Barium dihydrogen phosphite hemihydrate - IUCr Journals

0 downloads 0 Views 898KB Size Report
l'Environnement, DeВpartement de Chimie,. FaculteВ des Sciences Dhar Mehraz, BP1796. Atlas 30003, FeБs, Morocco, and bInstitut fuИr. Organische Chemie ...
inorganic papers Barium dihydrogen phosphite hemihydrate

Acta Crystallographica Section E

Structure Reports Online ISSN 1600-5368

Rachid Ouarsal,a Aziz Alaoui Tahiri,a Mohammed Lachkar,a Zineb Slimani,a Brahim El Balia and Michael Bolteb*

Ba(H2PO3)20.5H2O contains ninefold-coordinated Ba ions connected by dihydrogen phosphite anions to form a threedimensional network. The asymmetric unit contains two Ba2+ ions, four [H2PO3]ÿ ions and one water molecule.

Received 22 July 2002 Accepted 29 July 2002 Online 9 August 2002

a

Laboratoire des MateÂriaux et Protection de l'Environnement, DeÂpartement de Chimie, Faculte des Sciences Dhar Mehraz, BP1796 Atlas 30003, FeÁs, Morocco, and bInstitut fuÈr Organische Chemie, J. W. Goethe-UniversitaÈt Frankfurt, Marie-Curie-Straûe 11, 60439 Frankfurt/Main, Germany Correspondence e-mail: [email protected]

Key indicators Single-crystal X-ray study T = 173 K Ê Mean (P±O) = 0.004 A H-atom completeness 61% R factor = 0.036 wR factor = 0.086 Data-to-parameter ratio = 25.6 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Comment Crystal structure analyses of alkaline-earth dihydrogen phosphites have been undertaken for several decades (Ouarsal et al., 2002, and references therein). Continuing these investigations, we report here the structure of Ba(H2PO3)20.5H2O. Fig. 1 shows the asymmetric unit. The Ba ions occupy two different ninefold-coordinated sites. The coordination of Ba1 is made up of seven monodentate dihydrogen phosphite groups and two O atoms from two water molecules. Ba2 is surrounded by six monodentate and one bidentate dihydrogen phosphite ligands. The average dBaÐO is 2.83 (11) and Ê , respectively. In BaZn3(HPO3)46H2O, Ba is 2.86 (10) A twelvefold-coordinated with dBaÐO ranging from 2.876 to Ê (Ortiz-Avila et al., 1989). Two neighbouring BaO9 3.053 A units, related by a centre of symmetry, share an OÐO edge, to form a Ba2O16 dimer. Two such dimers are joined through an edge (O33ÐO43) and a face (O41ÐO23ÐO32) to build up a double channel parallel to [010] (Fig. 2). There are four crystallographically independent phosphorus centres, each

Figure 1

# 2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

i72

Rachid Ouarsal et al.



Perspective view of the asymmetric unit of the title compound, with the atom numbering; displacement ellipsoids are at the 50% probability level. Symmetry operators for equivalent atoms: (i) 3/2ÿx, ÿ1/2+y, 3/2ÿz; (ii) 1ÿx, 1ÿy, 1ÿz; (iii) 2ÿx, 1ÿy, 1ÿz; (iv) 2ÿx, ÿy, 1ÿz; (v) 3/2ÿx, ÿ1/2+y, 1/2ÿz; (vi) x, ÿ1+y, z; (vii) 1ÿx, ÿy, 1ÿz.

