A Note on Parabolic Homogenization with a Mismatch between the ...

2 downloads 0 Views 2MB Size Report
Aug 29, 2013 - ... Svanstedt, and J. Wyller,The homog- enization Method. An Introduction, Studentlitteratur, Lund,. Sweden, Chartwell-Bratt, Bromley, UK, 1993.
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 329704, 6 pages http://dx.doi.org/10.1155/2013/329704

Research Article A Note on Parabolic Homogenization with a Mismatch between the Spatial Scales Liselott FlodΓ©n, Anders Holmbom, Marianne Olsson Lindberg, and Jens Persson Department of Quality Technology and Management, Mechanical Engineering and Mathematics, Mid Sweden University, Β¨ 83125 Ostersund, Sweden Correspondence should be addressed to Anders Holmbom; [email protected] Received 16 May 2013; Accepted 29 August 2013 Academic Editor: Rodrigo Lopez Pouso Copyright Β© 2013 Liselott FlodΒ΄en et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider the homogenization of the linear parabolic problem 𝜌(π‘₯/πœ€2 )πœ•π‘‘ π‘’πœ€ (π‘₯, 𝑑) βˆ’ βˆ‡ β‹… (π‘Ž(π‘₯/πœ€1 , 𝑑/πœ€12 )βˆ‡π‘’πœ€ (π‘₯, 𝑑)) = 𝑓(π‘₯, 𝑑) which exhibits a mismatch between the spatial scales in the sense that the coefficient π‘Ž(π‘₯/πœ€1 , 𝑑/πœ€12 ) of the elliptic part has one frequency of fast spatial oscillations, whereas the coefficient 𝜌(π‘₯/πœ€2 ) of the time derivative contains a faster spatial scale. It is shown that the faster spatial microscale does not give rise to any corrector term and that there is only one local problem needed to characterize the homogenized problem. Hence, the problem is not of a reiterated type even though two rapid scales of spatial oscillation appear.

1. Introduction The field of homogenization has its main source of inspiration in the problem of finding the macroscopic properties of strongly heterogeneous materials. Mathematically, the approach is to study a sequence of partial differential equations where a parameter πœ€ associated with the length scales of the heterogeneities tends to zero. The sequence of solutions π‘’πœ€ converges to the solution 𝑒 to a so-called homogenized problem governed by a coefficient 𝑏, where 𝑏 gives the effective property of the material and can be characterized by certain auxiliary problems called the local problems. In this paper, we study the homogenization of the linear parabolic problem 𝜌(

π‘₯ 𝑑 π‘₯ ) πœ•π‘‘ π‘’πœ€ (π‘₯, 𝑑) βˆ’ βˆ‡ β‹… (π‘Ž ( , 2 ) βˆ‡π‘’πœ€ (π‘₯, 𝑑)) πœ€2 πœ€1 πœ€1 = 𝑓 (π‘₯, 𝑑) πœ€

in Ω𝑇 ,

𝑒 (π‘₯, 𝑑) = 0

(1)

on πœ•Ξ© Γ— (0, 𝑇) ,

π‘’πœ€ (π‘₯, 0) = 𝑒0 (π‘₯)

in Ξ©,

where Ω𝑇 = Ξ© Γ— (0, 𝑇), Ξ© is an open, bounded set in R𝑁 with locally Lipschitz boundary, where both π‘Ž and 𝜌 possess unit

periodicity in their respective arguments and the scales πœ€1 , πœ€2 , and πœ€12 fulfill a certain separatedness assumption. The problem exhibits rapid spatial oscillations in 𝜌 and spatial as well as temporal oscillations in π‘Ž. Furthermore, there is a β€œmismatch” between the spatial scales in the sense that the frequency of the spatial oscillations in 𝜌(π‘₯/πœ€2 ) is higher than that of π‘Ž(π‘₯/πœ€1 , 𝑑/πœ€12 ). Since there are two spatial microscales represented in (1), one might expect two local problems with respect to one corrector each, see, for example, [1]. However, it is shown that no corrector corresponding to the scale emanating from 𝜌(π‘₯/πœ€2 ) appears in the local and homogenized problem and accordingly there is only one local problem appearing in the formulated theorem. Hence, the problem is not of a reiterated type. We prove by means of very weak multiscale convergence [2] that the corrector 𝑒2 associated with the gradient for the second rapid spatial scale 𝑦2 actually vanishes. Already, in [3, 4], it was observed that having more than one rapid temporal scale in parabolic problems does not generate a reiterated problem and in this paper we can see that nor does the addition of a spatial scale if it is contained in a coefficient that is multiplied with the time derivative of π‘’πœ€ . Thinking in terms of heat conduction, our result means that the heat capacity 𝜌 may oscillate with completely different periodic patterns without making any difference for the

2

Abstract and Applied Analysis

homogenized coefficient as long as the arithmetic mean over one period is the same. Parabolic homogenization problems for 𝜌 ≑ 1 have been studied for different combinations of spatial and temporal scales in several papers by means of techniques of two-scale convergence type with approaches related to the one first introduced in [5], see, for example, [2, 3, 6–8], and in, for example, [9–11], techniques not of two-scale convergence type are applied. Concerning cases where, as in (1) above, we do not have 𝜌 ≑ 1, Nandakumaran and Rajesh [12] studied a nonlinear parabolic problem with the same frequency of oscillation in time and space, respectively, in the elliptic part of the equation and an operator oscillating in space with the same frequency appearing in the temporal differentiation term. Recently, a number of papers have addressed various kinds of related problems where the temporal scale is not assumed to be identical with the spatial scale, see for example, [13, 14]. Up to the authors’ knowledge, this is the first study of this type of problems where the oscillations of the coefficient of the term including the time derivative do not match the spatial oscillations of the elliptic part.

