2012 Lecture - High Energy Physics

12 downloads 2765 Views 7MB Size Report
6 Nov 2012 ... Evidence (Astrophysical Detection). 2. Candidates ... 3. Direct Detection (Particle Physics) ... D. H. Perkins, Particle Astrophysics (2004) ...
Dark Matter, Low-Background Physics RHUL Jocelyn Monroe

Nov. 6, 2012

1. Evidence (Astrophysical Detection) 2. Candidates, Properties 3. Direct Detection (Particle Physics)

1st Observation: 1930s

Fritz Zwicky

(Kitt Peak)

Virial Theorem: kinetic energy ∝ potential energy

implies 400x more mass than visible!

Vera Rubin

Confirmation: 1980s Rotation velocity v(r) of spiral galaxies

(M. Kamionkowski, astro-ph/9809214)

implies 100x more mass than visible!

WMAP Cosmic Microwave Background

WMAP

CMB Acoustic Spectrum

Baryons compress photon-baryon plasma at recombination, photons exert pressure, competition gives rise to pressure wave

D. H. Perkins, Particle Astrophysics (2004)

BBN

BBN

lines = predicted light element abundances vs. baryon density boxes = observed abundances (1, 2 sigma) vertical band = CMB measure of baryon density (PDG)

Bullet Cluster

(NASA/Chandra/Magellan/Hubble)

The Standard Model of Cosmology E. Komatsu et al., Astrophys. J. Suppl 192 (2011) 18

Dark Matter is ~23% of the universe.

HEPAP/AAAC DMSAG Subpanel (2007)

Dark Matter Candidates strong e.m. weak

interaction strengths

k uar t-q

on ctr ele

trin neu

masses

o?

gravity

Axions

WIMP Number Density

D. H. Perkins, Particle Astrophysics (2004)

WIMP Mass Range

D. H. Perkins, Particle Astrophysics (2004)

WIMP-Nucleon Scattering Event Rate Spin Independent: χscatters coherently off of the entire nucleus A: σ~A2 D. Z. Freedman, PRD 9, 1389 (1974)

Spin Dependent: only unpaired nucleons contribute to scattering amplitude: σ~ J(J+1)

kinematics: v/c ~ 1E-3!

Mχ = 100 GeV σSI = 1E-44 cm2

Direct Detection Experiments Signal: χN ➙χN’

χ

Sc int illa

χ

tio n

Heat

Ion i

zat ion

Backgrounds: n N ➙ n N’ γ e- ➙ γ e-’ N ➙ N’ + α, eν N ➙ ν N’

DRIFT IGEX ArDM

WARP ZeplinIII

Xenon100 LUX

Newage Ioniz

Picasso COUPP

ation !

CoGeNT

DMTPC ANaIS DEAP/CLEAN XMASS

CDMS Edelweiss

Heat

!

n! o i t a l l Scinti

KIMS CRESST

Dama/LIBRA CRESSTII ROSEBUD

Backgrounds 10,000 events

photon scattering background

In dark matter experiments...

?

10,000 events

? 1,000 events

N

Anything else that does this can fake a dark matter signal!

100 events

1 event

radon decay background

neutron scattering background

neutrino scattering background

smallest dark matter scattering signal?

EM Backgrounds (D. McKinsey)

Gamma ray interaction rate is proportional to (# of electrons in detector) x (gamma ray flux) Typical count rate = 100 events/s/kg = 10,000,000 events/day/kg in a good lead shield, rate drops to 100 events/day/kg Best dark matter detectors: sensitive to 0.01 events/day/kg (σ~1E-44 cm2)

U and Th Decay Backgrounds can’t shield a detector from U and Th inside, recoiling progeny and associated betas can fake nuclear recoils

Neutron Backgrounds μ

γ

N

μ N* n

Cosmic muons spall neutrons: ~10-4 neutrons/ (100 GeV μ)/ gm/cm2 neutron flux: 10-8 - 10-10/cm2/s (range for depth)

D.-M. Mei, A. Hime, PRD73:053004 (2006)

eg. Study for CDMS-II Detector

ν Backgrounds can’t shield a detector from coherent elastic scattering of solar neutrinos

Φ(B8)

ν

ν Z

= 5.86 x 106 cm-2 s-1 N

N

100 events/ton-year = ~ 10-46 cm2 limit unless you measure the direction! JM, P. Fisher, PRD76:033007 (2007)

