absorption of nitrogen oxides into diluted and concentrated nitric acid

0 downloads 0 Views 26MB Size Report
6.2 Absorption model for the production of diluted nitric acid. 89. 6.3 Methods to ..... the concentrated nitric acid is distilled to produce 90-100% nitric acid. The.
ABSORPTION OF NITROGEN OXIDES INTO DILUTED AND CONCENTRATED NITRIC ACID

J. B. Lefers

Delft University Press

I I

ABSORPTION OF NITROGEN OXIDES INTO DILUTED AND CONCENTRATED NITRIC ACID

T3

m o

o

o

U1 U l

BIBLIOTHEEK TU Delft P 1608 4302

C

456614

í

ABSORPTION OF NITROGEN OXIDES INTO DILUTED AND CONCENTRATED NITRIC ACID

PROEFSCHRIFT ter verkrijging van de graad van doctor in de technische wetenschappen aan deTechnische Hogeschool Delft, op gezag van de rector magnificus Prof. dr. ir. F. J.Kievits, v o o r e e n commissie aangewezen door het college van dekanen te verdedigen op woensdag 12 maart 1980 te 16.00 u u r d o o r

Jan Bernard Lef ers scheikundig ingenieur geboren te Enschede

£0 02250 Delft University Press/1980

% D0ELEHSIR.101 £ ~

Dit proefschrift is goedgekeurd door de promotor PROF. DRS. R J. VAN DEN BERG

I

!

Aan mijn ouders

i

i

/

i

I

VOORWOORD

Dit

proefschrift

personen.

i s t o t s t a n d gekomen met

Langs deze weg

de medewerking van een g r o o t a a n t a l

w i l i k hen voor hun e n t h o u s i a s t e i n z e t h a r t e l i j k

en

o p r e c h t danken. In het b i j z o n d e r gaat m i j n dank u i t naar

de a f s t u d e e r d e r s : Okke de Boks, Arend Bos en Jan Laverman, d i e aan d i t onderzoek hebben meegewerkt;

m i j n c o l l e g a Cock van den B l e e k voor de p r e t t i g e samenwerking b i n n e n de onderzoekgroep

en voor z i j n

s t i m u l e r e n d e b i j d r a g e i n de

discussies;

a l l e medewerkers van v e r s c h i l l e n d e s e r v i c e g r o e p e n voor de v e r v a a r d i g i n g , stelling

NO^-

her-

en v e r b e t e r i n g van de a p p a r a t u u r en de u i t v o e r i n g van de t a l r i j k e

l y s e s , zonder w i e r werkzaamheden d i t p r o e f s c h r i f t

zeker n i e t

ana-

t o t s t a n d gekomen

was;

Wim

J o n g e l e e n en Koos Kamps voor het tekenen en v e r k l e i n e n van de

figuren;

S a u l Lemkowitz voor het c o r r i g e r e n van de e n g e l s e t e k s t ;

Marian Wijnen manuscript.

voor het z o r g v u l d i g u i t g e v o e r d e typewerk

en de l a y - o u t van het

C O N T E N T S

SUMMARY

1

SAMENVATTING

3

1.

INTRODUCTION

5

1.1 G e n e r a l remarks

5

1.2 Aim o f t h i s work

9

1.3 O u t l i n e o f t h e t h e s i s

9

References

10

2. THE ABSORPTION APPARATUS

11

2.1 I n t r o d u c t i o n

11

2.2 S e l e c t i o n o f l a b o r a t o r y a b s o r b e r

11

2.3 D e s c r i p t i o n o f the a b s o r p t i o n a p p a r a t u s

14

2.4 Mass t r a n s f e r i n a l a m i n a r f a l l i n g l i q u i d 2.4.1

film

16

Theory

16

2.4.2 E x p e r i m e n t a l

18

2.4.3

Results

2.5 Gas phase mass t r a n s f e r i n l a m i n a r p l u g flow gas streams 2.5.1

Introduction

18 19 19

2.5.2 Theory

20

2.5.3

22

Experimental

2.5.4 R e s u l t s 2.6 C o n c l u s i o n s References

23 27 28

3. SPECTR0PH0T0METRIC DETERMINATION OF NITROGEN OXIDES AND NITRIC ACID VAPOUR

30

3.1 I n t r o d u c t i o n

30

3.2 E x p e r i m e n t a l

30

3.3 R e s u l t s

33

3.4 C o n c l u s i o n s

39

References

41

4. THE ABSORPTION OF NO„/N„0_ INTO DILUTED AND 2 2 4 NITRIC ACID

CONCENTRATED 42

4.1 I n t r o d u c t i o n

42

4.2 Review o f l i t e r a t u r e

42

4.2.1 A b s o r p t i o n o f NO^/I^O^ i n t o aqueous s o l u t i o n s 4.2.2 NO^/N^O^ a b s o r p t i o n i n t o c o n c e n t r a t e d n i t r i c

42 acid solutions

4.3 E x p e r i m e n t a l

48 53

4.4 R e s u l t s

55

4.4.1 The a b s o r p t i o n o f NgO^ i n t o d i l u t e d n i t r i c 4.4.2 The a b s o r p t i o n o f ^ ^4

i

n

t

o

2

acid solutions

concentrated n i t r i c

55

acid

solutions

59

4.5 C o n c l u s i o n s

65

References

65

5. THE OXIDATION AND ABSORPTION OF NO BY NITRIC ACID

67

5.1 I n t r o d u c t i o n

67

5.2 Proposed mechanism

67

5.3 E x p e r i m e n t a l

70

5.4 M a t h e m a t i c a l model and r e s u l t s

70

5.5 D i s c u s s i o n

86

5.6 C o n c l u s i o n s

87

References

6. AN ABSORPTION MODEL FOR THE DESIGN OF A DILUTED NITRIC ACID ABSORBER AND METHODS TO DECREASE THE NO -CONTENT IN TAIL GASES x 6.1 I n t r o d u c t i o n

89

89

6.2 A b s o r p t i o n model f o r t h e p r o d u c t i o n o f d i l u t e d n i t r i c 6.3 Methods t o d e c r e a s e

t h e NO^-content i n t a i l

acid

89

gases o f n i t r i c

acid plants

94

6.3.1 Wet p r o c e s s e s

95

6.3.1.1 Extended a b s o r p t i o n 6.3.1.2 H °2

s

c

r

u

b

b

2

6.3.1.3 N i t r i c

i

n

S

process

acid scrubbing

6.3.2 Dry p r o c e s s e s

95 95 97 100

6.3.2.1 A d s o r p t i o n

100

6.3.2.2 N o n - s e l e c t i v e r e d u c t i o n p r o c e s s e s

100

A

6.3.2.3 S e l e c t i v e r e d u c t i o n p r o c e s s e s References

101 102

APPENDIX I. THE ADDITIVITY OF RESISTANCES FOR MASS TRANSFER IN A WETTED WALL COLUMN

105

1. I n t r o d u c t i o n and g e n e r a l t h e o r y

105

2. R e s u l t s

107

3. C o n c l u s i o n s

113

References

NOMENCLATURE

113

114

SUMMARY

The

subject of t h i s thesis

into n i t r i c absorbers

i s d e a l i n g with the a b s o r p t i o n o f n i t r o g e n oxides

a c i d s o l u t i o n s to o b t a i n data f o r the design o f i n d u s t r i a l

f o r t h e p r o d u c t i o n o f d i l u t e d and c o n c e n t r a t e d n i t r i c a c i d . From t h e

l i t e r a t u r e c o n c e r n i n g t h e a b s o r p t i o n o f n i t r o g e n o x i d e s i n t o aqueous s o l u t i o n s it

i s known t h a t NO, NO^, N^O^

a b s o r p t i o n . Moreover, n i t r i c

and N^O^

a l l p l a y an important

r o l e during the

a c i d and n i t r o u s a c i d can be formed i n t h e gas

phase and i n t h e l i q u i d phase. T h i s complex a b s o r p t i o n mechanism was investigated i n a specially

d e s i g n e d wetted

w a l l column w i t h a known

facial

a r e a between t h e gas phase and t h e l i q u i d phase. A l a m i n a r

liquid

film

and a l a m i n a r p l u g flow o f t h e gas phase w i t h o u t

g r a d i e n t p e r p e n d i c u l a r t o the g a s - l i q u i d wetted

falling

a velocity

i n t e r f a c e c o u l d be r e a l i z e d

w a l l column. The mass t r a n s f e r i n t h e l a m i n a r f a l l i n g

i n v e s t i g a t e d by a b s o r b i n g pure carbon o

inter-

liquid

i n the f i l m was

d i o x i d e i n t o water at a temperature

20 C and at a p r e s s u r e o f 1 b a r . I t was found

of

t h a t w i t h i n t h e measured

c o n d i t i o n s t h e l i q u i d phase mass t r a n s f e r c o u l d be d e s c r i b e d by t h e p e n e t r a t i o n theory.

The gas phase mass t r a n s f e r was i n v e s t i g a t e d by a b s o r b i n g ammonia

a n i t r o g e n gas stream

into 2 N s u l f u r i c

from

a c i d s o l u t i o n s . The e x p e r i m e n t a l

r e s u l t s showed a good agreement w i t h t h e t h e o r e t i c a l l y p r e d i c t e d v a l u e s d e r i v e d from t h e s o l u t i o n o f t h e G r a e t z The nitric

problem.

a b s o r p t i o n o f NOg/N^O^ gas m i x t u r e s

from

a c i d was c a r r i e d out at a temperature

o f about 1 b a r . The e x p e r i m e n t a l

a n i t r o g e n gas stream o o

into

o f 20 C and 30 C and a t a p r e s s u r e

r e s u l t s c o u l d be i n t e r p r e t e d w i t h t h e f o l l o w i n g

model: a) NOg and N^O^,

which a r e i n c o n t i n u o u s

from t h e gas phase t o the g a s - l i q u i d b) N^O^

i s t h e o n l y s p e c i e s which d i f f u s e s i n t o t h e l i q u i d

c) In t h e experiments N^O^

e q u i l i b r i u m w i t h each o t h e r ,

diffuse

interface.

with d i l u t e d n i t r i c

acid

i s accompanied by a r a p i d pseudo f i r s t

phase.

(25% and 40%) t h e d i f f u s i o n o f order r e a c t i o n i n the l i q u i d

phase between N 0^ and water. I t was found t h a t t h e a b s o r p t i o n r a t e o f N^O 2

into diluted n i t r i c In t h e experiments NO

a c i d decreases with i n c r e a s i n g a c i d s t r e n g t h . with concentrated n i t r i c

acid

(63%-80%) t h e r e a c t i o n o f

w i t h water can be n e g l e c t e d and N O dissolves physically a 4 ^4 l i q u i d phase.

i n the

1

The

s o l u b i l i t y o f N^O^ i n c o n c e n t r a t e d n i t r i c

a c i d s o l u t i o n s was c a l c u l a t e d

from t h e t o t a l vapour p r e s s u r e d a t a o f t h e system NgO^-HgO-HNOg. I t was found t h a t w i t h i n t h e c o n d i t i o n s s t u d i e d Henry's law i s v a l i d . s o l u b i l i t y o f NgO^ i n c o n c e n t r a t e d n i t r i c c r e a s i n g a c i d s t r e n g t h and d e c r e a s i n g The

Furthermore, t h e

acid increases strongly with i n -

temperature.

o x i d a t i o n o f NO i n a n i t r o g e n gas stream

by 40%-80% n i t r i c

acid o

s o l u t i o n s was i n v e s t i g a t e d

i n t h e wetted

and 30°C. In t h e experiments experimental

w a l l column a t a temperature

w i t h 63% and 80% n i t r i c

o f 20 C

a c i d s o l u t i o n s the

r e s u l t s were i n t e r p r e t e d w i t h t h e f o l l o w i n g model:

a) The o x i d a t i o n r e a c t i o n t a k e s p l a c e i n t h e gas phase between NO and n i t r i c a c i d vapour and can be c o n s i d e r e d t o be i n f i n i t e l y vapour a r e t r a n s f e r r e d by m o l e c u l a r d i f f u s i o n b u l k and t h e g a s - l i q u i d

f a s t . NO and n i t r i c

from, r e s p e c t i v e l y , t h e gas

i n t e r f a c e t o t h e r e a c t i o n zone o r p l a n e .

found t h a t Danckwerts' s o l u t i o n

acid

f o r instantaneous

I t was

irreversible reactions i n

the l i q u i d phase can a l s o be a p p l i e d t o gas phase r e a c t i o n s . b) The NO^ and N^O^ produced, which a r e i n continuous, e q u i l i b r i u m w i t h each o t h e r , d i f f u s e from

t h e r e a c t i o n p l a n e o r zone t o t h e gas b u l k and t o t h e

gas-liquid

i n t e r f a c e . At t h e g a s - l i q u i d

i n t e r f a c e o n l y Ng0

physically

into the concentrated n i t r i c

acid.

Experiments partially

w i t h 57% n i t r i c

i n t h e l i q u i d phase. Under t h e s e c i r c u m s t a n c e s

t h e gas phase r e a c t i o n

a c i d vapour p r e s s u r e . In t h e experiments

the f i n a l

proceeds

f a s t , a f a c t which may be caused by

a c i d i t was found t h a t t h e o x i d a t i o n t a k e s p l a c e c o m p l e t e l y Under t h e s e c i r c u m s t a n c e s

dissolves

a c i d showed t h a t t h e o x i d a t i o n o f NO a l s o

i s t o o slow t o be c o n s i d e r e d t o be i n f i n i t e l y the r a t h e r low n i t r i c

4

o x i d a t i o n product

w i t h 40% n i t r i c

i n t h e l i q u i d phase.

i s mainly n i t r o u s a c i d .

Based on g e n e r a l c h e m i c a l r e a c t i o n e n g i n e e r i n g c o n s i d e r a t i o n s a mathematical model was developed

t o d e s c r i b e t h e a b s o r p t i o n mechanism which o c c u r s i n the

absorber

f o r the production of d i l u t e d n i t r i c

decrease

t h e amounts o f n i t r o g e n o x i d e s c o n t e n t

p l a n t s were b r i e f l y

2

discussed.

acid. F i n a l l y in tail

v a r i o u s methods t o

gases o f n i t r i c

acid

S A M E N V A T T I N G

Dit

p r o e f s c h r i f t h e e f t a l s onderwerp de a b s o r p t i e van s t i k s t o f o x i d e n

t e r z u u r , hetgeen

van b e l a n g i s b i j het ontwerp van industriële a b s o r b e r s

de p r o d u k t i e van verdund derzoek

i n salpevoor

en g e c o n c e n t r e e r d s a l p e t e r z u u r . U i t een l i t e r a t u u r o n -

i s g e b l e k e n d a t de a b s o r p t i e van s t i k s t o f o x i d e n

i n waterige oplossingen

z e e r g e c o m p l i c e e r d i s , w a a r b i j NO, N^O^, NO2 and N^O^ een b e l a n g r i j k e r o l spelen.

Bovendien

kunnen s a l p e t e r z u u r en s a l p e t e r i g z u u r i n de v l o e i s t o f f a s e en i n

de g a s f a s e worden gevormd. Om een d e r g e l i j k g e c o m p l i c e e r d a b s o r p t i e p r o c e s t e bestuderen

i s een n a t t e wand kolom o n t w i k k e l d waarin het c o n t a c t o p p e r v l a k t u s -

sen g a s - en v l o e i s t o f f a s e goed bekend i s . In deze kolom kon een l a m i n a i r e s t r o ming van de v a l l e n d e v l o e i s t o f f i l m zonder

en een l a m i n a i r e p r o p s t r o m i n g van de g a s f a s e

snelheidsgradiënt l o o d r e c h t op het g a s - v l o e i s t o f c o n t a c t o p p e r v l a k worden

v e r k r e g e n . Het s t o f t r a n s p o r t

i n de l a m i n a i r v a l l e n d e v l o e i s t o f f i l m werd

ondero

z o c h t door z u i v e r CO^ t e a b s o r b e r e n

i n water b i j een temperatuur

een druk van 1 b a r . U i t de experimenten transport Het

kon worden g e c o n c l u d e e r d dat het s t o f -

i n de v l o e i s t o f f a s e b e s c h r e v e n kon worden door de p e n e t r a t i e t h e o r i e .

stoftransport

i n de g a s f a s e werd onderzocht

s t i k s t o f gasstroom overeen

van 20 C en

i n 2 N zwavelzuur.

door NH^ t e a b s o r b e r e n van een

De e x p e r i m e n t e l e r e s u l t a t e n b l e k e n goed

t e komen met de t h e o r e t i s c h v o o r s p e l d e waarden u i t het Graetz-model.

De a b s o r p t i e van NOg/NgO^ gasmengsels van een s t i k s t o f gasstroom o o t e r z u u r werd u i t g e v o e r d b i j een temperatuur ongeveer

en 30 C en een druk van

1 b a r . De e x p e r i m e n t e l e r e s u l t a t e n konden worden beschreven met het

volgende

model.

a) N 0

en NgO^,

2

van 20

i n salpe-

w

e

^

k

e

v o o r t d u r e n d i n evenwicht

zijn,

d i f f u n d e r e n van de gas-

f a s e naar het f a s e g r e n s v l a k . b) N 0 2

4

i s de a c t i e v e component d i e i n de v l o e i s t o f f a s e

c) In de experimenten

met verdund

diffundeert.

s a l p e t e r z u u r (25% en 40%) gaat de d i f f u s i e

van N^O^ gepaard met een s n e l l e pseudo I e o r d e r e a c t i e i n de v l o e i s t o f f a s e t u s s e n N^O^ en water. van NgO^ i n verdund In

de experimenten

U i t de experimenten

b l e e k dat de a b s o r p t i e s n e l h e i d

zuur afnam b i j toenemende z u u r s t e r k t e . met g e c o n c e n t r e e r d s a l p e t e r z u u r (63%-80%) b l e e k dat de

r e a c t i e t u s s e n water en ^ 0 ^ v e r w a a r l o o s d kon worden. In dat g e v a l NO

lost

s l e c h t s f y s i s c h op i n de v l o e i s t o f f a s e .

3

De o p l o s b a a r h e i d van N^O^ i n g e c o n c e n t r e e r d

s a l p e t e r z u u r werd berekend u i t

l i t e r a t u u r g e g e v e n s b e t r e f f e n d e de t o t a l e dampdruk van h e t systeem N^O^-HgOHNOg. Binnen de beschouwde c o n d i t i e s b l i j k t Verder b l i j k t

de o p l o s b a a r h e i d van N 0 2

4

d a t de wet van Henry g e l d i g i s .

i n geconcentreerd

toe t e nemen met toenemende z u u r s t e r k t e en dalende

salpeterzuur sterk

temperatuur.

De o x y d a t i e van NO i n een s t i k s t o f gasstroom door 40%-80% s a l p e t e r z u u r werd onderzocht

i n de n a t t e wand kolom b i j een temperatuur van 20°C en 30°C. De ex-

perimentele

r e s u l t a t e n met 63% en 80% s a l p e t e r z u u r konden worden beschreven

met

het volgende model.

a) De o x y d a t i e r e a c t i e v i n d t p l a a t s i n de g a s f a s e

t u s s e n NO en s a l p e t e r z u u r -

damp en kan a l s o n e i n d i g s n e l worden beschouwd. Salpeterzuurdamp en NO d i f funderen

r e s p e c t i e v e l i j k van h e t g a s - v l o e i s t o f c o n t a c t o p p e r v l a k

b u l k n a a r h e t r e a c t i e v l a k o f de reactiezöne. E x p e r i m e n t e e l

en de gas-

b l e e k dat

Danckwerts' o p l o s s i n g e n voor i n s t a n t a n e i r r e v e r s i b e l e r e a c t i e s i n de v l o e i s t o f f a s e tevens kunnen worden t o e g e p a s t

op i n s t a n t a n e g a s f a s e

b) Het gevormde NOg en N^O^, welke v o o r t d u r e n d

i n evenwicht z i j n ,

reacties. diffunderen

van h e t r e a c t i e v l a k o f de reactiezöne n a a r de b u l k van de g a s f a s e en n a a r het

f a s e g r e n s v l a k . Op h e t f a s e g r e n s v l a k l o s t

alleen

N 2

°

4

f y s i s c h op i n de

vloeistoffase.

Experimenten met 57% s a l p e t e r z u u r toonden aan d a t de o x y d a t i e van NO ook gedeeltelijk niet

v e r l o o p t i n de v l o e i s t o f f a s e .

In d i t g e v a l kan de g a s f a s e

a l s o n e i n d i g s n e l worden beschouwd, hetgeen wordt v e r o o r z a a k t

salpeterzuurdampdruk.

reactie

door de l a g e

B i j 40% s a l p e t e r z u u r v i n d t de o x y d a t i e van NO v o l l e d i g

i n de v l o e i s t o f f a s e p l a a t s , w a a r b i j

s a l p e t e r i g zuur h e t u i t e i n d e l i j k

gevormde

produkt i s . Toepassing

van de algemene b e g i n s e l e n van de chemische reactorkunde

op de

a b s o r p t i e van s t i k s t o f o x i d e n i n s a l p e t e r z u u r r e s u l t e e r d e i n een w i s k u n d i g

mo-

d e l voor h e t ontwerpen van industriële a b s o r b e r s b i j de p r o d u k t i e van verdund s a l p e t e r z u u r . T e n s l o t t e werden de v e r s c h i l l e n d e m o g e l i j k h e d e n te i n afgassen

4

van s a l p e t e r z u u r p l a n t s t e v e r l a g e n met e l k a a r

om h e t N O ~ g e h a l x

vergeleken.

1. INTRODUCTION

1.1 GENERAL REMARKS

Nitric

a c i d i s one o f t h e most important

production of f e r t i l i z e r s ,

t i o n s are s t a i n l e s s s t e e l p i c k l i n g the n i t r i c

nitric

acid with

and metal e t c h i n g . About t h r e e - f o u r t h s o f

a c i d produced i s used i n t h e f e r t i l i z e r

p r o d u c t i o n o f ammonium n i t r a t e , The

i n o r g a n i c a c i d s and i t i s used i n t h e

d y e s t u f f s , r e s i n s and e x p l o s i v e s . F u r t h e r a p p l i c a -

i n d u s t r y , mainly

ammonium phosphates and compound

a c i d needed i n t h e f e r t i l i z e r

f o r the

fertilizers.

industry i s usually diluted

nitric

a c o n c e n t r a t i o n o f 50-70%. F o r most o t h e r a p p l i c a t i o n s , such as

n i t r a t i o n r e a c t i o n s , 90-100% n i t r i c

acid

i s used.

S i n c e t h e development o f t h e Haber-Bosch ammonia s y n t h e s i s i n 1913 n e a r l y all

nitric

a c i d p l a n t s a r e based on t h e o x i d a t i o n o f ammonia and t h e subsequent

absorption of n i t r o g e n oxides

Diluted

An

nitric

acid

production

example o f a flow sheet

the D.S.M. n i t r i c

f o r the production of d i l u t e d n i t r i c

a c i d process

Ammonia mixed w i t h passed over

i n t o water.

i s g i v e n i n F i g . 1 (mono p r e s s u r e

a i r enters a converter

a platinum

gauze c a t a l y s t

a c i d based on system).

(B) i n which t h e gas m i x t u r e i s

a t a temperature o f 850-920°C. The

ammonia i s o x i d i z e d t o NO a c c o r d i n g t o

4NH

The

+

3

50

-»• 4N0

2

+

c o n v e r t e r can be o p e r a t e d

(7-10

6H 0

(1)

2

at atmospheric,

medium (3-5 b a r ) o r h i g h

pressure

b a r ) . The hot gases l e a v i n g t h e c o n v e r t e r a r e c o o l e d i n a waste heat

b o i l e r t o generate cooler-condenser

2N0

+

0

2

steam. The temperature i s f u r t h e r reduced

t o 20°-40°C i n a

(D), and at t h e same time t h e NO formed i s o x i d i z e d t o N 0

X

2N0

2

2

(2)

5

7

12 -H 0 2

NH 3

0-

B

T

11 10

8

60°/. Fig.

1

The A:

D.S.M. n i t r i c acid air

compressor,

condenser,

process

B: converter,

E: absorption

(mono-pressure C: tail

column,

gas

system).

heater,

F: bleaching

HNO3

D:

column,

cooler-

G:

expansion

turbine. 1: air, gas

2: NH , 3: 10% NH

containing

10: bleached

in air,

200-2000 ppm 60% n i t r i c

4: NO,

5: N0 ,

8: unbleached

acid,

11: air,

12:

absorber

The

The n i t r i c

60% n i t r i c acid,

9:

NO^,

some weak a c i d i s

H0 2

•*

2HN0

3

+

NO

(3)

a c i d f o r m a t i o n i s accompanied by NO

i s subsequently

absorbed

e v o l u t i o n which i s r e - o x i d i z e d

i n t o the l i q u i d

a b s o r b e r the r e - o x i d a t i o n r a t e o f NO may tail

i s v e r y slow,

( 2 ) . The

N0

2

phase. In t h e top o f the and

as a f i r s t

approach

be assumed t o be t h e r a t e d e t e r m i n i n g s t e p i n the a b s o r p t i o n p r o c e s s . gas,

c o n t a i n i n g about

200-2000 ppm

Energy

i s subsequently

stream

i s vented t o t h e atmosphere.

