheil-Small [ 7 4 ]

and s l i g h t l y weaker f o r m u l a t i o n s a r e i n C581.

In both p r e v i o u s approaches a geo-

a",

m e t r i c p r o p e r t y of f u n c t i o n s , " s t a r l i k e of o r d e r

was a c r u c i a l i n g r e d i e n t .

The proof p r e s e n t e d i n t h i s s e c t i o n makes no u s e of t h a t r e s u l t .

We s t a r t with a p r e l i m i n a r y o b s e r v a t i o n . LEMMA 1 . 2 :

fok

6

z

1

we have

T(1,B

-

1)*

3

T(l,B)*.

I n t h e proof we need a method which r e c e n t l y found many a p p l i c a t i o n s and r e f l e c t s , i n f a c t , a s p e c i a l c a s e of t h e J u l i a - W o l f f Theorem. J a c k ' s Lemma C261:

I t i s known a s

PROOF of Lemma 1 . 2 : of t h e functions

1)

f 6 T(l,y)*,

F i r s t we g i v e an a l t e r n a t i v e c h a r a c t e r i z a t i o n A s l i g h t m o d i f i c a t i o n of t h e d e f i n i t i o n i s

which i s e q u i v a l e n t t o t h e s t a t e m e n t t h a t t h e l e f t hand s i d e of (1.38) has r e a l part

>

2

in

U.

Let

Then t h e i d e n t i t y

leads t o t h e r e l a t i o n

A combination of (1.38) and (1.40) shows:

Note t h a t t h i s h o l d s f o r

2)

Now l e t

T(1,1)** = ff e x i s t s an

3

T(1,O)

62

f C T(l,y)*

i f and o n l y i f

y 1 0.

1.

If

and t h u s

f € T(l,B)*\T(l,P

P

= 1

we conclude from Theorem 1 . 6 t h a t

T ( 1 , 1 ) * c T ( l Y 0 ) * . For

- I)*.

(3 > 1 assume t h e r e

I f we w r i t e

1

"'6-1

w(z)

[~E B- 1T = 1-w( z ) , B #

t h e n i f f o l l o w s from o u r a s s u m p t i o n s t h a t that there exists

z0 C U

such t h a t

w

1 w(zo) 1

i s meromorphic i n = 1,

x = z w ' ( z )/w(z ) r 1.

From Lemma 1 . 3 we g e t

0

0

2 ,

I w(z) 1

5 1

U , w(0) = 0,

for

1z(

5

and

IzoI.

Taking t h e l o g a r i t h m i c d e r i v a t i v e

0

o f ( 1 . 4 3 ) and u s i n g ( 1 . 4 1 ) we o b t a i n a f t e r some m a n i p u l a t i o n zf' (z)

1 B -

6-1

Since

it is c l e a r t h a t

f C T(l,B)*

T h i s shows t h a t

fS("

PROOF:

y

f

B

# 0

in

U,

1 -

in particular,

f B ( z o ) # 0.

w(zo) # 1 and t h u s

(1.45) c o n t r a d i c t s (1.42) with For

( 1 - 1-zw' ( z ) / w ( z ) B- 1 1-w(z)

, w(z)

7

0

y = B.

The p r o o f i s c o m p l e t e .

we d e f i n e

The p r o o f c o n s i s t s o f a l a r g e number of t e s t s e t o p e r a t i o n s a s d e s c r i b e d

i n Theorems 1 . 4 , 1 . 5 .

We s t a r t w i t h t h e c a s e

T(1,B - I ) * * c T ( l , B ) * * ,

a

= 1.

and t h u s , by C o r o l l a r y 1 . 2 ,

From Lemma 1 . 3 we h a v e

(compare Theorem 1 . 6 ) .

An i n d u c t i v e argument g i v e s contains

0

-

1

( I t x z ) / q € ff

Since

T(1,B) -> D(0,CBI)

( 1 1 )

+

x z ) ( 1 t v z ) Cal-1 €

The l a t t e r set c o n t a i n s

This s e t contains

D(a

a = 1.

COROLLARY 1 . 3 :

FCal n

D(1,O)

-

1,O)

Let

q C Dl

T(1,P

-

we o b t a i n

[Dl).

The l a t t e r s e t

and t h u s

This is t h e d e s i r e d r e s u l t f o r ((1

for

a > 1.

Now l e t

From Theorem 1 . 7 w e g e t

AO)

T(a

-

T(l,B),

15 a 5

B.

1,B),

and a n i n d u c t i v e argument g i v e s

and t h u s

Then

This i s an obvious consequence o f Lemmas 1.1, 1 . 4

since (in the f i r s t case):

The second c a s e i s similar. S i n c e second d u a l s a r e c l o s e d we may improve C o r o l l a r y 1 . 3 by t a k i n g t h e

ffa

c l o s u r e s of t h e r i g h t hand s i d e s o f (1.47).

is already closed.

Let

Then we have Re

:

-Re[

q (2)

m

1 k= 1

yk GIxkz k

-

2

I

2 '

Z

z

u

.

I t i s w e l l known t h a t t h e f u n c t i o n s

a r e dense i n t h e s e t of f u n c t i o n s Thus

D(0,y)

and

with

i s dense i n t h e ( c l o s e d ) s e t

Re (zg' ( z ) / g ( z ) ) > (1.48)

f f A

f (0) = 0

K(0,y)

and

of f u n c t i o n s

Y7 . Now l e t K(a,B) =

K(O,B

-

a),

Re f 2

O5a.E

B ,

g E

A.

5

in with

U.