Ba(H2PO3)20.5H2O

DOI: 10.1107/S1600536802013569

Acta Cryst. (2002). E58, i72±i73

inorganic papers Data collection 4582 independent re¯ections 3635 re¯ections with I > 2(I) Rint = 0.097 max = 31.5 h = ÿ16 ! 16 k = ÿ12 ! 12 l = ÿ20 ! 20

Stoe IPDS-II two-circle diffractometer ! scans Absorption correction: multi-scan (MULABS; Spek, 1990; Blessing, 1995) Tmin = 0.275, Tmax = 0.747 38 630 measured re¯ections

Re®nement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.036 wR(F 2) = 0.086 S = 0.93 4582 re¯ections 179 parameters H atoms treated by a mixture of independent and constrained re®nement

w = 1/[ 2(Fo2) + (0.0533P)2] where P = (Fo2 + 2Fc2)/3 (/)max = 0.002 Ê ÿ3 max = 2.01 e A Ê ÿ3 min = ÿ1.79 e A Extinction correction: SHELXL97 Extinction coef®cient: 0.0045 (3)

Table 1

Ê ,  ). Hydrogen-bonding geometry (A DÐH  A

DÐH

H  A

D  A

DÐH  A

O1ÐH1A  O13i O1ÐH1A  O43i O1ÐH1B  O12ii

0.8400 (10) 0.8400 (10) 0.8400 (10)

2.17 (3) 2.41 (6) 1.986 (12)

2.947 (5) 2.909 (5) 2.818 (5)

153 (7) 118 (6) 171 (7)

Symmetry codes: (i) x; y ÿ 1; z; (ii) 32 ÿ x; y ÿ 12; 12 ÿ z.

Figure 2

Packing diagram of the title compound.

tetrahedrally coordinated by one H and three O atoms. The PÐO bond distances are in the usual range, similar to those reported in Sr(H2PO3)2 (Ouarsal et al., 2002).

Experimental 25 ml of BaCl26H2O (0.1 M) and 25 ml of phosphorous acid (1 M) were mixed in water. The mixture was stirred for 8 h at 333 K, before being left at room temperature. After a few days, colourless crystals were deposited. These were ®ltered off and washed with a solution of ethanol (80%). Crystal data Ba(H2PO3)20.5H2O Mr = 308.32 Monoclinic, P21 =n Ê a = 11.2351 (8) A Ê b = 8.7244 (5) A Ê c = 14.0518 (9) A = 90.493 (6) Ê3 V = 1377.30 (15) A Z=8

Acta Cryst. (2002). E58, i72±i73

ÿ3

Dx = 2.974 Mg m Mo K radiation Cell parameters from 32287 re¯ections  = 4.0±32.7  = 6.21 mmÿ1 T = 173 (2) K Plate, colourless 0.28  0.18  0.05 mm

The water H atoms were located in a difference Fourier synthesis Ê.H and were re®ned freely, constraining the OÐH distance to 0.84 A atoms bonded to P were re®ned with ®xed individual displacement parameters [Uiso(H) = 1.2Ueq(P)], using a riding model with PÐH = Ê . The H atoms bonded to the O atoms of the dihydrogen 1.30 A phosphite ions could not be located and were omitted from the re®nement. The ten highest peaks in the difference electron-density Ê ) to the Ba atoms and the deepest hole is map are located close (1 A Ê from Ba1. 0.69 A Data collection: X-AREA (Stoe & Cie, 2001); cell re®nement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References Blessing, R. H. (1995). Acta Cryst. A51, 33±38. Ortiz-Avila, C. Y., Squattrito, P. J., Shieh, M. & Clear®eld, A. (1989). Inorg. Chem. 28, 2608±2615. Ouarsal, R., Tahiri, A. A., El Bali, B., Lachkar, M. & Bolte, M. (2002). Acta Cryst. E58, i19±i20. Sheldrick, G. M. (1990). Acta Cryst. A46, 467±473. Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1997). SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (1990). Acta Cryst. A46, C-34. Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Rachid Ouarsal et al.