Usually, some assumptions are made about how the scales are related to each other. We say that the scales in a list {πœ€1 , . . . , πœ€π‘› } are separated if

Notation. We denote π‘Œπ‘˜ = (0, 1)𝑁 for π‘˜ = 1, . . . , 𝑛, π‘Œπ‘› = π‘Œ1 Γ— β‹… β‹… β‹… Γ— π‘Œπ‘› , 𝑦𝑛 = (𝑦1 , . . . , 𝑦𝑛 ), 𝑑𝑦𝑛 = 𝑑𝑦1 β‹… β‹… β‹… 𝑑𝑦𝑛 , 𝑆𝑗 = 𝑆 = (0, 1) for 𝑗 = 1, . . . , π‘š, π‘†π‘š = 𝑆1 Γ— β‹… β‹… β‹… Γ— π‘†π‘š , π‘ π‘š = (𝑠1 , . . . , π‘ π‘š ), and π‘‘π‘ π‘š = 𝑑𝑠1 β‹… β‹… β‹… π‘‘π‘ π‘š . Let πœ€π‘˜ (πœ€), π‘˜ = 1, . . . , 𝑛, and πœ€π‘—σΈ€  (πœ€), 𝑗 = 1, . . . , π‘š, be positive and go to zero when πœ€ does. Furthermore, let 𝐹♯ ((0, 1)𝑀) be the space of all functions in 𝐹loc (R𝑀) that are (0, 1)𝑀-periodic repetitions of some function in 𝐹((0, 1)𝑀).

σΈ€  Definition 2. Let {πœ€1 , . . . , πœ€π‘› } and {πœ€1σΈ€  , . . . , πœ€π‘š } be lists of wellseparated scales. Consider all elements from both lists. If from possible duplicates, where by duplicates we mean scales which tend to zero equally fast, one member of each pair is removed and the list in order of magnitude of all the remaining elements is well separated, the lists {πœ€1 , . . . , πœ€π‘› } and σΈ€  {πœ€1σΈ€  , . . . , πœ€π‘š } are said to be jointly well separated.

2. Multiscale Convergence A two-scale convergence was invented by Nguetseng [15] as a new approach for the homogenization of problems with fast oscillations in one scale in space. The method was further developed by Allaire [16] and generalized to multiple scales by Allaire and Briane [1]. To homogenize problem (1), we use the further generalization in the definition below, adapted to evolution settings, see, for example, [8]. πœ€

π‘₯ π‘₯ 𝑑 𝑑 ∫ 𝑒 (π‘₯, 𝑑) V (π‘₯, 𝑑, , . . . , , σΈ€  , . . . , σΈ€  ) 𝑑π‘₯ 𝑑𝑑 πœ€ πœ€ πœ€ πœ€ Ω𝑇 1 𝑛 π‘š 1 󳨀→ ∫ ∫ ∫ 𝑒0 (π‘₯, 𝑑, 𝑦𝑛 , π‘ π‘š ) Ω𝑇

Theorem 3. Let {π‘’πœ€ } be a bounded sequence in π‘Š21 (0, 𝑇; 𝐻01 (Ξ©), 𝐿2 (Ξ©)), and suppose that the lists {πœ€1 , . . . , πœ€π‘› } σΈ€  } are jointly well separated. Then there exists a and {πœ€1σΈ€  , . . . , πœ€π‘š subsequence such that π‘’πœ€ (π‘₯, 𝑑) 󳨀→ 𝑒 (π‘₯, 𝑑)

𝑒0 (π‘₯, 𝑑, 𝑦𝑛 , π‘ π‘š ) .

π‘’πœ€ (π‘₯, 𝑑) ⇀ 𝑒 (π‘₯, 𝑑) 𝑛+1,π‘š+1

⇀

𝑖𝑛 𝐿2 (Ω𝑇 ) ,

𝑖𝑛 𝐿2 (0, 𝑇; 𝐻01 (Ξ©)) ,

(6)

𝑛

βˆ‡π‘’ (π‘₯, 𝑑) + βˆ‘ βˆ‡π‘¦π‘— 𝑒𝑗 (π‘₯, 𝑑, 𝑦𝑗 , π‘ π‘š ) ,

(7)

where 𝑒 ∈ π‘Š21 (0, 𝑇; 𝐻01 (Ξ©), 𝐿2 (Ξ©)), 𝑒1 ∈ 𝐿2 (Ω𝑇 Γ— π‘†π‘š ; 𝐻♯1 (π‘Œ1 )/R), and 𝑒𝑗 ∈ 𝐿2 (Ω𝑇 Γ— π‘Œπ‘—βˆ’1 Γ— π‘†π‘š ; 𝐻♯1 (π‘Œπ‘— )/R) for 𝑗 = 2, . . . , 𝑛. Proof. See [17, Theorem 2.74].

for any V ∈ 𝐿2 (Ω𝑇 ; 𝐢♯ (π‘Œπ‘› Γ— π‘†π‘š )). We write ⇀

In the theorem below, which will be used in the homogenization procedure in Section 3, π‘Š21 (0, 𝑇; 𝐻01 (Ξ©), 𝐿2 (Ξ©)) denotes all functions 𝑒 ∈ 𝐿2 (0, 𝑇; 𝐻01 (Ξ©)) such that πœ•π‘‘ 𝑒 ∈ 𝐿2 (0, 𝑇; π»βˆ’1 (Ξ©)), see, for example, [18, Chapter 23].