Thus we g e t THEOREM 1.9:

K(a,B) the fact that

r 1 we have

a 1 1,

fok

a r e called the Kapkn

clanae,h of t y p e

This i s due t o

(q,B).

i s t h e c l a s s o f d e r i v a t i v e s of t h e s o - c a l l e d c l o s e - t o -

K(1,3)

I n h i s work,

convex f u n c t i o n s , f i r s t i n t r o d u c e d by Kaplan C291 ( s e e Chapter 2 ) . Kaplan used an i n t r i n s i c d e f i n i t i o n of t h i s c l a s s , namely

i9

This e x t e n d s t o

) 2 -IT

+

8

1

2

. : a1

- 82

+

is in

K(1,3)

2n, 0 < r < 1,

.

K(a,B) :

THEOREM 1.10:

f C A.

i9 (1.51)

i8

2, - a r e f ( r e

arg f (re

1 9 ~< 9

and f o r

U

i f and o n l y i f it i s nonvanishing i n

f € A.

arg f(re

2,

-

and nonvanisklng i n

i9 arg f ( r e

) 2 -an

U

- f (a -

i.A i n K(a,B), a,B

B)(O1

-

02)

.

For a p r o o f , u s i n g Kaplan's o r i g i n a l i d e a , s e e Sheil-Small C741. I s it perhaps t r u e t h a t

seems t o b e a weakness i n Theorem 1 . 9 .

2 0,

T(a,B)

There can be

r e p l a c e d by t h e s e t s

The answer i s n o t known b u t a h i n t i n t h i s d i r e c t i o n i s c o n t a i n e d i n t h e f o l l o w i n g theorem. THEOREM 1.11: p o b a U y

L a a

meanwe p on

2 1,

6

2 1,

auch

Mat

and

f € K(a,B).

Then Xhehe

a

PROOF:

I t f o l l o w s from Theorem 1 . 9 and t h e d u a l i t y p r i n c i p l e (compare Theorem

1 . 2 ) t h a t e v e r y extreme p o i n t

f (z) = (

where we may assume

f €

/((a,@)

h a s t h e form

l+xz)["l (l+yz)"-[al

0 c y = a

n

- [a]
W

and

Then (1.56) hala2 doh PROOF: (f

*

Let

*

g)

f , g € V*, h € W .

f

*

Vn

that

V** = n

f

*

U

(f € V*,g

+

X Z ) (~ x 6

(g

*

*

h) =

h f VX*),

g € V*** = V*. From Theorem 1 . 8 we have f o r

EXAMPLE:

relation

I f we u s e (1.57) t w i c e , we o b t a i n

S i n c e t h i s f u n c t i o n i s nonvanishing i n

h € W.

we conclude

U = V*.

Cn

!l Ao.

Vn = { (1

U) t h e

Thus it f o l l o w s a l r e a d y from t h e d e f i n i t i o n of d u a l i t y

h a s p r o p e r t y (1.57) and we conclude t h a t

Vi

i s c l o s e d under convo-

Note t h a t t h i s i s e x a c t l y SzegS's Theorem 0.1.

lution.

T(a,B)*, a,B r 1.

Next we s t u d y t h e s e t s

To show t h a t t h e s e s e t s a r e

i n v a r i a n t under c o n v o l u t i o n we need some p r e l i m i n a r y r e s u l t s which w i l l be u s e f u l also in other situations. THEOREM 1.12:

Then doh

Fotr

let

g f AO

evmy f C V* and F



A we have co(F(U))

PROOF:

V -> H for

We have {g)

H € H.

f

*

g # 0

and t h u s For

y € U

in

f € (H

U.

S i n c e from Theorems 1.5, 1 . 6 we o b t a i n

{g)) *,

f i x e d and

a

1 H = (1-yz

i s in

.



we conclude t h a t

R

i+

(f

*

(Hg))/ ( f

*

g) # 0

t h e function ia)/(i

+

ia)

H and i n s e r t i n g t h i s i n t o t h e above i n e q u a l i t y we g e t

Re F Z ( y ) >

1

for

H e r g l o t z l formula i m p l i e s t h e e x i s t e n c e of a measure

and t h u s f o r

For

aU

such t h a t

F € A

(1.58) i s t h e l i m i t i n g c a s e

PROOF:

1-Iz on

x,y E

y

+

1.

we have

l t X Zg ltyz

Theorem 1.9 g i v e s

T(a,B)* = K(a,B)*

€ K(a,B)

.

and t h u s Theorem 1 . 1 2 a p p l i e s .

The n e x t two theorems a r e g e n e r a l i z a t i o n s and r e f i n e m e n t s of C o r o l l a r y

S p e c i a l c a s e s o f Theorem 1 . 1 3 a r e i n Sheil-Small C741 and i n C581. PROOF:

F i r s t assume

p 2 V.

If

1-1 5 1 t h e a s s e r t i o n i s a s p e c i a l c a s e o f

Corollary 1.5.

Now let

u

7

There are functions R E K(y and

Q = R

For k = O,l,

1 and without loss of generality assume v

- v,O), S E K(v,v)

with

f = R

2

1.

S. Let m = [p]

such that

...,m

- 1 we have

and thus by Corollary 1.5

Multiplication of all these functions yields

v1 Nowlet

n = C v 3 and

v1 n = H cff.

P=snV ] ? , $ ' ( K C

For k = O

,...,n

we

have

and by Corollary 1.5

...,n

Multiplication of these functions for k = O,l,

- 1 gives

v- 1 Finally, (1.61) for k = n

shows gRSv

K(a

- 1,B -1) and since sl/'

6

H

we

conclude from C o r o l l a r y 1.5 t h a t

A m u l t i p l i c a t i o n of (1.60)'

(1.62) and (1.63) g i v e s t h e r e s u l t .

The c a s e

1-1 < v

can b e proved by e x a c t l y t h e same method.

FOR

THEOREM 1.14: Then

f

PROOF:

*

g E K(a - 1'0)

Re F2 5 ; ( 1

Now l e t

-

a)

z g l / g = g1

-

-

is in

with

F1' F2

in

1 1

K(0,B

F E A.