Backgrounds 10,000 events

10,000 events

the best experiments are here

1,000 events

100 events

1 event

Jocelyn Monroe

photon scattering background

radon decay background

neutron scattering background

neutrino scattering background

smallest dark matter scattering signal? October 13, 2012

CDMS

(material thanks to E. Figuroa)

Phonon side: 4 quadrants of phonon sensors for energy & position (timing)

-3V

Transition Edge Sensors, operated at ~40 mK on Ge and Si crystals, in Soudan arXiv:0907.1438v1

arXiv:0912.3592v1 h+

Detector re-design a la EDELWEISS to reduce surface backgrounds x104

e-

0V

Charge side: 2 concentric electrodes (inner & outer) energy (& veto)

3” (7.6

1 cm

Ge: 250 g Si: 100 g

Ionization/Phonon yield vs. Erecoil (keV)

Xenon100

(S1)

Two-Phase liquid Xenon TPC, operated in LNGS

(S2) S1 [PE] 5

10

15

20

25

30

35

0.4

arXiv: 1104.2549v2

10

log (S2/S1)-ER mean

0.2

“S2”: primary scintillation “S1”: amplified, drifted ionization signal both read out with PMTs

0 -0.2 -0.4 -0.6 -0.8 -1 -1.2

(E. Aprile)

10

20

30

Energy [keVnr]

40

50

Experimental Procedure 1. using calibration data, define background and signal regions 2. using calibration data, define a region with zero expected background events nuclear recoil energy

(any events in the blind region are signal candidates)

Experimental Procedure

theorist: el what mod is h t s n i a l p x e rate?

3. measure event parameters in WIMP search data set

see a or se signal 4. blind analysis: open the box! t a li mit?

experimentalist:

5. measure number of events

The Low Background Frontier limit, :;

:;

:;

:;

Many Results Here, excludes regionshown Onlythis 2 strongest

&* % & &'()

%&

allowed region!

# "#$

!=


:;

:

.

:; . !"#$%#&''%()*+,- /

Complementary with High-Energy Frontier


8σ, inconsistent with many expts CoGeNT: 442 days, 0.5-3.0 keVee

CoGeNT (dashed line)

42 days

140

120

100

DAMA (solid line)

80

60

0

100

200

300

400

500

Days Since Dec 3, 2009

Annual Modulation June-December event rate asymmetry ~2-10% Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986)

Eur. Phys. J. C56:333-355 (2008)

BUT... CDMS modulation search not consistent with CoGeNT or DAMA/Libra (98.3% CL) arXiv:1203.1309

Events/30 days

DAMA/Libra positive result, >8σ, inconsistent with many expts CoGeNT: 442 days, 0.5-3.0 keVee

42 days

140

120

CoGeNT (dashed line)

100

80

60

0

100

200

300

400

CDMS (solid points) 500

Days Since Dec 3, 2009

Directional Detection The Dark Matter Wind “blows” from Cygnus

search for a dark matter source

Simulated Dark Matter Sky Map

simulated reconstructed dark matter sky map: search for anisotropy Unambiguous proof: Correlation of WIMP-induced nuclear recoil signal with galactic motion

astro-ph/0609115

Events /kg / day

Directional Detection

0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 Re 0 20 1 coi 40 0.8 0.6 l K 6080 ine 100 0.20.4 !LAB ) tic 120 0 -0.2 En 140 os( C -0.4 erg 160 y (k180200 -1-0.8-0.6 eV )

Daily direction modulation: asymmetry ~ 20-100% in forward-backward event rate. Spergel, Phys. Rev. D36:1353 (1988)

recoili ng nucleu s

Directionality Around the World DRIFT: in Boulby (UK) S. Burgos et al., Astropart. Phys. 28, 409 (2007)

NEWAGE: in Kamioka (JP), first directional dark matter limit! K. Miuchi, et al., Phys.Lett.B654:58-64 (2007)

MiMAC-He3: ILL/Modane (FR) D. Santos, et al., J. Phys. Conf. Ser. 65, 021012 (2007)

DMTPC: in WIPP (US) CCD readout D. Dujmic, et al., NIM A 584:337 (2008)

NEWAGE limit (Kamioka) K. Miuchi et al., Phys.Lett.B686:11-17 (2010)

