Applied Microbiology and Biotechnology ...

7 downloads 0 Views 242KB Size Report
Methanobacterium. (56%),. Methanothermobacter. (32%). Sundberg et al. 2013. CM (52%), food waste (48%). 55. 5.2. 26. 3840 →. 2960. Methanothermobacter.
Applied Microbiology and Biotechnology

Metagenome, metatranscriptome and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants

Julia Hassa1‡, Irena Maus1‡, Sandra Off2, Alfred Pühler1, Paul Scherer2, Michael Klocke3†, Andreas Schlüter1†* 1

Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms,

Universitätsstrasse 27, 33615 Bielefeld, Germany 2

Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033

Hamburg, Germany 3

Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100,

14469 Potsdam, Germany ‡†

*

These authors contributed equally to this article.

Corresponding Author

Dr. Andreas Schlüter, Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, 33615 Bielefeld, Germany Phone: +49 (0)521 106 8757 E-Mail: [email protected]

Supplemental Table S1: Summary of predominant methanogenic genera of the archaeal community and, if available, their percentage in full-scale biogas plants (BGPs) with regard to substrates, process temperatures, organic loading rates (OLRs), hydraulic retention times (HRTs), and ammonia content. Only recent publications from the years 2008 until 2017 were evaluated. Type of BGP/substrate (partly in %)

Temp. (°C)

OLR (kg VS m-³ d-1)

HRT (d)

Ammonia (NH4+-N) (mg L-1)*

Dominant Methanogens (genus level)†

Reference‡

FRW

35

n.d.

7-10

n.d.

Methanosaeta (81→96%)

Lee et al. 2014

Sewage sludge

36

n.d.

22

1240

Methanosaeta (59%)

Luo et al. 2016

Sewage sludge

35-37

2.8

16

n.d.

Methanosaeta (83%)

Sundberg et al. 2013

Sewage sludge

35-37

2.1

10

250

Methanosaeta (69%)

Sundberg et al. 2013

FIW (62%), sewage sludge (38%)

37

2.7

28

n.d.

Methanosaeta (84%)

Sundberg et al. 2013

Sludge from FIW, sewage sludge

37

1.1

28

n.d.

Methanosaeta (87%)

Sundberg et al. 2013

Sewage sludge

36-38

2.4

17

n.d.

Methanosaeta (70%)

Sundberg et al. 2013

CM (46%), silage (36%), food waste (18%)

37-38

2.8

57

640→800

Methanosaeta (92→77%)

Franke-Whittle et al. 2014

Sewage sludge

37

n.d.

24

470

Methanosaeta (23%), unclassified (36%)

Luo et al. 2016

Sewage sludge

37

n.d.

30

920

Methanosaeta (46%)

Luo et al. 2016

Sewage sludge

37

n.d.

19

1100

Methanosaeta (41%)

Luo et al. 2016

Sewage sludge

MT

1.8

21

n.d.

Methanosaeta (~70%)

Abendroth et al. 2015

Sewage sludge

MT

1.0

29

n.d.

Methanosaeta (~80%)

Abendroth et al. 2015

Sewage sludge

39

n.d.

25

530

Methanosaeta (48%)

Luo et al. 2016

CM (76%), MS (13%), GS (5), CD (4%), grains (2%)

39

2.4

47

1640

Methanosaeta

Nettmann et al. 2010

CM, energy crops, agricultural byproducts

43

2.5

92

1350

Methanosaeta (~40-60%)

Fontana et al. 2016

Sewage sludge

51-53

2.9

11

980

Methanosaeta (68%)

Sundberg et al. 2013

Type of BGP/substrate (partly in %)

Temp. (°C)

OLR (kg VS m-³ d-1)

HRT (d)

Ammonia (NH4+-N) (mg L-1)*

Dominant Methanogens (genus level)†

Reference‡

SHW (54%), PM/CM (33%), OFMSW (10%)

37

3.1

25

4000

Methanobrevibacter (96%)

Sundberg et al. 2013

OFMSW (59%), FIW (21%), PM (9%)

37

3.2

27

3400

Methanobrevibacter (98%)

Sundberg et al. 2013

CM/PM

37

n.d.

21

2470

Methanobrevibacter (62%)

Luo et al. 2016

Sewage sludge

38

n.d.