Ba(H2PO3)20.5H2O

i73

supporting information

supporting information Acta Cryst. (2002). E58, i72–i73

[doi:10.1107/S1600536802013569]

Barium dihydrogen phosphite hemihydrate Rachid Ouarsal, Aziz Alaoui Tahiri, Mohammed Lachkar, Zineb Slimani, Brahim El Bali and Michael Bolte S1. Comment Crystal structure analyses of alkaline-earth dihydrogen phosphites have been taking place for several decades (Ouarsal et al., 2002, and references therein). Continuing these investigations, we report here the structure of Ba(H2PO3)2·0.5H2O. Fig. 1 shows the asymmetric unit. The Ba ions occupy two different ninefold-coordinated sites. The coordination of Ba1 is made up of seven monodentate dihydrogen phosphite groups and two O atoms from two water molecules. Ba2 is surrounded by six monodentate and one bidentate dihydrogen phosphite ligands. The average dBa—O is 2.83 (11) and 2.86 (10) Å, respectively. In BaZn3(HPO3)4·6H2O, Ba is twelvefold-coordinated with dBa—O ranging from 2.876 to 3.053 Å (Ortiz-Avila et al., 1989). Two neighbouring BaO9 units, related by a centre of symmetry, share an O–O edge, to form a Ba2O16 dimer. Two such dimers are joined through an edge (O33–O43) and a face (O41–O23–O32) to build up a double channel parallel to [010] (Fig. 2). There are four crystallographically independent phosphorus centres each tetrahedrally coordinated to one H and three O atoms. The P—O bond distances are in the usual range, similar to those reported in Sr(H2PO3)2 (Ouarsal et al., 2002). S2. Experimental 25 ml of BaCl2·6H2O (0.1 M) and 25 ml of phosphorous acid (1 M) were mixed in water. The mixture was stirred for 8 h at 333 K before being left at room temperature. After a few days, colourless crystals were deposited. These were filtered off and washed with a solution of ethanol (80%). S3. Refinement The water H atoms were located in a difference Fourier synthesis and were refined freely constraining the O—H distance to 0.84 Å. H atoms bonded to P were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(P)] using a riding model with P—H = 1.30 Å. The H atoms bonded to O of the dihydrogen phosphite ions could not be located and were omitted from the refinement. The highest ten peaks in the difference electron density map are located close (~1 Å) to the Ba atoms. The deepest hole is at 0.69 Å from Ba1.

Acta Cryst. (2002). E58, i72–i73

sup-1

supporting information

Figure 1 Perspective view of the asymmetric unit of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. Symmetry operators for equivalent atoms: (i) 1.5 - x, -0.5 + y, 1.5 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 2 - x, 1 - y, 1 - z; (iv) 2 - x, -y, 1 - z; (v) 1.5 - x, -0.5 + y, 0.5 - z; (vi) x, -1 + y, z; (vii) 1 - x, -y, 1 - z.

Acta Cryst. (2002). E58, i72–i73

sup-2

supporting information

Figure 2 Packing diagram of the title compound. barium dihydrogen phosphite hemihydrate Crystal data Ba(H2PO3)2·0.5H2O Mr = 308.32 Monoclinic, P21/n Hall symbol: -P 2yn a = 11.2351 (8) Å b = 8.7244 (5) Å c = 14.0518 (9) Å β = 90.493 (6)° V = 1377.30 (15) Å3 Z=8

F(000) = 1144 Dx = 2.974 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 32287 reflections θ = 4.0–32.7° µ = 6.21 mm−1 T = 173 K Plate, colourless 0.28 × 0.18 × 0.05 mm

Data collection STOE IPDS-II two-circle diffractometer Radiation source: fine-focus sealed tube

Acta Cryst. (2002). E58, i72–i73

Graphite monochromator ω scans

sup-3

supporting information Absorption correction: empirical (using intensity measurements) (MULABS; Spek, 1990; Blessing, 1995) Tmin = 0.275, Tmax = 0.747 38630 measured reflections 4582 independent reflections

3635 reflections with I > 2σ(I) Rint = 0.097 θmax = 31.5°, θmin = 3.7° h = −16→16 k = −12→12 l = −20→20

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.036 wR(F2) = 0.086 S = 0.93 4582 reflections 179 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0533P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.002 Δρmax = 2.01 e Å−3 Δρmin = −1.79 e Å−3 Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0045 (3)