The

60% n i t r i c

a b s o r b e r and

6

acid

phase at ambient

i n the gas phase by m o l e c u l a r oxygen a c c o r d i n g t o r e a c t i o n produced

e n t e r s the

and at the o p e r a t i n g p r e s s u r e i n the c o n v e r t e r :

+

2

tail

10 volume % NOg,

(E) where i t r e a c t s w i t h water i n the l i q u i d

temperature

3N0

gas m i x t u r e , c o n t a i n i n g about

7:

water.

The water formed condenses i n the c o o l e r - c o n d e n s o r and produced.

6: weak acid,

2

N0 , x

r e c o v e r e d by expansion

l e a v e s the a b s o r b e r and

acid this The

i s heated.

i n a t u r b i n e a f t e r which the

gas

a c i d c o n t a i n i n g some d i s s o l v e d n i t r o g e n o x i d e s l e a v e s the

i s s t r i p p e d w i t h a i r i n a b l e a c h i n g column

(F) .

A v a r i a n t o f the mono-pressure p r o c e s s

i s the d u a l p r e s s u r e p r o c e s s , at

which the c o n v e r s i o n t a k e s p l a c e at a lower p r e s s u r e than the a b s o r p t i o n . In a d u a l p r e s s u r e system a n i t r o u s gas compressor i s needed. The main advantage o f f e r e d by a low p r e s s u r e i n the c o n v e r t e r i s the d e c r e a s e platinum c a t a l y s t

l o s s e s . On

o f the ammonia

the o t h e r hand the i n v e s t m e n t s

and

r e q u i r e d are

higher. S i m i l a r processes

such as the D.S.M. n i t r i c

a c i d p r o c e s s can be found i n

the l i t e r a t u r e [ 1 ] .

Concentrated

nitric

acid

production

There i s a s u b s t a n t i a l need f o r s t r o n g e r a c i d , p a r t i c u l a r l y

f o r acid with

a

c o n c e n t r a t i o n i n the range o f 90-100%. Such a c i d i s , f o r example, used i n n i t r a t i o n r e a c t i o n s . However, c o n c e n t r a t e d n i t r i c p r e p a r e d by form

distillation

o f d i l u t e d a c i d o f 60%,

a constant b o i l i n g mixture

( a z e o t r o p e ) between an a c i d

E x t r a c t i v e d i s t i l l a t i o n with s u l f u r i c c o m p o s i t i o n w i t h magnesium n i t r a t e and mixture

are r a t h e r e x p e n s i v e

R e c e n t l y some new nitric Fig.

a c i d o f 80%,

a c i d process

which can be d i r e c t l y

NO

produced

i n a waste heat

(B). In the c o o l e r - c o n d e n s e r

(1) i s condensed and

10-12

gas m i x t u r e

bar. The

gas m i x t u r e

2N 0 2

NOg.

+

2

column.

+

0

2

-

4HN0

3

(C)

a c i d at 0°C-10°C and at a p r e s s u r e o f

80%-85% n i t r i c

i s converted to n i t r i c

2H 0

produced

i s produced. The weak a c i d

a b s o r b e r c o n t a i n s some n i t r i c

T h i s can be d e c r e a s e d

c o n t a i n s about 15-30% d i s s o l v e d

4

at a

column (D) where the excess o f water i s r e -

l e a v i n g the p h y s i c a l

about 2000 ppm

i n which the NgO^

( 2 ) . Moreover, the water

l e a v e s the bottom o f the d i s t i l l a t i o n

i n 80%-85% n i t r i c

s c r u b b i n g w i t h water. The absorber

further cooled i n a

i s o x i d i z e d t o NO

from the c o o l e r condenser i s f e d t o a p h y s i c a l a b s o r b e r

i s dissolved

a c i d vapour and

boiler,

t h e NO

some weak a c i d

e n t e r s the weak a c i d d i s t i l l a t i o n

2

n i t r i c acid.

by o x i d a t i o n o f ammonia i n a c o n v e r t e r

o f 15°-70°C a c c o r d i n g t o r e a c t i o n

The

resultant

t o produce c o n c e n t r a t e d

d i s t i l l e d t o produce 100%

temperature

where N0

of the

flow sheet o f the Du Pont de Nemours c o n c e n t r a t e d

[ 2 ] . The

a c i d o f 68%

s t r e n g t h o f 68-69%.

subsequent d i s t i l l a t i o n

by r e a c t i o n

moved. N i t r i c

water

methods.

(A) i s , a f t e r r e c o v e r y o f energy cooler-condenser

directly

a c i d and

a c i d o r m o d i f i c a t i o n o f the a z e o t r o p i c

p r o c e s s e s have been developed

2 gives a s i m p l i f i e d

nitric

a c i d can not be because n i t r i c

t o 200

ppm

a c i d l e a v i n g the bottom o f N 2

°4•

by the

T h i s s o l u t i o n e n t e r s r e a c t o r (E)

a c i d a t 40°-100°C w i t h a i r .

(4)

7

NH

3

2~A

B

6

10 a b s o r p t i o n r a t e was

liquid

f e d by

saturated with

and then s u p p l i e d t o the

wetted

measured from the d e c r e a s e o f the

C0

2

volume at c o n s t a n t p r e s s u r e w i t h a soap f i l m i n a c a l i b r a t e d tube a c c o r d i n g t o N i j s i n g [5].

2.4.3

Results

In o r d e r to check the hydrodynamic b e h a v i o u r

o f the l i q u i d

f i l m the e x p e r i m e n t a l

a b s o r p t i o n r a t e s were compared w i t h the r a t e s p r e d i c t e d by the p e n e t r a t i o n t h e o r y . In our experiments the c o l l e c t i n g l i q u i d

the h e i g h t o f the stagnant

r e s e r v o i r was

found t o be 1.6

d a t a found by Lynn et a l [8-10] and N i j s i n g

Regression

l i n e through

f i l m formed above

cm which agrees w i t h

the

[ 5 ] . In t h i s p a r t o f the f i l m

a b s o r p t i o n r a t e can be n e g l e c t e d . A p l o t o f m ( T ) give a s t r a i g h t

liquid

the

v e r s u s ^ ( h - AlO/v^ s h o u l d

the o r i g i n w i t h a s l o p e o f 2C^

iy^jj/^"

a n a l y s i s shows t h a t the d e v i a t i o n o f the e x p e r i m e n t a l

3

)•

points i s

always l e s s than 2%

and the upper bound and the lower bound o f the 95% -5 2 c o n f i d e n c e i n t e r v a l f o r the i n t e r c e p t was r e s p e c t i v e l y 0.155 x 10 kg/m and -5 2 -0.102 x 10 kg/m . The upper bound o f the 95% c o n f i d e n c e i n t e r v a l o f the "™™ —5 2 4 s l o p e 2C„ WD./l was found t o be, r e s p e c t i v e l y , 7.97 x 10 kg/m .sec and 2 4 -5 2 4 7.68 x 10~ kg/m .sec which agrees w i t h the v a l u e o f 8.04 x 10 kg/m .sec 5

found by N i j s i n g Hence i t was

[5]. concluded

t h a t the a b s o r p t i o n r a t e i n the l i q u i d phase i s w e l l

p r e d i c t e d by the p e n e t r a t i o n t h e o r y and liquid

18

t h a t the hydrodynamic b e h a v i o u r

f i l m agrees w e l l w i t h the t h e o r e t i c a l model.

of

the

12

Fig.

3 Absorption

rate

of CO^ into

water as a function

of the contact

time

(P = 1.013 bar, t = 20°C). Symbol

h (cm)

A

15.9

0

34.9

V

51.9

2.5 GAS PHASE MASS TRANSFER IN LAMINAR PLUG FLOW GAS STREAMS

2.5.1

The

Introduction

effect

laminar

o f gas and l i q u i d

flow

r a t e s on t h e gas phase mass t r a n s f e r i n

gas streams was t h e o r e t i c a l l y and e x p e r i m e n t a l l y

columns and r e c t u a n g u l a r

g a s - l i q u i d flow

I f however t h e gas v e l o c i t y i s u n i f o r m

s t u d i e d i n wetted w a l l

[7,20,22,25,26]. and i s equal

t o the surface v e l o c i t y

o f t h e l i q u i d , no i n f l u e n c e o f t h e moving i n t e r f a c e on t h e gas phase mass t r a n s f e r can be e x p e c t e d . S t r i c t l y

s p e a k i n g t h i s i s t r u e when t h e r e

i s zero

19

drag at t h e i n t e r f a c e . H i k i t a and I s h i m i situation

i n wetted w a l l

numbers. Dekker

[22] s u p e r f i c i a l l y

columns, but no i n f o r m a t i o n

[7] i n v e s t i g a t e d t h e a b s o r p t i o n

studied

i s given

this

at h i g h

Graetz-numbers from 135 up t o 245 i n a w e t t e d w a l l column which was in

a s p e c i a l way t o c r e a t e a f l a t

his

measured a b s o r p t i o n

rates with the t h e o r e t i c a l l y p r e d i c t e d values

t r a n s f e r which was not e x p e r i m e n t a l l y In t h i s p a r t

constructed

v e l o c i t y p r o f i l e o f t h e gas. Comparison o f

however, based upon t h e assumption o f a s m a l l

described

Graetz-

o f ammonia i n t o water at

confirmed.

t h e s e gaps o f i n f o r m a t i o n

i.
0

E

3r

) '

should

be p a i d

C

=C g g>o 3C /3r = 0

g,o

i n which J

-

-c

C

.

6 , 1

g,i

and J

o

that

=

2

E

,

the i n t e r f a c e c o n c e n t r a t i o n

n=l

r

ITjTÜT n 1

are Bessel

n

(14) g. i

C

o

(13)

=C g

to the fact

(12)

g

C

. along the f i l m . According g. i the s o l u t i o n of these equations i s :

C (h,r)

value

(11)

conditions:

r = R - 0

Attention

flow

a l l the

t h e d i f f u s i o n e q u a t i o n can be w r i t t e n as:

3C v

20

f i l m . The

i n F i g . 1. Assuming t h a t

phase t o t h e l i q u i d phase t a k e s p l a c e by m o l e c u l a r d i f f u s i o n o n l y

direction,

[32]

v e l o c i t y o f the l i q u i d

system a r e g i v e n

through-

should

t o Carslaw and J a e g e r

. -D

2 h a

.

V \ i r r ' - p p - 7 f

functions of the f i r s t

v^R-ö,)

'

k i n d and, r e s p e c t i v e l y , o f

the z e r o and f i r s t

W The

=

first

order, while a

are the roots of the equation

0

( 1 6 )

e i g h t r o o t s a r e g i v e n i n T a b l e 2.

a

1

=

2.4048

=

5.5201

a

3

=

8.6537

a

4

= 11.7915

g

= 14.9309

a

a

a . = 18.0711 o a

= 21.2116

?

a

= 24.3525 o

Table

2

First

eight

eigenvalues

The b u l k average

value of C (h,r) g

H-S C (h) =

From e q u a t i o n s

g

(

h

)

_

C

-S C

(15) and (17) t h e v a l u e o f

g i

§ ^

S,o

r.C ( h , r ) d r

- C g,i

(17)

J

2

f

C

f

» (R-6 )

on a g i v e n h e i g h t h i s :

I

1

»

= 4Z n=l

— a n

a

n

v

c g

(

n

) i

s

obtained.

\

exp ( - - 5 — J V

Gz

(18)

'

i n which Gz i s t h e G r a e t z number d e f i n e d as

G

The

z

(

= ^DTE g

average mass t r a n s f e r c o e f f i c i e n t k^ between t h e i n l e t

1

9

)

and o u t l e t o f t h e

mass t r a n s f e r s e c t i o n may be d e f i n e d i n terms o f a l o g a r i t h m i c mean d r i v i n g f o r c e as f o l l o w s :

-ir(R-Ô.) i

_ _ (C -C . ) - ( C (h)-C v (C -C ( h ) ) = k 2Tf(R-6" ) h x — ' ° s g.o g ft i r— *" -.(h) - C g

8

,

1

g

.) (20)

- c o

g,i 21

A f t e r s u b s t i t u t i o n o f e q u a t i o n (18) i n e q u a t i o n (20) the average number can be w r i t t e n

G z o o = - In Z IT

Sh

=1

Sherwood

as:

4 a n

2 , a TT . ( - — Gz

exp

(2D

r I f the G r a e t z number i s l a r g e r than about t o be i n f i n i t e l y

150

the gas phase may

deep, and t h i s s i t u a t i o n c o r r e s p o n d s w i t h the p e n e t r a t i o n

t h e o r y . Under t h i s c o n d i t i o n t h e l o g a r i t h m i c average represented Sh

g

Sherwood number may

be

as: Gz / — In I

=

be c o n s i d e r e d

e)"*

J

The

d e v i a t i o n o f e q u a t i o n (21) w i t h e q u a t i o n (22) at G r a e t z numbers l a r g e r

150

i s s m a l l e r than

2.5.3

The

6%.

Experimental

absorbing l i q u i d

c o n t a i n i n g 0.05% same way

( d i s t i l l e d water,

by weight

IN s u l f u r i c

" T e e p o l " was

as d e s c r i b e d f o r the CO^

a c i d and 2N

sulfuric

meted

a b s o r p t i o n experiments.

w i t h f l o w c o n t r o l l e r s . The

were determined capillary

The

experimental from

cylinders

gas f l o w r a t e s o f ammonia and n i t r o g e n

from the p r e s s u r e drop a c r o s s a c a l i b r a t e d s t a i n l e s s

steel

t u b i n g immersed i n a t h e r m o s t a t i c a l l y c o n t r o l l e d water b a t h

m a i n t a i n e d at 20°C. A f t e r m i x i n g the ammonia and n i t r o g e n gas m i x t u r e was

streams

the

l e d i n c o - c u r r e n t flow through the wetted w a l l column. The

r a t e o f the gas m i x t u r e was was

acid)

f e d t o the wetted w a l l column i n the

equipment i s shown i n F i g . 4. Ammonia and n i t r o g e n were s u p p l i e d and

chosen

i n such a way

e q u a l t o the s u r f a c e v e l o c i t y o f the l i q u i d

t h a t the average gas film.

c o n c e n t r a t i o n o f ammonia i n the i n g o i n g gas stream was

flow

In our experiments varied

determined +

4

by adding 0.1N

sulfuric

a n a l y s e d i n the same way. s u l f u r i c a c i d was

d e v i a t i o n was

22

c o n t e n t o f the i n - and o u t g o i n g l i q u i d

In the experiments

was

reaction was

w i t h water a known amount o f 0.1

sample t o p r e v e n t d e s o r p t i o n o f ammonia.

the ammonia a b s o r p t i o n c o u l d be e s t a b l i s h e d , and

found t o be l e s s than

by

a c i d t o a gas sample and then a n a l y s i n g on

added t o the l i q u i d

A mass b a l a n c e around

the

from 2% t o 10%

c o n t e n t by means o f a c o l o r i m e t r i c method based on the B e r t h e l o t

i n an A u t o - A n a l y z e r . The NH^

gas

velocity

volume. The c o n c e n t r a t i o n o f ammonia i n the i n - and o u t g o i n g gas streams

NH

than

1.5%.

the

N

rfn.T.

- g ,

Fig'. 4

""Vo-c

Expérimental set-up for ammonia absorption

experiments

in a wetted

wall

column.

2.5.4

The

Results

a b s o r p t i o n o f ammonia i n t o s u l f u r i c a c i d s o l u t i o n s i s accompanied w i t h

fast chemical

r e a c t i o n i n the l i q u i d phase. The

ammonia i s e q u a l does not

to zero

absorbing

i n t e r f a c e concentration of

i f an i n c r e a s e o f the a c i d i t y o f t h e a b s o r b i n g

f u r t h e r i n c r e a s e the a b s o r p t i o n r a t e . E x p e r i m e n t s w i t h water,

s u l f u r i c a c i d and

2N

s u l f u r i c a c i d showed no

concluded

t h a t d u r i n g the a b s o r p t i o n o f ammonia i n t o 2N

(18)

and

liquid,

and

i s p o s s i b l e . The

the r e s u l t s were compared w i t h

c o n t a c t time v a l u e s between gas seconds and

i n the i n g o i n g gas

stream from 2.3%

up t o 10.5%

a

time

the

l i q u i d were v a r i e d from 0.25

t o 1.2

and

a b s o r p t i o n r a t e s i n 2N

t h e o r e t i c a l l y d e r i v e d e x p r e s s i o n s . The up

the

sulfuric

s u l f u r i c a c i d s o l u t i o n s were i n v e s t i g a t e d as a f u n c t i o n o f the c o n t a c t v a l u e s between gas

IN

3).

a c i d s o l u t i o n s the i n t e r f a c e c o n c e n t r a t i o n o f ammonia i s e q u a l t o z e r o , f u r t h e r s i m p l i f i c a t i o n of equation

liquid

i n f l u e n c e o f the a c i d i t y o f

l i q u i d on the a b s o r p t i o n r a t e (see T a b l e

Hence i t was

a

and

the c o n c e n t r a t i o n o f ammonia

by volume.

23

C

total

g,o % vol

water

bar

s m/sec

C (h) g C S,o

2 72

1 184

0 543

0.516

2 71

1 191

0 539

0.479

2NH S0„ 2 4

2 76

1 201

0 537

0.505

water

4 85

1 095

0 399

0.424

4 84

1 096

0 400

0.430

4 93

1 111

0 401

0.415

1NH S0 2

4

o

1NH S0 2

4

2NH-S0. 2 4

Table

V

pressure

3

Influence

of the acidity

ammonia into wall

of the liquid

water and sulfuric

column with a height

acid

phase on the absorption solutions

rate of

at 20°C in a wetted

of 51.9 cm and with an inner

diameter of

3.45 cm

Due t o t h e a b s o r p t i o n o f ammonia from t h e gas phase i n t o t h e l i q u i d the gas v e l o c i t y d e c r e a s e s .

Therefore

at Graetz

e x c e s s i v e l y h i g h ammonia c o n c e n t r a t i o n s the maximum ammonia c o n c e n t r a t i o n by

phase

numbers s m a l l e r t h a n 100

i n t h e gas phase s h o u l d be a v o i d e d ,

i n these

and

experiments was t h e r e f o r e about 5%

volume. In t h e experiments w i t h 2N s u l f u r i c a c i d t h e stagnant

liquid

f i l m above t h e

r e c e i v i n g l i q u i d was o b s e r v e d t o be about 2.0 cm. F o r a h i g h l y s o l u b l e gas such as ammonia i n s u l f u r i c the stagnant absorption

liquid

acid solutions, i t i s doubtful

f i l m may be n e g l e c t e d

dioxide

experiments.

From l i t e r a t u r e d a t a stagnant

i f the absorption rate i n

as was done i n t h e carbon

[27,28] i t i s known t h a t t h e e v a p o r a t i o n

water s u r f a c e i n t o d r i e d a i r f l o w i n g a c r o s s

this surface

rate of a i s strongly

reduced by t h e a d d i t i o n o f s m a l l amounts o f s u r f a c e a c t i v e agents. Long s t r a i g h t - c h a i n a l c o h o l s , f o r example, may reduce t h e e v a p o r a t i o n 12%

o f t h e r a t e a t a c l e a n water s u r f a c e . D.W.

Thompson [29] found t h a t

amounts o f s u r f a c e a c t i v e agents d e c r e a s e t h e a b s o r p t i o n water i n an u n s t i r r e d c o n t a i n e r . E x p e r i m e n t s w i t h decanol

24

r a t e t o only small

r a t e o f ammonia i n t o

1 - o c t a d e c a n o l and 1-hexa-

showed a r e d u c t i o n o f r e s p e c t i v e l y 41% and 51% i n t h e a b s o r p t i o n

rate.

c

P

g.o % by volume

bar

0 .782

3.77

1 295

0 0134

0 .772

2 31

1 276

0 0136

0 .780

1 193

0 0167

0 739

5 35

1 189

0 0167

0 .731

2 45

1 208

0 0161

0 744

1 113

0 0194

0 700

1 143

0 0196

0 694

1 113

0 0234

0 683

4 72

1 107

0 0237

0 688

5 34

1 117

0 0225

0 690

5. 20

1 092

0 0262

0 653

5. 49

1 092

0 0256

0 658

4. 05

1 215

0 0391

0 593

5. 30

1 117

0 0567

0 541

4. 53

1 120

0 0571

0 527

2. 74

1 200

0 0621

0 503

2. 78

1 201

0 0626

0 507

4. 98

1. 111

0 0891

0 419

4. 88

1. 111

0 0908

0 411

Absorption

experiments

of NH„ into

acid

acid

solution

coefficient

at 20 C

liquid film

f o r the a b s o r p t i o n o f ammonia

(Ah = 1.5 cm), and t h e G r a e t z numbers were c o r r e c t e d

For the c a l c u l a t i o n

diffusion

2N sulfuric

from the above-mentioned we assumed 75% o f t h e stagnant

i n the wetted w a l l column t o be i n a c t i v e sulfuric

g.o

0 0131

10 5

effect.

C

1 296

5 83

Reasoning

Gz

(h)

g

3 67

10 7

4

C

red

10 4

Table

TT

into

f o r t h i s en

o f t h e Sherwood and G r a e t z numbers t h e gas phase

o f ammonia

i n n i t r o g e n was taken from t h e d a t a g i v e n by

Mason and Monchick [ 3 0 ] .

(D

= 2.3 x 10 3

-5

2 o m / s e c at 25 C and 1.01325 b a r ) .

2 25

Corrections

f o r temperature and p r e s s u r e

r e l a t i o n o f Wilke-Lee The TT/Gz

red

The

d e v i a t i o n s were c a r r i e d o u t u s i n g t h e

[31]. The e x p e r i m e n t a l r e s u l t s a r e g i v e n

r e l a t i v e concentration

i n T a b l e 4.

o f ammonia i n t h e gas phase as a f u n c t i o n o f

i s p l o t t e d i n F i g . 5. l o g a r i t h m i c mean v a l u e

o f t h e Sherwood number as a f u n c t i o n o f t h e

G r a e t z number (Gz .) i s p l o t t e d i n F i g . 6. These f i g u r e s show t h a t t h e red d e v i a t i o n o f t h e measured p o i n t s

from t h e t h e o r e t i c a l l y p r e d i c t e d v a l u e s i s

s m a l l . At G r a e t z numbers o f more than 150 t h e d e v i a t i o n from t h e p e n e t r a t i o n theory

Fig.

5

i s s m a l l e r than 6%.

NH

absorption

3

experiments

20°C; comparison theoretical Symbol

26

between

lines). h (cm)

0

14.9

V

34.9

A

51.9

in a wetted experimental

wall results

column into and theory

2N F.^S0^ at (

Fig.

6

Mean Sherwood number as a function (21),

assymptotic

Symbol

of the Graetz

number (

equation

solution).

h (cm)

0

14.9

A

34.9

V

51.9

2.6 CONCLUSIONS

A wetted

w a l l column was developed

i n which gas a b s o r p t i o n w i t h

simultaneously

o c c u r r i n g gas phase r e a c t i o n s such as t h e a b s o r p t i o n o f n i t r o g e n o x i d e s i n nitric

a c i d may be i n v e s t i g a t e d .

liquid

film

In t h i s wetted

w a l l column a l a m i n a r

and a l a m i n a r p l u g flow o f t h e gas phase w i t h o u t

falling

a velocity

g r a d i e n t p e r p e n d i c u l a r t o t h e g a s - l i q u i d i n t e r f a c e c o u l d be r e a l i z e d . The hydrodynamic b e h a v i o u r

o f t h e l i q u i d f i l m was checked

by a b s o r b i n g COg i n t o

water. I t was found t h a t t h e a b s o r p t i o n r a t e was w e l l p r e d i c t e d by t h e p e n e t r a t i o n t h e o r y . Gas phase mass t r a n s f e r was i n v e s t i g a t e d by a b s o r b i n g 27

ammonia from a n i t r o g e n gas stream i n t o s u l f u r i c

a c i d s o l u t i o n . The e x p e r i m e n t a l

r e s u l t s show a good agreement w i t h t h e G r a e t z model.

REFERENCES

1. Andrew, S.P.S. and Hanson, D., Chem. Eng. Sci., 1961, 14, 105. 2. H o f t i j z e r , P . J . and Kwanten, F.J.G., A b s o r p t i o n o f n i t r o u s gases, from Nonhebel, G., Gas P u r i f i c a t i o n P r o c e s s e s f o r A i r P o l l u t i o n C o n t r o l ,

Newnes-

B u t t e r w o r t h s , London, 1972. 3. Detournay, J.P. and J a d o t , R.H. , Chem. Eng. Sci., 1973, 2_8, 2099. 4. Danckwerts, P.V., G a s - L i q u i d R e a c t i o n s , M c G r a w - H i l l , London, 1970. 5. N i j s i n g ,

R.A.T.O., PhD T h e s i s , D e l f t U n i v e r s i t y o f T e c h n o l o g y , D e l f t , The

N e t h e r l a n d s , 1957. 6. Kramers, H., B l i n d , M.P.P. and Snoeck, E., Chem. Eng. Sci., 1961, 14, 115. 7. Dekker, W.A., PhD T h e s i s , D e l f t U n i v e r s i t y o f T e c h n o l o g y , D e l f t , The N e t h e r l a n d s , 1958. 8. Lynn, S., S t r a a t e m e i e r , J.R. and Kramers, H. , Chem. Eng. Sci., 1955, 4_, 49. 9. Lynn, S., S t r a a t e m e i e r , J.R. and Kramers, H. , Chem. Eng. Sci., 1955, 4_,

58.

10. Lynn, S., S t r a a t e m e i e r , J.R. and Kramers, H., Chem. Eng. Sci., 1955, 4, 63. 11. W i l d , J.D. and P o t t e r , O.E., J . Chem. E. Symposium Series,

1968, 28, 30.

