Bibliography

5 downloads 0 Views 124KB Size Report
Research Express, 3 (3), p. 036501. Malek, S. and Gibson, L. (2015), “Effective elastic properties of periodic hexagonal honeycombs”,. Mechanics of Materials ...
Bibliography Adhikari, S. (1998), Energy Dissipation in Vibrating Structures, Master’s thesis, Cambridge University Engineering Department, Cambridge, UK, first Year Report. Adhikari, S. and Manohar, C. S. (2000), “Transient dynamics of stochastically parametered beams”, ASCE Journal of Engineering Mechanics, 126 (11), pp. 1131–1140. Adhikari, S. and Woodhouse, J. (2001), “Identification of damping: part 1, viscous damping”, Journal of Sound and Vibration, 243 (1), pp. 43–61. Ajdari, A., Jahromi, B. H., Papadopoulos, J., Nayeb-Hashemi, H., and Vaziri, A. (2012), “Hierarchical honeycombs with tailorable properties”, International Journal of Solids and Structures, 49 (11-12), pp. 1413 – 1419. Ajdari, A., Nayeb-Hashemi, H., Canavan, P., and Warner, G. (2008), “Effect of defects on elasticplastic behavior of cellular materials”, Materials Science and Engineering: A, 487 (1-2), pp. 558 – 567. Akdim, B., Pachter, R., Duan, X., and Adams, W. W. (2003), “Comparative theoretical study of single-wall carbon and boron-nitride nanotubes”, Phys. Rev. B, 67, p. 245404. Alsayednoor, J., Harrison, P., and Guo, Z. (2013), “Large strain compressive response of 2-d periodic representative volume element for random foam microstructures”, Mechanics of Materials, 66, pp. 7 – 20. Alzebdeh, K. (2012), “Evaluation of the in-plane effective elastic moduli of single-layered graphene sheet”, International Journal of Mechanics and Materials in Design, 8 (3), pp. 269– 278. Alzebdeh, K. I. (2014), “An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet”, Solid State Communications, 177, pp. 25 – 28.

263

Bacigalupo, A. and Bellis, M. L. D. (2015), “Auxetic anti-tetrachiral materials: Equivalent elastic properties and frequency band-gaps”, Composite Structures, 131, pp. 530 – 544. Bacigalupo, A. and Gambarotta, L. (2014), “Homogenization of periodic hexa- and tetrachiral cellular solids”, Composite Structures, 116, pp. 461 – 476. Bagley, R. L. and Torvik, P. J. (1983), “Fractional calculus–a different approach to the analysis of viscoelastically damped structures”, AIAA Journal, 21 (5), pp. 741–748. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N. (2008), “Superior thermal conductivity of single-layer graphene”, Nano letters, 8 (3), pp. 902–907. Balendhran, S., Walia, S., Nili, H., Sriram, S., and Bhaskaran, M. (2015), “Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene”, Small, 11 (6), pp. 640–652. Banerjee, J. R. (1989), “Coupled bending torsional dynamic stiffness matrix for beam elements”, International Journal for Numerical Methods in Engineering, 28 (6), pp. 1283–1298. Banerjee, J. R. (1997), “Dynamic stiffness formulation for structural elements: A general approach”, Computer and Structures, 63 (1), pp. 101–103. Banerjee, J. R. and Fisher, S. A. (1992), “Coupled bending torsional dynamic stiffness matrix for axially loaded beam elements”, International Journal for Numerical Methods in Engineering, 33 (4), pp. 739–751. Banerjee, J. R. and Williams, F. W. (1985), “Exact bernoulli-euler dynamic stiffness matrix for a range of tapered beams”, International Journal for Numerical Methods in Engineering, 21 (12), pp. 2289–2302. Banerjee, J. R. and Williams, F. W. (1992), “Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements”, Computer and Structures, 42 (3), pp. 301–310. Banerjee, J. R. and Williams, F. W. (1995), “Free-vibration of composite beams - an exact method using symbolic computation”, Journal of Aircraft, 32 (3), pp. 636–642. Banerjee, S. (2014), “On the mechanical properties of hierarchical lattices”, Mechanics of Materials, 72, pp. 19 – 32.

Bibliography

265

Bera, A. K., Mukhopadhyay, T., Mohan, P. J., and Dey, T. K. (2017), “A multi-attribute decision making approach of mix design based on experimental soil characterization”, Frontiers of Structural and Civil Engineering, pp. 1–11. Bertolazzi, S., Brivio, J., and Kis, A. (2011), “Stretching and breaking of ultrathin MoS2 ”, ACS Nano, 5 (12), pp. 9703–9709. Biot, M. A. (1955), “Variational principles in irreversible thermodynamics with application to viscoelasticity”, Physical Review, 97 (6), pp. 1463–1469. Biot, M. A. (1958), “Linear thermodynamics and the mechanics of solids”, in “Proceedings of the Third U. S. National Congress on Applied Mechanics”, ASME, New York, (pp. 1–18). Blakslee, O., Proctor, D., Seldin, E., Spence, G., and Weng, T. (1970), “Elastic constants of compression-annealed pyrolytic graphite”, Journal of Applied Physics, 41 (8), pp. 3373–3382. Bland, D. R. (1960), Theory of Linear Viscoelasticity, Pergamon Press, London. Boldrin, L., Hummel, S., Scarpa, F., Maio, D. D., Lira, C., Ruzzene, M., Remillat, C., Lim, T., Rajasekaran, R., and Patsias, S. (2016), “Dynamic behaviour of auxetic gradient composite hexagonal honeycombs”, Composite Structures, 149, pp. 114 – 124. Boldrin, L., Scarpa, F., Chowdhury, R., and Adhikari, S. (2011), “Effective mechanical properties of hexagonal boron nitride nanosheets”, Nanotechnology, 22 (50), p. 505702. Bosak, A., Serrano, J., Krisch, M., Watanabe, K., Taniguchi, T., and Kanda, H. (2006), “Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements”, Phys. Rev. B, 73, p. 041402. Brenner, D. W. (1990), “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys. Rev. B, 42, pp. 9458–9471. Bronsema, K., De Boer, J., and Jellinek, F. (1986), “On the structure of molybdenum diselenide and disulfide”, Zeitschrift f¨ur anorganische und allgemeine Chemie, 540 (9-10), pp. 15–17. Brunier, T. M., Drew, M. G. B., and Mitchell, P. C. H. (1992), “Molecular mechanics studies of molybdenum disulphide catalysts parameterisation of molybdenum and sulphur”, Molecular Simulation, 9 (2), pp. 143–159.