(2)

Γ— V (π‘₯, 𝑑, 𝑦𝑛 , π‘ π‘š ) 𝑑𝑦𝑛 π‘‘π‘ π‘š 𝑑π‘₯ 𝑑𝑑,

𝑛+1,π‘š+1

(5)

for π‘˜ = 1, . . . , 𝑛 βˆ’ 1. The concept in the following definition is used as an assumption in the proofs of the compactness results in Theorems 3 and 7. For a more technically formulated definition and some examples, see [17, Section 2.4].

𝑗=1

π‘†π‘š

π‘’πœ€ (π‘₯, 𝑑)

1 πœ€π‘˜+1 𝑙 ( ) = 0, πœ€ β†’ 0 πœ€π‘˜ πœ€π‘˜ lim

βˆ‡π‘’πœ€ (π‘₯, 𝑑)

πœ€

(4)

for π‘˜ = 1, . . . , 𝑛 βˆ’ 1 and that the scales are well-separated if there exists a positive integer 𝑙 such that

2

Definition 1. A sequence {𝑒 } in 𝐿 (Ω𝑇 ) is said to (𝑛 + 1, π‘š + 1)-scale converge to 𝑒0 ∈ 𝐿2 (Ω𝑇 Γ— π‘Œπ‘› Γ— π‘†π‘š ) if

π‘Œπ‘›

πœ€π‘˜+1 = 0, πœ€ β†’ 0 πœ€π‘˜ lim

(3)

To treat evolution problems with fast time oscillations, such as (1), we also need the concept of very weak multiscale convergence, see, for example, [2, 5].

Abstract and Applied Analysis

3

Definition 4. A sequence {π‘”πœ€ } in 𝐿1 (Ω𝑇 ) is said to (𝑛+1, π‘š+1)scale converge very weakly to 𝑔0 ∈ 𝐿1 (Ω𝑇 Γ— π‘Œπ‘› Γ— π‘†π‘š ) if π‘₯ π‘₯ ) ∫ 𝑔 (π‘₯, 𝑑) V (π‘₯, , . . . , πœ€1 πœ€π‘›βˆ’1 Ω𝑇

3. Homogenization Let us now investigate the heat conduction problem

πœ€

Γ— 𝑐 (𝑑,

𝜌(

𝑑 𝑑 π‘₯ , . . . , σΈ€  ) πœ‘ ( ) 𝑑π‘₯ 𝑑𝑑 σΈ€  πœ€1 πœ€π‘š πœ€π‘›

π‘₯ π‘₯ 𝑑 ) πœ• π‘’πœ€ (π‘₯, 𝑑) βˆ’ βˆ‡ β‹… (π‘Ž ( , 2 ) βˆ‡π‘’πœ€ (π‘₯, 𝑑)) πœ€2 𝑑 πœ€1 πœ€1 = 𝑓 (π‘₯, 𝑑)

(8)

πœ€

𝑒 (π‘₯, 𝑑) = 0

󳨀→ ∫ ∫ ∫ 𝑔0 (π‘₯, 𝑑, 𝑦𝑛 , π‘ π‘š ) V (π‘₯, π‘¦π‘›βˆ’1 ) π‘Œπ‘›

Ω𝑇

π‘†π‘š

π‘š

𝑛

for any V ∈ πΆβ™―βˆž (π‘Œπ‘› )/R, where

𝑐 ∈ 𝑛

𝐷(0, 𝑇; πΆβ™―βˆž (π‘†π‘š )),

π‘š

∫ 𝑔0 (π‘₯, 𝑑, 𝑦 , 𝑠 ) 𝑑𝑦𝑛 = 0. π‘Œπ‘›

and πœ‘ ∈

(9)

We write π‘”πœ€ (π‘₯, 𝑑)

𝑛+1,π‘š+1

⇀ V𝑀

𝑔0 (π‘₯, 𝑑, 𝑦𝑛 , π‘ π‘š ) .

(10)

Remark 5. The requirement (9) is imposed in order to ensure the uniqueness of the limit. For details, see [17, Proposition 2.26]. Remark 6. The convergence in Definition 1 may take place only if {π‘’πœ€ } is bounded in 𝐿2 (Ω𝑇 ) and hence also is a weakly convergent in 𝐿2 (Ω𝑇 ), at least up to suitable subsequences. For very weak multiscale convergence, this is not so. The main intention with the concept is to study sequences of the type {π‘’πœ€ /πœ€π‘› }, which are in general not bounded in 𝐿2 (Ω𝑇 ). This requires a more restrictive class of test functions.