A function

exist functions

a,B

RQA: f

g E K(a

E T(a,B)*,

-

1,O)

K(0,B

-

1)

g2

where

-

1).

i f and o n l y i f t h e r e

F1(0) = F2(0) = 0, Re F1 2 !(1

such t h a t

l,O)*K(O,B

1).

K(a

U,

-

g l , g2

-

B),

s a t i s f y t h e c o n d i t i o n s mentioned above.

The i d e n t i t y

g i v e s t h e r e s u l t once we have shown t h a t U.

Re hl 2 i ( 1

But t h i s f o l l o w s from t h e assumptions f o r

g € K(a- 1,B

-

PROOF:

f 3 ) , Re h 2 2 i ( 1

-

a)

in

and C o r o l l a r y 1 . 5 s i n c e

1' 82

1).

THEOREM 1.15:

Le,t

i)

h E T(a,B)* -->

ii)

h E K(a,B) =>

iii)

g

-

h E T(a,B)** =>

a,B 1 1 and

*

f f

f C T(a,B)*.

Then

h E T(a,B)*,

*

h € K(a,B),

f

*

h E T(a,B)**.

Without l o s s of g e n e r a l i t y we assume

15

5

a.

According t o Lemma 1 . 5

r e l a t i o n i) f o l l o w s from i i ) . g f K(a - f3,O), F f K(f3,P)

Let

with

h € K(a,f3) h = gF.

be such t h a t t h e r e a r e f u n c t i o n s

From Theorem 1.13 we o b t a i n

f * h = f * (gF)= ( f * g ) Fo E K(f3,B).

with and

i i ) f o l l o w s from Theorem 1.14 s i n c e

f E T ( a , @ ) *c T ( a

T(a,B)*. Since

-

6 +l,l)*.

From i ) we o b t a i n

fo

0

is arbitrary i n

To prove i i i ) l e t

*

0

f € T(a,B)*

T(a,B)*

fo

and t h u s

we conclude

f

*

-

g f K(a

6,O)

K(0,O)

be a second f u n c t i o n i n fo

*

f

*

h # 0

in

U.

h 6 T(a,B)**.

Theorem 1.15 has f i r s t been proved i n C581 and by Sheil-Small [74]. t h a t t h e example given above s t a t e s t h a t Theorem 1.15 h o l d s f o r a s well.

For

T(O,n),

however, it f a i l s .

Note

T(n,O), n C N ,

The e x a c t range o f t h e parameters

a,P

f o r which Theorem 1.15 i s v a l i d i s unknown. To conlude t h i s s e c t i o n we prove t h a t under c e r t a i n c i r c u m s t a n c e s , convol u t i o n i n v a r i a n c e of a s e t t r a n s f e r s t o l a r g e r s e t s . THEOREM 1.16:

h

*

f

*

q f Ao.

I t w i l l be s u f f i c i e n t t o prove t h a t

f , g € V**, h € V*.

Let g # 0

in

U.

For

z

XI f A

fixed l e t

Now choose

such t h a t

X2(q) = (h

t h e d u a l i t y p r i n c i p l e shows t h a t a r e l e f t with t h e proof o f

h

*

*

go

*

X 2 ( f ) = X 2 ( f 0) fo

*

go # 0

f i n i t i o n o f d u a l i t y and t h e assumption

fo

*

in

q) (z)

.

h

*

*

q)(z),

*

f

go # 0

in

U.

Another a p p l i c a t i o n of

for a certain U.

f

such t h a t

go C V

and t h e r e s u l t f o l l o w s i f we can show t h a t

X2 E h

*

Al(q) = (h

with

From t h e d u a l i t y p r i n c i p l e we o b t a i n a f u n c t i o n

hl (g) = h1 (go)

V -il closed

26

&ue do& V**.

unda conuolu;tiovln Xhe dame PROOF:

be complete and compacX.

L e t V c A.

f

0

E V

and we

But t h i s f o l l o w s from t h e de-

go E V .

A s i m i l a r s t a t e m e n t d e a l s w i t h convex s e t s i n

Ao.

Although t h i s r e s u l t

i s n o t d i r e c t l y r e l a t e d t o d u a l i t y we p r e f e r t o mention it a t t h i s s t a g e .

Let

THEOREM 1.17:

~uncaXon h C A.

V

6uch ;that

AO with W =

C

604

in

Let

V,

Vc

cornpa&.

&nwnefimeLh a

a l l f , g 6 V we have

Then (1.64) h o l d 604 & f , g C PROOF:

GV

W.

d e n o t e t h e s e t of f i n i t e convex l i n e a r combinations of f u n c t i o n s

such t h a t

= W.

C

holds f o r a r b i t r a r y

Since

f ,g € Vc.

W

i s convex we f i r s t conclude t h a t (1.64)

Since

W

i s compact, (1.64) h o l d s f o r

f ,g C

7

a s well.

1.6.

Additional information 1)

We wish t o mention two more s t r u c t u r a l p r o p e r t i e s o f d u a l i t y .

have seen (Theorem 1 . 8 ) t h a t a s i n g l e f u n c t i o n (namely s e t f o r a large set. such p r o p e r t i e s .

(1

+

We

can b e a t e s t

z)*)

I t would be very i n t e r e s t i n g t o determine a l l f u n c t i o n s with

A negative r e s u l t i n t h i s d i r e c t i o n i s contained i n t h e next

theorem.

Let

THEOREM 1.18:

V = {f),

Here we d e n o t e by

Clearly, i f only i f i )

f =

1;

akr

k

f(-')

C A.

ak # 0, k z 0 ,

whehe

f € A.

and

f

ex,&%.

Then

A.

i f and

t h e s o l u t i o n of

t h e e q u a t i o n (1.65) can b e s o l v e d i n

and i i )

lak/l'k

+ 1,

k +

m.

