A belief networks-based generative model for structured documents ...

0 downloads 0 Views 299KB Size Report
We present a generative Bayesian model for the modeling of structured (e.g. ... is a popular generative categorization model whereas among discriminative tech-.

         

                                

      





                  !"#   $   %    &  '               

    !"                             &              (   )        &            %  %         % *$*         



  

                                                                                        !          !      "       #   !              Æ  !  $   "  %&     #        '           ()             !          &  *                       &       !                            *            !              +             ! !           !   ,    %    " %#                -         

        !          !               . 

     %                 .  ' !  !            

+              "    !  # '       *           +   !                      *           

   ! *               .        *                  .           .         !   !         .              !            !         



   

 *   .           !          !      !   )   .              !             !                 +     !    /     !          " #         !            "   #   0    1223  *        .   !        

4        153   !        !   1263       !  -     .   7       !       4      

   183  *              !        .  .   !      19:3                 "    * # !                                  .                               

!    !      )          +               +       & * 12;3    0 !                 /           @         8      8  

/ (       7 0         %     + ;  07         @ N     !    7 0       7  07 )  "       88# !      Æ      9 N                    +             1A3 7    .     .   07      7 0           $          !                     

            >0       !                !       *    - +    7 0   *   !   !       !

                   B              "7 0 #                      $L)

Naive Bayes Model BN Model BN No Tags

course department 88.11% 100.00% 89.34% 100.00% 90.16% 100.00%

staff 2.17% 0.00% 0.00%

faculty 76.32% 80.92% 76.32%

student 82.08% 86.02% 85.66%

project 66.67% 68.97% 66.67%

Micro 78.09% 81.12% 80.29%

Macro 69.22% 70.88% 69.80%

  $     (  

        

      !     +                       ()                                                &                     !     +       ()         !     *        

   

!

" # $

% &    . 8  9 0   9 0  : " 6   $ ; 7&  : + " $?    70  0         

            0  @ABAC0  0 : 0 .DD5 : & 5 "' 9 0 * *0 *  0 + % E "90 $ " "0 E ;0  :F :     )  ' %&              !              "   0  GHDBG.0 "  0 =:0 .DDA +++ 0 "  '0 =: + )     ICJ C "' 9 0 * *0 *  0 + % E "90 $ " "0 E ;0  :F :       ' %  

        "   0 ..A.K5#1DB..C0 5HHH L   * 0 6 MN0  ' ,  6""&       (   '      #$ %&     '      # ( #  0  .5B.CG0 *&  0 *-0 5HH. G " * 0 " ,0 " " 0   : 9(   &      &'                  #   )#*0  ALDBAGC0 :0 5HH. + =:+#  : $ *  6 9 6 (      ; 8 ' 0  % 0  " &E%  0  0     +#$$ %&  ,       #    (      # (0  5GB5C0 + 0 ,70 5HHH +9" 0 ;% >'0

=:

@ :  0 > : 0  ;  $ $    '  1 +     ,  -  0 C5.#1L.B50 .DDA A $ 8 $) N %    1    %      9 ;F   9F  70  0     ,- $       ,  -  0  [email protected] 9 N0 *-0 .DDA :  0 6 0 *-    O ;  9 : P 0  .CDA D 8 6 E  8   + 9  "   9  * &  7      : +  0  0          .       "   0 E0 , 0 + .DAC  E  .H * * % # % !/   0      +$Q$  & 70 : [email protected] .. * * % ; #  1 $        &   9 ;F   9F  70  0     ,- $       ,  -  0  LB.G0 9& N0 *-0 .DDA :  0 6 0 *-    O ;  9 : P 0  .CDA .5 9  " =N  6$"    '        ) N 1   2 3         1 (   3

.C E "  " '         0 5HH. .L :  6 " 0 * &6 8 0 " &:' E0  M &9 M + ) "   7  :,"     9 0 + " &

0 9 8  7? 0 7 '  0  8 M0  0   

  %      , +#    #     (      # (0  .CAB.LH0 " 0 +0 +

.DDA +9" 0 ;% >' .G  ? %%'  ' ,  +  ;%' "    7   6 : 9 4,- 5 6    %! , +#  0 $0   0 5HH5 .  %%'0  * 0   ,  =                   7 8     9    '   3 ).3%$$%*

[email protected] 96 >

Suggest Documents