12. A l p e r , E. and Danckwerts, P.V., Chem. Eng. Sci., 1976, 31,

599.

13. Kameoka, Y. and P i g f o r d , R.L., Ind. Eng. Chem. Fundam., 1977, 16, 163. 14. Govindan, T.S. and Quinn, I.A., AIChE J., 1964, 10, 35. 15. Danckwerts, P.V. and Kennedy,

A.M., Chem. Eng. Sci., 1958, 8, 201.

16. G o d f r e y , J.H., PhD T h e s i s , Oregon S t a t e U n i v e r s i t y , U.S.A., 1973. 17. Sada, E., Kumazawa, H., Yamanaka, Y., Kudo, I. and Kondo, T., J. Chem. Eng.

Japan,

1978, 11, 276.

18. H i k i t a , H., A s a i , S., Ishikawa, H. and S a i t o , Y., Chem. Eng. Sci., 1975, 30, 607. 19. Dekker, W.A. Snoeck, E. and Kramers, H. , Chem. Eng. Sci., 1959, 11^, 61. 20. A i h a r a , K., Ukawa, N., Hozawa, M. and T a d a k i , T., Int. Chem. Eng., 1976, 16, 494. 21. H i k i t a , H. and I s h i m i , K., J. Chem. Eng. Japan, 22. ' H i k i t a , H. and I s h i m i , K. , J. Chem. Eng. Japan,

1976, 9_, 1976, 9^,

357. 362.

23. P o r t a l s k i , S. and C l e g g , A . J . , Chem. Eng. Sci., 1971, 26, 773. 24. B a n e r j e e , S., Rhodes, E. and S c o t t , D.S., Chem. Eng. Sci., 1967, 22, 43. 25. B y e r s , H.C. and K i n g , J.C., AIChE J., 1967, l j ! , 628. 26. B y e r s , H.C. and K i n g , J.C., AIChE J., 1967, 13^, 637. 28

27. Sherwood, T.K., P i g f o r d , R.L. and W i l k e , C.R., Mass T r a n s f e r ,

McGraw-Hill,

1975. 28. D a v i e s , J.T.

and R i d e a l , T.K., I n t e r f a c i a l Phenomena, Academic P r e s s , New

York, 1963. 29. Thompson, D.W.,

Ind. Eng. Chem. Fundam. , 1970, j}, 243.

30. Mason, E.A. and Monchick,

L. , J. Chem. Phys. , 1962, 36, 2746.

31. R e i d , R.C., P r a u s n i t z , J.M. and Sherwood, T.K., The P r o p e r t i e s o f Gases and L i q u i d s , M c G r a w - H i l l , 1977. 32. C a r s l a w , H.S.

and J a e g e r , J.C. C o n d u c t i o n o f Heat

i n Solids,

Oxford

U n i v e r s i t y P r e s s , 1959. 33. L e f e r s , J.B.,

Van den B l e e k , C M . , Bos, A.S. and Van den Berg, P.J.,

paper

p r e s e n t e d at t h e 6 t h I n t e r n a t i o n a l Congress o f C h e m i c a l E n g i n e e r i n g , Chemical Equipment Design and Automation,

Prague,

August 1978.

34. K a i s e r , E.W. and Wu, C.H., J. Phys.

Chem., 1977, 81, 1701.

35. K a i s e r , E.W. and Wu, C.H., J. Phys.

Chem., 1977, 81,

36. S t r e i t , Phys.,

187.

G.E. and W e l l s , J.S., F e h s e n f e l d , F.C., Howard, C.J., J. Chem. 1979, 70, 3439.

37. McKinnon, I.R., M a t h i e s o n , J.G. and W i l s o n , I.R., J. Phys.

Chem., 1979, 83,

779.

29

3. SPECTROPHOTOMETRY DETERMINATION OF NITROGEN OXIDES AND NITRIC ACID VAPOUR

3.1 INTRODUCTION

F o r p o l l u t i o n c o n t r o l purposes much a t t e n t i o n has been p a i d t o the of n i t r o g e n oxides

and s e v e r a l a n a l y s i s methods have been d e v e l o p e d

d i s a d v a n t a g e o f most methods i s t h a t they range which o c c u r s

spectroscopy,

however, can a l s o be used f o r t h e d e t e r m i n a t i o n

for

at higher

concentrations.

i n t h e manufacture o f n i t r i c

Infrared absorption

acid. Infrared of nitrogen

c o e f f i c i e n t s o f NOg and NO

p o l l u t i o n c o n t r o l have been measured as a f u n c t i o n o f t h e o p t i c a l

l e n g t h and t h e temperature

[ 6 ] . Guttman

i n t e n s i t i e s o f pure N0„ and N O . pressures

[7] i n v e s t i g a t e d i n t e g r a t e d

i n gas m i x t u r e s c o n t a i n i n g n i t r o g e n

and/or n i t r o u s a c i d vapour can be formed concentrations

nitric

absorption Fontanella 1

number o f 1915 cm , o f N 0

a c i d and p o l l u t i o n c o n t r o l purposes.

a t 1606 cm * and n i t r i c

2

concentrations

the N0

2

absorption

of N0

2

NgO^

Using

a c i d vapour at 1326 cm

1

in

T h i s method i s n o t a p p l i c a b l e at

due t o t h e s t r o n g o v e r l a p o f n i t r i c

a c i d vapour

band.

In t h i s Chapter a method i s d e v e l o p e d f o r t h e d e t e r m i n a t i o n NgO^ and n i t r i c

2 >

Such i n f o r m a t i o n may be o f import-

[10] s t u d i e d t h e c o n c e n t r a t i o n o f NO a t a wave

the s t r a t o s p h e r e u s i n g t h e sun as s o u r c e .

and

i n f o r m a t i o n , however, can be

t h e q u a n t i t a t i v e a n a l y s i s o f NO, N 0

a c i d vapour i n such gas m i x t u r e s .

ance f o r t h e manufacture o f n i t r i c

oxides.

a c i d vapour

[8,9], e s p e c i a l l y at higher

o f n i t r o g e n o x i d e s . Very l i t t l e

found i n t h e l i t e r a t u r e c o n c e r n i n g

higher

absorption

up t o 2 MPa. The r e s u l t s o f Guttman i n d i c a t e t h a t Beer's law i s v a l i d .

Due t o t h e r e a c t i o n o f n i t r o g e n o x i d e s w i t h water vapour n i t r i c

infrared

path

a t temperatures o f 50°C up t o 100°C and a t

O f t e n water vapour i s a l s o p r e s e n t

and

[ 1 - 5 ] . The

a r e not a p p l i c a b l e i n the higher

concentration

oxides

determination

a c i d vapour i n gas m i x t u r e s a t c o n c e n t r a t i o n s

the manufacture o f n i t r i c

o f NO, NOg,

which o c c u r i n

acid.

3.2 EXPERIMENTAL

All 30

s p e c t r a l measurements were c a r r i e d o u t on a P e r k i n - E l m e r

Model 117 i n f r a r e d

spectrophotometer.

The

w i t h an i n n e r diameter

i n f r a r e d a b s o r p t i o n gas c e l l was o f 3.5

cm

and a p a t h l e n g t h o f 10.0

windows were cemented on the gas c e l l which was o

kept

c o n s t a n t temperature

The

o f 25.0

C by a t h e r m o s t a t .

the sample p r e p a r a t i o n o f n i t r i c mixtures

i s g i v e n i n F i g . 1.

experimental to

apparatus,

o x i d e gas m i x t u r e s

3 and

cm.

Silver

chloride

i n a l l experiments

experimental

at a

apparatus

for

and n i t r o g e n d i o x i d e gas

In the f i r s t s t e p o f sample p r e p a r a t i o n the

i n c l u d i n g t h e gas c e l l , was

remove the oxygen and then evacuated.

always checked

constructed of glass

f l u s h e d with dry n i t r o g e n

In e v e r y experiment

the e v a c u a t i o n

was

by means o f a mercury vacuum gauge. A f t e r e v a c u a t i o n v a l v e s 1,

5 were c l o s e d and n i t r i c

made t o p u r i f y the n i t r i c

o x i d e was

oxide.

l e d i n t o the system. No

(Matheson Gas

Products,

attempts

2

were

p u r i t y : 99,2%.) The

s m a l l amounts o f n i t r o u s o x i d e and n i t r o g e n d i o x i d e which a r e p r e s e n t i n commercial n i t r i c

o x i d e were s m a l l enough t o be n e g l e c t e d . A f t e r f i l l i n g

system w i t h n i t r i c

o x i d e the p a r t i a l

pressure of n i t r i c

o x i d e was

measured w i t h

a d i f f e r e n t i a l manometer f i l l e d w i t h bromo-naphthalene, i n which the of

n i t r o g e n o x i d e s i s v e r y low. The

sufficiently The

low t h a t no o p t i c a l

gas c e l l was

The

as d e s c r i b e d f o r NO

temperature

c o n t a i n e r and

apparatus

2

p r e s s u r e s o f NO^ 4

was

o x i d a t i o n o f NO

o f N0

2

and NgO^

i n T a b l e 1. kept

o x i d e i n the

p r e s s u r i s e d w i t h dry n i t r o g e n t i l l

2

which i s i n e q u i l i b r i u m w i t h NgO^

found t o be v e r y i n a c c u r a t e . Due

i n the

t o the s t r o n g

[11] a l l temperatures

such as i n t h e gas-sample c e l l , the

sample Small

cause l a r g e e r r o r s i n the c a l c u l a t i o n o f the

and NgO^

w i t h the e q u i l i b r i u m c o n s t a n t . T h e r e f o r e

NO^

o x i d e s u p p l i e d as d e s c r i b e d above

sample c e l l at an a b s o l u t e p r e s s u r e o f 0.1067

i s complete w i t h i n a few minutes and the p a r t i a l

MPa.

pressures

were then c a l c u l a t e d by means o f the e q u i l i b r i u m c o n s t a n t

In t h i s way

o n l y the temperature

a c c u r a t e l y c o n s t a n t . The

p r e s s u r i s i n g the gas

an

obtained.

p r e p a r e d by o x i d i z i n g n i t r i c

w i t h dry oxygen i n the gas The

i t s vapour.

i n t h e d i f f e r e n t i a l manometer s h o u l d be kept v e r y c o n s t a n t .

d e v i a t i o n s i n t h e temperature partial

was

from

dependence o f t h e above mentioned e q u i l i b r i u m

i n the e x p e r i m e n t a l

and N 0

was

p r e p a r a t i o n o f samples o f N0

same way

found

and a f t e r removing the n i t r i c

sample c e l l was

a b s o l u t e p r e s s u r e o f 0.1067 MPa

solubility

vapour p r e s s u r e o f bromo-naphthalene i s

i n t e r f e r e n c e was

c l o s e d by v a l v e 4,

sample c o n t a i n e r the gas

the

o f the gas

sample c e l l

given

should

be

use o f oxygen i n p l a c e o f n i t r o g e n f o r

sample c e l l had no

i n f l u e n c e on the i n f r a r e d a b s o r p t i o n

measurements. Nitric

a c i d vapours were p r e p a r e d by b u b b l i n g d r i e d n i t r o g e n gas

concentrated n i t r i c

acid solutions

a c o n s t a n t temperature

o f 20°C. To prevent c o n d e n s a t i o n

vapour and t h e water vapour the gas

through

(Merck a n a l y t i c a l grade) which were kept

stream was

o f the n i t r i c

then heated

t o 25.0°C

at

acid and 31

continuously not

l e d t h r o u g h the gas

i n f l u e n c e the i n f r a r e d

tion

i n the n i t r o g e n gas

nitric was

The

c o n c e n t r a t i o n of n i t r i c

adding a known amount o f 0.1

In t h i s method the n i t r a t e

to

nitrite

content

with by

t o a gas

concentrations

with

azo

stream and

reductor conditions

N-l-naphthylethylene-

dye

[12]. In t h e

s m a l l compared t o the

of the n i t r a t e

the

a c o l o r i m e t r i c method.

a copper-cadmium

coupled

were always v e r y

( l e s s than 0.1%

concentra-

sample

i o n then r e a c t s w i t h s u l f a n i l a m i d e under a c i d i c

diamine d i h y d r o c h l o r i d e t o form a r e d d i s h - p u r p l e

concentration

acid

a c i d vapour i n t h e gas

N alkali

i s reduced to n i t r i t e

form a d i a z o compound. T h i s compound was

the n i t r i t e

nitric

changed by v a r y i n g t h e c o n c e n t r a t i o n o f

then a n a l y s i n g on the n i t r a t e and n i t r i t e

column. The

p r e s e n c e o f some water vapour d i d

a b s o r p t i o n measurements. The

stream was

a c i d s o l u t i o n . The

determined by

cell.

samples

nitrate

content).

O,

Np

to vacuum pump

UJ NO-

to

Fig.

1

Experimental A:

sample

set-up

container;

f i l l e d with

for

sample

preparation.

B: molecular

bromo^naphthalene;

manometer; F:

32

thermostat

vacuum gauge;

D: 1, 2,

sieves;

C: differential

infrared

sample

3, 4,

valves.

5

gas

manometer cell;

E:

mercury

3.3

RESULTS

I n f r a r e d a b s o r p t i o n c o e f f i c i e n t s can be determined F o r our purposes

A = log —

at c o n s t a n t

temperature

by u s i n g Lambert-Beer's

law.

the absorbance (A) can be w r i t t e n as:

= a.b.P

(1)

o A

= Absorbance

1,1

= the r e s u l t a n t

o

and

incident

intensities

a

= absorptivity

MPa

.cm

b

= path l e n g t h

cm

P

= partial

MPa

bP

= o p t i c a l path length

Of each component were p r e p a r e d found. The

pressure

(NO,

N0 ,

and n i t r i c

4

at wave numbers at which no

a c i d vapour) c a l i b r a t i o n

o p t i c a l p a t h l e n g t h s and

f o r NO

determined

low o p t i c a l path l e n g t h s

law

w i t h the b a s e - l i n e

at a wave number o f 1908

i n F i g . 2 and F i g . 3. L e a s t square

i n d i c a t e t h a t Beer's

i s only v a l i d

curves

absorbance o f o t h e r components were

absorbance o f each component was

method. C a l i b r a t i o n c u r v e s

presented

Ng0

2

MPa.cm

(< 0.015

fits

1

cm

for high

MPa.cm) a r e

t o the e x p e r i m e n t a l

points

at low o p t i c a l path l e n g t h s (
490

absorption

H o f t i j z e r and Kwanten [1] Gerstacker D i s c u s s i o n at r e f . [15] M o l l [20]

267

l i q u i d N0 i n j e c t i o n i n t o water 2

T r e i n i n and Hayon [21]

300+100

Komiyama and Inoue [16]

f l a s h photolysis

194

—9 D

2 25°C "» m / s at

= 1.41 X 10 2°4,1

H

3

=1.29

kmol/m

.bar at 25°C

desorption

Kramers e t a l [15]

J

2 4

Table

2

Comparison

of literature

data concerning

the absorption

of N 0. p

into

water

diffusion coefficient

and Henry c o e f f i c i e n t

found by Kramers e t a l [ 1 5 ] . The

agreement between t h e r e a c t i o n r a t e c o n s t a n t d e r i v e d from t h e a b s o r p t i o n measurements i s r a t h e r poor. Moll

[20] i n j e c t e d l i q u i d N^O^ i n t o water and t h e r e a c t i o n r a t e c o n s t a n t k

agreed w e l l w i t h t h e v a l u e measured by Kramers e t a l [15] w i t h l a m i n a r j e t experiments.

T r e i n i n and Hanson [21] found r o u g h l y t h e same v a l u e s by means o f

flash photolysis.

In i n d u s t r i a l a b s o r b e r

d e s i g n t h e v a l u e o f H„ „ i/kD. i s much N 0 V 2

more important

4

I

than t h e r e a c t i o n r a t e c o n s t a n t . H o f t i j z e r and Kwanten [1] found

the f o l l o w i n g e q u a t i o n f o r water: 760 l

It

0

g

V o . l / 2 4

5

*

(3° - 75°C)

= " 0.53 -

(13)

i s known t h a t t h e a b s o r p t i o n r a t e o f N^O^ d e c r e a s e s w i t h i n c r e a s i n g

acid

s t r e n g t h . T h i s may be a t t r i b u t e d t o t h e d e c r e a s e o f t h e Henry c o e f f i c i e n t increasing

" f r e e " water becomes r e l a t i v e l y

s m a l l i n more c o n c e n t r a t e d n i t r i c

No r e l i a b l e d a t a can be found the n i t r i c

a c i d s t r e n g t h on t h e H

L o n g s t a f f and S i n g e r nitric

acid [1].

i n the l i t e r a t u r e concerning the i n f l u e n c e of i / kD. v a l u e s . N2O4V Jo

[24] found t h a t i f N 0

2

gas i s i n c o n t a c t w i t h 60%

a c i d u n r e a c t e d N^O^ may be p r e s e n t i n t h e l i q u i d phase and t h a t t h e

n i t r o u s a c i d c o n c e n t r a t i o n may be n e g l e c t e d . The r a t i o C

/(C N

in

with

i o n i c s t r e n g t h and a d e c r e a s e o f k as t h e molar c o n c e n t r a t i o n o f

t h e l i q u i d phase as a f u n c t i o n o f t h e n i t r i c

2°4,J> acid strength

H N 0

+C ) 2,Jl 20 ,Jo given i n F i g . N

4

10

0 5

100

50 1

Fig.

1

The distribution of the nitric

of ^2^4 aoid

m

N0

^

3

n

^

^trie

acid

solutions

as a

function

strength. 47

From t h i s "2^4 ^

a

s

m

x

l

f i g u r e i t can be c o n c l u d e d u

*

r

e

s

into n i t r i c

that the p h y s i c a l absorption o f N0 / 2

a c i d s o l u t i o n s becomes important

fornitric

acid

s o l u t i o n s above 55% and t h a t t h e r e a c t i o n o f N „ 0 . w i t h water may be n e g l e c t e d . z 4 4.2.2 NCvj/NgO^ a b s o r p t i o n i n t o c o n c e n t r a t e d n i t r i c

The

a b s o r p t i o n o f NO„/N 0 i n t o n i t r i c £ £ 4

important of

found c o n c e r n i n g nitric

a c i d s o l u t i o n s o f more than

f o r the p r o d u c t i o n o f d i l u t e d n i t r i c

concentrated n i t r i c

acid.

acid solutions

a c i d as w e l l as t h e p r o d u c t i o n

In t h e l i t e r a t u r e v e r y l i t t l e

the absorption o f N0 /N 0 2

a c i d . Atroshchenko and Kaut

2

gas m i x t u r e s

4

i n f o r m a t i o n can be

into

concentrated

[26] i n v e s t i g a t e d t h e a b s o r p t i o n o f NOg/NgO

i n t o 70 - 98% HNOg and found t h a t t h e a b s o r p t i o n proceeds p u r e l y T h i s f i n d i n g was a l s o c o n f i r m e d

55% i s

by Karavaev and V i s l o g u z o v a

l i t e r a t u r e no i n f o r m a t i o n can be found

concerning

physically.

[25]. In t h e

t h e a b s o r p t i o n mechanism.

Equilibrium

The

s o l u b i l i t y o f NgO^ i n t o c o n c e n t r a t e d n i t r i c

for

the design of i n d u s t r i a l

absorbers.

a c i d s o l u t i o n s i s v e r y important

In t h e l i t e r a t u r e o n l y v a l u e s o f t h e

t o t a l vapour p r e s s u r e o f t h e system N^-HNOg-HgO were found o r d e r t o study

t h e s o l u b i l i t y o f NgO^ i n t o n i t r i c

[27,28,29,30]. In

a c i d s o l u t i o n s i t was assumed

t h a t t h i s t o t a l vapour p r e s s u r e can be d e s c r i b e d a s :

P

= tot

P

HNO3

+

P + H 0

P

2

+ N0

P

N 0

2

2

4

+ P „ + P N 0 NO 2

(14)

3

P„„ and P „ _ a r e v e r y low above c o n c e n t r a t e d n i t r i c a c i d s o l u t i o n s and t h e r e NO N 0 * f o r e they may be n e g l e c t e d . The vapour p r e s s u r e s o f HNO^ and HgO were taken 2

3

from t h e d a t a o f t h e b i n a r y system HNO^-HgO measured by Vandoni and Laudy [ 8 ] . 2 With a i d o f t h e e q u i l i b r i u m c o n s t a n t (K = P / H ' equilibrium 2 2 4 2 P

o

f

t

h

e

n

N

2N0

2

X N 0 2

the vapour p r e s s u r e s o f N 0 If

(15)

4

N

2

and

i t i s assumed t h a t m a i n l y

2

0

4

2

0

N

were c a l c u l a t e d . 4

i s present

i n t h e l i q u i d phase

31,32,33] t h e Henry c o e f f i c i e n t H „ „ s h o u l d be d e f i n e d a s : 2°4 N

N

° 2°4 I

48

[27,29,30,

Henry c o e f f i c i e n t s

(H„ _ ) were c a l c u l a t e d 2°4

from

t h e t o t a l vapour p r e s s u r e

data

N

o f Klemenc and Rupp [28] and t h e r e s u l t s a r e g i v e n i n F i g . 2 and F i g . 3. From t h e s e f i g u r e s i t can be c o n c l u d e d

t h a t t h e Henry c o e f f i c i e n t

i s independent o f

t h e amount o f NgO^ i n t h e l i q u i d phase. A t s m a l l NgO^ c o n t e n t s some d e v i a t i o n s

20

15

10

—v—

V

o

u

o

a.

û

o

CM

~~ A.

A

Q

as a function

o A

A

5 °/o N

Hjy

0

°C

o

S

2

V

o

o 6

Fig.

V

A

10 2

0

4

ri

A.

A

12 5 °C

25

15

b y w e i g h t in

of the FS^O^ content

°C

20

HNO3

in 16 N HNO^.

(V: 0°C; 0: 12.5°C; A: 25°C) [28].

From t h e t o t a l vapour p r e s s u r e d a t a measured by W e i n r e i c h Karavaev and Yarkovaya the temperature

[27]

and

[29] Henry c o e f f i c i e n t s were c a l c u l a t e d as a f u n c t i o n o f

and t h e a c i d s t r e n g t h (see F i g . 4 ) . Some own experiments

c a r r i e d out t o i n v e s t i g a t e t h e Henry c o e f f i c i e n t more d i r e c t l y . N i t r i c

were

acid of

75% was s a t u r a t e d w i t h n i t r o g e n gas c o n t a i n i n g 5-20 volume % o f N 0 by means o f a 2

s a t u r a t o r a t a p r e s s u r e o f 1.04 b a r . The gas phase was a n a l y s e d f o r i t s content w i t h i n f r a r e d phase was determined

spectroscopy

0 2

4

_

(Chapter 3 ) . The NgO^-content i n t h e l i q u i d

by i n j e c t i n g a l i q u i d

NaOH s o l u t i o n and then method

N

sample o f 50 y l i n t o a 10 ml 0.8 N

a n a l y s i n g f o r n i t r i t e content with a c o l o r i m e t r i c

[ 3 4 ] . I t was found t h a t t h e measured Henry c o e f f i c i e n t

was

independent

49

o f t h e p a r t i a l p r e s s u r e o f N^O^ i n the gas phase. The e x p e r i m e n t a l summarized

results are

i n T a b l e 3.

30

25 o

°c

20 -

15

-o

o

o

o

12 • 5 °C

oo o

!

io

o

A

E

A

ft-

C

°C

25

3

5

10

%> N 0 2

Fig.

3

H

n

as a function

4

of the N„0. content

"24 (V;

50

15

b y weight in HN0

0°C; 0: 12.5°C; A: 25°C) [28].

20

25

3

in 19 N nitric

acid.

0-30

Fig.

4

H

- as a function 2 4

of the temperature

and n i t r i c acid

concentration.

a

a

Weinreich

[27]

25% by weight

of N 0

4

in 75% HN0

ff 0^

in 75% HN0

g

+

Weinreich

[27]

20% by weight

of

0

Weinreich

[27]

10% by weight

of N 0

A

Klemenc and Rupp [28]



Karavaev

0

This

and Yarkovaya

g

2

4

3

3

in 75% HNO^

[29]

work

From F i g . 4 i t can be seen t h a t t h e r e i s a r a t h e r good agreement w i t h t h e r e s u l t s d e r i v e d from t h e vapour p r e s s u r e d a t a . I t s h o u l d be noted t h a t at a r a t h e r h i g h N^O^ c o n t e n t i n t h e l i q u i d and low temperatures

liquid

i m m i s c i b i l i t y may o c c u r

The heat o f s o l u t i o n o f N O

phase

[31,32,33].

i n t o n i t r i c a c i d s o l u t i o n s can be c a l c u l a t e d

51

from:

d i n (H

_

)

AH

g

_*JL = d

( 1 7 )

(^)

R

i n which T i s t h e a b s o l u t e temperature, R t h e gas c o n s t a n t and A H s o l u t i o n a t t h e temperature c o n s i d e r e d

( t a k e n as n e g a t i v e ) .

g

t h e heat o f

In a f i r s t

a p p r o x i m a t i o n AHg may be assumed t o be c o n s t a n t over a s m a l l range o f temperature. The r e s u l t s

for different n i t r i c

acid strengths are given i n

T a b l e 4. From t h i s t a b l e i t can be seen t h a t t h e heat o f s o l u t i o n o f NgO^ i n t o nitric

acid solutions

i s rather constant f o r d i f f e r e n t

Temperature (°C)

H ™24 kmol/m .bar

7 0

0 0106

- 0 0611

25.2

6 3

0 008

- 0 05

35.2

4 9

0 006

- 0 04

45.3

3 4

0 003

- 0 007

3

Henry coefficient of the

% HN0

52

bar P

20.3

Table

4

strengths.