Castellanos-Gomez, A., Poot, M., Steele, G. A., van der Zant, H. S., Agra¨ıt, N., and RubioBollinger, G. (2012), “Elastic properties of freely suspended mos2 nanosheets”, Advanced Materials, 24 (6), pp. 772–775. Castellanos-Gomez, A., van Leeuwen, R., Buscema, M., van der Zant, H. S., Steele, G. A., and Venstra, W. J. (2013), “Single-layer mos2 mechanical resonators”, Advanced Materials, 25 (46), pp. 6719–6723. Chakrabarti, A. and Sheikh, A. (2004), “Vibration of laminate faced sandwich plate by a new refined element”, Journal of Aerospace Engineering, 17, pp. 123–134. Chalak, H. D., Chakrabarti, A., Iqbal, M. A., and Sheikh, A. (2012), “Vibration of laminated sandwich beams with soft core”, Journal of Vibration and Control, 18, pp. 1422 – 1435. Chang, T. and Gao, H. (2003), “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model”, Journal of the Mechanics and Physics of Solids, 51 (6), pp. 1059–1074. Chen, D. H. and Yang, L. (2011), “Analysis of equivalent elastic modulus of asymmetrical honeycomb”, Composite Structures, 93 (2), pp. 767–773. Chen, X., Meng, R., Jiang, J., Liang, Q., Yang, Q., Tan, C., Sun, X., Zhang, S., and Ren, T. (2016), “Electronic structure and optical properties of graphene/stanene heterobilayer”, Physical Chemistry Chemical Physics, 18 (24), pp. 16302–16309. Christensen, R. (2012), Theory of viscoelasticity: an introduction, Elsevier. Christensen, R. M. (1982), Theory of Viscoelasticity, Academic Press Inc, New York, first edition, reprinted by Dover Publication Inc, 2003, second Editon. Coehoorn, R., Haas, C., Dijkstra, J., Flipse, C. J. F., de Groot, R. A., and Wold, A. (1987), “Electronic structure of mose2 , mos2 , and wse2 . i. band-structure calculations and photoelectron spectroscopy”, Physical review B, 35, pp. 6195–6202. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995), “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules”, Journal of the American Chemical Society, 117 (19), pp. 5179–5197.

Bibliography

267

Critchley, R., Corni, I., Wharton, J. A., Walsh, F. C., Wood, R. J. K., and Stokes, K. R. (2013), “A review of the manufacture, mechanical properties and potential applications of auxetic foams”, Physica Status Solidi B, 250 (10), pp. 1963–1982. Das, S., Robinson, J. A., Dubey, M., Terrones, H., and Terrones, M. (2015), “Beyond graphene: Progress in novel two-dimensional materials and van der waals solids”, Annual Review of Materials Research, 45, pp. 1–27. Dawe, D. (1984), Matrix and Finite Element Displacement Analysis of Structures, Oxford University Press, Oxford, UK. Demczyk, B., Wang, Y., Cumings, J., Hetman, M., Han, W., Zettl, A., and Ritchie, R. (2002), “Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes”, Materials Science and Engineering: A, 334 (12), pp. 173 – 178. Deodatis, G. (1991), “The weighted integral method, i: stochastic stiffness matrix”, Journal of Engineering Mechanics-ASCE, 117 (8), pp. 1851–1864. Deodatis, G. and Shinozuka, M. (1991), “The weighted integral method, ii : response variability and reliability”, Journal of Engineering Mechanics-ASCE, 117 (8), pp. 1865–1877. Dey, S., Mukhopadhyay, T., and Adhikari, S. (2015a), “Stochastic free vibration analyses of composite shallow doubly curved shells–a kriging model approach”, Composites Part B: Engineering, 70, pp. 99–112. Dey, S., Mukhopadhyay, T., and Adhikari, S. (2015b), “Stochastic free vibration analysis of angleply composite plates – a rs-hdmr approach”, Composite Structures, 122, pp. 526 – 536. Dey, S., Mukhopadhyay, T., and Adhikari, S. (2017a), “Metamodel based high-fidelity stochastic analysis of composite laminates: A concise review with critical comparative assessment”, Composite Structures, 171, pp. 227 – 250. Dey, S., Mukhopadhyay, T., and Adhikari, S. (2018a), “Uncertainty quantification in laminated composites: A meta-model based approach”, CRC Press. Dey, S., Mukhopadhyay, T., Dey, T. K., Chalak, H. D., and Adhikari, S. (2016a), “Multivariate adaptive regression splines based stochastic free vibration analysis of sandwich skewed plates”, International Journal of Mechanical Sciences, under review.

