Basic Electricity - Web Services Overview

44 downloads 139 Views 1MB Size Report
Learning Objecgves. Successful complegon of this module will enable students to. • Link the basic model of an atom to the flow of electricity. • Apply the ...
Basic  Electricity   EAS  199A  Lecture  Notes  

Learning  Objec:ves   Successful  comple:on  of  this  module  will  enable   students  to   •  Link  the  basic  model  of  an  atom  to  the  flow  of   electricity   •  Apply  the  defini:ons  of  Amp,  Volt,  Coulomb,   Joule,  WaJ  to  unit  conversions  and  basic   problems  involving  current  and  voltage   •  Apply  Ohm’s  Law  to  simple  DC  circuits  

Defini:on   Electricity  is  a  form  of  energy  resul2ng   from  the  existence  of  charged  par2cles   (such  as  electrons  or  protons),  either   sta2cally  as  an  accumula2on  of   charge  or  dynamically  as  a  current.     Concise  Oxford  English  Dic:onary,  revised  10th  edi:on  

Defini:on   Electricity  is  a  form  of  energy  resul2ng   from  the  existence  of  charged  par2cles   (such  as  electrons  or  protons),  either   sta2cally  as  an  accumula2on  of   charge  or  dynamically  as  a  current.     Concise  Oxford  English  Dic:onary,  revised  10th  edi:on  

Defini:on   Conductor:    A  conductor  is  a  material  that   readily  allows  the  flow  of  electricity.  A   good  conductor  has  a  high  numerical   value  of  a  conduc2vity,  and  a  low   numerical  value  of  resistance.  

Defini:on   Conduc+vity:    All  materials  have  a  measurable   property  called  electrical  conduc:vity   that  indicates  the  ability  of  the   material  to  either  allow  or  impede  the   flow  of  electrons.  Materials  that  easily   conduct  electricity  have  a  high   conduc:vity.  

Defini:on   Insulator:    An  insulator  is  a  material  that  tends   to  impede  the  flow  of  electricity.  A   resistor  has  a  low  numerical  value  of   conduc:vity  and  high  numerical  value   of  resistance.  

Defini:on   Semiconductor:    A  semiconductor  is  a  material  with   conduc:vity  between  that  of  a   conductor  and  insulator.    The  conduc:vity  of  a  semiconductor   can  be  changed  by  exposing  it  to  an   electrical  field,  light,  mechanical   pressure,  or  heat.  

Simplified  Func:onal  Differences  

Semiconductors  can  be  used   in  devices  that  act  like  a   switch.    

Elements   •  Pure  substances  are  made  of  elements.   •  An  element  consists  of  atoms   •  Atoms  have  a  nucleus  consis:ng  of  protons   and  neutrons   •  Electrons  move  in  shells  around                                                 the  nucleus  

Elements   •  Number  of  protons  determines  the  element   •  Number  of  electrons  varies   –  State  of  electrical  charge   –  Is  the  element  in  a  chemical  bond?  

•  Number  of  neutrons  varies  with  isotope    

PERIODIC TABLE OF THE ELEMENTS

PERIOD

GROUP IA

1 1

1

H HYDROGEN

3

6.941

2

3

Be BERYLLIUM

Mg MAGNESIUM

39.098

40.078

IVB 5 47.867 23

IIIB 4 44.956 22

VB 6 50.942 24

K

Ca

Sc

Ti

V

CALCIUM

SCANDIUM

TITANIUM

VANADIUM

85.468

38

87.62

39

88.906

40

91.224

41

92.906

Rb

Sr

Y

Zr

Nb

RUBIDIUM

STRONTIUM

YTTRIUM

ZIRCONIUM

NIOBIUM

55

132.91

56

137.33

Cs

Ba

CAESIUM

BARIUM

87

(223)

88

(226)

Fr

Ra

FRANCIUM

RADIUM

10.811

57-71

La-Lu Lanthanide

72

Actinide

73

180.95

VIB 7 VIIB 8 51.996 25 54.938 26

Cr

Mn

95.96

43

Mo

(98)

Tc

183.84

75

186.21

B

C

N

O

F

CARBON

NITROGEN

OXYGEN

FLUORINE

IB 12 63.546 30

IIB 65.38

26.982

14

28.086

15

30.974

16

32.065

35.453

10

20.180

Ne NEON

18

39.948

Al

Si

P

S

Cl

Ar

ALUMINIUM

SILICON

PHOSPHORUS

SULPHUR

CHLORINE

ARGON

31

69.723

32

72.64

33

74.922

34

78.96

35

79.904

36

83.798

Co

Ni

Cu

Zn

Ga

Ge

As

Se

Br

Kr

COBALT

NICKEL

COPPER

ZINC

GALLIUM

GERMANIUM

ARSENIC

SELENIUM

BROMINE

KRYPTON

44

101.07

Ru 76

190.23

45

102.91

46

106.42

47

107.87

48

112.41

49

114.82

50

118.71

51

121.76

52

127.60

53

126.90

54

131.29

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

RHODIUM

PALLADIUM

SILVER

CADMIUM

INDIUM

TIN

ANTIMONY

TELLURIUM

IODINE

XENON

83

84

77

192.22

78

195.08

79

196.97

80

200.59

81

204.38

82

207.2

208.98

(209)

85

(210)

86

(222)

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

TANTALUM

TUNGSTEN

RHENIUM

OSMIUM

IRIDIUM

PLATINUM

GOLD

MERCURY

THALLIUM

LEAD

BISMUTH

POLONIUM

ASTATINE

RADON

(267)

105

(268)

106

(271)

107

(272)

108

(277)