45-55

700

Methanobrevibacter (98%)

Sundberg et al. 2013

PM/CM (69%), SHW/OFMSW (30%)

38

3.1

29

3400

Methanobrevibacter (93%)

Sundberg et al. 2013

PM

39

n.d.

150

n.d.

Methanobrevibacter (58%)

Zhu et al. 2011

Fontana et al. 2016

CM

39

2.2

32

1930

Methanobrevibacter (~20-60%), Methanobacterium (~20-40%)

CM/PM

40

n.d.

24

2630

Methanobrevibacter (34%)

Luo et al. 2016

Fontana et al. 2016

CM

42

1.6

44

1850

Methanobrevibacter (~30-50%), Methanobacterium (~30-40%)

SHW (51%), CM (32%), whey (15%)

51-53

2.9

20

3900

Methanobrevibacter (100%)

Sundberg et al. 2013

OFMSW

35

n.d.

100

n.d.

Methanoculleus (>90%)

CardinaliRezende et al. 2012

CM mainly, fish oil waste

36

n.d.

30

n.d.

Methanoculleus (49%)

St-Pierre et al. 2013

OFMSW (70%), silage (20%), fat (10%)

37-40

4.0

16

2300

Methanoculleus (98%)

Sundberg et al. 2013

FRW

35-37

n.d.

30

n.d.

Methanoculleus (63→97%)

Lee et al. 2014

Silage, farm manure, livestock farming waste

MT

3.0

87

n.d.

Methanoculleus (59-76%)

Abendroth et al. 2015

SHW mainly

38

3.7

55

5400

Methanoculleus (100%)

Sundberg et al. 2013

Type of BGP/substrate (partly in %)

Temp. (°C)

OLR (kg VS m-³ d-1)

HRT (d)

Ammonia (NH4+-N) (mg L-1)*

Dominant Methanogens (genus level)†

Reference‡

PM (57%), MS (40%)

39

3.9

48

1420

Methanoculleus

Nettmann et al. 2010

CM (72%), MS (28%)

40

2.9

54

n.d.

Methanoculleus (79%)

Nettmann et al. 2008

CM/PM, industrial organic wastes

40

n.d.

32

4220

Methanoculleus (86%)

Luo et al. 2016

MS (63%), GR (35%), ChM (2%)

41

n.d.

40-60

n.d.

Methanoculleus (88%)

Schlüter et al. 2008

CM (64%), MS (37%), PM (6%), TD (2%)

41

4.0

34

3620

Methanoculleus

Nettmann et al. 2010

PM (50%), MS (39%), TD (9%)

44

2.5

35

3030

Methanoculleus

Nettmann et al. 2010

MS (82%), barley grain (12%), water (6%)

45

3.4

108

2230

Methanoculleus

Nettmann et al. 2010

CM/PM, industrial organic wastes

50

n.d.

11

2960

Methanoculleus (75%)

Luo et al. 2016

CM/PM, industrial organic wastes

52

n.d.

11

3300

Methanoculleus (72%)

Luo et al. 2016

CM/PM, industrial organic wastes

52

n.d.

15

2460

Methanoculleus (82%)

Luo et al. 2016

CM/PM, industrial organic wastes

52

n.d.

3

2310

Methanoculleus (80%)

Luo et al. 2016

CM/PM, industrial organic wastes

53

n.d.

11

2380

Methanoculleus (50%)

Luo et al. 2016

MS (56%), PM (32%), barley (6%), CM (6%)

54

8.0

20

2870

Methanoculleus (60%)

Maus et al. 2016

FRW

55

n.d.

39

n.d.

Methanoculleus (96→92%)

Lee et al. 2014

OFMSW (95%), fat (5%)

52-55

2.8

20

1800

Methanoculleus (46%), Methanobacterium (44%)

Sundberg et al. 2013

MS (97%), diverse plant materials (3%)

38

3.5

80

1330

Methanobacterium (43%), Methanosaeta (31%)

Lucas et al. 2015

CM, energy crops, agricultural byproducts

50

3.2

67

2220

Methanobacterium (~30-60%)

Fontana et al. 2016

Type of BGP/substrate (partly in %)

Temp. (°C)

OLR (kg VS m-³ d-1)

HRT (d)

Ammonia (NH4+-N) (mg L-1)*

Dominant Methanogens (genus level)†

Reference‡

OFMSW (34%), SHW (29%), dry fodder (16%)

52-55

3.2

20

1900

Methanobacterium (90%)

Sundberg et al. 2013

Sundberg et al. 2013

OFMSW (85%), SHW (15%)

55

2.1

n.d.