Dey, S., Mukhopadhyay, T., Khodaparast, H. H., and Adhikari, S. (2015c), “Stochastic natural frequency of composite conical shells”, Acta Mechanica, 226 (8), pp. 2537–2553. Dey, S., Mukhopadhyay, T., Khodaparast, H. H., and Adhikari, S. (2016b), “Fuzzy uncertainty propagation in composites using gram–schmidt polynomial chaos expansion”, Applied Mathematical Modelling, 40 (7-8), pp. 4412–4428. Dey, S., Mukhopadhyay, T., Khodaparast, H. H., and Adhikari, S. (2016c), “A response surface modelling approach for resonance driven reliability based optimization of composite shells”, Periodica Polytechnica. Civil Engineering, 60 (1), p. 103. Dey, S., Mukhopadhyay, T., Khodaparast, H. H., Kerfriden, P., and Adhikari, S. (2015d), “Rotational and ply-level uncertainty in response of composite shallow conical shells”, Composite Structures, 131, pp. 594–605. Dey, S., Mukhopadhyay, T., Naskar, S., Dey, T., Chalak, H., and Adhikari, S. (2017b), “Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates”, Journal of Sandwich Structures & Materials, p. DOI: 10.1177/1099636217694229. Dey, S., Mukhopadhyay, T., Sahu, S., and Adhikari, S. (2016d), “Effect of cutout on stochastic natural frequency of composite curved panels”, Composites Part B: Engineering, 105, pp. 188 – 202. Dey, S., Mukhopadhyay, T., Sahu, S., and Adhikari, S. (2018b), “Stochastic dynamic stability analysis of composite curved panels subjected to non-uniform partial edge loading”, European Journal of Mechanics-A/Solids, 67, pp. 108–122. Dey, S., Mukhopadhyay, T., Sahu, S., Li, G., Rabitz, H., and Adhikari, S. (2015e), “Thermal uncertainty quantification in frequency responses of laminated composite plates”, Composites Part B: Engineering, 80, pp. 186–197. Dey, S., Mukhopadhyay, T., Spickenheuer, A., Adhikari, S., and Heinrich, G. (2016e), “Bottom up surrogate based approach for stochastic frequency response analysis of laminated composite plates”, Composite Structures, 140, pp. 712 – 727. Dey, S., Mukhopadhyay, T., Spickenheuer, A., Gohs, U., and Adhikari, S. (2016f), “Uncertainty quantification in natural frequency of composite plates: an artificial neural network based approach”, Advanced Composites Letters, 25, pp. 43 – 48.

Bibliography

269

Dey, S., Naskar, S., Mukhopadhyay, T., Gohs, U., Spickenheuer, A., Bittrich, L., Sriramula, S., Adhikari, S., and Heinrich, G. (2016g), “Uncertain natural frequency analysis of composite plates including effect of noise –a polynomial neural network approach”, Composite Structures, 143, pp. 130 – 142. Dey, T. K., Mukhopadhyay, T., Chakrabarti, A., and Sharma, U. K. (2015f), “Efficient lightweight design of frp bridge deck”, Proceedings of the Institution of Civil Engineers-Structures and Buildings, 168 (10), pp. 697–707. Doyle, J. F. (1989), Wave Propagation in Structures, Springer Verlag, New York. El-Sayed, F. K. A., Jones, R., and Burgess, I. W. (1979), “A theoretical approach to the deformation of honeycomb based composite materials”, Composites, 10 (4), pp. 209–214. Elder, R. M., Neupane, M. R., and Chantawansri, T. L. (2015), “Stacking order dependent mechanical properties of graphene/mos2 bilayer and trilayer heterostructures”, Applied Physics Letters, 107 (7), p. 073101. Enelund, M. and Olsson, P. (1999), “Damping described by fading memory - analysis and application to fractional derivative models”, International Journal of Solids and Structures, 36 (7), pp. 939 – 970. Evans, K. E. and Alderson, A. (2000), “Auxetic materials: Functional materials and structures from lateral thinking!”, Advanced Materials, 12 (9), pp. 617–628. Evans, K. E., Nkansah, M. A., Hutchinson, I. J., and Rogers, S. C. (1991), “Molecular network design”, Nature, 353 (6340), p. 124. Ferguson, N. J. and Pilkey, W. D. (1993a), “Literature review of variants of dynamic stiffness method, Part 1: The dynamic element method”, The Shock and Vibration Digest, 25 (2), pp. 3– 12. Ferguson, N. J. and Pilkey, W. D. (1993b), “Literature review of variants of dynamic stiffness method, Part 2: Frequency-dependent matrix and other”, The Shock and Vibration Digest, 25 (4), pp. 3–10. Fleck, N. A., Deshpande, V. S., and Ashby, M. F. (2010), “Micro-architectured materials: past, present and future”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 466 (2121), pp. 2495–2516.