Theorem 7. Let {π‘’πœ€ } be a bounded sequence in π‘Š21 (0, 𝑇; 𝐻01 (Ξ©), 𝐿2 (Ξ©)), and assume that the lists {πœ€1 , . . . , πœ€π‘› } σΈ€  and {πœ€1σΈ€  , . . . , πœ€π‘š } are jointly well separated. Then there exists a subsequence such that 𝑒 (π‘₯, 𝑑) πœ€π‘›

𝑛+1,π‘š+1

⇀ vw

u𝑛 (π‘₯, 𝑑, 𝑦𝑛 , π‘ π‘š ) ,

on πœ•Ξ© Γ— (0, 𝑇) ,

󡄨 󡄨2 π‘Ž (𝑦1 , 𝑠) πœ‰ β‹… πœ‰ β‰₯ π›Όσ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨

Theorem 9. Let {π‘’πœ€ } be a sequence of solutions to (12). Then π‘’πœ€ (π‘₯, 𝑑) ⇀ 𝑒 (π‘₯, 𝑑)

𝑖𝑛 𝐿2 (0, 𝑇; 𝐻01 (Ξ©)) ,

(14)

3,2

βˆ‡π‘’πœ€ (π‘₯, 𝑑) β‡€βˆ‡π‘’ (π‘₯, 𝑑) + βˆ‡π‘¦1 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠) + βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠) ,

(15)

where 𝑒 is the unique solution to (∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) πœ•π‘‘ 𝑒 (π‘₯, 𝑑) βˆ’ βˆ‡ β‹… (π‘βˆ‡π‘’ (π‘₯, 𝑑))

(11)

π‘Œ2

= 𝑓 (π‘₯, 𝑑) 𝑒 (π‘₯, 𝑑) = 0

Proof. See [17, Theorem 2.54].

𝑖𝑛 Ω𝑇 ,

(16)

π‘œπ‘› πœ•Ξ© Γ— (0, 𝑇) ,

𝑒 (π‘₯, 0) = 𝑒0 (π‘₯)

Remark 8. For a sequence of solutions {𝑒 } to (1), we may replace the requirement that {πœ•π‘‘ π‘’πœ€ } should be bounded in 𝐿2 (0, 𝑇; π»βˆ’1 (Ξ©)) by the assumption that {π‘’πœ€ } is bounded in 𝐿∞ (Ω𝑇 ) and still obtain (6), see [12, Lemmas 3.3 and (4.1)] and thereby also (7) and (11). The only difference is that 𝑒 will belong to 𝐿2 (0, 𝑇; 𝐻01 (Ξ©)) instead of the space π‘Š21 (0, 𝑇; 𝐻01 (Ξ©), 𝐿2 (Ξ©)). See also [13].

(13)

for some 𝛼 > 0, all (𝑦1 , 𝑠) ∈ R𝑁+1 , and all πœ‰ ∈ R𝑁, where π‘Ž ∈ 𝐢♯ (π‘Œ1 ×𝑆)𝑁×𝑁. Moreover, we assume that {π‘’πœ€ } is bounded in 𝐿∞ (Ω𝑇 ), see Remark 8, and that the lists {πœ€1 , πœ€2 } and {πœ€12 } are jointly well separated. Note that this separatedness assumption implies, for example, that πœ€2 tends to zero faster than πœ€1 , which means that we have a mismatch between the spatial scales in (12). We give a homogenization result for this problem in the theorem below. In the proof, it is shown that the local problem associated with the slower spatial microscale is enough to characterize the homogenized problem; that is, the fastest spatial scale does not give rise to any corrector involved in the homogenization. We also prove that the second corrector 𝑒2 actually vanishes.

where, for 𝑛 = 1, 𝑒1 ∈ 𝐿2 (Ω𝑇 Γ— π‘†π‘š ; 𝐻♯1 (π‘Œ1 )/R) and, for 𝑛 = 2, 3, . . ., 𝑒𝑛 ∈ 𝐿2 (Ω𝑇 Γ— π‘Œπ‘›βˆ’1 Γ— π‘†π‘š ; 𝐻♯1 (π‘Œπ‘› )/R) are the same as those in Theorem 3.

πœ€

in Ξ©,

which takes into consideration heat capacity oscillations. We assume that 𝜌 ∈ πΆβ™―βˆž (π‘Œ2 ), is positive, 𝑓 ∈ 𝐿2 (Ω𝑇 ), 𝑒0 ∈ 𝐿2 (Ξ©), and

The theorem below is a key result for the homogenization procedure in Section 3.

πœ€

(12)

π‘’πœ€ (π‘₯, 0) = 𝑒0 (π‘₯)

π‘š

Γ— 𝑐 (𝑑, 𝑠 ) πœ‘ (𝑦𝑛 ) 𝑑𝑦 𝑑𝑠 𝑑π‘₯ 𝑑𝑑, 𝐷(Ξ©, πΆβ™―βˆž (π‘Œπ‘›βˆ’1 )),

in Ω𝑇 ,

𝑖𝑛 Ξ©,

with π‘βˆ‡π‘’ (π‘₯, 𝑑) = ∫ ∫ π‘Ž (𝑦1 , 𝑠) (βˆ‡π‘’ (π‘₯, 𝑑) + βˆ‡π‘¦1 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠)) 𝑑𝑦1 𝑑𝑠. 𝑆 π‘Œ1 (17)

4

Abstract and Applied Analysis

Here, 𝑒1 ∈ 𝐿2 (Ω𝑇 Γ— 𝑆; 𝐻♯1 (π‘Œ1 )/R) uniquely solves

for all V ∈ 𝐻01 (Ξ©) and 𝑐 ∈ 𝐷(0, 𝑇). We pass to the limit by applying (6), taking into consideration Remark 8, and (7) with 𝑛 = 1 and π‘š = 1 and arrive at the homogenized problem

(∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) πœ•π‘  𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠) π‘Œ2

βˆ’ βˆ‡π‘¦1 β‹… (π‘Ž (𝑦1 , 𝑠) (βˆ‡π‘’ (π‘₯, 𝑑) + βˆ‡π‘¦1 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠))) = 0. (18)

∫ ∫ ∫ βˆ’ (∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) 𝑒 (π‘₯, 𝑑) V (π‘₯) πœ•π‘‘ 𝑐 (𝑑) Ω𝑇

𝑆 π‘Œ1

π‘Œ2

+ π‘Ž (𝑦1 , 𝑠) (βˆ‡π‘’ (π‘₯, 𝑑) + βˆ‡π‘¦1 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠))

Furthermore, the corrector 𝑒2 vanishes.

Γ— βˆ‡V (π‘₯) 𝑐 (𝑑) 𝑑𝑦1 𝑑𝑠 𝑑π‘₯ 𝑑𝑑

Remark 10. After a separation of variables, we can write the local problem as

(23)

= ∫ 𝑓 (π‘₯, 𝑑) V (π‘₯) 𝑐 (𝑑) 𝑑π‘₯ 𝑑𝑑. Ω𝑇

(∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) πœ•π‘  π‘§π‘˜ (𝑦1 , 𝑠) π‘Œ2

(19)

𝑁

βˆ’ βˆ‘ πœ•π‘¦π‘– (π‘Žπ‘–π‘— (𝑦1 , 𝑠) (π›Ώπ‘—π‘˜ + πœ•π‘¦π‘— π‘§π‘˜ (𝑦1 , 𝑠))) = 0

To find the local problem associated with 𝑒1 , let us again consider (22) in which we choose

𝑖,𝑗=1

V (π‘₯) = πœ€1 V1 (π‘₯) V2 (

and the homogenized coefficient as

π‘₯ ); πœ€1

V1 ∈ 𝐷 (Ω) , V2 ∈

πΆβ™―βˆž (π‘Œ1 ) R

(24)

𝑁

π‘π‘–π‘˜ = ∫ ∫ βˆ‘ (π‘Žπ‘–π‘— (𝑦1 , 𝑠) (π›Ώπ‘—π‘˜ + πœ•π‘¦π‘— π‘§π‘˜ (𝑦1 , 𝑠))) 𝑑𝑦1 𝑑𝑠, 𝑆 π‘Œ1 𝑗=1

(20) where π‘˜ = 1, . . . , 𝑁 and

𝑐 (𝑑) = 𝑐1 (𝑑) 𝑐2 (

𝑑 ); πœ€12

,

𝑐1 ∈ 𝐷 (0, 𝑇) ; 𝑐2 ∈ πΆβ™―βˆž (𝑆) ; (25)

that is, we study 𝑁

𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠) = βˆ‘ πœ•π‘₯π‘˜ 𝑒 (π‘₯, 𝑑) β‹… π‘§π‘˜ (𝑦1 , 𝑠) .

(21)

π‘˜=1

∫ βˆ’πœŒ (

Remark 11. Periodic homogenization problems of, for example, elliptic or parabolic type may be seen as special cases of the more general concepts of 𝐺-convergence, which gives a characterization of the limit problem but no suggestion of how to compute the homogenized matrix. Essential features of 𝐺-convergence for parabolic problems are that boundary conditions, and initial conditions are preserved in the limit. 𝐺-convergence for linear parabolic problems were studied already in [19] by Spagnolo and extended to the monotone case by Svanstedt in [20]. A treatment of this problem in a quite general setting is found in the recent work [21] by Paronetto. Proof of Theorem 9. Following the procedure in Section 23.9 in [18], we obtain that {π‘’πœ€ } is bounded in 𝐿2 (0, 𝑇; 𝐻01 (Ξ©)), see also [22]. Hence, (14) holds up to a subsequence. We proceed by studying the weak form of (12); that is,

π‘₯ 𝑑 , ) βˆ‡π‘’πœ€ (π‘₯, 𝑑) βˆ‡V (π‘₯) 𝑐 (𝑑) 𝑑π‘₯ 𝑑𝑑 πœ€1 πœ€12

= ∫ 𝑓 (π‘₯, 𝑑) V (π‘₯) 𝑐 (𝑑) 𝑑π‘₯ 𝑑𝑑, Ω𝑇

π‘₯ π‘₯ ) π‘’πœ€ (π‘₯, 𝑑) V1 (π‘₯) V2 ( ) πœ€2 πœ€1

Γ— (πœ€1 πœ•π‘‘ 𝑐1 (𝑑) 𝑐2 ( + π‘Ž(

𝑑 𝑑 ) + πœ€1βˆ’1 𝑐1 (𝑑) πœ•π‘  𝑐2 ( 2 )) πœ€12 πœ€1

π‘₯ 𝑑 , ) βˆ‡π‘’πœ€ (π‘₯, 𝑑) πœ€1 πœ€12

π‘₯ π‘₯ β‹… (πœ€1 βˆ‡V1 (π‘₯) V2 ( ) + V1 (π‘₯) βˆ‡π‘¦1 V2 ( )) πœ€1 πœ€1 Γ— 𝑐1 (𝑑) 𝑐2 (