Measured range

3

Table

acid

Heats

of N 0 2

4

in 75% n i t r i c acid

as a

function

temperature

AH

3

g

(kJ/kmol N 0 ) 2

65

- 23 2 X i o

3

70

- 25 3 X i o

3

75

- 27 2 X i o

3

19 N

- 25 3 X i o

3

of solution

of N 0. p

into

concentrated

4

n i t r i c acid

solutions

4.3

EXPERIMENTAL

The

experimental

apparatus

i s schematically presented

s o l u t i o n s were pumped t o an overhead wetted

2. About 0.05% by weight o f an a l k y l

i n order t o e l i m i n a t e r i p p l e s o f the l i q u i c

f i l m . The f i l m h e i g h t h was c o r r e c t e d f o r t h e end e f f e c t o f t h e s u r f a c e a c t i v e agent experiments

acid

r e s e r v o i r and then f e d by g r a v i t y t o t h e

w a l l column d e s c r i b e d i n Chapter

s u l p h o n a t e was added t o t h e l i q u i d

i n F i g . 5. N i t r i c

caused by t h e p r e s e n c e

and t h e e f f e c t i v e f i l m h e i g h t h' was i n t h e s e

13.7 cm and 34.6 cm. N i t r o g e n d i o x i d e ( b o i l i n g p o i n t : 21.2°C) was

s u p p l i e d from condensation

a cylinder

immersed i n a water b a t h a t 47.5°C. To a v o i d

t h e p i p e s c o n t a i n i n g pure n i t r o g e n d i o x i d e were heated

r e s i s t a n c e heating wire

(Pyrotenax

i n s u l a t e d w i t h g l a s s wool. The N 0

2

with

L t d . , Hebburn-on-Tyne, England) and gas stream

was meted w i t h a n e e d l e

valve

immersed i n a t h e r m o s t a t i c a l l y c o n t r o l l e d water b a t h o f 50°C and then mixed w i t h a n i t r o g e n gas stream. the wetted mixture

The gas m i x t u r e was l e d i n c o - c u r r e n t f l o w

w a l l column i n t h e same way as was d e s c r i b e d i n Chapter

l e a v i n g t h e wetted

w a l l column was scrubbed

through

2. The gas

w i t h an a l k a l i n e hydrogen

p e r o x i d e s o l u t i o n t h e remove t h e n i t r o g e n o x i d e s b e f o r e v e n t i n g i t t o t h e atmosphere. The n i t r i c

a c i d l e a v i n g t h e wetted

stainless steel vessel.

In t h e experiments

w a l l column was s t o r e d i n a

w i t h 63% and 78% t h e n i t r i c

s o l u t i o n was s t r i p p e d w i t h n i t r o g e n t o remove t h e d i s s o l v e d N„0^ nitric

a c i d . The s t r i p p e d n i t r i c

w i t h 25% and 40% n i t r i c was

acid

from t h e

a c i d was then r e c y c l e d . In t h e experiments

acid, the n i t r i c

a c i d l e a v i n g t h e wetted

w a l l column

drained o f f . The

i n - and o u t g o i n g

l i q u i d were a n a l y s e d f o r t h e i r NgO^ and/or HNOg

c o n t e n t by i n j e c t i n g a l i q u i d

sample (50 - 250 y l ) i n t o a 10 mol 0.8 N NaOH

s o l u t i o n . A f t e r reaction the n i t r i t e method

c o n t e n t was determined

[34]. Note t h a t w i t h t h i s method HN0

2

with a c o l o r i m e t r i c

and N 0 ^ i n t h e n i t r i c 2

acid

samples can not be d i s t i n g u i s h e d . The o u t g o i n g gas streams were a n a l y s e d f o r t h e i r NOg,

N 2

0

4

and NO c o n t e n t w i t h i n f r a r e d s p e c t r o s c o p y

concentration o f N0

N

2

and ° 4 2

e s t a b l i s h i n g a mass b a l a n c e

i

n

t

n

e

i n g o i n g gas stream

around t h e wetted

(Chapter 3 ) . The

was c a l c u l a t e d by

w a l l column.

53

to

Fig.

5

air

The

experimental

nitric

acid

for

8: rotameter; less bath;

54

column;

5: stainless

6: vessel

steel

for

the NO^

and

NO absorption

experiments

into

solutions.

1: wetted wall vessel;

set-up

2: stripper;

steel

alkaline

9: overhead

filter;

14: needle

vessel

hydrogen

for

stripped

peroxide;

reservoir;

12: cyclone; valve;

3: scrubber;

13:

15: infrared

4: stainless nitric

10: flow

gas

acid

7: calibrated

sample

solution;

glass

controllers;

thermostatically

steel

11:

controlled cell.

pipe; stainwater

4.4 RESULTS

4.4.1 The a b s o r p t i o n o f N 0 2

4

into diluted n i t r i c

acid

A c c o r d i n g t o t h e model NO^ and NgO^ a r e t r a n s f e r r e d , w i t h each o t h e r , of a N 0 / N 0 2

2

solutions

i n continuous

from t h e gas phase t o t h e g a s - l i q u i d

equilibrium

i n t e r f a c e . The d i f f u s i o n

m i x t u r e i n the gas phase was r e g a r d e d as t h e d i f f u s i o n o f one

4

f i c t i t i o u s component Q d e f i n e d as:

C

X 2,g

Q =

+

2 C

N

(

n 2 4,g

The gas phase d i f f u s i o n can under o u r measured G r a e t z model

8

)

c o n d i t i o n s be d e s c r i b e d by t h e

(Chapter 2) and t h e d i f f u s i o n r a t e o f N 0

the g a s - l i q u i d

1

4

2

from the gas phase t o

i n t e r f a c e p e r u n i t o f s u r f a c e a r e a can be w r i t t e n as:

n

Q

The d i f f u s i o n c o e f f i c i e n t o f t h e f i c t i t i o u s component Q as a f u n c t i o n o f D 2 and D

N

D Q

^

was d e r i v e d by Dekker [ 3 5 ] .

= D 2°4

_ Jl l ++ 8K 8K P„ P„ .. ++ ./ ,/" 1 + 8K

+

N

D„„ N0

/

P

= 1.36 x 10

-5

(20)

P 2

Q,o

2 o m /s a t 20 C and 1.0132 b a r

2

5

D

2

= 0.96 x 1 0 ~ m /s

a t 20°C and 1.0132 b a r

2 4 i n which P_ . i s t h e p a r t i a l Q,i tis

the p a r t i a l

p r e s s u r e o f N0„ + 2N„0„ a t t h e i n t e r f a c e and P„ t2 2 4 Q,o

p r e s s u r e i n t h e m i d d l e o f t h e wetted w a l l column. The

N 2

°4

r e a c t s w i t h water:

N

2°4

+

H

H N 0

2 ° ~*

+

3

H N 0

(

2

2

1

)

Decomposition o f t h e n i t r o u s a c i d produced a c c o r d i n g t o

4HN0

2

•* 2N0 + N 0 2

4

+ H 0 2

(22) 55

does not take p l a c e r a p i d l y i f i t s c o n c e n t r a t i o n

i s low. NO i s very

poorly

s o l u b l e i n aqueous s o l u t i o n s and i t can e a s i l y d i f f u s e i n t o t h e gas phase. Under o u r e x p e r i m e n t a l

c o n d i t i o n s no NO c o u l d be d e t e c t e d

i n f r a r e d spectroscopy.

Therefore

HNOg c a n be n e g l e c t e d with

i t may be assumed t h a t t h e d e c o m p o s i t i o n o f

[1,13,14,15,16,35]. A p p l y i n g

a r a p i d pseudo f i r s t

order

i n t h e gas phase w i t h

t h e theory

o f mass t r a n s f e r

r e a c t i o n i n t h e l i q u i d phase t h e a b s o r p t i o n

r a t e p e r u n i t o f s u r f a c e a r e a based on t h e p e n e t r a t i o n t h e o r y

can be w r i t t e n

as:

T h i s equation was

holds only

The

1 [36]. In accordance w i t h

t h i s equation i t

temperature r i s e n e a r t h e i n t e r f a c e as a r e s u l t o f t h e a b s o r p t i o n was

c a l c u l a t e d with

(-AH

A,

T

= _ 2

The

i f kx »

assumed t h a t N^O^ i s t h e a c t i v e s p e c i e s d u r i n g t h e a b s o r p t i o n .

[36]:

-

2 P

AH )

S_ C

H N

p

2°4

V ——

P N

(24)

2°4,i

heat o f s o l u t i o n o f NgO^ i n t o aqueous s o l u t i o n s and t h e heat o f r e a c t i o n

were t a k e n from t h e d a t a o f M o l l

[20]. W i t h i n

t h e measured c o n d i t i o n s i t can

e a s i l y be shown t h a t t h e temperature r i s e was s m a l l enough t o be n e g l e c t e d (< 0 . 2 ° C ) . The p a r t i a l

pressures

of N 0 2

4

c a l c u l a t e d from t h e measured a b s o r p t i o n

on t h e g a s - l i q u i d i n t e r f a c e were r a t e s , equation

(19) and e q u a t i o n (20)

by means o f an i t e r a t i o n p r o c e d u r e . The measured a b s o r p t i o n of P

was p l o t t e d f o r 25% n i t r i c

r a t e as a f u n c t i o n

a c i d i n F i g . 6 and f o r 40% n i t r i c

acid i n

N

2°4,i F i g . 7. T h i s s h o u l d g i v e a s t r a i g h t

l i n e through the o r i g i n with

a slope of

i s the a c t i v e H„N2O4V „\/kD . From these f i g u r e s i t c a n be c o n c l u d e d t h a t N 0 s p e c i e s d u r i n g t h e a b s o r p t i o n . A l e a s t - s q u a r e method gave t h e s l o p e o f t h e 2

straight

line

and t h e s e v a l u e s

are given

From t h i s t a b l e i t can be seen t h a t nitric

a c i d s t r e n g t h . F o r low n i t r i c

4

i n T a b l e 5.

h N 2

q

decreases with i n c r e a s i n g

a c i d c o n c e n t r a t i o n t h i s i s m a i n l y caused

by t h e d e c r e a s e o f H, „ w i t h i n c r e a s i n g i o n i c s t r e n g t h . A c c o r d i n g t o H o f t i j z e r N2O4 and Kwanten [ l ] t h e i n f l u e n c e o f t h e i o n i c s t r e n g t h on H can be d e s c r i b e d 2°4 with: (H

) 2 4 nitric

= (H acid

) exp (- 0.075 I) 2 4 water

NQ

where I i s t h e i o n i c s t r e n g t h d e f i n e d by

56

(25)

n

2

I = i I . -

(Z.

1

From F i g . 8 i t can

be

Kwanten [1]

is valid

nitric

large

acid

pseudo f i r s t

(26)

C.)

1

seen t h a t for n i t r i c

deviations

order reaction

acid strength since

the

a p p r o x i m a t i o n proposed by

a c i d c o n c e n t r a t i o n s up

o c c u r . T h i s may rate

o f NgO^

caused by

the molar c o n c e n t r a t i o n o f the

into n i t r i c

the

and

Above

fact that

constant k decreases with i n c r e a s i n g

r e l a t i v e l y s m a l l i n more c o n c e n t r a t e d n i t r i c coefficient

be

Hoftijzer

to about 25%.

25%

the

nitric

" f r e e " water t e n d s to become

a c i d . Moreover the

a c i d decreases with i n c r e a s i n g

diffusion nitric

acid

strength.

57



bar P

Pig.

N

7 The absorption driving

2

0

4

, i

rate

*

1

,

2

P

N 0

of N 0 2

4

2

, i (a)

into

40% HNC> at 20° C as a function 3

of the

force.

(h> = 0.346 m; x = 0. 722 sec; 0: P

Q

l

; A: P

U

H

m N

n V 2

k D

o

+ P

Q

lV

h 4,i

u

2 4,i

f t ) . Z,%

m au

Reference

4

x 10^ kmol/m .bar

Kramers e t a l [15]

water

0 76

25% HN0

3

0 49 + 0 03

this

work

40% HNOg

0 16 + 0 02

this

work

H o f t i j z e r and Kwanten [ l ]

Table

58

5

Q

ykD^ values

as a function

of the nitric

acid

strength

at 20 C

1 0

H

n

n V kDo 2 4

(A;

values

Kramers

et al

as a function [15]j

approximation

Some a u t h o r s experiments

of

Hoftijzer

the and

proposeu

[10,13,14,35] observed

nitric

r e l a t i v e l y h i g h molar c o n c e n t r a t i o n s o f N^O^. a c i d m i s t was

observed.

Kwanten

by Hoftijzer

c o n c e r n i n g the a b s o r p t i o n o f NgO^

here no n i t r i c

nitric

strength.

[1];

0:

and

a c i d mist

this

worl

Kwanten

[1]).

during t h e i r

i n t o water e s p e c i a l l y D u r i n g t h e experiments

The n i t r i c

phase does not seem t o be v e r y important

acid

as was

acid

at presented

formation i n the

found by Detournay and

gas Jadot

[4]-

4.4.2

The

Previously

a b s o r p t i o n o f N„0„ i n t o c o n c e n t r a t e d n i t r i c 2 4 i t was

l y and t h a t NgO^

acid

solutions

d e r i v e d t h a t t h i s a b s o r p t i o n p r o c e s s proceeds may

be assumed t o be the a c t i v e

d i f f u s i o n o f N0„ and N O

s p e c i e s . The

purely physical-

gas

phase

can be d e s c r i b e d by the Graetz-model a c c o r d i n g t o :

59

The

p h y s i c a l absorption process o f N 0 2

experimental

J N

The

2°4

i n t o t h e l i q u i d phase can under o u r

4

c o n d i t i o n s be w r i t t e n as:

= 2(H 2°4 N

temperature

P 2°4,i

- C 2°4,*,o

N



)V

N

T

(28)

T

r i s e near t h e i n t e r f a c e as a r e s u l t o f t h e p h y s i c a l a b s o r p t i o n

was c a l c u l a t e d w i t h [ 3 6 ] : -AH

AT =

PC

H p

N 0„ 24 o

V —

P

N.O^ 24,i

< > 29

a v

I t was found t h a t w i t h i n t h e measured c o n d i t i o n s t h i s temperature o neglected

(< 0.2 C ) . T a b l e 6 and T a b l e 7 g i v e t h e e x p e r i m e n t a l

results.

p r e s s u r e s o f NgO^ on t h e i n t e r f a c e were c a l c u l a t e d from e q u a t i o n equation

(20) w i t h an i t e r a t i o n p r o c e d u r e .

function of the d r i v i n g

f o r c e (H„ „ P„ _ N 04 N 0 2

straight

l i n e through

2

r i s e may be Partial

(27) and

The measured a b s o r p t i o n r a t e as a

4

i

- C„ _ N 0 2

) s h o u l d be g i v e n a 4 )

£

) 0

the o r i g i n .

From F i g s . 9, 10, 11 and 12 i t can be c o n c l u d e d

that N 0 2

4

i s the active

s p e c i e s d u r i n g t h e a b s o r p t i o n . With e q u a t i o n (28) t h e t h e o r e t i c a l a b s o r p t i o n r a t e s were c a l c u l a t e d and compared w i t h t h e measured a b s o r p t i o n r a t e s . The d i f f u s i o n c o e f f i c i e n t o f N_0„ i n t o n i t r i c a c i d s o l u t i o n s was c a l c u l a t e d w i t h 2 4 t h e r e l a t i o n o f Wilke and Chang [ 3 6 ] .

D„ „ = 0.88 x 1 0 ~ 2°4,£

9

2

m /s

f o r 78% HN0„ a t 20°C

N

D N

„ = 0.77 x 1 0 2°4,il

- 9

3

2

m /s

f o r 63% HNO, a t 20°C 3

From T a b l e 6 and T a b l e 7 i t can be c o n c l u d e d d e s c r i b e s t h e experiments

60

fairly

well.

t h a t t h e proposed

a b s o r p t i o n model

Exp.

P

T

c

N

2°4,£,o 3 3 xlO kmol/m

bar

35, 1

1. 093

20

35 2

1 ,093

20

0. 346

1 .58

85

3. 05

0. 346

1. 58

85

3 05

NO

2,o

2 4,o

2 4,i

N

N

2°4 6 2 xlO kmol/m .sec

2°4 6 2 x l O kmol/m . s e c

measured

penetration theory

bar

bar

bar

0 ,0458

0 ,0214

0, 0148

1.11

1, 21

0. 0673

0, 0463

0. 0297

2.39

2 50 0 11

37. 1

1 040

20

0. 346

2 ,40

85

2. 61

0 ,0165

0 ,00279

0. 00231

0.11

37. 2

1 040

20

0, 346

2 40

85

2 61

0 ,0379

0 ,0147

0 0107

0.58

0 70

37 3

1, 040

20

0. 346

2 40

85

2, 61

0 ,0556

0 ,0316

0 0212

1.31

1 44

37 4

1 040

20

0, 346

2 40

85

2 ,61

0 .0664

0 ,0451

0 0296

1.80

2 03

37 5

1 040

20

0. 346

2 40

85

2 61

0 ,0759

0 ,0590

0 0376

2.34

2 60

3 33

0 ,0712

0 ,0241

0 0180

2.13

2 12

3 33

0 ,0931

0 ,0411

0 ,0281

3.92

3 .41 0 .85 2 .85

31 1

1 070

30

0, 137

0 .513

65

31 .2

1 ,070

30

0. 137

0 .513

65

34 1

1 .110

30

0 346

0 .986

65

3 ,10

0 .0538

0 .0137

0 0105

0.88

34 .2

1 .110

30

0 346

0 .986

65

3 , 10

0 .0975

0 .0450

0 ,0323

2.64

36 .1

1 .064

30

0 .346

1 .77

65

2 , 82

0 .0190

0 .00172

0 ,00164

0.03

0 .04

36 ,2

1 .064

30

0 ,346

1 .77

65

2 .82

0 .0436

0 .0090

0 .00745

0.35

0 ,44

36 . 3 1 .064

30

0 .346

1 .77

65

2 ,82

0 .0723

0 .0248

0 ,0191

0.98

1 .23

36 .4

1 ,064

30

0 ,346

1 . 77

65

2 .82

0 .0915

0 .0397

0 .0289

1.69

1 .90

36 .5

1 .064

30

0 346

1 . 77

65

2 ,82

0 .111

0 .0582

0 ,0413

2.49

2 .75

Table 6

N0„ absorption

experiments

into

63% HNO^

Exp.

P

c

T

h'

T

m

C

P N0„ 2,o

K~0. .

2 4,10,0 3

3

P n

2°4,o

P n

2°4,1

N

2°4

N

6

2 xlO kmol/m .sec measured

2°4 6 2 xlO kmol/m .sec p e n e t r a t i o n theory

bar

bar

bar

3 9

0 0676

0 0468

0 0187

4 10

4 05

210

3 9

0 1006

0 1034

0 0377

8 47

8 24

2 15

210

3 6

0

0644

0 0424

0 0194

3 02

3 74

0 346

2 15

210

3 6

0 0740

0 0561

0 0236

4 02

4 58

0 346

2 15

210

3 6

0 0847

0 0734

0 0269

5 52

5 24

0 346

2 15

210

2 6

0 0323

0 0107

0 00570

0 84

1 07

0 00648

1 11

1 37

0 00107

0 13

0 15

xlO

bar

C

m

sec

12 1

1 075

20

0 346

1 71

210

12 2

1 075

20

0 346

1 71

13 1

1 051

20

0 346

13 2

1 051

20

13 3

1 051

20

14 1

1 051

20

kmol/m

14 2

1 079

20

0 346

1 71

210

2 6

0 0348

0

15 1

1 067

20

0 346

2 15

210

2 75

0 0122

0 00151

0124

15 2

1 087

20

0 346

1 71

210

2 75

0 0126

0 00163

0 00110

0 17

0 17

19 1

1 063

20

0 137

0 43

210

3 35

0 0541

0 0299

0 0136

5 47

5 85

19 2

1 063

20

0 137

0 43

210

3 35

0 0785

0 0631

0 0223

146

2 55

0 0746

0 0264

0 0138

4 28

146

2 55

0 0981

0 0456

0 0217

7 06

5 99

2 35

2 49 5 48

18 1

1 039

30

0 137

0 61

18 2

1 039

30

0 137

0 61

12 0

9 67 3 76

17 1

1 014

30

0 137

0 91

146

2 55

0 0638

0 0193

0 01127

17 2

1 014

30

0 137

0 91

146

2 55

0

0 0469

0 0242

5 41

16 1

1 053

30

0 346

2 15

146

3 64

0 0106

0 000533

0 00040

0 08

16 2

1 053

30

0 346

2 15

146

3 64

0

0

0 00335

0 31

0 41

16 3

1 053

30

0 346

2 15

146

3 64

0 0786

0 0293

0 0170

1 93

2 45

146

3 64

0 0582

0 0161

0 0104

1 02

1 47

146

3 64

0

0 0473

0 .0246

3 17

3 59

16 4

1 053

30

0 346

2 15

16 5

1 053

30

0 346

2 15

Table

7 NO^-absorption

experiments

into

78% nitric

0994

0310

0999

acid

00456

-—

N 0

,i

"

N 0

N 0 ,i

*

'2 NO

2

4

2

. l,o /

4

n

N 0 2

(o) 4

bar 2

Fig.

9

The absorption driving

rate

4

,i

K

z

of N^O^ into

N0 2,i NU

C

^

, l.o '

4

H

N 0 2

4

63% HNO^ at 20 C as a function

of the

N„0„ . 2 4,i

P

N 0

The absorption driving

rate

4

,i

N 0 ,i 2

4

"

C

N

A :

P

+

N„0, 2 4,i

05 2

0

,l,o/ N 0 2

* '2 N0 ,i 1

(o)

H

4

-

P

2

of N^O^ into

C

4

N 0 .l,o/ 2

4

H

N 0 2

(

i

)

4

63% HN0 at 30 C as a function

of the

3

force.

(h> = 0.346 m; T = 1.77 sec; 0: P m

2,1

/H

U

0

p

°N„0 N„0j 2 4,l,o 2^4

H

N

2

10

2

~ N 0 ^N 0 ' 2 4,l,o 2 4

P

Fig.

0

L

force.

(h' = 0.346 m; T = 2.40 sec; 0: P F

~ N

_

2 4,%,o

-C 2

/n

r

4

>

l

; A :P

/H 2

4

> * > °

2

4

2

+ 4

>

l

2 4 63

0 02 N 0

P

2

P

N 0 .i 2

Fig.

11 The absorption driving

4

,i

rate

4

" N 0

0 04

C

2

*

of N^

4

1 /

2

P

4

NO

, l.o /

H

N 0 2

(o) 4

.I " N Q

,l,o/ N 0

C

s

into

2

H

4

2


63%) can be c o n s i d e r e d as pure p h y s i c a l p r o c e s s .

acid

I t c a n be c o n c l u d e d

that

N^O^ i s t h e a c t i v e s p e c i e s d u r i n g t h e a b s o r p t i o n p r o c e s s . The s o l u b i l i t y o f N^O^ i n c o n c e n t r a t e d n i t r i c

a c i d s o l u t i o n s was c a l c u l a t e d from t h e t o t a l

p r e s s u r e d a t a o f t h e system NgO^HNOg-HgO, and i t can be c o n c l u d e d law

that

vapour Henry's

i s valid.

REFERENCES

1. H o f t i j z e r , P.J.

and Kwanten, F.J.G., A b s o r p t i o n o f n i t r o u s gases i n :

G. Nonhebel, Gas p u r i f i c a t i o n p r o c e s s e s Butterworths,

London, 1972, p. 164.

2. Goyer, G.G., J. Coll. 3. England,

f o r a i r p o l l u t i o n c o n t r o l , Newnes-

Sci. , 1963, 18, 616.

C. and C o r c o r a n ,

W.H., Ind. Eng. Chem. Fundam. , 1974, K3, 373.

4. Detournay, J.P. and J a d o t , R.H., Chem. Eng. Soi. , 1973, 28, 2099. 5. C a r b e r r y , J . J . , Chem. Eng. Soi., 1959, ¡3, 189. 6. Theobald,

H. , Chemie-Ing. -Teohn. , 1968, 1_5, 763.

7. Tereshchenko, L.Ya., Panov, V.P., P o z i n , M.E. and Zubov, V.V., J. Appl.

Chem. USSR (Engl.

Transl.),

1968, 41, 1995.

8. Vandoni, R. and Laudy, M., J. Chim. Phys., 9. A u n i s , G., J. Chim. Phys.,

1952, 49, 99.

1952, 49, 103.

10. Chambers, F.S. and Sherwood, T.K., Ind. Eng. Chem., 1937, 2J3, 1415. 11. Caudle,

P.G. and Denbigh, K.G., Trans.

Far. Soo., 1953, 39, 39.

12. P e t e r s , M.S. and Holman, J . L . , Ind. Eng. Chem., 1955, 47, 2536. 13. Wendel, M.M. and P i g f o r d , R.L., A.I.Ch.E. Journal,

1958, 4, 249.