Flores, E. S., DiazDelaO, F., Friswell, M., and Sienz, J. (2012), “A computational multi-scale approach for the stochastic mechanical response of foam-filled honeycomb cores”, Composite Structures, 94 (5), pp. 1861 – 1870. Fung, Y. C. (1965), Foundations of Solid Mechanics, Prentice-Hall Inc., Englewood Cliffs, New Jersey. Geim, A. K. and Grigorieva, I. V. (2013), “Van der waals heterostructures”, Nature, 499 (7459), pp. 419–425. Gelin, B. R. (1994), Molecular Modeling of Polymer Structures and Properties, Hanser Gardner Publications. Ghanem, R. and Spanos, P. (1991), Stochastic Finite Elements: A Spectral Approach, SpringerVerlag, New York, USA. Gibson, L. and Ashby, M. F. (1999), Cellular Solids Structure and Properties, Cambridge University Press, Cambridge, UK. Giraitis, L. and Surgailis, D. (1990), “A central limit theorem for quadratic form in strongly dependent linear variables and its application to whittle’s estimate”, Probability Theory and Related Fields, 86, pp. 87 – 140. Golla, D. F. and Hughes, P. C. (1985), “Dynamics of viscoelastic structures - a time domain finite element formulation”, Transactions of ASME, Journal of Applied Mechanics, 52, pp. 897–906. Gopalakrishnan, S., Chakraborty, A., and Mahapatra, D. R. (2007), Spectral Finite Element Method, Springer Verlag, New York. Goswami, S. (2006), “On the prediction of effective material properties of cellular hexagonal honeycomb core”, Journal of Reinforced Plastics and Composites, 25 (4), pp. 393–405. Grantab, R., Shenoy, V. B., and Ruoff, R. S. (2010), “Anomalous strength characteristics of tilt grain boundaries in graphene”, Science, 330 (6006), pp. 946–948. Grima, J. N., Cauchi, R., Gatt, R., and Attard, D. (2013), “Honeycomb composites with auxetic out-of-plane characteristics”, Composite Structures, 106, pp. 150 – 159.

Bibliography

271

Grima, J. N., Winczewski, S., Mizzi, L., Grech, M. C., Cauchi, R., Gatt, R., Attard, D., Wojciechowski, K. W., and ybicki, J. R. (2015), “Tailoring graphene to achieve negative poisson’s ratio properties”, Advanced Materials, 27, pp. 1455 – 1459. Hashemi, S. M. and Richard, M. J. (2000), “Free vibrational analysis of axially loaded bendingtorsion coupled beams: a dynamic finite element”, Computer and Structures, 77 (6), pp. 711– 724. Hashemi, S. M., Richard, M. J., and Dhatt, G. (1999), “A new Dynamic Finite Element (DFE) formulation for lateral free vibrations of Euler-Bernoulli spinning beams using trigonometric shape functions”, Journal of Sound and Vibration, 220 (4), pp. 601–624. Hodges, C. H. and Woodhouse, J. (1983), “Vibration isolation from irregularity in a nearly periodic structure: Theory and measurements”, The Journal of the Acoustical Society of America, 74 (3), pp. 894–905. Hu, L. L. and Yu, T. X. (2013), “Mechanical behavior of hexagonal honeycombs under lowvelocity impact- theory and simulations”, International Journal of Solids and Structures, 50 (2021), pp. 3152 – 3165. Huang, C., Chen, C., Zhang, M., Lin, L., Ye, X., Lin, S., Antonietti, M., and Wang, X. (2015), “Carbon-doped bn nanosheets for metal-free photoredox catalysis”, Nature communications, 6, 7698. Huang, S. P., Quek, S. T., and Phoon, K. K. (2001), “Convergence study of the truncated karhunenloeve expansion for simulation of stochastic processes”, International Journal for Numerical Methods in Engineering, 52, pp. 1029–1043. Hurtado, J. E. and Barbat, A. H. (1998), “Monte carlo techniques in computational stochastic mechanics”, Archives of Computational Methods in Engineering, 5 (1), pp. 3–29. Jang, W. Y. and Kyriakides, S. (2015), “On the buckling and crushing of expanded honeycomb”, International Journal of Mechanical Sciences, 91, pp. 81 – 90. Javid, F., Liu, J., Shim, J., Weaver, J. C., Shanian, A., and Bertoldi, K. (2016), “Mechanics of instability-induced pattern transformations in elastomeric porous cylinders”, Journal of the Mechanics and Physics of Solids, 96, pp. 1 – 17.

Jiang, J.-W. and Park, H. S. (2014), “Mechanical properties of mos2/graphene heterostructures”, Applied Physics Letters, 105 (3), p. 033108. Jiang, J.-W., Qi, Z., Park, H. S., and Rabczuk, T. (2013), “Elastic bending modulus of single-layer molybdenum disulfide (mos2): finite thickness effect”, Nanotechnology, 24 (43), p. 435705. Jiang, J.-W., Wang, J.-S., and Li, B. (2009), “Young’s modulus of graphene: A molecular dynamics study”, Phys. Rev. B, 80, p. 113405. Jiang, L. and Guo, W. (2011), “A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes”, Journal of the Mechanics and Physics of Solids, 59 (6), pp. 1204 – 1213. Jones, D. I. G. (2001), Handbook of Viscoelastic Vibration Damping, Wiley-Blackwell, Sussex, UK. K., K. P., T., M., and S., D. (2018), “Fuzzy based frequency response function analysis of functionally graded plates”, Hierarchical Composite Materials. Kahle, E. and Woodhouse, J. (1994), “The influence of cell geometry on the elasticity of softwood”, Journal of Materials Science, 29 (5), pp. 1250–1259. Karhunen, K. (1947), “Uber lineare methoden in der wahrscheinlichkeitsrechnung”, Annales Academiae Scientiarum Fennicae, Ser. A137. Karnessis, N. and Burriesci, G. (2013), “Uniaxial and buckling mechanical response of auxetic cellular tubes”, Smart Materials and Structures, 22 (8), p. 084008. Karsh, P., Dey, S., and Mukhopadhyay, T. (2018a), “Stochastic dynamic analysis of twisted functionally graded plates”, Composites Part B: Engineering. Karsh, P., Mukhopadhyay, T., and Dey, S. (2018b), “Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination”, Composite Structures, 184, pp. 554–567. Kiureghian, A. D. (1988), “The stochastic finite element method in structural reliability”, Probabilistic Engineering Mechanics, 3 (2), pp. 83–91.