PROOF:

Under t h e assumptions we have

h C VX* such t h a t

Now l e t U.

The f u n c t i o n s

(h

*

f (-I))

*

g # 0

g C Ao,

for arbitrary

g # 0

in

g € T ( l , $ ) , $ 2 1, have t h i s p r o p e r t y and t h u s

I n Chapter 2 (Theorem 2.3) we s h a l l prove t h a t t h e l a t t e r s e t c o n s i s t s of t h e functions

1

-

x ) , x C

.

Thus we have

L e t T1 ,T2

THEOREM 1.19 :

c A.

h = f

*

(1

-

xz)-l,

the result.

be complete and compaot.

Fon y

C

R let

Then

PROOF:

Let

g = ygl

+

-

y)g2, g j C Tt*. 7 duality principle the existence of f . C T J j we have

In p a r t i c u l a r , f o r is i n

A

and t h u s

(1

h C V*

Y

(h

*

and

z C U

g) ( z ) = (h

*

If

h C A,

we conclude from t h e

such t h a t f o r

f = yf

fixed, the functional

f ) ( z ) # 0.

This implies

+

(l-y)f2 c V Y

X(q) = (h g C Vj*

*

q) ( z )

which i s

the result. 2)

The f o l l o w i n g c o r o l l a r y t o t h e d u a l i t y p r i n c i p l e h a s a number of s u r -

p r i s i n g a p p l i c a t i o n s s i n c e it p e r m i t s t o t r a n s f e r c e r t a i n e x t r e m a l problems f o r second d u a l s t o d i f f e r e n t extremal problems f o r n o t r e l a t e d t e s t s e t s .

L e t Tj

THEOREM 1.20:

C

Ao, j = 1 , 2 ,

be compact and comflete,

g c Ao.

T h w we have

i.6 and o n l y i.6

PROOF:

F i r s t we prove t h e theorem with (1.67) r e p l a c e d by

(1.68)

g*hCT;

I n f a c t , assume

h C Ti*

for arbitrary (1.68).

f C Tf *.

for a l l

Then (1.66) shows t h a t

*

g

and t h u s

.

h C T;* g

f C T;** = T;.

*

*

h

f = (g

*

f)

To prove (1.67) =>

f C T2.

From t h e d u a l i t y p r i n c i p l e it i s c l e a r t h a t

h C T;*

i f t h e same i s t r u e f o r a l l

h € T1.

h # 0

T h e r e f o r e (1.66) i m p l i e s

The o t h e r d i r e c t i o n f o l l o w s by i n t e r c h a n g i n g t h e s u b s c r i p t s

Obviously, (1.68) i m p l i e s (1.67).

*

1,2.

(1.68) choose an a r b i t r a r y g

*

f

*

h # 0

for a l l

The proof i s complete.

Some a p p l i c a t i o n s w i l l be given i n Chapter 2 , s e c t i o n 8; compare [SO].

3)

We r e t u r n t o Theorem 1.11 and g i v e an a l t e r n a t e proof which, however,

works o n l y f o r

a r 2.

In f a c t , consider

TO(a,B) = {

Writing

Tl (y, 0) = { ( 1

This i m p l i e s f o r

t

xzlY

a,@r 1

I

(ltxz) (ltyz)a-l (ltuz)B

x

C

we have

1

XYYYU C

According t o Theorem 1.1 t h e extreme p o i n t s of sets,

To(ci,B)

and

T(a,B).

For

a

2 2,

-

c o K(a,B)

a r e c o n t a i n e d i n both

however, t h e i n t e r s e c t i o n c o n s i s l s of

the functions

S i n c e f u n c t i o n s with

x € U

or

y € U

cannot b e extreme p o i n t s , t h e c o n c l u s i o n

follows. Comparison of (1.69) with (1.50) l e a d s t o t h e f o l l o w i n g problem: I s it t r u e t h a t i f t h e compact and complete s e t s f o r t h e same s e t

U,

the intersection

The answer i s unknown.

T1 0 T2

are test sets

is also a t e s t s e t f o r

U?

I f it i s a f f i r m a t i v e , we would have a proof f o r

t h e problem mentioned a f t e r Theorem 1 . 1 0 , a t l e a s t f o r (1.50).

TI, T2

a r 2,

u s i n g (1.69) and

Chapter 2 APPLICATIONS TO GEOMETRIC FUNCTION THEORY

2.1.

I n t r o d u c t o r y remarks I n t h i s c h a p t e r we s h a l l a p p l y t h e d u a l i t y t h e o r y t o c o n c r e t e s i t u a t i o n s

i n geometric f u n c t i o n t h e o r y , i n p a r t i c u l a r t o ( c l a s s e s o f ) u n i v a l e n t f u n c t i o n s . Most of t h e f u n c t i o n s

f € A

of i n t e r e s t i n t h i s c o n t e x t a r e normalized by t h e

conditions

and t h e c o l l e c t i o n of t h e s e f u n c t i o n s i s denoted by with f C A1

A.

A1.

Since d u a l i t y is dealing

a d i r e c t a p p l i c a t i o n of t h e p r e v i o u s r e s u l t s i s n o t p o s s i b l e . i f and o n l y i f

f / z 6 A.

and f o r

f , g C A1

However,

we have

i f and o n l y i f

and s o t h e r e i s an obvious t r a n s f o r m a t i o n of d u a l i t y t o A function

f C Al

is called nfat.tibe

A1.

06 oadm a

5 1

i f and only if

The s e t of t h e s e f u n c t i o n s is denoted by usual notation

Si).

S

a

( f o r obvious r e a s o n s we avoid t h e

In p a r t i c u l a r ,

and t h e s e f u n c t i o n s p l a y an important r o l e i n extremal problems f o r w e l l known t h a t

S

c S

a

A1.

univalent functions i n

A function f E

exists

A1

0 5 a 5 1,

i f and o n l y i f

S

.