𝑑 ) 𝑑π‘₯ 𝑑𝑑 πœ€12

= ∫ 𝑓 (π‘₯, 𝑑) πœ€1 V1 (π‘₯) V2 ( Ω𝑇

(26)

π‘₯ 𝑑 ) 𝑐 (𝑑) 𝑐2 ( 2 ) 𝑑π‘₯ 𝑑𝑑. πœ€1 1 πœ€1

We first investigate the second term of the part of the expression containing time derivatives. We have

π‘₯ ∫ βˆ’πœŒ ( ) π‘’πœ€ (π‘₯, 𝑑) V (π‘₯) πœ•π‘‘ 𝑐 (𝑑) πœ€ Ω𝑇 2 + π‘Ž(

Ω𝑇

(22)

∫ βˆ’πœŒ ( Ω𝑇

Γ—(

π‘₯ ) π‘’πœ€ (π‘₯, 𝑑) V1 (π‘₯) V2 πœ€2

π‘₯ βˆ’1 𝑑 ) πœ€1 𝑐1 (𝑑) πœ•π‘  𝑐2 ( 2 ) 𝑑π‘₯ 𝑑𝑑 πœ€1 πœ€1

Abstract and Applied Analysis

5

= ∫ βˆ’πœ€1βˆ’1 π‘’πœ€ (π‘₯, 𝑑) V1 (π‘₯) V2

Note that

Ω𝑇

∫ 𝜌 (𝑦2 ) ΜƒV (𝑦2 ) 𝑑𝑦2 = 0,

π‘₯ π‘₯ Γ— ( ) (𝜌 ( ) βˆ’ ∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) πœ€1 πœ€2 π‘Œ2 Γ— 𝑐1 (𝑑) πœ•π‘  𝑐2 (

which means that πœŒΜƒV ∈ πΆβ™―βˆž (π‘Œ2 )/R. We get

𝑑 ) 𝑑π‘₯ 𝑑𝑑 πœ€12

+ ∫ βˆ’πœ€1βˆ’1 π‘’πœ€ (π‘₯, 𝑑) V1 (π‘₯) V2 ( Ω𝑇

∫ βˆ’πœŒ ( Ω𝑇

π‘₯ ) πœ€1

Γ— (∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) 𝑐1 (𝑑) πœ•π‘  𝑐2 ( π‘Œ2

𝑆 π‘Œ1

𝑑 ) 𝑑π‘₯ 𝑑𝑑 πœ€12

+ π‘Ž(

+

Γ— πœ•π‘  𝑐2 (𝑠) 𝑑𝑦1 𝑑𝑠 𝑑π‘₯ 𝑑𝑑, (27)

Γ— 𝑐1 (𝑑) 𝑐2 (

Γ— ΜƒV (

Γ— V1 (π‘₯) V2 (𝑦1 ) 𝑐1 (𝑑) πœ•π‘  𝑐2 (𝑠)

β‹… V1 (π‘₯) βˆ‡π‘¦1 V2 (𝑦1 ) 𝑐1 (𝑑) 𝑐2 (𝑠) 𝑑𝑦1 𝑑𝑠 𝑑π‘₯ 𝑑𝑑 = 0, (28) of the local problem (18). This means that 𝑒1 , and thus also 𝑒, is uniquely determined and hence the entire sequence {π‘’πœ€ } converges and not just the extracted subsequence. This far, we have only used test functions oscillating with a period πœ€1 , and hence we have not given the coefficient 𝜌(π‘₯/πœ€2 ) a fair chance to produce a second corrector 𝑒2 . In order to do so, we use a slightly different set of test functions in (22). Again, we let 𝑐 be as in (25), whereas V is chosen according to

V1 ∈ 𝐷 (Ω) ,

π‘₯ π‘₯ ) ΜƒV ( ) ; πœ€1 πœ€2

π‘₯ ) πœ€1

π‘₯ 𝑑 ) 𝑐 (𝑑) 𝑐2 ( 2 ) 𝑑π‘₯ 𝑑𝑑, πœ€2 1 πœ€1

and applying (11) with 𝑛 = 2 and π‘š = 1 together with (15), that is, (7) with 𝑛 = 2 and π‘š = 1, we achieve

+ π‘Ž (𝑦1 , 𝑠) (βˆ‡π‘’ (π‘₯, 𝑑) + βˆ‡π‘¦1 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠))

V (π‘₯) = πœ€2 V1 (π‘₯) V2 (

𝑑 ) 𝑑π‘₯ 𝑑𝑑 πœ€12

Ω𝑇

π‘Œ2

(33)

π‘₯ π‘₯ ) βˆ‡π‘¦2 ΜƒV ( )) πœ€1 πœ€2

= ∫ 𝑓 (π‘₯, 𝑑) πœ€2 V1 (π‘₯) V2 (

∫ ∫ ∫ βˆ’ (∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠) 𝑆 π‘Œ1

π‘₯ π‘₯ ) ΜƒV ( ) πœ€1 πœ€2

πœ€2 π‘₯ π‘₯ V (π‘₯) βˆ‡π‘¦1 V2 ( ) ΜƒV ( ) πœ€1 1 πœ€1 πœ€2

+ V1 (π‘₯) V2 (

where we have applied (11) with 𝑛 = 2 and π‘š = 1 and with 𝑛 = 1 and π‘š = 1, respectively, in the last step. The passage to the limit in the remaining part of (26) is a simple application of (7) with 𝑛 = 1 and π‘š = 1. This provides us with the weak form,