Bibliography

273

Klintworth, J. W. and Stronge, W. J. (1988), “Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs”, International Journal of Mechanical Sciences, 30 (3-4), pp. 273 – 292. Kudin, K. N., Scuseria, G. E., and Yakobson, B. I. (2001), “C2 F, bn, and c nanoshell elasticity from ab initio computations”, Physical Review B, 64 (23), p. 235406. Kumar, A., Chakrabarti, A., Bhargava, P., and Chowdhury, R. (2015), “Probabilistic failure analysis of laminated sandwich shells based on higher order zigzag theory”, Journal of Sandwich Structures and Materials, 17, pp. 546 – 561. Kumar, S., Mukhopadhyay, T., Waseem, S. A., Singh, B., and Iqbal, M. A. (2016), “Effect of platen restraint on stress–strain behavior of concrete under uniaxial compression: a comparative study”, Strength of Materials, 48 (4), pp. 592–602. Le, M.-Q. (2014), “Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations”, Meccanica, 49 (7), pp. 1709–1719. Le, M.-Q. (2015), “Prediction of young’s modulus of hexagonal monolayer sheets based on molecular mechanics”, International Journal of Mechanics and Materials in Design, 11 (1), pp. 15–24. Lee, C., Wei, X., Kysar, J. W., and Hone, J. (2008), “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, 321 (5887), pp. 385–388. Lee, C., Wei, X., Li, Q., Carpick, R., Kysar, J. W., and Hone, J. (2009), “Elastic and frictional properties of graphene”, physica status solidi (b), 246 (11-12), pp. 2562–2567. Lee, C. R., Kam, T. Y., and Sun, S. J. (2007), “Free-vibration analysis and material constants identification of laminated composite sandwich plates”, Journal of Engineering Mechanics, 133, pp. 874 – 886. Lesieutre, G. A. and Mingori, D. L. (1990), “Finite element modeling of frequency-dependent material properties using augmented thermodynamic fields”, AIAA Journal of Guidance, Control and Dynamics, 13, pp. 1040–1050. Li, C. and Chou, T. W. (2003), “A structural mechanics approach for the analysis of carbon nanotubes”, International Journal of Solids and Structures, 40 (10), pp. 2487 – 2499.

Li, C. and Chou, T.-W. (2006), “Static and dynamic properties of single-walled boron nitride nanotubes”, Journal of nanoscience and nanotechnology, 6 (1), pp. 54–60. Li, C.-C. and Der Kiureghian, A. (1993), “Optimal discretization of random fields”, Journal of Engineering Mechanics, 119 (6), pp. 1136–1154. Li, K., Gao, X. L., and Subhash, G. (2005), “Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids”, International Journal of Solids and Structures, 42 (5-6), pp. 1777–1795. Li, K., Gao, X. L., and Wang, J. (2007), “Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness”, International Journal of Solids and Structures, 44 (14-15), pp. 5003 – 5026. Li, Q., Liu, M., Zhang, Y., and Liu, Z. (2016), “Hexagonal boron nitride–graphene heterostructures: Synthesis and interfacial properties”, Small, 12 (1), pp. 32–50. Li, T. (2012), “Ideal strength and phonon instability in single-layer mos 2”, Physical Review B, 85 (23), p. 235407. Lier, G. V., Alsenoy, C. V., Doren, V. V., and Geerlings, P. (2000), “Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene”, Chemical Physics Letters, 326 (12), pp. 181 – 185. Liu, F., Ming, P., and Li, J. (2007), “Ab initio calculation of ideal strength and phonon instability of graphene under tension”, Physical Review B, 76 (6), p. 064120. Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tomnek, D., and Ye, P. D. (2014a), “Phosphorene: An unexplored 2d semiconductor with a high hole mobility”, ACS Nano, 8 (4), pp. 4033–4041. Liu, K., Yan, Q., Chen, M., Fan, W., Sun, Y., Suh, J., Fu, D., Lee, S., Zhou, J., Tongay, S., Ji, J., Neaton, J. B., and Wu, J. (2014b), “Elastic properties of chemical-vapor-deposited monolayer mos2, ws2, and their bilayer heterostructures”, Nano Letters, 14 (9), pp. 5097–5103. Liu, W., Belytschko, T., and Mani, A. (1986a), “Probabilistic finite elements for nonlinear structural dynamics”, Computer Methods in Applied Mechanics and Engineering, 56 (1), pp. 61–81. Liu, W., Belytschko, T., and Mani, A. (1986b), “Random field finite elements”, International Journal for Numerical Methods in Engineering, 23 (10), pp. 1831–1845.