It i s

i s t h e s e t of a l l

I t i s c l e a r from (2.1) t h a t

i s s a i d t o be i n t h e c l a s s

g C Say p 6 R ,

where

S a

a

1

i f and only i f t h e r e

such t h a t Re e

icp zf ( z )

g(z>

>O,ZCU,

which i s e q u i v a l e n t t o

Co

The f u n c t i o n s i n subclass of

S

a r e c a l l e d close-to-convex and t h e y form an important

so>

( l a r g e r than

Another even l a r g e r s u b s e t of B(a,B), a > 0, (3 C

R.

such t h a t f o r a c e r t a i n

where

Here cp C

( f ( z ) /z) a+iB-1 = 1 a t

f C B(a,B)

S

i s formed by t h e

EuzXevi: a u n c t i o ~ n

i f and o n l y if t h e r e e x i s t s

R

z = 0.

An e q u i v a l e n t c o n d i t i o n i s

g C Sl-a

Another f r e q u e n t l y s t u d i e d e x t e n s i o n of t h e close-to-convex f u n c t i o n s a r e t h e done-.to-convex ~unc.tioltd 04 ondeh only i f t h e r e e x i s t

g E So,

E R,

8.

f C A1

i s such a f u n c t i o n i f and

such t h a t

which i s e q u i v a l e n t t o

A function

k 2 2, of

f(U)

f € A1

i s s a i d t o be

06 boundany hoXalAon at mont

IT,

i f i n a l i m i t i n g s e n s e t h e v a r i a t i o n of t h e t a n g e n t a n g l e a t t h e boundary i s a t most

k i ~ , s e e C70,p.231.

These f u n c t i o n s a r e c h a r a c t e r i z e d by

the representation

and t h u s

We s e e t h a t t h e n o t i o n of Kaplan c l a s s e s describing various geometrical s i t u a t i o n s . K(a,B)

unifies a l l these definitions

Since t h e d u a l i t y theory a p p l i e s t o

we can expect t o o b t a i n some v a l u a b l e i n f o r m a t i o n r e g a r d i n g t h e above-

mentioned f u n c t i o n s .

Some o t h e r s e t s of f u n c t i o n s , d i r e c t l y r e l a t e d t o

w i l l be d i s c u s s e d a s w e l l .

Rike

K(a,B)

06 andm

a 5 1

In p a r t i c u l a r , a function

i f and o n l y i f

f E A1

K(a,@),

i s c a l l e d pted&xh-

Although it i s n o t immediately c l e a r from t h e d e f i n i t i o n what t h e p a r t i c u l a r i n t e r e s t of t h e s e c l a s s e s may be, o u r r e s u l t s w i l l show t h a t t h e y p l a y a c e n t r a l r o l e i n some s i t u a t i o n s .

F i n a l l y we wish t o mention t h e c l a s s

A s we s h a l l see, M l a r g e s u b s e t of

2.2.

M of f u n c t i o n s

f C A1

such t h a t

c o n t a i n s o n l y u n i v a l e n t f u n c t i o n s and seems t o be a f a i r l y

S.

Prestarlike functions Let

(2.11).

Ua

b e t h e c l a s s of p r e s t a r l i k e f u n c t i o n s o f o r d e r

A simple c a l c u l a t i o n u s i n g ( l . 3 9 ) ,

(1.42) shows t h a t

a

a s defined i n

f 6 Ra,

a

5 1,

and o n l y i f

Note t h a t t h e " f a c t o r " name " p r e s t a r l i k e " .

z/(l

-

z ) 2-2a

i s itself in

I f we i n t r o d u c e t h e o p e r a t o r

we deduce from (1.38) t h e e q u i v a l e n t c o n d i t i o n f o r

Sa

.

(2.13) j u s t i f i e s t h e

DY: A1

f € Ra:

-+

A1

with

if

Since

..

("1, n = 0 ~ 1 , .

~"+'f = 2 n!( z n - ' f )

(2.16)

t h e r e l a t i o n (2.15) t a k e s a p a r t i c u l a r l y simple form i f

, 2

-

2a C N.

The s p e c i a l

c a s e s . a = 0 1, ~g i v e

f E R

(2.18)

R1

Thus we have members map

2

u

=

0

zf " Re(-+ f'

S 1 and Ro

= K

2

where

0'

1) 7 0 , z C U .

KO

S

i s t h e s u b c l a s s of

whose

o n t o convex domains.

The f o l l o w i n g theorem i s b a s i c f o r t h e t h e o r y of p r e s t a r l i k e f u n c t i o n s . THEOREM 2 . 1 : ii) PROOF:

i)

Fa& a c 6

Let 5 1

a 5 1

we have

and

f , g € Ra.

Then

f

*

g C

Ra.

Ra c R6.

i ) i s a r e f o r m u l a t i o n of Theorem 1 . 1 5 , i ) u s i n g d e f i n i t i o n ( 2 . 1 1 ) .

prove i i ) , n o t e t h a t

K(1,3 - 2a)

3

K(1,3 - 26)

To

and t h u s by Theorem 1 . 9 and

(1 171,

P a r t i ) of Theorem 2 . 1 h a s t h r e e c a s e s of p a r t i c u l a r i n t e r e s t (2.19)

f , g c A1,

f Re - > z

1,

Reg> z

1=>

Re

f > g z

(in

U)

,

(a=1,;,0):

Although (2.19) can e a s i l y be o b t a i n e d from t h e H e r g l o t z i n t e g r a l r e p r e s e n t a t i o n f o r such f u n c t i o n s , (2.20) and (2.21) a r e much s t r o n g e r . c o n j e c t u r e of ~ 6 l y aand Schoenberg C421 i s v a l i d .