14. Dekker, W.A., Snoeck, E. and Kramers, H., Chem. Eng. Soi., 1959, IX, 61. 15. Kramers, H., B l i n d , M.P.P. and Snoeck, E., Chem. Eng. Sci., 1959, 14, 115. 16. Kameoka, Y. and P i g f o r d , R.L., Ind. Eng. Chem. Fundam., 1977, 16, 163. 17. Denbigh, K.G. and P r i n c e ,

A . J . , J. Chem. Soo., 1947, 790. 65

18. Sherwood, T.K., P i g f o r d , R.L. and W i l k e , C.R., Mass T r a n s f e r ,

McGraw-Hill,

1975. 19. C a r r i n g t o n , T. and Davidson, N., J. Phys.

Chem. , 1953, 57, 418.

20. M o l l , A . J . , PhD T h e s i s , Washington, 1966. 21. T r e i n i n , A. and Hayon, E., J. Am. Chem. Soa., 1970, 92, 5821. 22. Komiyama, H. and Inoue,

H., J. Chem. Eng. of Japan,

1978, 11, 25.

23. Counce, R.M., Master T h e s i s , U n i v e r s i t y o f Tennessee, 24. L o n g s t a f f , J.V.L. 25. Karavaev, 1974,

Chem. USSR (Engl.

Transl.),

1001.

26. Atroshchenko, 1958,

and S i n g e r , K., J. Chem. Soa. , 1954, 2610.

M.M. and V i s l o g u z o v a , V.G., J. Appl.

47,

K n o x v i l l e , 1978.

31,

V . l . and Kaut, V.M., J. Appl.

Chem. USSR (Engl.

Transl.),

340.

27. W e i n r e i c h , G.H., PhD T h e s i s , U n i v e r s i t y o f T o u l o u s e , F r a n c e , 1955. 28. Klemenc, A. and Rupp, J . , Z. Anorg. 29. Karavaev, 1967,

M.M. and Yarkovaya,

Allg.

Chem., 1930, 194, 51.

V.A., J. Appl.

Chem. USSR (Engl.

Transl.),

40, 2340.

30. Karavaev,

M.M. and Bessmertnaya,

A . I . , The Soviet

Chemical

Industry,

1969,

7, 30. 31. A u d i n o i s , R., J. Chim. Phys.,

1965, 62, 439.

32. A u d i n o i s , R., J. Chim. Phys. Physicochim. 33. A u d i n o i s , R., CR.

Acad. Sei. Paris

Biol.,

1969, 66, 489.

Sec. C. , 1968, 266,

117.

34. T e c h n i c o n A u t o - A n a l y z e r I I , I n d u s t r i a l Method No. 230-72A/Tentative 1974. 35. Dekker, W.A., PhD T h e s i s , D e l f t U n i v e r s i t y o f Technology, 36. Danckwerts,

D e l f t , 1958.

P.V., G a s - L i q u i d r e a c t i o n s , M c G r a w - H i l l , London, 1970.

37. H i s a t s u n e , I.e., J. Phys. Chem., 1961, 65, 2249. 38. B o d e n s t e i n , M. and Bogs, F., Z. Physik. 39. F o r s y t h e , W.R. and Giauque,

Chem., 1922, 100, 68.

W.F., J. Am. Chem. Soa., 1942, 64, 48.

5. THE OXIDATION AND ABSORPTION OF NO BY NITRIC ACID

5.1 INTRODUCTION

The

oxidation

o f NO t o N 0

by c o n c e n t r a t e d n i t r i c

2

a c i d s o l u t i o n s may be o f

importance f o r the p r o d u c t i o n o f c o n c e n t r a t e d n i t r i c concentrated n i t r i c nitrogen

o x i d e s from t h e t a i l

attractive properties.

gas o f n i t r i c

Firstly,

e a s i l y o x i d i z e NO t o N0 .

2

p h y s i c a l l y very well

acid plants,

i t i s a very strong

Secondly, N 0

2

dissolves

a c i d . In a d d i t i o n

a c i d may be used as a s c r u b b i n g l i q u i d

4

f o r t h e removal o f

since

i t has two

o x i d i z i n g agent and i t can

which i s i n e q u i l i b r i u m

into concentrated n i t r i c

with

In t h i s C h a p t e r the mechanism and the k i n e t i c s o f t h i s o x i d a t i o n nitric

acid are investigated

to obtain

a b s o r b e r s . Furthermore some p r e l i m i n a r y o f NO i n t o 40% n i t r i c

acid solutions

gathered i n the concentrated region

N0 , 2

acid. by 63%-78%

data f o r the design o f i n d u s t r i a l experiments c o n c e r n i n g the

absorption

a r e c a r r i e d out t o check i f t h e r e s u l t s apply a l s o t o t h e d i l u t e d system.

5.2 PROPOSED MECHANISM

The

r e a c t i o n o f NO w i t h n i t r i c

a c i d i s presented with the f o l l o w i n g

overall

reaction:

NO + 2HN0

This

3

reaction

acid solutions

t 3N0

2

+ H 0

i s the r e v e r s e d

investigate

t h i s phenomenon

stream c o n t a i n i n g

that walls

r e a c t i o n of a c i d formation. Concentrated

o f 55%-80% have a c o n s i d e r a b l e

T h e r e f o r e , t h i s r e a c t i o n may

gas

(1)

2

take p l a c e

nitric

a c i d vapour p r e s s u r e .

i n t h e gas phase [ 1 ] . In o r d e r t o

e x p e r i m e n t s were c a r r i e d out by p a s s i n g a

1% NO o v e r a 65% n i t r i c

acid solution.

c l o s e t o t h e g a s - l i q u i d i n t e r f a c e . Furthermore, l a r g e N0

2

nitrogen

I t was o b s e r v e d

t h e produced water vapour condensed i n t h e gas phase on t h e g l a s s

brown c o l o u r e d

nitric

reactor

amounts o f t h e

were found i n t h e gas phase. Tereshchenko e t a l [2]

67

i n v e s t i g a t e d t h e o x i d a t i o n o f NO i n a n i t r o g e n gas stream s o l u t i o n s o f 60% t o 80% i n a b u b b l i n g apparatus

by n i t r i c

acid

and found t h a t t h e o x i d a t i o n

r a t e was c o n t r o l l e d by gas phase d i f f u s i o n o f NO from t h e gas b u l k t o t h e g a s liquid

i n t e r f a c e . These o b s e r v a t i o n s can be e x p l a i n e d by r e g a r d i n g t h e gas

phase r e a c t i o n between NO and n i t r i c

a c i d vapour as i n f i n i t e l y

f a s t . The

r e a c t i o n may t a k e p l a c e i n a s m a l l r e a c t i o n zone o r i n an a s y m p t o t i c r e a c t i o n plane very c l o s e to the g a s - l i q u i d which p r o c e e d if

1 Absorption-oxydation

The and

[11,12],

model

r e a c t i o n i s a c t u a l l y much more c o m p l i c a t e d than e q u a t i o n

(1) s u g g e s t s ,

i t may p r o c e e d v i a a mechanism composed o f t h e f o l l o w i n g s t e p s :

k

l

NO + HNOg

HN0

+ N0

(2)

2

= 0.2 - 9 m /kmol.sec a t 298°K

HN0

2

produced

HN0

g

2

+ HN0

= 6 x 10

3

a c i d vapour

[4,5,6].

2

+

3

[4,5,6].

reacts very r a p i d l y with n i t r i c

k

68 k

2

3

k

The

c a s e on a

(see F i g . 1 ) . R e a c t i o n s

i n a r e a c t i o n zone may be t r e a t e d as though they are i n s t a n t a n e o u s

t h e r e a c t i o n zone i s n o t t o o l a r g e

Fig.

interface

2N0

2

- 9 x 10

+ H 0

(3)

2

3

3

m /kmol.sec a t 300°K

[4,5,9],

The

r e a c t i o n rate constant k

constant the

o f the

assumed t h a t

the n i t r o u s

J

2C

HN0 HNO

phase r e a c t i o n i s

/Z„ D

.

HNO,

J, 1

i n which J„„„ i s the HNUg a r e a i f the

D

reaction the

i s not

N0

the

+ NO

2

NO

+ N0

From the

be

reactions

+ H0

X

2HN0

X

N 0

2

2

literature

react with n i t r i c

2

g

From the

+ HN0

that

2

2

be

It

an a u t o c a t a l y t i c

catalytic reaction

2

HN0

2

+ HN0

and

N 0 2

D

.

by

the

and

(4) HN0„

, 1

O

e v a p o r a t e d per surface

condition (2)

unit

retained

reaction. Using

the

f o r instantaneous

i s too

slow. Near

water vapour are p r e s e n t , i n the

reaction

and

zone:

^0^

reactions

produced by

(5) and these

to, r e s p e c t i v e l y , equation

(6)

are

reactions (3)

and

(7)

2

concluded that

the

gas

phase o x i d a t i o n

o f NO

by

nitric

under t h e s e c i r c u m s t a n c e s i t seems

reaction. the

l i q u i d phase o x i d a t i o n

o f NO

by d i l u t e d

which o n l y n i t r o u s a c i d p r o d u c e s , i s a l s o an

[14,15,16,30]. P r e s e n t l y ,

NOg

t

%

(6)

gas

2

for

3

mechanism t o c o n f i r m

2N0

i t i s formed.

(5)

c o n c e r n i n g k i n e t i c s and phase r e a c t i o n . The

that

It i s

2

(2) . The

s h o u l d be n o t e d t h a t (< 25%)

O

./

reaction

important

a c i d vapour a c c o r d i n g

above i t can

acid solutions

HNO,

[3,7,8,10,13] i t i s known t h a t

2N0

3

are

a c i d vapour i s a very complex r e a c t i o n , and t o be

2C

shown t h a t

which i m p l i e s

following

as

condition

i n the neighbourhood o f the

i t can

much f a s t e r than r e a c t i o n

N 0

N0,o

i n s t e a d o f becoming d e p l e t e d

fulfilled,

the

a c i d which would be

i n t e r f a c e , however, l a r g e amounts o f N0

therefore

C

NO

amount o f n i t r i c

r e a c t i o n r a t e c o n s t a n t k^

found

rate

[11,12]:

O

o f NO

i t was

instantaneously

a c i d i n t o a gas,

/Ik.

concentration

i t s bulk value C

reaction

phase c o u l d be n e g l e c t e d .

J°mO,

,/

3

gas

acid reacts

t r a n s i e n t e v a p o r a t i o n of n i t r i c

i n s t a n t a n e o u s gas

times h i g h e r than the

p r i m a r y r e a c t i o n . With i n f r a r e d a n a l y s i s

amount o f n i t r o u s a c i d vapour i n the

therefore For

i s about 10

2

however, too the

little

conditions

produced i s i n e q u i l i b r i u m w i t h

for

nitric

auto-

i s known instantaneous

NgO^.

(8)

4

69

T h i s e q u i l i b r i u m i s e s t a b l i s h e d very t h a t N0„ and A

rapidly

At the g a s - l i q u i d i n t e r f a c e o n l y N 0 2

nitric

4

5.3

EXPERIMENTAL

The

experiments we

(Chapter 2 and

5.4

c a r r i e d out

C h a p t e r 4 ) . The

for nitrogen

o x i d a t i o n was

b u l k and

The

1.

i n the equipment which was

previously and

and

o u t - g o i n g gas

liquid

a mass b a l a n c e around the

found t h a t

the d e v i a t i o n was

described were N0-

l e s s than

5%.

RESULTS

to t h e proposed model t h e o x i d a t i o n

phase d i f f u s i o n from the gas

r a t e o f NO

i s c o n t r o l l e d by

gas

b u l k t o t h e r e a c t i o n zone o r r e a c t i o n p l a n e .

Gas

phase mass t r a n s f e r i n t h e wetted w a l l column t a k e s p l a c e by d i f f u s i o n only concentration C

i n the r a d i a l d i r e c t i o n and change o f NO

i n the

C„„ NO,o gas

-a



4 I n=l

a

exp

t h e r e f o r e the

phase can

fractional

be w r i t t e n

as:

The

it

(

)

(9)

Gz„„ NO

n

phase d i f f u s i o n c o e f f i c i e n t

r e l a t i o n o f Chapman-Enskog (I>

given

gas

molecular

2 1

oo

=

N0

of NO

= 1.98

e x p e r i m e n t a l r e s u l t s f o r 78%,

i n F i g s . 2,

oxidation

3 and

r a t e f o r 78%

c o n t r o l l e d and

4. and

in nitrogen -5 2

x 10 63%

and

m /s 57%

at 20 C and nitric

From t h e s e f i g u r e s i t can 63%

nitric

was c a l c u l a t e d u s i n g o

change o f NO

concentration

o f NO.

concentration

change o f NO

s u g g e s t s , t h a t the

From T a b l e s 1 and

should

be

2 i t can

1.0132 bar)

acid solutions

be c o n c l u d e d t h a t

a c i d i s c o m p l e t e l y gas

agrees w i t h the proposed model. A c c o r d i n g

f r a c t i o n a l concentration

70

the

(see Chapter 4 ) .

in-going

I t was

the

oxidation

According

The

from

to the g a s - l i q u i d i n t e r f a c e .

dissolves physically into

o x i d e s c o n t e n t and

established.

MATHEMATICAL MODEL AND

NO

gas

a c i d , i n which i t i s h i g h l y s o l u b l e

proposed model i s p r e s e n t e d i n F i g .

analysed

i t i s assumed

N„0 d i f f u s e i n c o n t i n u o u s e q u i l i b r i u m w i t h each o t h e r ¿1 4

r e a c t i o n zone o r r e a c t i o n p l a n e t o the

concentrated

[17]. T h e r e f o r e ,

[24].

are the

phase d i f f u s i o n

t o e q u a t i o n (9)

independent o f the be

the

the

inlet

c o n c l u d e d t h a t the f r a c t i o n a l

tends t o i n c r e a s e w i t h i n c r e a s i n g P„_ . This NO, o r e a c t i o n i s very complicated.

71

Fig.

3

Fractional

concentration

number for 63% nitric

72

change of NO as a function acid

(0: 20°C; A : 30°C; —

of the equation

Graetz(9)).

'Or

Fig.

4

Fractional

concentration

number for

67% nitric

change of NO as a function acid

(0: 20°C;

equation

of the

Graetz-

(9)).

73

Exp..

h

h xlC >

6

m

T sec

T °C

p

o

c

bar

3. m /sec

kmol N

m

P

P NO, o

bar

N0

P N 2

bar

2°4 bar

P N

2°3 bar

2 V

\

°4 xlO kmol 6

°N0 C

N0,o

N

2° / m. s

3

4

2

1.1

5 44

0 346

1 26

20

1 093

6 5

0 0419

0 0284

0 00825

0 000268

5 .25

0.327

1.2

5 44

0 346

1 26

20

1 093

6 5

0 0866

0 0388

0 01541

0 000845

11. 50

0.365

1.3

5 44

0 346

1 26

20

1 093

3 8

0 1274

0 0509

0 02648

0 00177

18. 92

0.396

1.4

5 44

0 346

1 26

20

1 093

3. 8

0 1683

0 0599

0 0367

0 00252

24. 71

0.363

1.5

5 44

0 346

1 26

20

1 093

3 8

0 2099

0 0689

0 0486

0 00395

31. 73

0.396

1.6

5 44

0 346

1 26

20

1 093

3 8

0 0433

0 0248

0 00628

0 000258

5 28

0.349

2.1

7 38

0 346

1 03

20

1 115

2 2

0 0410

0 0224

0 00515

0 000265

5 64

0.420

2.2

7 38

0 346

1 03

20

1 115

2 2

0 0782

0 0304

0 00947

0 000750

11 34

0.458

2.3

7 38

0 346

1 03

20

1 115

2 2

0 1075

0 0373

0 0143

0 00125

15 73

0.452

2.4

7 38

0 346

1 03

20

1 115

2 2

0 1596

0 0479

0 0235

0 00245

23 08

0.466

0 193

0 0560

0 0321

0 00362

27 66

0.486

0 0264

0 00749

0 000578

9 93

0.508

2.5

7 38

0 346

1 03

20

1 115

2 2

3.1

11 05

0 346

0 79

20

1 148

10 6

0 0626

3.2

11 05

0 346

0 79

20

1 148

10 6

0 0989

0 0340

0 01184

0 00117

15 28

0.509

3.3

11 05

0 346

0 79

20

1 148

20 7

0 1247

0 0390

0 01553

0 00180

17 85

0.538

3.4

11 05

0 346

0 79

20

1 148

20 7

0 1553

0 0454

0 0211

0 00256

23 95

0.527

37 0

0 1764

0 0487

0 0243

0 00314

28 88

0.531

8 35

0.270

3.5

11 05

0 346

0 79

20

1 148

5.1

3 45

0 346

1 71

20

1 087

2 5

0 0811

0 0469

0 0223

0 000708

5.2

7 38

0 346

1 71

20

1 087

2 5

0 1362

0 0636

0 0413

0 00148

14 47

0.247

9.1

7 38

0 137

0 43

20

1 069

3 3

0 1631

0 0435

0 0194

0 00317

36 41

0.649

7 38

0 137

0 43

20

1 069

3 3

0 0788

0 0288

0 00851

0 00102

17 60

0.651

9.2

Table

1

Experimental

r e s u l t s of N0-oxidation

by 78% HNO

E X P

-

h

*l xlO 3 m

' m

T

T

sec

P

°C

P

c bar

xlO kmol

N0,o bar

P

P

N0, bar

P

NO

J

N n

bar

N

bar

W

/SeC

Ul

_^N0_ 6

xlO kmol

NO, o

W

m3

20 1

n

m2

0

0 0104

0 000635

0 0498

0 0253

0 00224

0 0150

0 00231

0 000182

0 0232

0 00549

0 000523

5 87

0 677

0 0752

0 0285

0 00832

0 00102

9 98

0 689

0 1124

0 0363

0 0135

0 00197

14 07

0 701

5 06

0 1410

0 0387

0 0153

0 00269

17 9

0 714

1 93

0 0259

0 0233

0 00555

0 000194

2 23

0 467

3 17

0 137

0 75

20

1 060

1 11

0 0593

0 0318

20 2

3 17

0 137

0 75

20

1 060

22 1

7 69

0 137

0 42

20

1 087

1 11

0 1208

5 06

0 0263

22 2

7 69

0 137

0 42

20

1 087

22 3

7 69

5 06

0 0483

0 137

0 42

20

1 087

5 06

22 4

7 69

0 137

0 42

20

1 087

5 06

22 5

7 69

0 137

0 42

20

1 087

24 1

7 69

0 346

1 05

20

1 103

5 25

0 489

12 43

0 541

2 69

0 669

24 2

7 69

0 346

1 05

20

1 103

1 93

0 1085

0 0479

0 0235

0 00169

8 19

0 471

26 1

4 15

0 346

1 58

20

1 091

2 30

0 0309

0 0311

0 00992

0 000244

1 53

0 369

26 2

4 15

0 346

1 58

20

1 091

2 30

0 1277

0 0648

0 0429

0 00247

7 16

0 433

Table

2

Experimental

results

of the NO-oxidation

by 63% HNO

In some experiments w i t h 63% n i t r i c oxidation

investigated. it

a c i d the i n f l u e n c e

r a t e o f NO f o r e q u i m o l a r i n l e t

o f N0

2

on t h e

q u a n t i t i e s o f NO and N 0

2

was

The e x p e r i m e n t a l r e s u l t s a r e g i v e n i n T a b l e 3 and from t h i s

can be c o n c l u d e d t h a t

the i n f l u e n c e o f N0

change o f NO i n t h e gas phase i s o f minor The

oxidation

r a t e o f NO by 57% n i t r i c

on t h e f r a c t i o n a l

2

importance. acid solutions

phase d i f f u s i o n c o n t r o l l e d , and t h e o x i d a t i o n liquid is the

phase (see

i s not c o m p l e t e l y gas

a l s o takes place

i n the

F i g . 4 ) . Under t h e s e c i r c u m s t a n c e s t h e gas phase r e a c t i o n r a t e

very low n i t r i c 2

a c i d vapour p r e s s u r e . At more d i l u t e d n i t r i c

was found i n t h e gas phase, and under t h e s e c o n d i t i o n s

takes place

only

i n the l i q u i d

phase. I t s h o u l d be noted t h a t

cannot e x i s t i n d i l u t e d n i t r i c f i n a l product The

liquid

2N0

+

acid

phase o x i d a t i o n

HN0

(< 40%),

overall

(< 40%)

N0

2

and/or N 0

and i n t h i s case n i t r o u s

2

4

acid i s

+

3

H 0 2

o f NO by d i l u t e d n i t r i c

a c i d c a n be p r e s e n t e d

reaction:

•* 3HN0

(10)

2

Some e x p e r i m e n t a l r e s u l t s w i t h 40% n i t r i c

a c i d a r e g i v e n i n T a b l e 4.

I f t h e t h e o r y o f mass t r a n s f e r w i t h a r a p i d pseudo f i r s t liquid

acid

the r e a c t i o n

[14,15,16].

with the following

the

partially

t o o slow t o be c o n s i d e r e d as i n s t a n t a n e o u s , a f a c t which may be caused by

no N 0

the

table

concentration

phase may be a p p l i e d

the absorption

order r e a c t i o n i n

rate per unit surface

a r e a can

be w r i t t e n a s :

1 provided that The

kx »

absorption

straight

line

regression

rate

(J„„) NO

p l o t t e d as a f u n c t i o n o f P . should give a NO, 1

through t h e o r i g i n w i t h a s l o p e

o f J J Q ^ ^ D ^ (see F i g . 5 ) . With H

a n a l y s i s t h e s l o p e was found t o be:

HJJQ ^/~ki>£

The

1.

oxidation

=

5

2

2.81 + 0.15 x 1 0 ~ kmol/m .bar.sec a t 20°C

o f NO i n t o 5-25% n i t r i c

acid solutions

(12)

seems t o be a u t o c a t a l y t i c

[14,15,16,25,26,27,28,29,30]. A b e l e t a l [14,25,26,27,28] proposed the f o l l o w i n g reaction

HN0

76

3

scheme:

+ HN0

2

"* N 0 2

4

+ H 0 2

(13)

model

measured Exp.

N„0„ 2 4,o

N0„ 2,o

NO,o

p

P

P

p

C

N0

P N 2

2°4

°N0,o bar

bar

bar

bar

C

C

N0

V Q,i C

Q,o" Q,i

bar

N0

°N0,o

C

X

10

C

V Q,i Q,o

J n

2°4

Q,i

6

X

10

6

2

2 kmol/ra

kmol/m .s

1.90

0.490

0.610

1.76

0.67

7.03

0.490

0.610

7.68

0.62

4.76

0.490

0.610

4 . 85

9.78

0.490

0.610

0.53

40.1

0.0199

0.0171

0.00296

0.0293

0.00871

0.482

40.2

0.0704

0.O4O3

0.0164

0.0574

0.0334

0.546

0.0213

0.523

0.0455

0.544

0.69

41.1

0.0484

0.0285

0.00819

0.0458

41.2

0.0941

0.0486

0.0239

0.0671

Table

3

Influenae

of N0 on the oxidation g

of NO by 63% HNO y

.s

(T - 20°C, T = 1.05 sea,

10 bar).

10.62

N 0 2

+ 2N0 + 2H 0

4

2

*

4HN0

In t h i s r e a c t i o n mechanism is

established

overall

reaction

(13) i s r a t h e r

very r a p i d l y . The i n i t i a l

reaction

and f i r s t

slow, w h i l e e q u i l i b r i u m (14)

formation r a t e o f n i t r o u s a c i d o f the

(10) was found t o be f i r s t

acid concentration concentration

(14)

2

order with respect

order with respect

to the n i t r i c

to the nitrous acid

[15,16]. Furthermore t h e o v e r a l l r e a c t i o n r a t e was found t o be

independent o f t h e p a r t i a l p r e s s u r e o f NO [15,16]. From t h e above i t can be concluded that within not

valid

t h e measured c o n d i t i o n s

f o r the oxidation

t h i s a u t o c a t a l y t i c behaviour i s

o f NO by 40% n i t r i c

acid solutions.

g x 1 0 £

5

h'

T

p C

HN0 2, o

X

l

2

°

3

N0

3

N0 2 kmol/m . s e c .

3, m /s

m

sec.

1.21

0 136

0.284

2.65

0 0402

1.40

1.21

0 136

0.284

2.65

0 1038

2.72 0.97

bar

kmol/m

1.21

0 346

0.722

1.92

0 0302

1.21

0 346

0.722

2.62

0 0578

1.91

1.21

0 346

0.722

2.62

0 0870

2.58

1.21

0 346

0,722

2.62

0 109

3.14

1.21

0 346

0.722

2.62

0 129

3.59

0.722

2.62

0 0274

0.88

0 346

1.21

Table

4

Experimental (T = 20°C; P

78

results

of the absorption

-1.16 bar).

rate

of NO into

40% HN0

Fig.

5

The absorption

rate

of NO into

40% nitric

acid

(0: x =0.722

sec; A ;

x = 0.284 sec).