Special details Experimental. ; Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Ba1 O1 H1A H1B Ba2 P1 H1 P2 H2 P3 H3 P4 H4 O11 O12 O13

x

y

z

Uiso*/Ueq

0.79743 (2) 0.9680 (3) 0.947 (6) 0.937 (6) 0.74023 (2) 0.75415 (11) 0.7216 0.67811 (11) 0.5631 0.50060 (10) 0.5208 0.99914 (10) 0.9914 0.8120 (3) 0.6436 (3) 0.8416 (3)

0.02237 (3) −0.0638 (4) −0.156 (2) −0.039 (8) 0.50599 (3) 0.64078 (13) 0.7806 0.76867 (12) 0.7844 0.22587 (13) 0.1248 0.69045 (13) 0.7554 0.5712 (4) 0.5476 (4) 0.6451 (4)

0.522038 (17) 0.3813 (3) 0.387 (5) 0.329 (2) 0.519360 (18) 0.26576 (8) 0.2471 0.75045 (8) 0.7480 0.54280 (8) 0.6090 0.60405 (8) 0.6870 0.1731 (2) 0.2852 (3) 0.3474 (3)

0.01404 (7) 0.0208 (6) 0.025* 0.025* 0.01443 (7) 0.0162 (2) 0.019* 0.0160 (2) 0.019* 0.0159 (2) 0.019* 0.0144 (2) 0.017* 0.0218 (7) 0.0252 (7) 0.0218 (7)

Acta Cryst. (2002). E58, i72–i73

sup-4

supporting information O21 O22 O23 O31 O32 O33 O41 O42 O43

0.7326 (4) 0.7079 (4) 0.7154 (3) 0.5128 (3) 0.6016 (3) 0.3762 (3) 1.1243 (3) 0.9712 (3) 0.8988 (3)

0.9117 (4) 0.6257 (4) 0.7630 (4) 0.3905 (4) 0.2174 (4) 0.2028 (4) 0.7144 (4) 0.5141 (4) 0.7503 (4)

0.6995 (3) 0.6943 (2) 0.8537 (2) 0.5898 (3) 0.4734 (2) 0.5077 (3) 0.5691 (2) 0.6175 (3) 0.5435 (2)

0.0247 (7) 0.0206 (7) 0.0180 (6) 0.0244 (7) 0.0209 (6) 0.0221 (7) 0.0178 (6) 0.0229 (7) 0.0180 (6)

Atomic displacement parameters (Å2)

Ba1 O1 Ba2 P1 P2 P3 P4 O11 O12 O13 O21 O22 O23 O31 O32 O33 O41 O42 O43

U11

U22

U33

U12

U13

U23

0.01557 (12) 0.0238 (17) 0.01589 (12) 0.0182 (5) 0.0218 (5) 0.0154 (5) 0.0147 (5) 0.0245 (17) 0.0238 (17) 0.0254 (17) 0.041 (2) 0.0349 (19) 0.0230 (15) 0.0253 (17) 0.0204 (15) 0.0171 (15) 0.0171 (14) 0.0188 (15) 0.0159 (14)

0.01173 (11) 0.0181 (14) 0.01207 (11) 0.0149 (4) 0.0122 (4) 0.0150 (5) 0.0134 (4) 0.0222 (16) 0.0255 (16) 0.0225 (15) 0.0158 (14) 0.0129 (13) 0.0159 (13) 0.0218 (16) 0.0246 (16) 0.0217 (15) 0.0151 (13) 0.0150 (14) 0.0153 (13)

0.01482 (12) 0.0205 (16) 0.01535 (12) 0.0155 (5) 0.0140 (5) 0.0171 (5) 0.0151 (5) 0.0189 (15) 0.0265 (18) 0.0174 (15) 0.0169 (15) 0.0140 (14) 0.0152 (14) 0.0263 (18) 0.0179 (15) 0.0276 (18) 0.0212 (15) 0.0348 (19) 0.0227 (16)