(2.21) s t a t e s t h a t t h e

Theorem 2.1, i i ) i m p l i e s t h a t

an o l d r e s u l t due t o S t r o h h s c k e r C811. For

a = 0, q ,

Theoren 2.1, i ) was f i r s t proved i n C621.

p l e t e proof of Theorem 2 . 1 h a s been given by S u f f r i d g e 1831.

The first com-

He proved a deep and

much s t r o n g e r theorem on t h e composition of polynomials with c e r t a i n r e s t r i c t i o n s on t h e i r z e r o s ( s e e Chapter 4, Theorems 4.14-4.171, relations

-

e q u i v a l e n t t o Theorem 2 . 1

-

and showed t h a t t h e f o l l o w i n g

a r e a l i m i t i n g c a s e of h i s r e s u l t :

Let

Then i f

(2.22)

we have

Furthermore, i f

Compare ( 2 . 2 2 ) ,

a < 6

5 1,

then

(2.23) with SzegZ1s theorem ( 0 . 1 ) !

2 . 1 i s due t o Lewis C 331.

Yet a n o t h e r proof of Theorem

S i n c e we have a H e r g l o t z formula f o r

i s a consequence of Theorem 2 . 1 ,

COROLLARY 2 . 1 : mmute

on

au

Let f

t h e following c o r o l l a r y

f C R1,

ii).

Ra,

C

a 5 1.

Then ;them ex&&

a pobabiecty

nuch ;that

Using t h e c h a r a c t e r i z a t i o n (2.13) we o b t a i n

COROLLARY 2 . 2 : on

m e a w e 1-1

au

Let f

C Sa,

a 5 1.

Then ;thehe e x & a

a pmbabUy

nuch Rhat z

f (z) =

dlJ(T)

au

z

f (z) Q

(l-z)2-2a

'

This r e p r e s e n t a t i o n h a s f i r s t been proved (by a d i f f e r e n t method) by Brickman, Hallenbeck, MacGregor and Wilken C121. i n (2.27) d e c r e a s e f o r

of measures

l~

Theorem 2 . 1 ,

i i ) and ( 2 . 2 5 ) .

The f u n c t i o n s i n

%,

a z

!,

I t i s remarkable, however, t h a t t h e s e t s

a

decreasing.

can be r e p r e s e n t e d with t h e a i d of a

c e r t a i n c o n v o l u t i o n i n t e g r a l and f u n c t i o n s i n for

a ,

1 we have

T h i s i s a consequence of

R , = S T . To t h i s end we n o t e t h a t Z

Z

Since

(1

have f o r

-

z ) - ~= 2Fl(ay 1.1, z)

,

where

i s t h e hypergeometric f u n c t i o n , we

2F1

a > 1

For t h e n o t a t i o n

f

s e e (1.65).

A combination of t h e s e formulas and (2.13)

gives THEOREM 2.2:

exin& a g

Let a

.

Then we have

f C

and anLg

id

them

duch ;thCLt

€ 2

A s a r e s u l t of Theorem 2 . 1 , i i ) we s e e t h a t t h e c l a s s e s decreasing

!ah

Ra

a.

become narrower f o r

The n e x t r e s u l t shows t h a t t h e i r i n t e r s e c t i o n i s v e r y small C491.

THEOREM 2.3: z / ( l - xz), x C

Ra

The i n t m e c t i o n od

Rap a 5 1,

eonhha2 oh t h e Quncfionn

U.

PROOF:

I t w i l l be enough t o s t u d y t h e i n t e r s e c t i o n of

n CN.

Let

W e wish t o show t h a t f o r

k 5 n

the estimate

Ra

with

a

= (1 - n ) / 2 ,

h o l d s with

~

[/I::[

~ =3

(

~

)

)

ntk- 1 k-1

'

Let

be t h e f u n c t i o n a p p e a r i n g i n t h e r e p r e s e n t a t i o n of l a t i o n shows t h a t

r (g/z)ntl

where

q

a

2

= b2.

The

f

k-th c o e f f i c i e n t

by ( 2 . 3 1 ) .

dk

A simple c a l c u -

of t h e expansion of

h a s t h e form

i s a polynomial w i t h non-negative c o e f f i c i e n t s i n i t s v a r i a b l e s .

We

obtain

Idk since

q(1,

..., 1 )

n t l ,,k-1 2

- (k-l]

1

'9(1,....1)

i s the

t

=

]

(

ntk- 1 k-l -

k - t h c o e f f i c i e n t of

1

(z] - z ) .

But from

(2.31) we deduce

which i s (2.32).

Now assume t h a t f i x e d and or

n

k.

Since

f E R

1-n -

f o r every

n E N.

2 l i m y ( n , k ) = 1 we o b t a i n n-

Then (2.32) h o l d s f o r l a k - ak-'1 2

= 0

for this

k f

which i s a f u n c t i o n of t h e form mentioned i n t h e a s s e r t i o n . (2.33) with

l a 2 / 5 1 belongs t o

Ra'

a 5 1

That any f u n c t i o n

i s an immediate consequence of t h e

d e f i n i t i o n of p r e s t a r l i k e f u n c t i o n s . CO

REMARK:

For

1

f (z) =

akz

k

F Ra

one can u s e t h e s t a n d a r d t e c h n i q u e s

k= 1 t o obtain t h e s h a m inequality

which, i n f a c t , d e s c r i b e s t h e e x a c t c o e f f i c i e n t body Another consequence of Theorem 2 . 1 , This i s no l o n g e r t r u e f o r THEOREM 2.3:

1

(a2,a3)

i i ) i s that

R

a

Ran

in c S

a

for

5

;.

.= a 5 1.

%cS

hoh!A eds{ and o d y ir( a '. f

.