UOp/IlpO^ diffusion

from the reaction

A c c o r d i n g t o t h e proposed model N 0

plane

2

and N^O^, which a r e i n c o n t i n u o u s e q u i -

l i b r i u m w i t h each o t h e r , d i f f u s e from t h e r e a c t i o n p l a n e t o t h e gas b u l k and t o the g a s - l i q u i d physically

i n t e r f a c e . At t h e g a s - l i q u i d

i n the concentrated n i t r i c

i n t e r f a c e only N„0 d i s s o l v e s & 4

acid. For a quantitative description o f

these d i f f u s i o n processes the c o n c e n t r a t i o n o f N0

2

and N^O^ on t h e r e a c t i o n

p l a n e s h o u l d be known. I t s h o u l d be noted t h a t t h e d i s t a n c e from t h e r e a c t i o n p l a n e t o t h e g a s - l i q u i d i n t e r f a c e (6 ) v a r i e d i n o u r experiments from 0 -4 3 x 10

m (moving boundary).

c o n c e n t r a t i o n decrease o f N0 liquid N 0 2

4

2

From t h e s e r e s u l t s and NgO

i t can be d e r i v e d t h a t t h e

from t h e r e a c t i o n p l a n e t o t h e g a s -

i n t e r f a c e i s s m a l l (< 5 % ) , and t h e r e f o r e t h e c o n c e n t r a t i o n o f NOg and

on t h e r e a c t i o n p l a n e was assumed t o be e q u a l t o t h a t a t t h e i n t e r f a c e .

The c o n c e n t r a t i o n o f N 0 mass b a l a n c e around situation - 3D, NO Q = N0

[18,19]. 3C, NO

and N 0 2

Q

D

8r 2

2

Q

+ 2N 0 2

4

on t h e r e a c t i o n p l a n e i s c a l c u l a t e d

from a

t h e r e a c t i o n p l a n e by assuming a q u a s i - s t a t i o n a r y

3r

- 2D

(15)

4

i n which t h e s o l u b i l i t y m i s d e f i n e d as:

79

C N

m

=

= 2

For

H N

2°4,£,i

~

0

2 4 2T~

16

< )

4,g,i

small values of the contact

b o t h be c o n s i d e r e d

time t h e gas phase and t h e l i q u i d phase may

t o be i n f i n i t e l y

deep, and t h e r e f o r e t h e l o c a l mass f l u x can

be c a l c u l a t e d from t h e p e n e t r a t i o n

theory.

The l o c a l mass f l u x o f NO from t h e gas b u l k

N

NO " " NO T I = m,o^k D

c

R-6 For

zero

initial

and N^O^

N0

2

from t h e r e a c t i o n p l a n e

=

Q

If there

- D

i n t h e gas phase t h e l o c a l mass f l u x o f N 0

i s N0„ p r e s e n t

2

t o gas b u l k becomes: / D

-—• 3r ^

Q

(17)

f

concentration

3C

N

t o the r e a c t i o n plane i s :

I

= C Q, i

V—

(18) K

TTt

i n t h e i n - g o i n g gas stream, t h e l o c a l mass f l u x N

'

can

0,

4

be w r i t t e n a s :

N

Q

"

(

C

Q , i -

C

Q , o

)

V

19

i ?

The l o c a l mass f l u x o f N 0 2

< >

4

i n t h e l i q u i d phase can be d e s c r i b e d by:

3C

V.

=

• V,« "

=

L a ,

V,,,

" V m . . * ^ * * (20)

A f t e r s u b s t i t u t i o n i n t o t h e mass b a l a n c e

3C

the f o l l o w i n g equation

V — — = (C - C )¥ — t 2 ( 1 C„ „ NO.o' TTt Q,i Q V TTt 2°4,g,i N

D n

(21)

are only v a l i d

plane

than t h e c o n c e n t r a t i o n o f N 0

D

N

X

These e q u a t i o n s i s higher

- C „ ) x 2°4,£,o

2°4 I * > 4

coefficient

i s obtained:

i f the concentration of N0 2

2

on t h e r e a c t i o n

i n t h e gas phase. The d i f f u s i o n

was c a l c u l a t e d as was d e s c r i b e d i n C h a p t e r 4. With t h e known 2 e q u i l i b r i u m constant K„ = P /P„„ , t h e c o n c e n t r a t i o n s o f N0„ and N„0„ on "2 N2O4 NO2 2 2 4 the r e a c t i o n p l a n e can be c a l c u l a t e d from e q u a t i o n (21) by means o f an i t e r a t i o n Q

80

p r o c e d u r e . Note t h a t t h e s e value.

concentrations

a r e independent o f the c o n t a c t

I f the gas phase may n o t be c o n s i d e r e d

t o be i n f i n i t e l y

c o n c e n t r a t i o n o f N0„ and N „ 0 . on t h e r e a c t i o n p l a n e o v e r t h e e f f e c t i v e 2 2 4 h e i g h t h' was c a l c u l a t e d from an o v e r a l l mass b a l a n c e : 2 o o l a i T 3

T7t

with:

- C_

Q,o

22

Zl '

*

equation (21).

d i f f u s i o n of N0

— G„

2

o f NOg and NgO^ on t h e r e a c t i o n p l a n e

(22) d e v i a t e under o u r e x p e r i m e n t a l

film

2 °° i a i r ) ( 1 - 4E - r exp ()) + '° n=l a Gz„ . n Q

)Y W

2 4,g,i

equation

be d e s c r i b e d

C Q

-C W

The

Q

_

time

deep, an average

according

to equation

r a t e s and the t h e o r e t i c a l zero N O concentrations ^ concentration

(24).

(24)

the t h e o r e t i c a l l y

predicted

In F i g . 8 and F i g . 9 t h e measured

predicted absorption

rates are p l o t t e d f o r i n i t i a l

i n t h e gas phase. The i n f l u e n c e o f i n i t i a l

i n t h e gas phase on t h e N 0

3. From t h e above i t can be c o n c l u d e d

2

4

absorption

absorption

r a t e i s given

t h a t t h e measured N 0 2

4

N0 2 o

i n Table

absorption rate i s

r a t h e r w e l l p r e d i c t e d by t h e model. 81

Fig.

6

The diffusion for

82

78% nitric

of iVOg and N 0

4

acid

from

the reaction

(0: 20°C; A : Z0°C;

plane

equation

to the gas bulk (22)).

10

0-5h

O U o u o IU

0

G

Fig.

7

The diffusion for

63% nitric

of N0

2

acid

z

Q

05

0-10

, red

and Nfl^ from the reaction (0: 20°C; A: 30° C;

plane equation

to the gas

bulk

(23)).

83

84

85

5.5 DISCUSSION

In the proposed mechanism a few assumptions were made which w i l l be d i s c u s s e d i n more d e t a i l . a) A c c o r d i n g t o t h e p r o p o s e d model water vapour i s produced on t h e r e a c t i o n plane very c l o s e to the g a s - l i q u i d

interface.

l e a v i n g t h e wetted w a l l column was

a n a l y s e d f o r i t s water vapour c o n t e n t . I t

was

found t h a t

In some e x p e r i m e n t s t h e gas phase

the amount o f water vapour i n t h e gas phase c o u l d be n e g l e c t e d .

T h i s i m p l i e s t h a t a l l t h e water vapour produced condenses on the n i t r i c liquid

film. Nitric

a c i d d i f f u s e s from t h e l i q u i d

film

i n t o t h i s t h i n water

l a y e r and water d i f f u s e s from t h e i n t e r f a c e i n t h e n i t r i c c o n c e n t r a t i o n g r a d i e n t s may

acid

acid film.

These

have some i n f l u e n c e on t h e s o l u b i l i t y o f NgO^.

can be shown t h a t t h e average t h i c k n e s s o f t h i s l a y e r i s v e r y s m a l l _7 (6 < 3 x 10 m). The c o n c e n t r a t i o n g r a d i e n t o f water i n t h i s l a y e r layer

It

was

r o u g h l y c a l c u l a t e d under s t a t i o n a r y c o n d i t i o n s w i t h : DH 0 2

AC H



(25) H

layer



i n which J

i s t h e c o n d e n s a t i o n r a t e o f water vapour. From t h i s v a l u e i t was -2 3 c a l c u l a t e d t h a t AC < 10 kmol/m under o u r e x p e r i m e n t a l c o n d i t i o n s . T h i s H2O 2

i m p l i e s t h a t t h e a c i d s t r e n g t h i n t h e t h i n l a y e r may equal to the s t r e n g t h i n the n i t r i c

acid l i q u i d

a l s o be assumed t o be

film.

b) In the c a l c u l a t i o n s t h e i n f l u e n c e o f a temperature change n e a r t h e i n t e r f a c e as a r e s u l t

o f heat o f r e a c t i o n , heat o f c o n d e n s a t i o n o f t h e water

vapour, heat o f m i x i n g o f the condensed water and n i t r i c e v a p o r a t i o n o f the n i t r i c was n e g l e c t e d

NO + 2HN0g



3N0

2HN0

->

2HN0

H0

N

Table 86

2

2°4

5

(g)



acid

f N

Heat effects

N

1

=

38.6 X 10

3

(g)

AH

2

=

78.6

AH

3

AH AH

(A)

2

->

AH

H0

2°4

2°4



near the

interface

Reference

298 1

2

*

2

H0

(g)

2

3N0

(£)

into n i t r i c

(see T a b l e 5 ) . A H

3

a c i d , heat o f

a c i d and heat o f s o l u t i o n o f NgO^

3

J

[23]

X io

3

J

[23]

= -44.2

x io

3

J

[23]

= -85.9

x io

3

4

J

[23]

= -25.3

X 19

3

S

J

t h i s work

The

temperature

change near

t h e i n t e r f a c e was c a l c u l a t e d from

a heat b a l a n c e by

assuming t h a t t h e heat o f m i x i n g may be n e g l e c t e d and t h a t a l l heat o n l y c o n t r i b u t e t o a temperature AH

< 1

*

A H

2

+

A H

3

+

^

A H

change i n t h e l i q u i d phase near t h e i n t e r f a c e .

4

) C

N0,o

yf%0,

P

+

effects

V

(26)

pc P

v

i n which y r e p r e s e n t s t h e f r a c t i o n o f t h e NO^ produced

which i s c o n v e r t e d t o

N^O^. W i t h i n t h e e x p e r i m e n t a l c o n d i t i o n s t h e temperature change near t h e i n t e r o o face variei f a c e v a r i e d from - 0.6 C t o 0 C. T h i s was found t o be s m a l l enough t o be neglected.

5.6 CONCLUSIONS

The be

o x i d a t i o n o f NO by c o n c e n t r a t e d n i t r i c

acid

(63-78%) can be c o n s i d e r e d t o

an i n s t a n t a n e o u s gas phase r e a c t i o n i n a r e a c t i o n zone o r on a r e a c t i o n

plane very c l o s e to the g a s - l i q u i d

i n t e r f a c e . P r e s e n t l y too l i t t l e

c o n c e r n i n g t h e mechanism and k i n e t i c s t o prove criteria

i s known

t h i s hypothesis using the

f o r instantaneous r e a c t i o n s .

I t was found

t h a t Danckwerts' s o l u t i o n s f o r i n s t a n t a n e o u s

irreversible

r e a c t i o n s i n t h e l i q u i d phase can a l s o be a p p l i e d t o gas phase r e a c t i o n s . The NOg and ^ 0 ^ produced, which a r e i n c o n t i n u o u s

e q u i l i b r i u m w i t h each o t h e r

d i f f u s e from t h e r e a c t i o n zone o r r e a c t i o n p l a n e t o t h e gas b u l k and t o t h e gas-liquid

i n t e r f a c e . At t h e i n t e r f a c e o n l y NgO^ d i s s o l v e s p h y s i c a l l y

concentrated n i t r i c

a c i d . The mathematical

d i f f u s i o n p r o c e s s e s was found The

model p r e s e n t e d

into the

to d e s c r i b e these

t o be i n good agreement w i t h t h e experiments.

a b s o r p t i o n o f NO by 40% n i t r i c

phase and under t h e s e c i r c u m s t a n c e s

a c i d s o l u t i o n s takes place i n the l i q u i d

n i t r o u s acid i s the f i n a l

p r o d u c t . The

a b s o r p t i o n r a t e can be d e s c r i b e d by the t h e o r y o f mass t r a n s f e r w i t h a r a p i d pseudo f i r s t

order r e a c t i o n i n the l i q u i d

phase.

REFERENCES

1. Dohnalek, R. and V e s e l y , S., Neth. A p p l . 6401801, 1965. 2. Tereshchenko, L.Ya., Panov, V.N. and P o z i n , M.E., J. Appl.

Chem. USSR (Engl.

87

Tränst.), 1972, 45, 241. 3. K a i s e r , E.W. and Wu, C.H., J. Phys. Chem., 1977, 81, 1701. 4. K a i s e r , E.W. and Wu, C.H., J. Phys. Chem., 1977, 81, 187. 5. S t r e i t , G.E., W e l l s , J.S., F e h s e n f e i d , F.C. and Howard, C . J . , J. Chem. Phys.,

1979, 70, 3439.

6. McKinnon, I.R., Mathieson, J.G. and W i l s o n , I.R., J. Phys. Chem., 1979, 83, 1979. 7. Wayne, L.G. and Y o s t , D.M., J. Chem. Phys., 8. Chan, W.H., Nordstrom, before

the Division

p. 251-253, A p r i l

1951, 19, 41.

R.J., C a l v e r t , J.G. and Shaw, J.H., Paper

of Environmental

Chemistry

American

Chemical

presented Society,

4-9, 1975, New York.

9. England, C. and C o r c o r a n , W.H., Ind. Eng. Chem. Fundam., 1974, 13, 373. 10. England, C. and C o r c o r a n , W.H. , Ind. Eng. Chem. Fundam., 1975, 14^, 55. 11. Danckwerts, P.V., G a s - L i q u i d R e a c t i o n s , M c G r a w - H i l l , London, 1970. 12. A s t a r i t a , G., Mass T r a n s f e r w i t h Chemical R e a c t i o n , E l s e v i e r

Publishing

Company, Amsterdam, 1967. 13. V l a s t a r a s , A.S. and W i n k l e r , C.A., Can. J. Chem., 1967, 45, 2837. 14. A b e l , E. and Schmid, H., Z. Physik.

Chem., 1928, 132, 55.

15. Schmid, G. and Bahr, G., Z. Physik.

Chem., 1964, 41, 8.

16. U s u b i l l a g a , A.N., PhD T h e s i s , U n i v e r s i t y o f I l l i n o i s , 17. C a r r i n g t o n , T. and Davidson, N., J. Phys.

U.S.A., 1962.

Chem., 1953, 57, 418.

18. H i s a t s u n e , I.C., J. Phys. Chem., 1961, 65, 2249. 19. T e c h n i c o n A u t o - A n a l y z e r I I , I n d u s t r i a l method No. 230-72A/Tentative 1974. 20. H i k i t a , H. A s a i , S. and Takatsuka, T., Chem. Eng. J., 1972, 4, 31. 21. Van de Vusse, J.G., Chem. Eng. Sei., 1966, 21, 631. 22. Dekker, W.A., PhD T h e s i s , D e l f t , 1958. 23. F o r s y t h e , W.R. and Giauque,

W.F., J. Am. Chem. Soc. , 1942, 64, 48.

24. R e i d , R.C., P r a u s n i t z , J.M. and Sherwood, T.K., The P r o p e r t i e s o f Gases and L i q u i d s , M c G r a w - H i l l , 1977. 25. A b e l , E. and Schmid, H., Z. Physik.

Chem., 1928, 134, 279.

26. A b e l , E., Schmid, H. and Babad, S., Z. Physik.

Chem., 1928, 136, 135.

27. A b e l , E., Schmid, H. and Babad, S., Z. Physik.

Chem., 1928, 136, 419.

28. A b e l , E. , Schmid, H. and Babad, S., Z. Physik. 29. A b e l , E., Schmid, H. and Römer, 30. Axente, 2057.

88

E., Z. Physik.

Chem., 1928, 136, 430. Chem., 1930, 148, 337.

D., L a c o s t e , G. and Mahenc, J . , J. Inorg.

Nucl.

Chem., 1974, 36,

6. AN ABSORPTION MODEL FOR THE DESIGN OF A DILUTED NITRIC ACID ABSORBER AND METHODS TO DECREASE THE NO CONTENT IN TAIL GASES x

6.1

INTRODUCTION

A l t h o u g h many i n v e s t i g a t i o n s can be

found

absorption of n i t r o g e n oxides into n i t r i c still

not w e l l u n d e r s t o o d

a c i d . T h i s i s m a i n l y due and NgO^ liquid

i n absorbers

i n the l i t e r a t u r e c o n c e r n i n g

f o r the p r o d u c t i o n o f d i l u t e d

a l l p l a y an important

r o l e i n the a b s o r p t i o n p r o c e s s nitric

t o NOg.

T h i s o x i d a t i o n i s an u n u s u a l

temperature In

coefficient

t h i s Chapter

as was

i n both

shown by B o d e n s t e i n

an a b s o r p t i o n model, based

the p r o d u c t i o n o f d i l u t e d n i t r i c

acid.

ABSORPTION MODEL FOR

The

overall reaction

3N0

2

THE

negative

on g e n e r a l c h e m i c a l

absorbers

In a d d i t i o n , v a r i o u s methods o f gases o f n i t r i c

PRODUCTION OF

acid

DILUTED NITRIC ACID

f o r the a c i d f o r m a t i o n i n the a b s o r p t i o n column can

(N 0 ) 2

4

+

H0

%

2

a given composition

2HN0

3

+

be

NO

the maximum a c i d c o n c e n t r a t i o n t h a t can be

v e r y p o o r l y s o l u b l e i n aqueous s o l u t i o n s ,

+

0

2

•*

2N0

(1)

o f the n i t r o u s gases ( C h a p t e r 4 ) . The

where i t r e a c t s w i t h m o l e c u l a r

2N0

reaction

with:

T h i s e q u i l i b r i u m determines at

can

be b r i e f l y d i s c u s s e d .

6.2

presented

the

[1].

d e c r e a s i n g the c o n c e n t r a t i o n s o f n i t r o g e n o x i d e s i n t a i l plants w i l l

NO^

i n the gas phase o x i d i z i n g

r e a c t i o n w i t h an apparent

e n g i n e e r i n g c o n s i d e r a t i o n s , i s d e r i v e d f o r the d e s i g n o f i n d u s t r i a l for

NgO^,

a c i d as w e l l as n i t r o u s a c i d

be formed i n b o t h phases. Oxygen i s n o r m a l l y p r e s e n t NO

nitric

t o t h e f a c t t h a t v a r i o u s n i t r o g e n o x i d e s NO,

and the gas phase. Furthermore

the

a c i d s o l u t i o n s , the mechanism i s

2

and

NO

obtained

produced

i s t r a n s f e r r e d t o t h e gas

is phase,

oxygen.

(2) 89

The

r e a c t i o n r a t e o f t h i s o x i d a t i o n can be e x p r e s s e d

-dt-

The

k



P

by [ 1 - 5 ] :

(

N0 \

r e a c t i o n r a t e constant

k increases with decreasing

3

)

temperature. The r e v e r s e

r e a c t i o n may be n e g l e c t e d under t h e c o n d i t i o n s p r e v a i l i n g

i n the absorption

column. E s p e c i a l l y a t t h e t o p o f t h e a b s o r p t i o n column where t h e p a r t i a l pressure

o f NO i s low, t h e r e o x i d a t i o n r a t e o f NO i s s m a l l . As a f i r s t

a p p r o x i m a t i o n t h e o x i d a t i o n o f NO can be c o n s i d e r e d step i n the absorption The

t o be t h e r a t e

determining

process.

NO produced has a c o n s i d e r a b l e

i n f l u e n c e on t h e a b s o r p t i o n

rate of

NgO^ i n t o water and d i l u t e d a c i d . T h i s e f f e c t may be due t o t h e f o r m a t i o n o f N

HNOg and 2 ^ 3

N0

2

NO

The

i

n

t

+

NO

+

N0

nitric

n

e

*=

+

as

P

H 0 2

2

h a s e :

%

2HN0

X

N 0

a c i d formation

2

2

3

(g)

(4)

(g)

(5)

i n t h e gas phase seems t o be o f minor

under t h e c o n d i t i o n s p r e v a i l i n g i n t h e a b s o r p t i o n column constants

of reactions

concentrations to

the high

of N 0 2

and HN0

3

solubilities

A first

[ 6 , 7 ] . The e q u i l i b r i u m

(4) and (5) were g i v e n i n C h a p t e r 4 ( T a b l e 1 ) . The 2

a r e s m a l l under e q u i l i b r i u m c o n d i t i o n s but due

and t h e r a p i d e s t a b l i s h m e n t

t r a n s f e r o f NgO^ and HN0 neglected.

2

o f these

from t h e gas phase t o t h e l i q u i d phase can n o t be

an a b s o r p t i o n model which i s s c h e m a t i c a l l y p r e s e n t e d

i n F i g . 1. In t h e from t h e gas phase

t h e l i q u i d phase. In t h i s work a model i s s e t up i n which t h e NgOg t r a n s f e r

and

t h e HNOg t r a n s f e r a r e b o t h taken i n t o account. The model i s based on:

a) D i f f u s i o n o f N 0

and NgO^ from t h e gas b u l k

2

k =23 N0

= N 0

2

2

b) T r a n s f e r o f liquid

N 2

0

4

RT

4

N

0 2

to the g a s - l i q u i d interface

2k g,NO

J

90

was

[ 8 ] . More r e c e n t l y H o f t i j z e r and Kwanten [7] proposed

m a t h e m a t i c a l d e s c r i p t i o n they n e g l e c t t h e t r a n s f e r o f N „ 0

The

e q u i l i b r i a , the

attempt t o d e s c r i b e such a complex a b s o r p t i o n p r o c e s s

done by Andrew and Hanson

to

importance

4'

N

2°3

_ (P N0

a

n

d

N

2

H N 0

- P ) + N0 .> 2>

2

f

r

o

m

t

n

e

e> 2°4 — (P - P ) RT 2 4, 2°4,i N

g a s - l i q u i d i n t e r f a c e to the

phase.

r e a c t s w i t h water t o produce n i t r i c

a c i d and n i t r o u s a c i d , as was

(6)

3HN0

-HN0 >2NO»

2

3

H 0 2

LIQUID - BULK

Fig.

1 Absorption

discussed

model according

i n Chapter 4. A c c o r d i n g

to Hoftijzer

and Kwanten [?].

to Corriveau

[9] t h e N^O^ r e a c t s r a p i d l y w i t h

water i n the l i q u i d phase t o produce n i t r o u s a c i d .

N

2HN0„

«2°

2°3

(7)

T h i s r e a c t i o n may be c o n s i d e r e d

t o be a r a p i d pseudo f i r s t

order

r e a c t i o n . The

n i t r o u s a c i d formed i n t h e gas phase d i s s o l v e s p h y s i c a l l y i n t o t h e s o l u t i o n . The a b s o r p t i o n

J

N0 °2

=

2

J

N

r a t e can then be w r i t t e n as:

N„0. = "2"4

2 P

+

N"2"4,i

4 P

"2"4

HNO„

+

/«HNO 2, i

2

Vo„

/ V o 2 3,i

2 3

A (8)

In a b s o r p t i o n

columns f o r the p r o d u c t i o n

o f d i l u t e d a c i d the l i q u i d

phase may

be assumed t o be n e a r l y s a t u r a t e d w i t h NO and under t h e s e c o n d i t i o n s t h e reverse

H

r e a c t i o n becomes i m p o r t a n t . The a b s o r p t i o n

=

2

v

"

4

2

\ '

p

» o

2

A

v « i f o

(

1



(

^

r a t e i s then r e p r e s e n t e d

)

2

/

3

3. i H

HN0 ^P 2

P

4

P

P

• N0, i • N 0 ^ . • H 0 , 2

k„(l-(-^)

by:

)

1/6 )

2

kD„

8. 1/3 (1 - ( ~ ) ) K

(9)

91

Values o f the e q u i l i b r i u m constants K

p

, Kp , K

p

and Kp

were g i v e n i n Chapter

4 ( T a b l e 1 ) . The v a l u e o f p\ i s d e f i n e d a s :

P

P

NO,i

N 0

2,i

Note t h a t e q u a t i o n N0 /N 0 2

2

(10)

3

(9) may o n l y be a p p l i e d t o d i l u t e d a c i d . The a b s o r p t i o n o f

i n t o c o n c e n t r a t e d a c i d s h o u l d be c o n s i d e r e d t o be p u r e l y p h y s i c a l .

4

c) T r a n s f e r o f NO from t h e g a s - l i q u i d

J

In

N0

=

J

3 N0

= 2

~wT^

( P

N0,i

P

" N0

i n t e r f a c e t o the gas-bulk.

}

t h e gas b u l k t h e r e o x i d a t i o n o f NO w i t h oxygen t a k e s p l a c e [ 1 - 5 ] .