πœ€ 𝑑 𝑑 ) + 22 𝑐1 (𝑑) πœ•π‘  𝑐2 ( 2 )) πœ€12 πœ€1 πœ€1

π‘₯ 𝑑 , ) βˆ‡π‘’πœ€ (π‘₯, 𝑑) πœ€1 πœ€12

β‹… (πœ€2 βˆ‡V1 (π‘₯) V2 (

π‘Œ2

Γ— V1 (π‘₯) V2 (𝑦1 ) 𝑐1 (𝑑)

Ω𝑇

π‘₯ π‘₯ π‘₯ ) π‘’πœ€ (π‘₯, 𝑑) V1 (π‘₯) V2 ( ) ΜƒV ( ) πœ€2 πœ€ πœ€2

Γ— (πœ€2 πœ•π‘‘ 𝑐1 (𝑑) 𝑐2 (

󳨀→ ∫ ∫ ∫ βˆ’ (∫ 𝜌 (𝑦2 ) 𝑑𝑦2 ) 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠) Ω𝑇

(32)

π‘Œ2

∫ ∫ ∫ π‘Ž (𝑦1 , 𝑠) Ω𝑇

𝑆 π‘Œ2

Γ— (βˆ‡π‘’ (π‘₯, 𝑑) + βˆ‡π‘¦1 𝑒1 (π‘₯, 𝑑, 𝑦1 , 𝑠) + βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠)) β‹… V1 (π‘₯) V2 (𝑦1 ) βˆ‡π‘¦2 ΜƒV (𝑦2 ) 𝑐1 (𝑑) 𝑐2 (𝑠) 𝑑𝑦2 𝑑𝑠 𝑑π‘₯ 𝑑𝑑 = 0. (34) Noting that π‘Ž, 𝑒, and 𝑒1 are all independent of 𝑦2 , (34) reduces to ∫ ∫ ∫ π‘Ž (𝑦1 , 𝑠) βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠) Ω𝑇

𝑆 π‘Œ2

β‹… V1 (π‘₯) V2 (𝑦1 ) βˆ‡π‘¦2 ΜƒV (𝑦2 ) 𝑐1 (𝑑) 𝑐2 (𝑠) 𝑑𝑦2 𝑑𝑠 𝑑π‘₯ 𝑑𝑑 = 0. (35)

(29)

V2 ∈ πΆβ™―βˆž (π‘Œ1 ) ,

Recalling (30), we have

where ΜƒV (𝑦2 ) = V3 (𝑦2 ) βˆ’

𝐾 ; 𝜌 (𝑦2 )

V3 ∈ πΆβ™―βˆž (π‘Œ2 ) ,

(30)

∫ ∫ ∫ π‘Ž (𝑦1 , 𝑠) βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠) Ω𝑇

𝑆 π‘Œ2

β‹… V1 (π‘₯) V2 (𝑦1 ) βˆ‡π‘¦2 (V3 (𝑦2 ) βˆ’

with 𝐾 = ∫ 𝜌 (𝑦2 ) V3 (𝑦2 ) 𝑑𝑦2 . π‘Œ2

(31)

Γ— 𝑐1 (𝑑) 𝑐2 (𝑠) 𝑑𝑦2 𝑑𝑠 𝑑π‘₯ 𝑑𝑑 = 0,

𝐾 ) 𝜌 (𝑦2 )

(36)

6

Abstract and Applied Analysis

which after rearranging can be written as ∫ ∫ ∫ π‘Ž (𝑦1 , 𝑠) βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠) 𝑆 π‘Œ2

Ω𝑇

β‹… V1 (π‘₯) V2 (𝑦1 ) βˆ‡π‘¦2 V3 (𝑦2 ) 𝑐1 (𝑑) 𝑐2 (𝑠) 𝑑𝑦2 𝑑𝑠 𝑑π‘₯ 𝑑𝑑 = 𝐾 ∫ ∫ ∫ ( ∫ π‘Ž (𝑦1 , 𝑠) βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠) Ω𝑇

𝑆 π‘Œ1

π‘Œ2

β‹…βˆ‡π‘¦2 (

1 ) 𝑑𝑦2 ) 𝜌 (𝑦2 )

Γ— V1 (π‘₯) V2 (𝑦1 ) 𝑐1 (𝑑) 𝑐2 (𝑠) 𝑑𝑦1 𝑑𝑠 𝑑π‘₯ 𝑑𝑑. (37) If we replace ΜƒV with 1/𝜌 in (33), let πœ€ β†’ 0, and use (6) and (7) with 𝑛 = 2 and π‘š = 1, we find that ∫ ∫ ∫ π‘Ž (𝑦1 , 𝑠) βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠) Ω𝑇

𝑆 π‘Œ2

β‹… V1 (π‘₯) V2 (𝑦1 ) βˆ‡π‘¦2 (

1 ) 𝑐 (𝑑) 𝜌 (𝑦2 ) 1

(38)