This r e s u l t h a s f i r s t been p u b l i s h e d by Silverman and S i l v i a C771. g i v e a proof i n t h e c o n t e x t of d u a l i t y . g € T(1,3

-

2a)**

I n f a c t , t h e d u a l i t y p r i n c i p l e shows t h a t

implies

Thus

g(z) = (1

-

T(1,3

-

such t h a t

2a)**)

We

z)-'

f T ( 1 , 3 - 2a)**, f 1( e ) = ( 1 -

1

2 s

a 5 1,

212 *

(f/z)

and we f i n d

f

has a zero i n

c

pa

U.

(f/z This

e f

i s n o t even l o c a l l y u n i v a l e n t .

The f o l l o w i n g c o n v o l u t i o n r e s u l t f o r p r e s t a r l i k e and s t a r l i k e f u n c t i o n s i s a r e f o r m u l a t i o n o f a s p e c i a l c a s e of C o r o l l a r y 1 . 5 .

THEOREM 2.4:

Fon a 5

1

let

f € Pa, g € Sa, F € A .

Then

(2.35) i s fundamental f o r p r e s t a r l i k e f u n c t i o n s and c o ~ i t a i n sTheorem 2 . 1 .

Another

( e q u i v a l e n t ) s t a t e m e n t i s even more u s e f u l f o r c e r t a i n a p p l i c a t i o n s , i n p a r t i c u l a r because it c l e a r l y p o i n t s out t h e advantage compared with c o n v e x i t y t h e o r y . THEOREM 2.5 : pa

= z(1 - z )

PROOF:

Let

2a- 2

.

Fob

and

g F Sa, F C A,

Then

pa

be t h e s o l u t i o n of

From our assumptions we have f o l l o w s from (2.35)

a < 1 let f C Ra,

g

*

p

a

(-1) pa

*

pa

Ra and

= (

1 - z).

*

pa 6 Sa.

f

Thenwehave

The r e s u l t

. f 5 z

Note t h a t (2.36) with t h e c h o i c e emphasizes t h e r o l e of

pa

i s equivalent t o (2.27).

.Ya.

a s an extremal element i n t h e c l a s s

(2.36)

Extremal

problems of v a r i o u s f i e l d s a r e covered by Theorem 2.5, and a number of a p p l i c a t i o n s w i l l be given w i t h i n t h e n e x t s e c t i o n s .

A t p r e s e n t we c o n f i n e o u r s e l v e s

t o two examples. THEOREM 2.6:

PROOF:

LeX

x , y C U, 0 5 t

I n Theorem 2.5 we choose

a =

i,

r 1, and

g F

R1.2

z F ( z ) = (1-xz) (1-yz) -

The1

and

56

f(z) = z(l

-

(xt t y ( l

-

t))z)-'.

Note t h a t

The l a t t e r s e t i s i n t h e h a l f p l a n e

Re w 2

Theorem 2.6 i s due t o V . Singh.

f C R,. Z

Then we o b t a i n

and t h i s g i v e s (2.37) t = 0

The s p e c i a l c a s e

. i s i n [62].

1 z l a = ~ l Note .

The n e x t r e s u l t d e a l s with t h e c o n v o l u t i o n of f u n c t i o n s i n t h a t i n t h i s range

% C S + 2R a .

(2.38)

Let

THEOREM 2.7:

nMkeneno z

06

f

*

g

-LA

1

2 5

a

5

8

< 1, f F SB, g C Sa.

at lean*

ohden

06

Then Xhe ahdeh

nXan&kenan

ud

on * o6

06

=

F (2-2a,2-28,1,z). 2 1

PROOF:

We a p p l y (2.36) t w i c e t o o b t a i n

V . Singh (unpublished) used t h e continued f r a c t i o n s expansion of o b t a i n t h e f o l l o w i n g lower bound f o r t h e o r d e r of s t a r l i k e n e s s of

pa

* pp,

2F1

to

We omit t h e d e t a i l s .

Note t h a t t h e same method p e r m i t s one t o s t u d y t h e equiva-

l e n t problem f o r c o n v o l u t i o n s of f i n i t e l y many f u n c t i o n s i n

S

a,

z1 5 a

r

1.

The f o l l o w i n g a p p l i c a t i o n of Theorem 2.4 h a s a f l a v o r s i m i l a r t o t h a t of Theorem 2.7.

such t h a t

C(f)

l i e s i n the halfplane

THEOREM 2.8:

Let

(2.39) Theorem 2 . 4 y i e l d s

D B g F Sa.

since

of

-

I

=

f € Ra

let

1

2.

Then

.

n

~ ( f ) ~ ( g )

(6 = 2 - 2a)

a = 0

1 c 1 we conclude t h a t

KO

Re w 1

I n t e r c h a n g i n g t h e r o l e s of

I f , f o r example,

Iw

* g)

For

5 1.

f , g € Ra, a C 1. c(f

PROOF:

a

I t i s v a l i d , however, f o r

C(f

C(f) , C(g)

and

*

c o n s i s t i n g of a l l f u n c t i o n s

f,g

g)

gives t h e r e s u l t . a r e contained i n t h e d i s c

l i e s i n t h e same d i s c :

f F A1

with

the subclass

T

i s c l o s e d under c o n v o l u t i o n . f C A1

(a =

The same h o l d s

4)

f o r t h e c l a s s of f u n c t i o n s

with

(2.41)

I

zf' (z) 1 - 1 / < 2 , Z F U . f (z)

I t i s c l e a r how Theorem 2.8 can b e a p p l i e d i n o t h e r s i m i l a r s i t u a t i o n s . I t i s w e l l known t h a t if have

g ( z ) = fi f ( 6 ) C S1.

i s an odd s t a r l i k e f u n c t i o n o f o r d e r

f

0 we

This can e a s i l y be extended t o t h e f o l l o w i n g

2

statement:

if

we have

This f a c t can be used t o o b t a i n t h e f o l l o w i n g i n t e r e s t i n g s t r u c t u r a l formula f o r

R

a'

a =1

THEOREM 2.9:

PROOF:

The f u n c t i o n

Theorem 2 . 1 ,

-

n/2.