It may be assumed t h a t t h e gas phase i s s a t u r a t e d w i t h water. The water vapour p r e s s u r e as a f u n c t i o n o f t h e a c i d s t r e n g t h can be taken HN0,-H 0 measured by Vandoni and Laudy

from

t h e b i n a r y system

[10] . The v a l u e s o f H

f u n c t i o n o f t h e a c i d s t r e n g t h were g i v e n i n Chapter be found

•ƒ kD„ as a

4. L i t t l e

i n f o r m a t i o n can

i n the l i t e r a t u r e concerning the values of H _ and H %ƒ kD„. HN0 N 0 V and Neusser [12] determined t h e HN0 vapour p r e s s u r e above n i t r o u s a c i d H

m i n

3

n

2

d

H

H

2

n

Abel

3

2

s o l u t i o n s . V a l u e s o f H_„ „

were c a l c u l a t e d from

t

Hi\L)

Theobald The

t h e e q u i l i b r i u m measurements o f

2

[13] c o n c e r n i n g t h e heterogeneous system n i t r i c

a c i d / n i t r o u s gases.

partial

p r e s s u r e s o f HN0_ i n t h e gas phase were c a l c u l a t e d from P , P„„ , £ NO NO2 P _ and t h e e q u i l i b r i u m c o n s t a n t K_ . The v a l u e s o f H „ . as a f u n c t i o n o f t h e n 0 P4 HNO2 a c i d s t r e n g t h thus found a r e about t w i c e t h e v a l u e measured by A b e l and Neusser tI

TI

2

[12]

(see F i g . 2 ) . T h i s discrepancy r e q u i r e s f u r t h e r i n v e s t i g a t i o n . Values of

H„ „ U kD. were c a l c u l a t e d from 2°3 N

V

t h e a b s o r p t i o n measurements o f H o f m e i s t e r and

l

Kohlhaas

[14]. The r e s u l t s a r e g i v e n i n T a b l e 1. C o r r i v e a u [9] used a l a b o r a t o r y

a b s o r b e r c o n t a i n i n g f i v e wetted spheres t o i n v e s t i g a t e t h e a b s o r p t i o n r a t e o f N„0„ i n t o water. From T a b l e 1 i t can be seen t h a t t h e v a l u e o f H „ _ \/ kD„ *s 3 "2O3* " r e p o r t e d by C o r r i v e a u [9] i s much lower than t h a t o f H o f m e i s t e r and Kohlhaas [14].

No i n f o r m a t i o n was found

i n the l i t e r a t u r e concerning the i n f l u e n c e of

the n i t r i c

a c i d s t r e n g t h on t h e v a l u e s o f H \l kD.. As a f i r s t a p p r o x i m a t i o n N 0 N 2 O 3 » * t h i s i n f l u e n c e may be c a l c u l a t e d from t h e d e c r e a s e o f H „ _ w i t h i n c r e a s i n g N 0 i o n i c s t r e n g t h . I t i s c l e a r t h a t more work i s needed t o o b t a i n r e l i a b l e d a t a 2

3

2

92

3

liquid

method o f

2 kmol/m Hofmeister, Corriveau

Table

1

Kohlhaas

[14]

[9]

5 x 1.58

Comparison water

of

literature

x

10~

water

laminar j e t

10~

water

wetted

data

concerning

(see a l s o H o f t i j z e r

a) h i g h p a r t i a l b) low

the

absorption

spheres

of N^O^

into

at 25.0°C

From the proposed model i t can be c o n c l u d e d i n c r e a s e d by

measurement

.s.bar

t h a t the a b s o r p t i o n r a t e w i l l

be

and Kwanten [ 7 ] ) :

p r e s s u r e s o f the n i t r o g e n o x i d e s ;

temperatures

i n both

phases;

c) h i g h degree o f o x i d a t i o n o f the n i t r o g e n o x i d e s ; d) l a r g e g a s - l i q u i d

interfacial

area. 93

F o r a s i m p l i f i e d mathematical nitric

6.3

model o f the a b s o r p t i o n column i n the

a c i d p r o d u c t i o n the r e a d e r i s r e f e r r e d t o the l i t e r a t u r e

METHODS TO

DECREASE THE

NO

diluted

[16,17],

CONTENT IN TAIL GASES OF NITRIC ACID PLANTS x

Tail

gases o f n i t r i c

o x i d e s and

tail

a c i d p l a n t s c o n t a i n between 100

and

3000 ppm

e f f e c t on the ecosystem an e f f e c t i v e removal o f N0^ the e m i s s i o n l e v e l

i s 1.5

kg NO

i s n e c e s s a r y . At

( c a l c u l a t e d as N0 ) £t o

X

p l a n t s a l e v e l o f 400

ppm

will

c o u n t r y t o c o u n t r y . F o r new the l o c a l

n i t r o g e n oxides content

present

per ton a c i d f o r

p l a n t s i n the U n i t e d S t a t e s . T h i s i s e q u i v a l e n t t o about 200

depending on

of nitrogen

gases o f some v e r y o l d p l a n t s even more. Because o f i t s harmful

ppm.

For

new existing

be r e q u i r e d . In Europe t h e l i m i t v a r i e s

p l a n t s a l i m i t o f 400-500 ppm

may

from

be assumed,

s i t u a t i o n . P r e s e n t l y s e v e r a l methods t o d e c r e a s e i n these t a i l

the

gases a r e known i n the l i t e r a t u r e [15,18].

T a b l e 2 g i v e s a r e v i e w o f the most important

methods. Extended a b s o r p t i o n (water s c r u b b i n g )

•— Wet

.H 0

process

2

2

scrubbing

I—HN0, s c r u b b i n g

[19,20,21]

[22]

[23-37]

NO abatement



Dry

process

Adsorption

[41-43]

. N o n - s e l e c t i v e r e d u c t i o n [44-49]

S e l e c t i v e r e d u c t i o n [15,44,45,46, 50,51]

Table

2

Methods plants

94

to decrease

the NO^ content

in tail

gases of nitric

acid

6.3.1

Wet P r o c e s s e s

6.3.1.1 Extended a b s o r p t i o n

Increasing tail

[19,20,21]

of the absorption

gases o f n i t r i c

oxides i n these t a i l

volume d e c r e a s e t h e n i t r o g e n

oxides content i n

a c i d p l a n t s . The degree o f o x i d a t i o n o f t h e n i t r o g e n gases i s about 0.5. In t h e l i q u i d phase m a i n l y HN0 i s 2

produced.

NO

+

N0

o

+

¿

The

2HN0 (£)

•>

2

HN0

(12)

^

HNOg may be decomposed

3HN0

The

HO

2

+

3

2N0

NO produced i s v e r y

partially:

+

H 0

(13)

2

poorly

s o l u b l e i n aqueous s o l u t i o n s , hence i t i s

t r a n s f e r r e d t o t h e gas phase where i t r e a c t s w i t h oxygen. At the t o p o f t h e a b s o r b e r t h e r e o x i d a t i o n r a t e o f NO w i l l be very o f NO i s s m a l l . T h i s required

for a high

implies that

a relatively

slow as t h e p a r t i a l

large absorption

degree o f o x i d a t i o n . The extended a b s o r p t i o n

r a t h e r o f t e n a p p l i e d i n new p l a n t s . By working a t a p r e s s u r e a b s o r b e r and by c o o l i n g t h e a b s o r p t i o n tail

method i s now

o f 12 b a r i n t h e

system w i t h water t h e N 0

x

content i n the

gas may be reduced t o 200 ppm. Even i n e x i s t i n g p l a n t s extended

can be a p p l i e d , p r o v i d e d (Fig.

that the pressure

r e s u l t i n g weak a c i d becomes t h e f e e d

absorption

i n t h e main a b s o r b e r i s n o t t o o low

3 ) . The extended a b s o r b e r i s p o s i t i o n e d down stream r e l a t i v e l y

e x i s t i n g a b s o r b e r . Condensate i s c o o l e d

pressure

volume i s

and e n t e r s

t o an

t h e extended a b s o r b e r . The

f o r t h e main a b s o r b e r ( F i g . 3 ) . I f t h e

degree o f t h e o x i d a t i o n o f NO i s low such a p r o c e s s i s not e c o n o m i c a l due t o the

large absorption

6.3.1.2 H O

A 2

The

tail

volume

scrubbing

p r o c e s s [22]

gas o f t h e a c i d a b s o r b e r

following overall reactions

NO

2N0

required.

+

+

N0

2

3H 0

+

2H 0 2

2

•* 2HN0

(A) i s s c r u b b e d w i t h H 0 2

2

(see F i g . 4 ) . The

occur:

2HN0

+

3

2H 0

+

HgO

(14)

(15)

95

o NH 2

3

1 HpO

A

2 .r

0°/. H N O ,

Fig.

3

Simplified

flow

extended

absorption.

A: converter;

sheet for the production

B: cooler/condenser;

1: feed to converter; ppm N0 ; x

nitric

x

to

C: absorber;

6: water;

nitric

acid

D: extended

2: 10% NO; 3: NO oxidized

5: 200-400 ppm N0 ;

acid

of diluted

with

absorber.

to NO^; 4: 2000-600

7: weak nitric

acid;

8: 60%

bleacher.

HoO u 2

2

H 02

N0

2

60 % HNO3

Fig.

4

Simplified A: acid

flow absorber;

1: feed to acid

B; U^O^ absorber;

4: weak nitric

acid with

H0;

to acid

0

96

sheet of the N^O^ scrubbing

0

7: water

process

[22],

scrubber. 2: 2000-4000 ppm N0 ; x

unreaated

absorber;

3: 200-400 ppm N0 ; x

H^O^; 5: recycling 8: 60% nitric

acid

E^O^; 6: to

fresh

bleacher.

The

tail

gas treatment

t a k e s p l a c e at ambient temperatures

and

at a p r e s s u r e

e q u a l t o t h a t i n the a c i d a b s o r b e r . The weak a c i d l e a v i n g the s c r u b b e r c o n t a i n i n g some u n r e a c t e d H O ¿1 r e a c t i o n equations

(14) and

e n t e r s the top o f the a c i d a b s o r b e r .

experiments

H„0

solutions.

was

(15)

i t can be seen

t h a t t h i s p r o c e s s overcomes the

i n the extended

a b s o r p t i o n method.

were c a r r i e d out t o i n v e s t i g a t e the a b s o r p t i o n r a t e o f NO I t was

found t h a t H O

into

decomposed r a t h e r r a p i d l y as soon as i t

a c t i v a t e d by r e a c t i o n . The m o l e c u l a r oxygen produced

liquid

From the

2

c h e m i c a l and p h y s i c a l l i m i t a t i o n s which e x i s t Own

and

diffused

from

the

phase t o the gas phase. In the gas phase the oxygen i s r a t h e r i n -

e f f e c t i v e . The

loss of H 0 2

by d e c o m p o s i t i o n

2

i s a s e r i o u s disadvantage

of

this

process. 6.3.1.3 N i t r i c

acid scrubbing

a) D i l u t e d n i t r i c

[23-40]

a c i d scrubbing

[23-29,40]

The Humphreys/Glasgow and Bolme p r o c e s s uses a 30% n i t r i c scrubbing l i q u i d stream

[23,24].

from t h e a c i d a b s o r b e r

which N0„ and NO

NO

+

2N0

The

A simplified

N0

+

2

HNOg

H0

+

2

+

H0

2HN0

*

2

N0^

enters scrubber

at ambient temperature

scrubber

(A) i n

(16)

3HN0

(17)

2

c o n t a i n s 150-250 ppm o

NO

i s r e g e n e r a t e d by h e a t i n g t o 70 C and

c o o l e d and r e c y c l e d t o the a c i d a b s o r b e r . The can a l s o be

absorbed

are known i n l i t e r a t u r e b) C o n c e n t r a t e d S0LN0X n i t r i c

and

. The

nitric

CW

bar).

acid leaving

the

s t r i p p i n g w i t h a i r o r steam. N0^

produced

is

main advantage o f t h i s p r o c e s s i s

recovered. S e v e r a l v a r i a n t s of t h i s

process

[25-29].

nitric

acid

scrubbing

[30-37]

a c i d p r o c e s s o f Ugine Kuhlmann produces weak a c i d o f 60-63%

and c o n c e n t r a t e d n i t r i c

a c i d o f 80%

[30,31,32], An

SOLNOX-process i s the d i s s o l u t i o n o f NgO^ dissolution

gas

2

Under t h e s e c o n d i t i o n s the n i t r o u s a c i d i s decomposed. The

t h a t NO

as

according to

p r e s s u r e i n the s c r u b b e r i s about the same as i n the a c i d a b s o r b e r

A f t e r s c r u b b i n g the gas

The

acid solution

i s g i v e n i n F i g . 5. The

c o n t a i n i n g 2600 ppm

can be absorbed

+

flow sheet

important

i s a l s o the method f o r c l e a n i n g the t a i l

sheet

i s presented

first

e n t e r s a precondenser

s t e p i n the

into concentrated n i t r i c

i n F i g . 6. The combustion gas

acid;

gas. A s i m p l i f i e d

l e a v i n g the c o n v e r t e r

(A). In the precondenser

the gas

this

flow (1)

i s cooled with 97

3

1% Fig.

5

Simplified

flow

sheet

of

the

Humphreys/Glasgow

and

Bolme process

[23,

24] . A: n i t r i c 1:

tail

tail

acid

gas

gas

recovered

scrubber;

of acid

(200 ppm NO^

acid

from

NO^);

4: 30%

column.

2: 30% n i t r i c n i t r i c acid

absober;

acid

solution;

containing

6: stream

or air

c o o l e d weak a c i d . The

the l i q u i d

c o o l e d gas

circuit

a r e both c o o l e d t o 0°C w i t h c o l d b r i n e . In t h i s way

a c o n c e n t r a t i o n o f about 62-63%. The

d i s s o l v e d i n t o a 80% n i t r i c p r e s s u r e o f about 8 b a r . The

% o f NgO^

98

acid gas

a c i d . The

acid solution

l e a v i n g the t o p o f the a b s o r b e r lowered

c o l d , dry 2

o f -10

t o 200

concentrated n i t r i c

ppm

the

leaving

(C) i n which N 0 / N 0 o

s o l u t i o n at a temperature

T h i s can be e a s i l y

water o r d i l u t e d n i t r i c

nitric

nitric

o x i d i z e d gas then e n t e r s a p h y s i c a l a b s o r b e r

NOg.

5:

and a p o r t i o n o f the c o o l e d weak

the c o - c u r r e n t condenser has

ppm

acid;

regeneration

pass t o the c o - c u r r e n t condenser (B) where

the gas phase. The

about 600

treated

nitrous for

water vapour i s removed from

fully

3:

liquid.

the precondenser

the gas and

absorber;

to main acid

of scrubbing

circulating

B: regeneration

2

4

and

is

t o 0 C and

a

(5) c o n t a i n s

by s c r u b b i n g i t w i t h

a c i d c o n t a i n i n g 10-30

e n t e r s r e a c t o r (D). In the r e a c t o r t h e d i s s o l v e d NgO^ i s c o n v e r t e d o o a c i d w i t h water and a i r at 60 -80 C and a p r e s s u r e o f 8 b a r .

wt to

N

2°4

+

H

+



i0

2

"*

Under t h e s e c o n d i t i o n s p a r t o f the

reactor

a l s o Chapter 1).

Fig.

6

column; D:

i s produced

[38,39]. The

partially

SOLNOX p r o c e s s can

B: co-current

from converter

condenser; to physical

80% nitric

strong

a c i d i n the

lower

r e c y c l e d t o the p h y s i c a l a b s o r b e r .

be

found i n the

condenser;

literature

[33-37]

[30], C: physical

acid;

80% nitric

acid;

6: 60% nitric

8: gas containing

11: unbleached

13: bleached

to precondenser;

3: weak nitric absorber;

acid containing

bleacher;

(18)

3

absorption

reactor.

1: gas stream

nitric

0

flow sheet of the SOLNOX process

A: precondenser;

stream

N

i s b l e a c h e d and

(see

current

H

no NO

P r o c e s s e s s i m i l a r t o the

Simplified

2

4: cooled acid;

weak acid; 7: bleached

NO^ to physical

10-30% by weight 60% nitric

2: gas stream

acid

N^Q^S

absorber;

10: 60% nitric

to reactor;

to co5: NO^ and

gas

cooled

9: 80% acid

12: air to

to reactor;

acid.

99

6.3.2 Dry p r o c e s s e s

6.3.2.1 A d s o r p t i o n

NO

x

[41-43]

can be removed and r e c o v e r e d from n i t r i c

a d s o r p t i o n on m o l e c u l a r capacity f o r N0

2

a t ambient temperatures,

nitric

2

gas streams by f i x e d - b e d

s i e v e s . M o l e c u l a r s i e v e s show a h i g h a d s o r p t i o n

v e r y low. In t h e p r e s e n c e o x i d a t i o n o f NO t o N 0

acid t a i l

but t h e a d s o r p t i o n c a p a c i t y f o r NO i s

o f oxygen t h e m o l e c u l a r s i e v e s can c a t a l y z e t h e

which i s adsorbed

on t h e m o l e c u l a r

sieves. T a i l

a c i d p l a n t s c o n t a i n water vapour and water vapour w i l l

T h i s decreases

gases o f

f i r s t be adsorbed.

t h e a d s o r p t i o n c a p a c i t y f o r NOg. An e m i s s i o n l e v e l o f 50 ppm N 0

can be o b t a i n e d . The adsorbed

N0

2

i s periodically

desorbed

and r e c y c l e d t o t h e

a c i d a d s o r b e r . The d e s o r p t i o n p r o c e s s t a k e s p l a c e a t a temperature o 150-250 C. A s i m p l i f i e d flow sheet i s p r e s e n t e d i n F i g . 7.

1

o f about

3

4

2

Fig.

7

Adsorption acid

process

for the removal

of NO^ from

tail

gases

of n i t r i c

plants.

A: fixed

bed adsorption

column;

B: regeneration

of the

adsorption

column. I: tail gas

gas from n i t r i c

containing

acid

absorber

50 ppm N0^; 3: recovered

4: gas for regeneration

Non-selective reduction of n i t r o g e n oxides

100

( C H , CO, Hg, naphta, 4

N0^ to n i t r i c

of the adsorption

6.3.2.2 N o n - s e l e c t i v e r e d u c t i o n p r o c e s s e s

a r e d u c i n g agent

(2000 ppm NO^); 2: treated acid

tail

absorber;

column.

[44-49]

i s c h a r a c t e r i z e d by t h e r e a c t i o n o f

etc.) with N0

x

and oxygen i n t h e

x

p r e s e n c e o f a c a t a l y s t . Noble m e t a l c a t a l y s t s are used based on P t , Pd and d e p o s i t e d on a s u i t a b l e i n e r t if

carrier.

a l l t h e oxygen i s removed. T a i l

In t h i s p r o c e s s N 0

gases o f n i t r i c

can o n l y be

i s needed f o r the r e d u c t i o n o f NO^.

r i s e o f the t a i l

gas more energy

e x p a n s i o n t u r b i n e . Van den B l e e k and Van den Berg e x p l a i n i n g why be b r i e f l y

3%

content. T h i s implies

x

heat e v o l v e d by r e a c t i o n can be r e c o v e r e d i n a waste heat b o i l e r . due t o the temperature

reduced

a c i d p l a n t s c o n t a i n about

oxygen which i s an orde o f magnitude h i g h e r than the N 0 t h a t a l a r g e amount o f r e d u c i n g agent

x

Rh,

The

Furthermore,

can be r e c o v e r e d at the

[46] put forward a h y p o t h e s i s

t h e s e p r o c e s s e s are n o n - s e l e c t i v e r e l a t i v e t o oxygen. T h i s w i l l

reviewed. The

r e a c t i o n s o c c u r r e d can be p r e s e n t e d as

follows:

cat N0

2

NO in

+

Red

-*

NO

+

Red

cat •*

N N0

which Red

its

+

Red 0

(19)

+

Red 0

(20)

2

2

and Red 0 r e p r e s e n t a r e d u c i n g agent

(CH^, H , 2

o x i d a t i o n p r o d u c t , r e s p e c t i v e l y . A c c o r d i n g t o Van

Berg

[46] , N 0

2

main r e a s o n why

NO

The NO

+

0

2

produced

i s easily NO

reduced t o NO

i s not reduced

cat •+

N0

selectively

naphtha)

den B l e e k and Van

and den

(20) i s very slow.

i s due t o the

The

reaction

(21)

2

by r e a c t i o n

oxygen. In t h i s way

while reaction

CO,

(19) w i l l be e a s i l y

and q u i c k l y o x i d i z e d w i t h

the r e d u c t i o n c y c l e has t o s t a r t

a g a i n consuming

another

q u a n t i t y o f r e d u c i n g agent. Only when a l l o f the oxygen i s consumed r e a c t i o n (20) becomes i m p o r t a n t .

6.3.2.3 S e l e c t i v e r e d u c t i o n p r o c e s s e s

[15,44,45,46,50,51]

A s e l e c t i v e r e d u c t i o n of n i t r o g e n oxides i n t a i l p o s s i b l e w i t h NH^

gases o f n i t r i c

acid plants i s

as a r e d u c i n g agent. T h i s saves a l a r g e amount o f r e d u c i n g

agent. The r e d u c t i o n can be c a r r i e d out i n a f i x e d bed at a temperature o f o o 200 -500 C u s i n g a c a t a l y s t based on P t , Pd, Rh o r metal o x i d e s such as V„0_, z 5 Fe 0 , Cr 0 and CuO [51]. In t h i s way the NO c o n t e n t i n t h e s e t a i l gases can Z

o

Z

o

X

be e a s i l y d e c r e a s e d t o 200 ppm. result Van is

The

temperature

rise

i n the t a i l

gas

as a

o f the heat e v o l v e d from the r e d u c t i o n r e a c t i o n s i s s m a l l (about 2 0 ° C ) .

den B l e e k and Van

den Berg

[46] p o s t u l a t e d why

s e l e c t i v e r e l a t i v e t o oxygen. The

a r e d u c t i o n of N0

x

with

NH^

f o l l o w i n g r e a c t i o n s are considered i n

t h e i r hypothesis: 101

N0

2

+

NH

3

+

NH

3

cat -

2/3

"

"NH N0

2/3

"

4

cat NO

+

cat N 0 -> ^ 2

"NH N0

+

^0

(21)

c a t NgO 4

+

+

H

R

2

(

°

2

2

)

2 On

the c a t a l y s t

s u r f a c e they assume t h e f o r m a t i o n o f n i t r a t e o r n i t r a t e - l i k e

complexes as i n t e r m e d i a t e p r o d u c t s . These n i t r a t e o r n i t r a t e - l i k e decompose t o N

and N O . In t h i s way no NO i s produced,

complexes

and which o f c o u r s e

i m p l i e s t h a t t h e r e o x i d a t i o n o f NO a c c o r d i n g t o r e a c t i o n

(20) can n o t t a k e

place.

REFERENCES

1. B o d e n s t e i n , M., Z. Physik. 2. H i s a t s u n e ,

Chem. , 1922, 100, 87.

I.e. and Z a f o n t e , L. , J. Phys.

3. G r e i g , J.D. and H a l l , P.G., Trans.

4. Mahenc, J . , C l o t , G. and Bes, R., Bull, 1971,

Chem., 1969,

Faraday.

^73, 2980.

Boo., 1967, 63, 655.

de la Société Chimique

de

France,

5^, 1578.

5. England,

C. and C o r c o r a n , W.H., Ind. Eng. Chem. Fundam., 1975, iA, 55.

6. Detournay, J.P. and J a d o t , R.H., Chem. Eng. Sei., 1973, 28, 2099. 7. H o f t i j z e r ,

P.J.

and Kwanten, F.J.G., " A b s o r p t i o n o f n i t r o u s gases", i n

G. Nonhebel, Gas P u r i f i c a t i o n P r o c e s s e s

f o r A i r P o l l u t i o n C o n t r o l , Newnes-

B u t t e r w o r t h s , London, 1972, p. 164. 8. Andrew, S.P.S. and Hanson, D., Chem. Eng. Sei., 1961, 1£,

105.

9. Sherwood, T.K., P i g f o r d , R.L. and W i l k e , C.R., Mass T r a n s f e r , M c G r a w - H i l l , 1975. • 10. Vandoni,

R. and Laudy, M., J. Chim. Phys.,

11. A u n i s , G., J. Chim. Phys., 12. A b e l , E. and Neusser, 13. T h e o b a l d ,

1952, 49, 99.

1952, 49, 103.

E., Monatsh.

H. , Chenrie-Ing.-Techn.

14. H o f m e i s t e r , H.K. and Kohlhaas,

Chem., 1929, 54, 855.

, 1968, 1J5, 763. R., Ber. Bunsenges.

Physik.

Chem., 1965, 69,

232. 15. Yamaguchi, M.,

M a t s u s h i t a , K. and Takami, K., Hydrocarbon

Process.

, 1976,

August, 101. 16. Emig, G., W o h l f a h r t ,

K. and Hoffmann, U., Paper p r e s e n t e d at t h e 12th

Symposium on Computer A p p l i c a t i o n s i n C h e m i c a l 1979, 242.

102

E n g i n e e r i n g , Montreux C a s i n o ,

17. Holma, H. and S o h l o , J . , Paper p r e s e n t e d a t t h e 12th Symposium on Computer Applications 18.

i n Chemical

E n g i n e e r i n g , Montreux C a s i n o , 1979, 228.

S i d d i q i , A.A., T e n i n i , J.W. and K i l l i o n ,

L.D., Hydrocarbon

Process.,

1976,

D.E., Pollut.

Eng.,

October, 94. 19.

Swanson, C.G., P r u s a , J.V., 1978,

10,

Hellman,

T.M. and E l l i o t t ,

52.

20. Brown, M.L., E n v i r o n . Symp. P r o c e e d i n g s , Washington, 1976, 137. 21. Newman, D.J.,

Chem. Eng. Progr.,

1971, 67, 79.

22. A d r i a n , J.C. and V e r i l h a c , J . , Paper p r e s e n t e d a t t h e 2nd I n t e r n a t i o n a l Conference

on t h e C o n t r o l o f Gaseous S u l p h u r and N i t r o g e n Compound E m i s s i o n ,

U n i v e r s i t y o f S a l f o r d , England, 1976. 23. Bolme, D.W. 24.

and Horton,

Bolme, D.W.,

1979, March, 95.

U.S. P a t e n t 4053555, 1977, October 11.

25. American Hydrocarbon 26.

A., Chem. Eng. Progr.,

Company, U.S. P a t e n t 4081518, 1978, March 28.

Chenoweth Development L a b o r a t o r i e s , Inc., U.S. P a t e n t 4081517, 1978, March 28.