0.00049 (8) 0.0003 (13) −0.00013 (8) 0.0014 (4) 0.0004 (4) 0.0002 (4) −0.0006 (4) −0.0026 (13) −0.0024 (14) 0.0050 (13) −0.0044 (14) 0.0030 (13) −0.0002 (12) −0.0049 (13) 0.0025 (13) 0.0003 (12) −0.0010 (11) −0.0030 (12) 0.0009 (11)

0.00072 (8) 0.0001 (13) 0.00052 (8) 0.0000 (4) 0.0006 (4) 0.0005 (4) 0.0002 (4) 0.0039 (13) 0.0066 (14) −0.0047 (13) 0.0049 (14) 0.0004 (13) 0.0006 (11) 0.0069 (14) 0.0023 (12) −0.0010 (13) 0.0006 (11) −0.0013 (13) −0.0010 (11)

0.00039 (8) 0.0001 (12) −0.00045 (7) −0.0002 (4) −0.0004 (3) −0.0002 (4) 0.0000 (3) 0.0013 (12) −0.0061 (14) −0.0016 (12) −0.0001 (12) −0.0010 (11) −0.0010 (11) −0.0083 (13) −0.0024 (12) 0.0006 (13) 0.0017 (11) 0.0069 (13) 0.0016 (11)

Geometric parameters (Å, º) Ba1—O43i Ba1—O23ii Ba1—O41iii Ba1—O21i Ba1—O33iv Ba1—O32 Ba1—O1 Ba1—O1v Ba1—O11vi Ba1—Ba2 O1—H1A O1—H1B Ba2—O22

Acta Cryst. (2002). E58, i72–i73

2.649 (3) 2.736 (3) 2.776 (3) 2.777 (3) 2.797 (4) 2.859 (4) 2.866 (4) 2.976 (4) 3.025 (4) 4.2681 (4) 0.8400 (10) 0.8400 (10) 2.698 (3)

Ba2—O13 Ba2—O32 P1—O13 P1—O12 P1—O11 P1—H1 P2—O23 P2—O22 P2—O21 P2—H2 P3—O33 P3—O32 P3—O31

2.942 (4) 3.028 (4) 1.504 (4) 1.511 (4) 1.582 (4) 1.3000 1.507 (3) 1.515 (3) 1.566 (4) 1.3000 1.492 (4) 1.505 (4) 1.586 (4)

sup-5

supporting information Ba2—O41iii Ba2—O43 Ba2—O23ii Ba2—O33vii Ba2—O31 Ba2—O42

2.755 (3) 2.797 (3) 2.812 (3) 2.881 (4) 2.927 (4) 2.929 (4)

P3—H3 P4—O43 P4—O41 P4—O42 P4—H4

1.3000 1.500 (3) 1.508 (3) 1.582 (3) 1.3000

O43i—Ba1—O23ii O43i—Ba1—O41iii O23ii—Ba1—O41iii O43i—Ba1—O21i O23ii—Ba1—O21i O41iii—Ba1—O21i O43i—Ba1—O33iv O23ii—Ba1—O33iv O41iii—Ba1—O33iv O21i—Ba1—O33iv O43i—Ba1—O32 O23ii—Ba1—O32 O41iii—Ba1—O32 O21i—Ba1—O32 O33iv—Ba1—O32 O43i—Ba1—O1 O23ii—Ba1—O1 O41iii—Ba1—O1 O21i—Ba1—O1 O33iv—Ba1—O1 O32—Ba1—O1 O43i—Ba1—O1v O23ii—Ba1—O1v O41iii—Ba1—O1v O21i—Ba1—O1v O33iv—Ba1—O1v O32—Ba1—O1v O1—Ba1—O1v O43i—Ba1—O11vi O23ii—Ba1—O11vi O41iii—Ba1—O11vi O21i—Ba1—O11vi O33iv—Ba1—O11vi O32—Ba1—O11vi O1—Ba1—O11vi O1v—Ba1—O11vi O22—Ba2—O41iii O22—Ba2—O43 O41iii—Ba2—O43 O22—Ba2—O23ii O41iii—Ba2—O23ii