Bibliography

275

Liu, W., Wang, N., Huang, J., and Zhong, H. (2014c), “The effect of irregularity, residual convex units and stresses on the effective mechanical properties of 2d auxetic cellular structure”, Materials Science and Engineering: A, 609, pp. 26–33. Liu, X., Metcalf, T. H., Robinson, J. T., Houston, B. H., and Scarpa, F. (2012a), “Shear modulus of monolayer graphene prepared by chemical vapor deposition”, Nano Letters, 12 (2), pp. 1013– 1017. Liu, Y., Xie, B., Zhang, Z., Zheng, Q., and Xu, Z. (2012b), “Mechanical properties of graphene papers”, Journal of the Mechanics and Physics of Solids, 60 (4), pp. 591–605. Lo`eve, M. (1977), Probability Theory, Springer-Verlag, fouth edition. Long, R., Barry, O., and Oquamanam, D. C. D. (2012), “Finite element free vibration analysis of soft-core sandwich beams”, AIAA Journal, 50, pp. 235 – 238. Lopez Jimenez, F. and Triantafyllidis, N. (2013), “Buckling of rectangular and hexagonal honeycomb under combined axial compression and transverse shear”, International Journal of Solids and Structures, 50 (24), pp. 3934 – 3946. Lorenz, T., Joswig, J.-O., and Seifert, G. (2014), “Stretching and breaking of monolayer mos2 – an atomistic simulation”, 2D Materials, 1 (1), p. 011007. Lorenz, T., Teich, D., Joswig, J.-O., and Seifert, G. (2012), “Theoretical study of the mechanical behavior of individual TiS2 and MoS2 nanotubes”, The Journal of Physical Chemistry C, 116 (21), pp. 11714–11721. Lyon, A. (2014), “Why are normal distributions normal?”, The British Journal for the Philosophy of Science, 65, pp. 621–649. Ma, Z. and Dai, S. (1989), “Ab initio studies on the electronic structure of the complexes containing mos bond using relativistic effective core potentials”, Acta Chimica Sinica English Edition, 7 (3), pp. 201–208. Maharshi, K., Mukhopadhyay, T., Roy, B., Roy, L., and Dey, S. (2018), “Stochastic dynamic behaviour of hydrodynamic journal bearings including the effect of surface roughness”, International Journal of Mechanical Sciences.

Mahata, A., Mukhopadhyay, T., and Adhikari, S. (2016), “A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper”, Materials Research Express, 3 (3), p. 036501. Malek, S. and Gibson, L. (2015), “Effective elastic properties of periodic hexagonal honeycombs”, Mechanics of Materials, , doi: http://dx.doi.org/10.1016/j.mechmat.2015.07.008. Malekmohammadi, S., Tressou, B., Nadot-Martin, C., Ellyin, F., and Vaziri, R. (2014), “Analytical micromechanics equations for elastic and viscoelastic properties of strand-based composites”, Journal of Composite Materials, 48 (15), pp. 1857–1874. Mannix, A. J., Zhou, X., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., Liu, X., Fisher, B. L., Santiago, U., Guest, J. R., Yacaman, M. J., Ponce, A., Oganov, A. R., Hersam, M. C., and Guisinger, N. P. (2015), “Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs”, Science, 350 (6267), pp. 1513–1516. Manohar, C. and Adhikari, S. (1998a), “Dynamic stiffness of randomly parametered beams”, Probabilistic Engineering Mechanics, 13 (1), pp. 39 – 51. Manohar, C. S. and Adhikari, S. (1998b), “Dynamic stiffness of randomly parametered beams”, Probabilistic Engineering Mechanics, 13 (1), pp. 39–51. Masters, I. G. and Evans, K. E. (1996), “Models for the elastic deformation of honeycombs”, Composite Structures, 35 (4), pp. 403–422. MATLAB (2013), version 8.2.0.701 (R2013b), The MathWorks Inc. Matthies, H. G., Brenner, C. E., Bucher, C. G., and Guedes Soares, C. (1997), “Uncertainties in probabilistic numerical analysis of structures and solids-stochastic finite elements”, Structural Safety, 19 (3), pp. 283–336. Mayo, S. L., Olafson, B. D., and Goddard, W. A. (1990), “Dreiding: a generic force field for molecular simulations”, The Journal of Physical Chemistry, 94 (26), pp. 8897–8909. McTavish, D. J. and Hughes, P. C. (1993), “Modeling of linear viscoelastic space structures”, Transactions of ASME, Journal of Vibration and Acoustics, 115, pp. 103–110. Meirovitch, L. (1997), Principles and Techniques of Vibrations, Prentice-Hall International, Inc., New Jersey.