27. Mayland, B.J. and Heinze, R.C., E n v i r o n . Symp. P r o c e e d i n g s ,

Washington,

1976, 143. 28. Mayland, B.J.

and Heinze, R.C., Chem. Eng. Progr.,

29. F r i e d r i c h Uhde, U.S. P a t e n t

1973, 69, 75.

3809744, 1974, May 7.

30. Ugine Kuhlmann, Ger. O f f e n 2128382, 1971, December 23. 31. Anon., N i t r o g e n No. 106, 1977, M a r c h / A p r i l , 35. 32. A d r i a n , J.C. and V i d o n , B., Paper p r e s e n t e d a t t h e 2nd I n t e r n a t i o n a l Conference

on t h e C o n t r o l o f Gaseous S u l p h u r and N i t r o g e n Compound E m i s s i o n ,

U n i v e r s i t y o f S a l f o r d , England, 1976. 33. Sumitomo C h e m i c a l , 34.

Du Pont

Ger. O f f e n 2125677, 1971, December 2.

de Nemours, B r i t .

1419645, 1975, December 31.

35. O h r u i , T., Okubo, M. and Imai, 0., Hydrocarbon

Process.,

1978, November,

163. 36. H e l l m e r , L., Chem. Eng., 1975, December, 98. 37. Anon., Hydrocarbon

Process.

, 1975, November, 164.

38. Franck, H.H. and S c h i r m e r , W., Z. Elektrochem., 39.

Shneerson,

A.L.,

1950, 54, 254.

M i n o v i c h , M.A., F i l i p p o v a , Zh.M. and P l a t o n o v , P.A.,

J. Appl. Chem. USSR (Engl. Transl.), 40. Osa, T., F u j i e d a , S. and Abe,

1965, 38, 1627.

Y. , Chem. Lett.,

1976, 9, 1029.

41. K i o v s k y , J.R., K o r a d i a , P.B. and Hook, D.S., Chem. Eng. Progr.

, 1976,

August,

98. 42.

Buck, B.J. and Matthews, W.G., E n v i r o n . Symp. P r o c e e d i n g s , Washington, 1976, 157. 103

43. J o i t h e , W., B e l l , A.T. and Lynn, S., Ind. Eng. Chem. Process. 1972,

Pes. Develop.,

11, 434.

44. K l i m i s c h , R.L. and L a r s o n , J.G., Oxides,

The C a t a l y t i c C h e m i s t r y

of Nitrogen

Plenum P r e s s , New York, 1975.

45. S h e l e f , M. , Catal.

Rev. Soi. Eng., 1975, 11, 1.

46. Van den B l e e k , C M . and Van den Berg, P.J. s u b m i t t e d f o r p u b l i c a t i o n i n J. Chem. Tech.

Biotechnol.

47. F i s c h h o f , H., Chem. Eng., 1977, December, 863. 48.

F r e i t a g , W. and P a c k b i e r , M.W.,

Ammonia Plant

Saf., 1978, 20, 11.

49.

S e a r l e s , R.A., Paper p r e s e n t e d a t t h e 2nd I n t e r n a t i o n a l C o n f e r e n c e

on t h e

C o n t r o l o f Gaseous S u l p h u r and N i t r o g e n Compound E m i s s i o n , U n i v e r s i t y o f S a l f o r d , England, 1976. 50. Youn, K.C., Hydrocarbon

Process.,

1979, F e b r u a r y , 117.

51. K i o v s k y , J.R., K o r a d i a , P.B. and Lim, C.T., Paper p r e s e n t e d a t t h e 3 r d I n t e r n a t i o n a l Symposium on The C o n t r o l o f S u l p h u r and o t h e r Gaseous Compounds, U n i v e r s i t y o f S a l f o r d , England, 1979.

104

A p p e n d i x 1. THE A D D I T I V I T Y OF RESISTANCES FOR MASS TRANSFER IN A WETTED WALL COLUMN

1. INTRODUCTION AND GENERAL THEORY

In c h e m i c a l e n g i n e e r i n g d e s i g n t h e a d d i t i v i t y o f i n d i v i d u a l mass t r a n s f e r resistances derived

for gas-liquid

from

1 K

k

og

originally

1 mk.

(1)

I

g

It s h o u l d be n o t e d steady

systems i s o f t e n a p p l i e d , which was

the two-film theory:

t h a t t h e use o f t h i s r u l e

s t a t e t r a n s f e r a t a l l times

i s based

on t h e assumption

i n both phases and e q u a t i o n

of

(1) w i l l

hold

t r u e i f t h e f o l l o w i n g two c o n d i t i o n s a r e met:

1. The d i s t r i b u t i o n c o e f f i c i e n t m must be a c o n s t a n t o r known as a f u n c t i o n o f t h e t r a n s f e r r e d component

i n the l i q u i d

phase.

2. No o t h e r r e s i s t a n c e may be p r e s e n t o t h e r than t h o s e e x p r e s s e d by k

1/mk^

The

and V g -

gas phase mass t r a n s f e r c o e f f i c i e n t

and t h e l i q u i d phase mass t r a n s f e r

c o e f f i c i e n t may vary w i t h t h e c o n t a c t time o f renewable s u r f a c e s o r may over a f i n i t e

surface. Equation

the mass t r a n s f e r

K

og,local

In p r a c t i c e

(1) may then be a p p l i e d

k

g,local

(2)

mk„ , I,local s i n g l e phase mass t r a n s f e r

I f , f o r i n s t a n c e , t h e s i n g l e mass t r a n s f e r c o e f f i c i e n t s

the c o n t a c t time o f renewable s u r f a c e s we get f o r t h e time average transfer

values of

coefficients.

i t i s customary t o d e f i n e average

coefficients.

f o r the l o c a l

vary

vary with

mass

coefficients: T

£ K

k

o &,local T

d

t

(3)

105

and T ƒ"* k

=

, g,local

dt (4)

-

g

The

t r u e average o v e r a l l mass t r a n s f e r c o e f f i c i e n t

(K

&

with:

og,true

) can be

calculated

T — ƒ K , og,local o



dt

i



~

r + — mk„

>

o k , _ g,local

~

« (5)

, t,local

og,true T In

T

c h e m i c a l e n g i n e e r i n g d e s i g n the average o v e r a l l mass t r a n s f e r c o e f f i c i e n t i s ,

however, o f t e n d e r i v e d from the a d d i t i v i t y o f i n d i v i d u a l

average mass t r a n s f e r

resistances: K

In

1 I T + — — k mk„ g £

og, addition



general equation

equation

1

r • o

k

t

g.local — T

1

r — • i mk„ , ,

dt +

o

(5) i s not e q u a l t o e q u a t i o n

(5) i s e q u a l t o e q u a t i o n

c o n d i t i o n s are

1

1

dt

I,local

T

(6). King

[1] p o i n t e d out t h a t

(6) o n l y i f the f o l l o w i n g a d d i t i o n a l

fulfilled:

3. The mass t r a n s f e r c o e f f i c i e n t s o f the gas phase and the phase must not

4. The

local

interact.

v a l u e o f mk„/k A
R -

C

=

£

C„

(9) ,o

h=0

r < R - 6

h > 0

C

t

r = 0

h>0

The

c

r

h>0

The double

penetration

An

asymptotic

if

the gas

transfer

phase may gas

the p e n e t r a t i o n

=

and

calculated

= D

m C . = C . . g,i fc.,i

model (asymptotic

solution)

a l s o be

equations

considered

phase and

i n the

can

t o be

be

infinitely

i

with

o f i n d i v i d u a l phase r e s i s t a n c e s can

are be

(

+

2m^

Hoornstra

1

5

)

D^/TTT

[5] d e s c r i b e d t h e p h y s i c a l a b s o r p t i o n

of c h l o r i n e

model.

solution

(7-14) have been a p p r o x i m a t e d by [3,4]

between the gas

and

i n the

analytical

concentration

and

the

then s o l v e d by

finite

d i f f e r e n c e s according

a Gaus-Seidel

iteration

i n t e r f a c e f o r h = 0 where no

liquid.

liquid

Therefore

the

s o l u t i o n o f the p e n e t r a t i o n

theory

profiles

first

[ 4 ] . The

zero the

gas

concentration

solubility

i n the

liquid

i n the

gas

s t e p by means o f

fractional

change o f the t r a n s f e r r e d component i n the gas

for i n i t i a l

to

procedure.

equilibrium exists

concentration

phase were approximated i n t h e

o f the Graetz-number and 108

mass

described

i

A problem a r i s e s at the

calculated

deep. The

then be

with:

Crank-Nicolson

the

(14)

then the t r u e average o v e r a l l mass t r a n s f e r c o e f f i c i e n t

Berg and

phase and

(13)

found at l a r g e Graetz-numbers

l i q u i d phase can

i n t o benzene by means o f t h i s double p e n e t r a t i o n

Equations

6

-tt- -

r = R - 6. f

2 ^ D /TTT

Numerical

3C

Ç

D

theory.

og,true

den

_ 6

R

f o u r c o n d i t i o n s f o r the a d d i t i v i t y

fulfilled

Van

(12)

Je, o

are:

s o l u t i o n o f these

i n the

(11)

= C „

3C h>0

K

0

ic

interface conditions

All

=

g



(10) g.o

3C /3r

- + c o

r

= C

g

phase

was

phase as a f u n c t i o n

(see F i g . 2 ) . From t h i s

f i g u r e i t can

liquid jfiim]

gas

5 f

/

Fig,

Fig.

1

2

Flow model and coordinate

The fractional

system.

concentration

gas phase as a function

of

change of a transferred TT/GS

for D./D x,

(

Numerical

solution,



component in the

= 0.0001. g Double penetration

model). 109

be

seen t h a t t h e a s y m p t o t i c

s o l u t i o n (double p e n e t r a t i o n

model) i s o n l y

valid

at Graetz-number l a r g e r than 100. The t r u e average o v e r a l l mass t r a n s f e r c o e f f i c i e n t was c a l c u l a t e d from t h e n u m e r i c a l s o l u t i o n by e s t a b l i s h i n g a simple mass b a l a n c e around t h e wetted w a l l column. Based on t h e l o g a r i t h m i c mean d r i v i n g f o r c e between t h e i n l e t

C (h)) g

1> (C g g,o

K

A

V

and o u t l e t t h e mass b a l a n c e can be w r i t t e n as:

g,o

m

/

og

v g

h) (16)

'l,o B,o

In

C (h)

L e A comparison o f t h e t r u e average o v e r a l l mass t r a n s f e r c o e f f i c i e n t w i t h t h e average o v e r a l l mass t r a n s f e r c o e f f i c i e n t i n d i v i d u a l phase r e s i s t a n c e s

c a l c u l a t e d from t h e a d d i t i v i t y o f

i s o n l y p o s s i b l e i f a l l mass t r a n s f e r c o e f f i c i e n t s

are based on t h e same d r i v i n g f o r c e . F o r t h e l i q u i d phase i t was found under c e r t a i n c o n d i t i o n s theory.

t h e mass t r a n s f e r can be d e s c r i b e d

that

by t h e p e n e t r a t i o n

The average Sherwood number based on t h e l o g a r i t h m i c mean d r i v i n g f o r c e

between t h e i n l e t

and t h e o u t l e t can be w r i t t e n

2

In

Fo„

CO

O Z

e

,2 , V n «- n=l

X

p

(

"

as [ 6 ] :

(17)

2 Fo ) n t

11

i n which

(18)

The

eigenvalues 0

m , t h e c o e f f i c i e n t s A and t h e f u n c t i o n s F a r e g i v e n i n n n n

T a b l e 1. In C h a p t e r 2 i t was found t h a t t h e average gas phase Sherwood-number can be described

by the s o l u t i o n o f t h e G r a e t z - p r o b l e m . 2

Sh

= - — g

The

V

values The

In I n=l

^ a

2

n

of a are given n

(

a

IT

\

(19)

exp

Gz i n T a b l e 1 o f C h a p t e r 2.

d e v i a t i o n o f t h e t r u e average o v e r a l l mass t r a n s f e r c o e f f i c i e n t

compared t o t h e average o v e r a l l mass t r a n s f e r c o e f f i c i e n t a d d i t i v i t y o f i n d i v i d u a l phase r e s i s t a n c e w i t h e q u a t i o n s

obtained

c a l c u l a t e d f o r mk„/k a 1 at which t h e d e v i a t i o n i s pronounced. y» g

110

from t h e

( 1 9 ) , (17) and (6) was

For

initial

plotted in

z e r o gas c o n c e n t r a t i o n

the c a l c u l a t i o n o f t h e t r u e

about 5 °/oo t h i s d e v i a t i o n c a l c u l a t i o n of the l i q u i d logarithmic be

average o v e r a l l mass t r a n s f e r

i s that

k„

This

=

c o e f f i c i e n t , based on t h e

the t h i c k n e s s o f the l i q u i d

to define

an average l i q u i d

2V —

(20)

been based on an a r i t h m e t i c a l

from t h e p e n e t r a t i o n

driving

average o v e r a l l mass t r a n s f e r

(19) and e q u a t i o n

(20).

t h e o r y and i t has

force. c o e f f i c i e n t following

o f t h e a d d i t i v i t y o f t h e i n d i v i d u a l phase r e s i s t a n c e s equation

f i l m must

phase mass

follows:

e q u a t i o n can be d i r e c t l y d e r i v e d

The

coefficient i s

The d i s a d v a n t a g e i n t h e

phase mass t r a n s f e r

mean d r i v i n g f o r c e ,

c o e f f i c i e n t , as

(see F i g . 3 ) . Because t h e i n a c c u r a n c y

i s not r e l e v a n t .

known. T h e r e f o r e i t i s u s e f u l

transfer

i n t h e l i q u i d phase t h e d e v i a t i o n i s

o f t h e TT/Gz-number

as a f u n c t i o n

from the a p p l i c a t i o n

was c a l c u l a t e d

I t s h o u l d be n o t e d t h a t

from

i n t h i s case the

s i n g l e phase mass t r a n s f e r c o e f f i c i e n t s have n o t been based on t h e same d r i v i n g f o r c e . The l i q u i d driving

phase mass t r a n s f e r

f o r c e , w h i l e t h e gas phase mass t r a n s f e r

logarithmic-mean d r i v i n g The

c o e f f i c i e n t i s based on an a r i t h m e t i c a l

true

force.

average o v e r a l l mass t r a n s f e r

n u m e r i c a l s o l u t i o n , was t h e r e f o r e a logarithmic-mean d r i v i n g force

coefficient, calculated

defined as:

(C In

g,o

of t h i s true

individual

phase r e s i s t a n c e s

2 1 and f o r z e r o i n l e t

was p l o t t e d

measured c o n d i t i o n s ,

there

a r e added, l e a d i n g

from t h e a d d i t i v i t y o f

as a f u n c t i o n

gas c o n c e n t r a t i o n

ir/Gz-numbers. T h i s

unequal d r i v i n g f o r c e s

_

c o e f f i c i e n t obtained

From t h i s f i g u r e i t can be seen t h a t creases at increasing

m

average o v e r a l l mass t r a n s f e r c o e f f i c i e n t w i t h t h e

average o v e r a l l mass t r a n s f e r

mk./k

M >

- ^ ) m

g

deviation

with the

based on a c o m b i n a t i o n o f an a r i t h m e t i c a l and

*g «g,o .î«»,.ï >- " V ° - V g og

The

c o e f f i c i e n t i s based on a

o f t h e ir/Gz-number f o r

i n the l i q u i d

phase ( F i g . 4 ) .

i s a positive deviation,

deviation

which i n -

i s caused by t h e f a c t

that

to a systematic e r r o r . Within the

however, t h i s d e v i a t i o n

i s s m a l l enough t o be n e g l e c t e d .

Ill

1-05

1 00

0 95

0 0 5

0-1

TI Gz

Fig.

3

The deviation

of the additivity

mass transfer 0.0001; Fo

in a wetted wall

of individual

phase resistances

column as a function

for

of tt/Gz (D^/V^ =

= 0.01).

i

(Average

overall

driving

force.)

mass transfer

coefficient

based on a

logarithmic-mean

105

100

o

0

95

_L_ 0 0 5

0-1

Tt Gz

Fig.

4

The deviation

of the additivity

mass transfer

in a wetted wall

of individual

phase resistances

column as a function

for

of TT/GZ (D„/D J6 g

0.0001). (Average

overall

arithmetical 112

mass transfer

coefficient

and a logarithmic-mean

driving

based on a combination force.)

of an

F

n

n

1

2.26313

1.33823

0.393429

2

6.29782

-0.54556

-0.118857

3

10.30802

0.35893

0.067046

4

14.31325

-0.27211

-0.045787

5

18.31657

0.22113

0.034377

6

22.31892

-0.18732

-0.027320

7

26.32070

0.16313

0.022551

8

30.32213

-0.14488

-0.019128

9

34.32432

0.13060

0.016559

10

38.32519

-0.11908

0.014565

Table

1

Eigenvalues

3. CONCLUSIONS

The

s i n g l e phase mass t r a n s f e r c o e f f i c i e n t s

i n a p r e v i o u s l y developed

wetted

w a l l column do not v a r y w i t h t h e same power o f t h e c o n t a c t time o f renewable s u r f a c e s . Under t h e s e c o n d i t i o n s t h e a d d i t i v i t y o f i n d i v i d u a l phase r e s i s t a n c e s f o r mass t r a n s f e r does not h o l d and d e v i a t i o n s may o c c u r . In o r d e r t o study t h i s d e v i a t i o n , a t r u e average c o e f f i c i e n t was c a l c u l a t e d from

a numerical

o v e r a l l mass t r a n s f e r

s o l u t i o n , which was compared w i t h

the v a l u e o b t a i n e d from t h e a d d i t i v i t y o f i n d i v i d u a l phase r e s i s t a n c e s . be c o n c l u d e d

I t can

t h a t t h e d e v i a t i o n i s s m a l l enough t o be n e g l e c t e d .

REFERENCES

1. K i n g , J.C., A. I. Ch. E. Journal,

1964, 10, 671.

2. S z e h e l y , J . , Chem. Eng. Sai. , 1965, 20, 141. 3. C r o f t , D.R. and L i l l e y ,

D.G., Heat T r a n s f e r C a l c u l a t i o n s U s i n g

Finite

D i f f e r e n c e E q u a t i o n s , A p p l i e d S c i e n c e P u b l i s h e r s L t d . , London, 1977. 4. Crank, J . , The Mathematics o f D i f f u s i o n , C l a r e n d o n

P r e s s , Oxford, 1975.

5. Van den Berg, H. and H o o r n s t r a , R. , Chem. Eng. J., 1977, 12!, 6. Brauer,

191.

H., S t o f f a u s t a u s c h , S a u e r l a n d e r A.G., Aarau, 1971.

113

NOMENCLATURE

roots o f the equation thermal

J (a ) = 0 o n

2, m /sec

diffusivity

area of i n t e r f a c e coefficient concent r a t i o n

kmol/m 3 kg/m

specific

Joule/kg.

heat

d

diameter

D

diffusion

F

K

2, ra /sec

coefficient

funct ion n

F o u r i e r number

Fo

g

gravitational

Gz

Graetz

number

Graetz

number c o r r e c t e d f o r t h e i n a c t i v e f i l m

Gz

red

film

acceleration

length or co-ordinate

m/sec

height

o f l e n g t h i n flow

d i r e c t ion

m

h'

effective

Ah

inactive

H

Henry's law c o n s t a n t

3 kmol/m .bar

heat o f r e a c t i o n

Joule/kmol

heat o f s o l u t i o n

Joule/kmol 3 k-ion/m 2 kmol/m .sec

AH

film film

length

m

length

m

r

AH s

ionic

strength

I

absorption

r a t e per u n i t of s u r f a c e

area

J

Bessel

f u n c t i o n of the f i r s t

k i n d and z e r o

Bessel

f u n c t i o n of the f i r s t

k i n d and f i r s t

order

J„

reaction rate gas

og,addit ion

constant

sec

phase mass t r a n s f e r c o e f f i c i e n t

liquid _og

order

m/sec

phase mass t r a n s f e r c o e f f i c i e n t

overall

mass t r a n s f e r c o e f f i c i e n t

overall

gas phase mass t r a n s f e r c o e f f i c i e n t

from t h e a d d i t i v i t y o f i n d i v i d u a l

m/sec

based on gas s i d e

average mass t r a n s f e r

resistances K

og,true

K

solubility 114

m/sec

true o v e r a l l equilibrium

m/sec

derived

gas phase mass t r a n s f e r c o e f f i c i e n t constant

(= C. ,/C .) A,l g , l

m/sec bar

eigenvalues m(T)

q u a n t i t y o f gas absorbed p e r u n i t o f s u r f a c e a f t e r contact

n

time

area

I

kmol/m 2 kg/m

number

N

local

P

pressure N0„

mass

kmol/m .sec bar

2N 0 2

distance

Sh

flux

4

in radial direction

m

r a d i u s o f wetted w a l l column

m

gas

o Joule/kmol. K

law

constant

Sherwood number

t

time

T

temperature

sec

surface

°K

v e l o c i t y o f the l i q u i d

mass flow

film

r a t e o f the gas

co-ordinate

m/sec kg/sec

of length across

flow d i r e c t i o n

m

v a l e n c i e s o f ions

GREEK SYMBOLS

the

layer

f r a c t i o n o f NO^ c o n v e r t e d

t o ^^0^

thickness

o f the l a m i n a r

thickness

o f f i c t i t i o u s water l a y e r

distance at

instantaneous

reactions

viscosity

2, m /sec 3

density

kg/m

contact

time

flow

liquid

film

from r e a c t i o n p l a n e t o g a s - l i q u i d i n t e r f a c e

kinematic

gas

liquid

sec

rate

flow

rate

3.

m /sec 3,

m /sec

SUBSCRIPTS

c

wetted w a l l column

f

liquid

g

gas phase

film

i

gas-liquid interface

&

liquid

local

local

phase values 115

o

inlet

Q

N0

r

reaction

s

liquid

2

+ 2N 0 2

4

plane

surface

SUPERSCRIPTS

b u l k average

116

or mixing

up v a l u e

; —



— - -

-

!

S T E L L I N G E N

1. B i j g a s - v l o e i s t o f c o n t a c t b e s t a a t gasfase in

de

t u s s e n een

v l u c h t i g e component u i t de v l o e i s t o f f a s e en een

sprake

zijn

van een

o n e i n d i g s n e l mag

(Dit

reactant

i n d i e n de r e a c t i e a l s

worden beschouwd.

Proefschrift)

dig

gepaard gaande met

s n e l l e r e a c t i e i n de v l o e i s t o f f a s e t u s s e n een o p g e l o s t

tant

i n de v l o e i s t o f f a s e z i j n een

(Dit

i n p r i n c i p e tevens

een

onein-

gas en een

reac-

g e l d i g voor systemen waar-

v l u c h t i g e component u i t de v l o e i s t o f f a s e o n e i n d i g s n e l r e a g e e r t i n

de g a s f a s e met

3. De

r e a c t i e v l a k i n de g a s f a s e

algemene r e l a t i e s b e t r e f f e n d e g a s a b s o r p t i e

bij

i n de

gasfase.

E r kan

2. De

de m o g e l i j k h e i d dat r e a c t i e o p t r e e d t

een

d a a r i n aanwezige r e a c t a n t .

Proefschrift)

s t e r k t e van

verdund s a l p e t e r z u u r a l s w a s v l o e i s t o f voor de v e r w i j d e r i n g

van n i t r e u z e n u i t a f g a s s e n t i e g r a a d van NO

wordt voor een

en de o p l o s b a a r h e i d

van

groot

deel bepaald

door de

oxida-

salpeterigzuur i n salpeterzuur.

"V.

4. Het

ondergronds v e r g a s s e n

van k o o l i s o n g u n s t i g

vanuit reactorkundig

oog-

punt .

5. Het

succes

van

i n n o v a t i e - g e r i c h t e onderzoekprogramma's aan

en h o g e s c h o l e n z a l s t e r k afhangen van om

6.

de n o d i g e i n f o r m a t i e en gegevens t e

De k w a l i t e i t

van

schikbare

verstrekken.

researchwerkzaamheden i s

minimum n i v e a u o n a f h a n k e l i j k van

financiële m i d d e l e n .

(New Scientist,

de b e r e i d h e i d van het b e d r i j f s l e v e n

i n groepsverband uitgevoerde

boven een b e p a a l d

1979, 84_ (1176),

91)

universiteiten

de g r o o t t e van

de

be-

7. De samenleving zou een b e t e r i n z i c h t hebben i n de wetenschap en t e c h n i e k i n d i e n met name j o u r n a l i s t e n en T . V . - p r e s e n t a t o r e n h e i d en bekwaamheid op d i t t e r r e i n

8. De s t e l l i n g n a m e heersen

een g r o t e r e

deskundig-

bezaten.

d a t i n h e t " v r i j e " Westen v r i j h e i d van m e n i n g s u i t i n g zou

b e r u s t op een v o o r o o r d e e l .

9. De r e g e r i n g i s met name door de Wet op de I n v e s t e r i n g s r e k e n i n g verantwoordelijk

(WIR) mede-

voor de h u i d i g e z u i v e l o v e r s c h o t t e n i n ons l a n d .

10. " M a c r o b i o t i c i " kunnen i n bepaalde o p z i c h t e n beschouwd worden a l s " l u x e wilde

11.

beesten".

Hoogbouw i s l a a g - b i j - d e - g r o n d s .

Delft,

12 maart 1980

J.B.

Lefers