129.80 (10) 131.00 (10) 71.23 (10) 72.67 (11) 71.22 (10) 142.04 (10) 71.72 (10) 126.42 (10) 137.34 (10) 72.65 (11) 152.82 (10) 69.60 (10) 69.13 (10) 102.38 (11) 81.26 (11) 63.51 (10) 132.92 (10) 71.47 (10) 135.27 (11) 100.52 (10) 120.58 (10) 71.26 (10) 70.53 (10) 80.06 (10) 82.55 (11) 140.08 (10) 135.50 (10) 75.64 (11) 113.59 (10) 116.57 (10) 66.01 (10) 139.03 (11) 71.71 (10) 52.68 (9) 71.37 (10) 138.40 (10) 139.51 (11) 71.65 (11) 103.45 (10) 74.84 (10) 70.41 (10)

O43—Ba2—O31 O23ii—Ba2—O31 O33vii—Ba2—O31 O22—Ba2—O42 O41iii—Ba2—O42 O43—Ba2—O42 O23ii—Ba2—O42 O33vii—Ba2—O42 O31—Ba2—O42 O22—Ba2—O13 O41iii—Ba2—O13 O43—Ba2—O13 O23ii—Ba2—O13 O33vii—Ba2—O13 O31—Ba2—O13 O42—Ba2—O13 O22—Ba2—O32 O41iii—Ba2—O32 O43—Ba2—O32 O23ii—Ba2—O32 O33vii—Ba2—O32 O31—Ba2—O32 O42—Ba2—O32 O13—Ba2—O32 O13—P1—O12 O13—P1—O11 O12—P1—O11 O13—P1—H1 O12—P1—H1 O11—P1—H1 O23—P2—O22 O23—P2—O21 O22—P2—O21 O23—P2—H2 O22—P2—H2 O21—P2—H2 O33—P3—O32 O33—P3—O31 O32—P3—O31 O33—P3—H3 O32—P3—H3

141.11 (10) 71.14 (11) 87.20 (10) 71.79 (11) 74.85 (10) 50.48 (9) 64.40 (10) 116.11 (10) 128.44 (11) 130.13 (10) 72.43 (10) 62.26 (10) 139.84 (10) 72.93 (10) 139.88 (11) 91.68 (10) 116.32 (10) 66.95 (9) 170.30 (9) 66.21 (10) 118.24 (10) 48.47 (9) 124.93 (9) 111.70 (10) 114.1 (2) 111.5 (2) 106.6 (2) 108.1 108.1 108.1 114.46 (19) 111.1 (2) 109.2 (2) 107.3 107.3 107.3 119.2 (2) 109.7 (2) 104.6 (2) 107.6 107.6

Acta Cryst. (2002). E58, i72–i73

sup-6

supporting information O43—Ba2—O23ii O22—Ba2—O33vii O41iii—Ba2—O33vii O43—Ba2—O33vii O23ii—Ba2—O33vii O22—Ba2—O31 O41iii—Ba2—O31

112.84 (10) 73.38 (10) 143.89 (10) 68.41 (10) 145.69 (10) 72.57 (11) 113.57 (10)

O31—P3—H3 O43—P4—O41 O43—P4—O42 O41—P4—O42 O43—P4—H4 O41—P4—H4 O42—P4—H4

107.6 117.73 (19) 104.9 (2) 111.12 (19) 107.5 107.5 107.5

Symmetry codes: (i) x, y−1, z; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+2, −y, −z+1; (vi) −x+3/2, y−1/2, −z+1/2; (vii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º) D—H···A i

O1—H1A···O13 O1—H1A···O43i O1—H1B···O12vi

D—H

H···A

D···A

D—H···A

0.84 (1) 0.84 (1) 0.84 (1)

2.17 (3) 2.41 (6) 1.99 (1)

2.947 (5) 2.909 (5) 2.818 (5)

153 (7) 118 (6) 171 (7)

Symmetry codes: (i) x, y−1, z; (vi) −x+3/2, y−1/2, −z+1/2.

Acta Cryst. (2002). E58, i72–i73

sup-7