Bibliography

277

Metya, S., Mukhopadhyay, T., Adhikari, S., and Bhattacharya, G. (2017), “System reliability analysis of soil slopes with general slip surfaces using multivariate adaptive regression splines”, Computers and Geotechnics, 87, pp. 212–228. Modarresi, M., Kakoee, A., Mogulkoc, Y., and Roknabadi, M. (2015), “Effect of external strain on electronic structure of stanene”, Computational Materials Science, 101, pp. 164 – 167. Mortazavi, B., Rahaman, O., Makaremi, M., Dianat, A., Cuniberti, G., and Rabczuk, T. (2017), Physica E: Low-dimensional Systems and Nanostructures, 87, pp. 228 – 232. Mousanezhad, D., Ebrahimi, H., Haghpanah, B., Ghosh, R., Ajdari, A., Hamouda, A. M. S., and Vaziri, A. (2015), “Spiderweb honeycombs”, International Journal of Solids and Structures. doi: http://dx.doi.org/10.1016/j.ijsolstr.2015.03.036. Muhlestein, M. B. and Haberman, M. R. (2016), “A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 472 (2192). Mukhopadhyay, T. (2017), “A multivariate adaptive regression splines based damage identification methodology for web core composite bridges including the effect of noise”, Journal of Sandwich Structures & Materials, p. DOI: 10.1177/1099636216682533. Mukhopadhyay, T. and Adhikari, S. (2016a), “Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity”, Mechanics of Materials, 95, pp. 204 – 222. Mukhopadhyay, T. and Adhikari, S. (2016b), “Equivalent in-plane elastic properties of irregular honeycombs: An analytical approach”, International Journal of Solids and Structures, 91, pp. 169 – 184. Mukhopadhyay, T. and Adhikari, S. (2016c), “Free vibration analysis of sandwich panels with randomly irregular honeycomb core”, Journal of Engineering Mechanics, 10.1061/(ASCE)EM.1943-7889.0001153 , 06016008. Mukhopadhyay, T. and Adhikari, S. (2017a), “Effective in-plane elastic moduli of quasi-random spatially irregular hexagonal lattices”, International Journal of Engineering Science, 119, pp. 142 – 179. Mukhopadhyay, T. and Adhikari, S. (2017b), “Stochastic mechanics of metamaterials”, Composite Structures, 162, pp. 85 – 97.

Mukhopadhyay, T., Adhikari, S., and Batou, A. (2017a), “Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic lattices”, International Journal of Mechanical Sciences. Mukhopadhyay, T., Chakraborty, S., Dey, S., Adhikari, S., and Chowdhury, R. (2017b), “A critical assessment of kriging model variants for high-fidelity uncertainty quantification in dynamics of composite shells”, Archives of Computational Methods in Engineering, 24 (3), pp. 495–518. Mukhopadhyay, T., Chowdhury, R., and Chakrabarti, A. (2016a), “Structural damage identification: A random sampling-high dimensional model representation approach”, Advances in Structural Engineering, 19 (6), pp. 908–927. Mukhopadhyay, T., Dey, T. K., Chowdhury, R., and Chakrabarti, A. (2015a), “Structural damage identification using response surface-based multi-objective optimization: a comparative study”, Arabian Journal for Science and Engineering, 40 (4), pp. 1027–1044. Mukhopadhyay, T., Dey, T. K., Chowdhury, R., Chakrabarti, A., and Adhikari, S. (2015b), “Optimum design of frp bridge deck: an efficient rs-hdmr based approach”, Structural and Multidisciplinary Optimization, 52 (3), pp. 459–477. Mukhopadhyay, T., Dey, T. K., Dey, S., and Chakrabarti, A. (2015c), “Optimisation of fibrereinforced polymer web core bridge decka hybrid approach”, Structural Engineering International, 25 (2), pp. 173–183. Mukhopadhyay, T., Mahata, A., Adhikari, S., and Asle Zaeem, M. (2018), “Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructures”, Nanoscale, pp. – . Mukhopadhyay, T., Mahata, A., Adhikari, S., and Zaeem, M. A. (2017c), “Effective elastic properties of two dimensional multiplanar hexagonal nanostructures”, 2D Materials, 4 (2), p. 025006. Mukhopadhyay, T., Mahata, A., Adhikari, S., and Zaeem, M. A. (2017d), “Effective mechanical properties of multilayer nano-heterostructures”, Scientific reports, 7 (1), p. 15818. Mukhopadhyay, T., Mahata, A., Dey, S., and Adhikari, S. (2016b), “Probabilistic analysis and design of hcp nanowires: An efficient surrogate based molecular dynamics simulation approach”, Journal of Materials Science & Technology, 32 (12), pp. 1345 – 1351.

Bibliography

279

Mukhopadhyay, T., Naskar, S., Dey, S., and Adhikari, S. (2016c), “On quantifying the effect of noise in surrogate based stochastic free vibration analysis of laminated composite shallow shells”, Composite Structures, 140, pp. 798 – 805. Murmu, T. and Adhikari, S. (2010), “Nonlocal transverse vibration of double-nanobeam-systems”, Journal of Applied Physics, 108 (8), pp. 083514:1–9. Naskar, S., Mukhopadhyay, T., Sriramula, S., and Adhikari, S. (2017), “Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties”, Composite Structures, 160, pp. 312 – 334. Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., and Lu, J. (2012), “Tunable bandgap in silicene and germanene”, Nano Letters, 12 (1), pp. 113–118. Nkansah, M. A., Evans, K. E., and Hutchinson, I. J. (1994), “Modelling the mechanical properties of an auxetic molecular network”, Modelling and Simulation in Materials Science and Engineering, 2 (3), p. 337. Noor, A. K., Burton, W. S., and Bert, C. W. (1996), “Computational models for sandwich panels and shells”, Applied Mechanics Reviews, 49, pp. 155 – 199. Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., and Firsov, A. (2005), “Two-dimensional gas of massless dirac fermions in graphene”, Nature, 438 (7065), pp. 197–200. Oh, E. S. (2010), “Elastic properties of boron-nitride nanotubes through the continuum lattice approach”, Materials Letters, 64 (7), pp. 859 – 862. Oh, E. S. (2011), “Elastic properties of various boron-nitride structures”, Metals and Materials International, 17 (1), pp. 21–27. Olympio, K. R. and Gandhi, F. (2010), “Zero poissons ratio cellular honeycombs for flex skins undergoing one-dimensional morphing”, Journal of Intelligent Material Systems and Structures, 21 (17), pp. 1737–1753. Ostoja-Starzewski, M. (2007), Microstructural randomness and scaling in mechanics of materials, CRC Press.