DMTPC limit (surface, 38 gm-day) S. Ahlen et al., Phys. Lett. B 695 (2011)

!p (cm2)

Spin-Dependent Cross Section: Latest Experiment Results -32 10-32 10

directional searches

DMTPC 10L surface -34

-34 10-34 10

-36 10-36 10

DRIFT sensitivity, Astropart.Phys. 25 (2012) 397

DMTPC, 10L sensitivity at WIPP

-38 10-38 10

-40 -40

10 10

cMSSM theory

1022 10

3

1033 10

WIMP mass mass (GeV) (GeV) WIMP Theory region: Rozkowski et al JHEP 07 (2007) 075 Ellis et al PRD63 (2001) 065016

NEWAGE limit (Kamioka) K. Miuchi et al., Phys.Lett.B686:11-17 (2010)

DMTPC limit (surface, 38 gm-day) S. Ahlen et al., Phys. Lett. B 695 (2011)

!p (cm2)

Spin-Dependent Cross Section: Latest Experiment Results 10-32 DMTPC 10L surface

directional searches DRIFT sensitivity,

10-34

Astropart.Phys. 25 (2012) 397

10-36

1D results COUPP PRL.106, 021303 (2011)

-38

10

SIMPLE

arXiv:1106.3014

10-40

PICASSO

cMSSM theory

102

arXiv:1202.1240

103

WIMP mass (GeV) Theory region: Rozkowski et al JHEP 07 (2007) 075 Ellis et al PRD63 (2001) 065016

NEWAGE limit (Kamioka) K. Miuchi et al., Phys.Lett.B686:11-17 (2010)

DMTPC limit (surface, 38 gm-day) S. Ahlen et al., Phys. Lett. B 695 (2011)

!p (cm2)

Spin-Dependent Cross Section: Latest Experiment Results 10-32

directional searches

DMTPC 10L surface

10-34

DRIFT sensitivity, Astropart.Phys. 25 (2012) 397

10-36

1D results COUPP PRL.106, 021303 (2011)

10-38

SIMPLE

arXiv:1106.3014

1m3

at WIPP (DMTPCino) projected sensitivity

-40

10

Theory region: Rozkowski et al JHEP 07 (2007) 075 Ellis et al PRD63 (2001) 065016

PICASSO

cMSSM theory 2

10

arXiv:1202.1240

3

10

WIMP mass (GeV)

Global SI Dark Matter Programme, Sensitivity Reach

Proposed Being designed Under construction/in operation

results: 2012

Current results

10-2

10-1

102 1 10 -46 Spin-independent sensitivity (x10 cm2)

NB: projected sensitivities (all except green) assume zero background.

future present

LZ CLEAN EURECA Stage-II SuperCDMS-100 XENON-1T DEAP-3600 LUX EDELWEISS III miniCLEAN XMASS COUPP-60 SuperCDMS-10 Xenon-100 ZEPLIN III EDELWEISS II CDMS II

completed

2016

2018

CYGNUS (Directional)

Backup Slides

Setting a Limit 1. The theoretical dark matter interaction rate is: dR = dER



� � � c1 R0 −c2 ER exp E0 r E0 r

ER = nuclear recoil energy, E0 = dark matter particle energy

2. Experiments measure: R0 =

��

2v0 √ π

��

�� N0 (ρD /mD ) σ0 × exposure A

σA = σ0 F 2 (ER , A)Ic ,

F 2 (ER , A) = nuclear f orm f actor,

Ic = A2

3. vary σA until (90% of the time) theory predicts observed rate 4. Normalize to σW −N to compare limits: σW −N = Jocelyn Monroe



�2 � �2 µ1 1 σA µA A

mD mtarget µ = (mD + mtarget ) October 31, 2007

... in the Presence of Background step 3: vary σA until (90% of the time) theory predicts observed maximum gap between background events S. Yellin, Phys. Rev. D66:032005 (2002)

Yellin gap method: a way to make a “zero-background” measurement over a restricted range of an experiment’s acceptance (zero signal too) Jocelyn Monroe

October 31, 2007

Savage et al., arXiv:0808.3607

SI vs. SD

(nuclear form factor)

Ellis et al., arXiv:0808.3607

Nuclear physics uncertainties are important!

Scale Parameters

SN1A Data