Γ— 𝑐2 (𝑠) 𝑑𝑦2 𝑑𝑠 𝑑π‘₯ 𝑑𝑑 = 0. This means that the right-hand side in (37) is zero. Applying several times the variational lemma on the remaining part, we obtain ∫ π‘Ž (𝑦1 , 𝑠) βˆ‡π‘¦2 𝑒2 (π‘₯, 𝑑, 𝑦2 , 𝑠) β‹… βˆ‡π‘¦2 V3 (𝑦2 ) 𝑑𝑦2 = 0, π‘Œ2

(39)

and hence the corrector 𝑒2 is zero. Remark 12. That 𝑒2 vanishes means that π‘’πœ€ /πœ€2 tends to zero in the sense of very weak (3, 2)-scale convergence. However, there might still be oscillations originating from the oscillations of 𝜌(π‘₯/πœ€2 ) that have an impact on π‘’πœ€ . The possibility is that their amplitude is so small that the magnification by 1/πœ€2 is not enough for the oscillations to be recognized in the limit. In this sense, the concept of very weak multiscale convergence gives us a more precise idea of what a corrector equals zero means.

References [1] G. Allaire and M. Briane, β€œMultiscale convergence and reiterated homogenisation,” Proceedings of the Royal Society of Edinburgh A, vol. 126, no. 2, pp. 297–342, 1996. [2] L. FlodΒ΄en, A. Holmbom, M. Olsson, and J. Persson, β€œVery weak multiscale convergence,” Applied Mathematics Letters, vol. 23, no. 10, pp. 1170–1173, 2010. [3] J. L. Woukeng, β€œPeriodic homogenization of nonlinear nonmonotone parabolic operators with three time scales,” Annali di Matematica Pura ed Applicata, vol. 189, no. 3, pp. 357–379, 2010. [4] L. FlodΒ΄en and M. Olsson, β€œHomogenization of some parabolic operators with several time scales,” Applications of Mathematics, vol. 52, no. 5, pp. 431–446, 2007.

[5] A. Holmbom, β€œHomogenization of parabolic equations: an alternative approach and some corrector-type results,” Applications of Mathematics, vol. 42, no. 5, pp. 321–343, 1997. [6] G. Nguetseng and J. L. Woukeng, β€œΞ£-convergence of nonlinear parabolic operators,” Nonlinear Analysis. Theory, Methods & Applications, vol. 66, no. 4, pp. 968–1004, 2007. [7] J. L. Woukeng, β€œΞ£-convergence and reiterated homogenization of nonlinear parabolic operators,” Communications on Pure and Applied Analysis, vol. 9, no. 6, pp. 1753–1789, 2010. [8] L. FlodΒ΄en, A. Holmbom, M. O. Lindberg, and J. Persson, β€œDetection of scales of heterogeneity and parabolic homogenization applying very weak multiscale convergence,” Annals of Functional Analysis, vol. 2, no. 1, pp. 84–99, 2011. [9] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, The Netherlands, 1978. [10] A. Piatnitski, β€œA parabolic equation with rapidly oscillating coefficients,” Moscow University Mathematics Bulletin, vol. 35, no. 3, pp. 35–42, 1980. [11] J. Garnier, β€œHomogenization in a periodic and time-dependent potential,” SIAM Journal on Applied Mathematics, vol. 57, no. 1, pp. 95–111, 1997. [12] A. K. Nandakumaran and M. Rajesh, β€œHomogenization of a nonlinear degenerate parabolic differential equation,” Electronic Journal of Differential Equations, vol. 2001, no. 17, pp. 1–19, 2001. [13] N. Svanstedt and J. L. Woukeng, β€œPeriodic homogenization of strongly nonlinear reaction-diffusion equations with large reaction terms,” Applicable Analysis, vol. 92, no. 7, pp. 1–22, 2012. [14] L. FlodΒ΄en, A. Holmbom, and M. Olsson Lindberg, β€œA strange term in the homogenization of parabolic equations with two spatial and two temporal scales,” Journal of Function Spaces and Applications, vol. 2012, Article ID 643458, 9 pages, 2012. [15] G. Nguetseng, β€œA general convergence result for a functional related to the theory of homogenization,” SIAM Journal on Mathematical Analysis, vol. 20, no. 3, pp. 608–623, 1989. [16] G. Allaire, β€œHomogenization and two-scale convergence,” SIAM Journal on Mathematical Analysis, vol. 23, no. 6, pp. 1482–1518, 1992. [17] J. Persson, Selected topics in homogenization [Doctoral thesis], Β¨ Sweden, 2012. Mid Sweden University, Ostersund, [18] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer, New York, NY, USA, 1990. [19] S. Spagnolo, β€œConvergence of parabolic equations,” Bollettino della Unione Matematica Italiana. Serie VIII. Sezione B, vol. 14, no. 2, pp. 547–568, 1977. [20] N. Svanstedt, G-convergence and homogenization of sequences of linear and nonlinear partial differential operators [Doctoral thesis], Department of Mathematics, Lule˚a University of Technology, Lule˚a, Sweden, 1992. [21] F. Paronetto, β€œπΊ-convergence of mixed type evolution operators,” Journal de MathΒ΄ematiques Pures et AppliquΒ΄ees, vol. 93, no. 4, pp. 361–407, 2010. [22] L. E. Persson, L. Persson, N. Svanstedt, and J. Wyller, The homogenization Method. An Introduction, Studentlitteratur, Lund, Sweden, Chartwell-Bratt, Bromley, UK, 1993.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014