Rf

Db

Sg

Bh

Hs

RUTHERFORDIUM

DUBNIUM

SEABORGIUM

BOHRIUM

HASSIUM

109

(276)

Mt

110

(281)

Ds

111

(280)

Rg

112

(285)

Cn

MEITNERIUM DARMSTADTIUM ROENTGENIUM COPERNICIUM

LANTHANIDE

57 (1) Pure Appl. Chem., 81, No. 11, 2131-2156 (2009)

17

HELIUM

IRON

MOLYBDENUM TECHNETIUM RUTHENIUM

74

58.693

11 29

18.998

VIIA

Fe

CHROMIUM MANGANESE

42

55.845

VIIIB 9 10 27 58.933 28

VIA 17 15.999 9

BORON

13

ELEMENT NAME

VA 16 14.007 8

HAFNIUM

89-103 104

Ac-Lr

178.49

RELATIVE ATOMIC MASS (1)

B

IVA 15 12.011 7

IIIA 14 10.811 6

13 5

IIIA

13 5

BORON

3 21

He

GROUP NUMBERS CHEMICAL ABSTRACT SERVICE (1986)

SYMBOL

POTASSIUM

37

7

20

ATOMIC NUMBER

24.305

Na 19

6

12

SODIUM

4

5

9.0122

Li 22.990

GROUP NUMBERS IUPAC RECOMMENDATION (1985)

IIA

2 4

LITHIUM

11

18 VIIIA 2 4.0026

http://www.periodni.com

1.0079

138.91

La

Relative atomic mass is shown with five significant figures. For elements have no LANTHANUM stable nuclides, the value enclosed in brackets indicates the mass number of the longest-lived ACTINIDE isotope of the element. However three such elements (Th, Pa, and U) do have a 89 (227) characteristic terrestrial isotopic composition, and for these an atomic weight is tabulated.

Copyright © 2010 Eni Generalic

58

140.12

59

Pr

Ce CERIUM

90

232.04

140.91

60

144.24

Nd

61

(145)

Pm

62

150.36

Sm

PRASEODYMIUM NEODYMIUM PROMETHIUM SAMARIUM

91

231.04

92

238.03

Ac

Th

Pa

U

ACTINIUM

THORIUM

PROTACTINIUM

URANIUM

93

(237)

Np

94

(244)

Pu

NEPTUNIUM PLUTONIUM

63

151.96

Eu

64

157.25

Gd

EUROPIUM GADOLINIUM

95

(243)

96

(247)

Am

Cm

AMERICIUM

CURIUM

65

158.93

66

162.50

67

164.93

68

167.26

69

168.93

70

173.05

71

174.97

Tb

Dy

Ho

Er

Tm

Yb

Lu

TERBIUM

DYSPROSIUM

HOLMIUM

ERBIUM

THULIUM

YTTERBIUM

LUTETIUM

97

(247)

Bk

98

(251)

Cf

99

(252)

Es

BERKELIUM CALIFORNIUM EINSTEINIUM

100

(257)

101

(258)

Fm

Md

FERMIUM

MENDELEVIUM

102

(259)

No

103

(262)

Lr

NOBELIUM LAWRENCIUM

Periodic  Table:  Copper  

Bohr  Model  of  the  atom  (Cu)  

Electrical  current  in  a  trivial  circuit   Conductor

+ Battery –

Electrical  current:  atomic  model  

+ Battery –

Electrical  Current:  electron  flow  

+ Battery –

Electrical  Current:  electron  flow  

Electron flow: negative to positive + Battery –

Electrical  Current:  current  conven:on  

Current flow: positive to negative

Electron flow: negative to positive

+ Battery –

How  many  electrons?  

How  many  electrons?  

Electrical  current:  poten:al  

Electrical  current:  electron  flow  

Electrical  current:  conven:on  

Defini:on:  Charge   Elementary  charge   1  electron  =  1.602    ×  10–19  coulomb   Coulomb   1  coulomb=  6.24    ×  1018  electrons  

Defini:on:  Current  

C 1A = 1 s 18 1 C = 6.24 "10 electrons

!

Defini:on:  Voltage  

J 1V = 1 coulomb

!

Voltage  and  electrical  work  

A

e–

B

If  the  voltage  between  A  and  B  is  one   volt,  then  one  Joule  of  work  is  done   when  6.28  ×  1018  electrons  move  from   A  to  B.  

Ohm’s  Law   V R I

V = IR

Ohm’s  Law  

Ohm’s  Law  

Ohm’s  Law  

Ohm’s  Law  

Example:  Current  through  a  light  bulb   A  1.5  volt  AA  baJery  is  wired  to  a  light  bulb  with   a  resistance  of  30  Ω.   a.  Sketch  the  components.   b.  Draw  the  circuit.   c.  Find  the  current  flowing  through  the  light   bulb.  

Example:  Current  through  a  light  bulb   A  1.5  volt  AA  baJery  is  wired  to  a  light  bulb  with   a  resistance  of  30  Ω.   a.  Sketch  the  components.    

Example:  Current  through  a  light  bulb   A  1.5  volt  AA  baJery  is  wired  to  a  light  bulb  with   a  resistance  of  30  Ω.   a.  Sketch  the  components.   b.  Draw  the  circuit.      

Example:  Current  through  a  light  bulb   c.  Find  the  current  flowing  through  the  bulb     Apply  Ohm’s  Law  to  the  loop        V  =  I  R  

V  and  R  and  known,  so  solve  for  I        I  =  V/R       Subs:tute  the  known  values  and  compute  the  value  of  I           I = 1.5V = 0.05 A = 50 mA   30 ! where  1  A  =  1000  mA.