1700

Methanobacterium (56%), Methanothermobacter (32%)

CM (52%), food waste (48%)

55

5.2

26

3840 → 2960

Methanothermobacter (98→100%)

Franke-Whittle et al. 2014

Lee et al. 2014

FRW

55-62

n.d.

16-18

n.d.

Methanoculleus (100%→1%), Methanothermobacter (0%→99%)

OFMSW

MT

0.9

33

n.d.

Methanosarcina (~50-90%)

Abendroth et al. 2015

CM, Silage, straw

MT

1.3

26-29

n.d.

Methanosarcina (~40%)

Abendroth et al. 2015

CM, straw, feed residues

MT

2.1

32-35

n.d.

Methanosarcina (~80-95%)

Abendroth et al. 2015

CM mainly, whey

38

n.d.

21

n.d.

Methanosarcina (100%)

St-Pierre et al. 2013

CM mainly, ice cream factory waste

38

n.d.

25-27

n.d.

Methanosarcina (99%)

St-Pierre et al. 2013

MS (46-54%), CD (15%), CM (22%), Rye silage (9-14%)

41-45

1.5-1.9

120138

2300-2700

Methanosarcina (~60-80%)

Theuerl et al. 2015

CM, energy crops

44

2.6

48

1820

Methanosarcina (~30-40%)

Fontana et al. 2016

CM, energy crops, agro-industrial byproducts

45

3.0

66

2420

Methanosarcina (~50-60%)

Fontana et al. 2016

CM/PM, industrial organic wastes

52

n.d.

22

2530

Methanosarcina (90%)

Luo et al. 2016

n.d.

Methanomethylovorans (40-55%), Methanosaeta (~40-55%)

Abendroth et al. 2015

Municipal and industrial sewage sludge (biodiesel waste)

MT

0.5

25

Type of BGP/substrate

Temp. (°C)

OLR (kg VS m-³ d-1)

HRT (d)

Ammonia (NH4+-N) (mg L-1)

In order or families grouped methanogenic genera

Reference

Sewage sludge

35

n.d.

n.d.

1210

Methanosaetaceae

Fotidis et al. 2013

CM, PM

37

n.d.

n.d.

4570

Methanobacteriales

Fotidis et al. 2013

PM

38

n.d.

n.d.

2930

Methanobacteriales

Fotidis et al. 2013

CM, PM

52

n.d.

n.d.

2040

Methanomicrobiales

Fotidis et al. 2013

CM, PM

53

n.d.

n.d.

2260

Methanosarcinaceae

Fotidis et al. 2013

CM, PM, ChM

53

n.d.

n.d.

2440

Methanomicrobiales

Fotidis et al. 2013

CM, CD

55

n.d.

n.d.

2030

Methanomicrobiales

Fotidis et al. 2013

Sewage sludge

55

n.d.

n.d.

900

Methanosaetaceae

Fotidis et al. 2013

FRW

MT

n.d.

25-27

n.d.

Methanobacteriaceae

Han et al. 2017

FRW

MT

n.d.

30-36

n.d.

Methanomicrobiaceae

Han et al. 2017

Diluted food waste

MT

n.d.

21-25

n.d.

Methanomicrobiaceae, Methanobacteriaceae

Han et al. 2017

Food waste

MT

n.d.

30-40

n.d.

Methanomicrobiaceae

Han et al. 2017

Food waste

MT

n.d.

30-40

n.d.

Methanomicrobiaceae

Han et al. 2017

Food waste

MT

n.d.

30-40

n.d.

Methanomicrobiaceae

Han et al. 2017

* BGPs operate at pH-values of approx. pH 8; ammonia (NH3) is in balance with ammonium according to pH and temperature. BS: beet silage; CD: cattle dung; ChM: chicken manure; CM: cattle liquid manure; FIW: food industry waste; FRW: food waste-recycling wastewater; GR: green rye; GS: grass silage; MS: Maize silage; OFMSW: organic fraction of municipal solid waste; PM: pig liquid manure; SHW: slaughterhouse waste; TD: turkey dung; WS: wheat straw; MT: mesophilic temperature; →: experimental period; n.d.: no data. †

Colors differentiate genera of methanogenic Archaea.



References are listed in the main manuscript.