LeZ

n € N

s(z) = z/(l

and

-

i ) and (2.13) we s e e t h a t

The c o n c l u s i o n f o l l o w s from ( 2 . 4 3 ) .

is in

zn) s

*

f

S 1- ;n

and by an a p p l i c a t i o n of

i s a f u n c t i o n of t h e form ( 2 . 4 2 ) .

We conclude t h i s s e c t i o n with t h e d e t e r m i n a t i o n o f a number of s p e c i a l t a r l i k e and p r e s t a r l i k e f u n c t i o n s .

An important s u b c l a s s of

R1

i s described

i n t h e f o l l o w i n g c l a s s i c a l r e s u l t o f F e j 6 r C211: THEOREM 2.10:

Assume

a l = 1,

and Xhat

ak 2 0

doh k t 2 ,

such .that

{ak} -i6 a convex decheanhg sequence, i.e.,

Then

Let

X >

Clearly C

Ri-A.

-;,

-1 5 x 5 1,

G(* , x ) € Sl-A

and

and

G(-,1) =

such t h a t

This l a t t e r statement i s equivalent t o

-1

P:"'")

(x)

k=O P ( X , u ( l ) z k where

G(z,l)

Pk(a'B)

k

cRf-A

3

a r e t h e J a c o b i polynomials

Lewis C341 h a s given a f a r - r e a c h i n g e x t e n s i o n o f (2.44): THEOREM 2.11:

FOX

5

, 1

x 5 1

We have

*

G(z,x)

H i s proof u s e s a c a r e f u l s t u d y of t h e f u n c t i o n (2.45) w r i t t e n i n terms of t h e I t i s t o o complicated t o b e reproduced h e r e .

hypergeometric f u n c t i o n .

x =

-1

of (2.45) i s of p a r t i c u l a r i n t e r e s t s i n c e it shows ( a 1

IB])

The c a s e that

The s t u d y of hypergeometric f u n c t i o n s i s v e r y n a t u r a l i n t h i s c o n t e x t , compare The f o l l o w i n g e x t e n s i o n of (2.46) i s u s e f u l .

Theorem 2.7.

PROOF:

.a,B,y € R, a t z 2

$1.

+

Then

We s h a l l prove t h e e q u i v a l e n t s t a t e m e n t

We f o l l o w t h e argument i n C341.

Since

i s t r i v i a l , we may assume

+

and

IP

1

LeZ

THEOREM 2.12:

F (z) =

F (a , b , c , z) 2 1

t h e meromorphic f u n c t i o n

.

a = 1

a

1

t

+ a +

7

0.

Let

We have t o show t h a t w (z) , w (0) = 0,

r 0 and t h e c a s e

(3

b = 1

+

1

+ a +

(3 t i y , c = 1 t

Re (zF1 ( z ) / F ( z ) )

7

-a/2

f3 = 0

a + iy

or that

d e f i n e d by

zF1 ( z ) = a w(z> F (z) 1-w(z) i s bounded by

1 in

U.

I f t h i s i s f a l s e we f i n d

Iw(z)l 5 ~ w ( z o )=~ 1, l z l 5 I z O I . F(z)

z0 E U

with

According t o Lemma 1.3, x = z 0w l ( z 0 )/w(z 0 ) 2 1.

s a t i s f i e s t h e d i f f e r e n t i a l equation

(2. 50)

z(1

-

z)F"

+

Cc - ( a

+

b

+

l)z]F1

Taking t h e d e r i v a t i v e of (2.49) and e l i m i n a t i n g t o the relation

F"

-

abF = 0

.

l e a d s a f t e r some manipulation

(2.51) with

I n s e r t i n g t h e v a l u e s of A(zo) # 0

a,b ,c

I A ( Z ~1 )= 1 B(z0) 1 .

we f i n d

a,&

under t h e r e s t r i c t i o n s f o r

Furthermore,

Thus (2.51) g i v e s

1 zOl

= 1,

a con-

tradiction.

a
-1.

and maps

onto t h e convex dorrain

U

We d e n o t e t h e c l a s s o f t h e s e f u n c t i o n s by implies 0 < t

6

ft

convex u n i v a l e n t i n

f(U).

K(a).

Since

w = ra(f)

U, i t i s c l e a r t h a t f o r

g C K

we have f o r

-

K(a)

1, u s i n g Theorem 2 . 1 ,

convex u n i v a l e n t i n

-

U.

Thus

r,(f

*

g ) C K(a)

by t h e above d i s c u s s i o n .

We

have t h u s proved t h e f o l l o w i n g e x t e n s i o n of t h e P6lya-Schoenberg c o n j e c t u r e :

THEOREM 5 . 6 :

I n p u c l L e a n , id K(a)

Fok

~ , ( f * g ) C K(a).

w = -ra(f) C K(a), g C K , we have

w l = ?,(f),

w2 = ~ , ( g ) C K(a), ,then

w = w1@w2

= ~

~ * g) ( cf

. I n t h e f o l l o w i n g theorem we determine a s p e c i f i c c l a s s of f u n c t i o n s i n

K(a).

This r e s u l t i s w e l l known f o r

a

w

THEOREM 5 . 7 :

Let

f (z) =

0.

a k zk C A l

be 6uch .th&

k= 1

Then ~ ~ ( C f K(a). ) PROOF:

Without l o s s of g e n e r a l i t y we may assume

f(z)

z.

A look i n t o t h e

second o r d e r d i f f e r e n t i a l e q u a t i o n s s a t i s f i e d by t h e f u n c t i o n s k C N,

dk

/dl

Y

shows t h a t

Hence, f o r

0