Overaker, D. W., Cuitio, A. M., and Langrana, N. A. (1998), “Effects of morphology and orientation on the behavior of two-dimensional hexagonal foams and application in a re-entrant foam anchor model”, Mechanics of Materials, 29 (1), pp. 43 – 52. Pandit, M., Singh, B., and Sheikh, A. (2009), “Stochastic perturbation-based finite element for deflection statistics of soft core sandwich plate with random material properties”, International Journal of Mechanical Sciences, 51, pp. 363 – 371. Pandit, M., Singh, B., and Sheikh, A. (2010), “Stochastic free vibration response of soft core sandwich plates using an improved higher-order zigzag theory”, Journal of Aerospace Engineering, 23, pp. 14 – 23. Pantano, A., Parks, D. M., and Boyce, M. C. (2004), “Mechanics of deformation of single- and multi-wall carbon nanotubes”, Journal of the Mechanics and Physics of Solids, 52 (4), pp. 591– 605. Papka, S. D. and Kyriakides, S. (1994), “In-plane compressive response and crushing of honeycomb”, Journal of the Mechanics and Physics of Solids, 42 (10), pp. 1499 – 1532. Papka, S. D. and Kyriakides, S. (1998), “Experiments and full-scale numerical simulations of inplane crushing of a honeycomb”, Acta Materialia, 46 (8), pp. 2765 – 2776. Paz, M. (1980), Structural Dynamics: Theory and Computation, Van Nostrand, Reinhold, second edition. Peng, Q., Ji, W., and De, S. (2012), “Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study”, Computational Materials Science, 56, pp. 11 – 17. Petyt, M. (1998), Introduction to Finite Element Vibration Analysis, Cambridge University Press, Cambridge, UK. Phani, A. S., Woodhouse, J., and Fleck, N. (2006), “Wave propagation in two-dimensional periodic lattices”, The Journal of the Acoustical Society of America, 119 (4), pp. 1995–2005. Rad, M. S., Prawoto, Y., and Ahmad, Z. (2014), “Analytical solution and finite element approach to the 3d re-entrant structures of auxetic materials”, Mechanics of Materials, 74, pp. 76 – 87. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, i. V., and Kis, A. (2011), “Single-layer mos2 transistors”, Nature nanotechnology, 6 (3), pp. 147–150.

Bibliography

281

Rao, M. K., Scherbatiuk, K., Desai, Y. M., , and Shah, A. H. (2004), “Natural vibrations of laminated and sandwich plates”, Journal of Engineering Mechanics, 130, pp. 1268 – 1278. Ren, C.-C., Feng, Y., Zhang, S.-F., Zhang, C.-W., and Wang, P.-J. (2017), “The electronic properties of the stanene/mos2 heterostructure under strain”, RSC Adv., 7, pp. 9176–9181. Rice, J. A. (1995), Mathematical Statistics and Data Analysis, Duxbury Press. Roark, R. J. and Young, W. C. (1976), Formulas for Stress and Strain, McGraw-Hill Book Company. Romijn, N. E. and Fleck, N. A. (2007), “The fracture toughness of planar lattices: Imperfection sensitivity”, Journal of the Mechanics and Physics of Solids, 55 (12), pp. 2538 – 2564. Rossiter, J., Takashima, K., Scarpa, F., Walters, P., and Mukai, T. (2014), “Shape memory polymer hexachiral auxetic structures with tunable stiffness”, Smart Materials and Structures, 23 (4), p. 045007. Rouleau, L., Dea, J.-F., Legay, A., and Lay, F. L. (2013), “Application of Kramers-Kronig relations to time-temperature superposition for viscoelastic materials”, Mechanics of Materials, 65 (10), pp. 66 – 75. Ruppert, C., Aslan, O. B., and Heinz, T. F. (2014), “Optical properties and band gap of single- and few-layer mote2 crystals”, Nano Letters, 14 (11), pp. 6231–6236. S., D., T., M., and S., A. (2018a), “Uncertainty quantification in laminated composites: A metamodel based approach”, CRC Press. S., N., T., M., and S., S. (2018b), “A comparative assessment of ann and pnn model for lowfrequency stochastic free vibration analysis of composite plates”, Handbook of Probabilistic Models for Engineers and Scientists. Sakhaee-Pour, A. (2009), “Elastic properties of single layered graphene sheet”, Solid State Communications, 149, pp. 91–95. S´anchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., and Ordej´on, P. (1999), “Ab initio structural, elastic, and vibrational properties of carbon nanotubes”, Phys. Rev. B, 59, pp. 12678– 12688.

Sayyad, A. S. and Ghugal, Y. M. (2015), “On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results”, Composite Structures, 129, pp. 177 – 201. Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V., and Stesmans, A. (2012), “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of mos2”, Nano Research, 5 (1), pp. 43–48. Scarpa, F., Adhikari, S., and Phani, A. S. (2009), “Effective elastic mechanical properties of single layer graphene sheets”, Nanotechnology, 20 (6), p. 065709. Scarpa, F., Panayiotou, P., and Tomlinson, G. (2000), “Numerical and experimental uniaxial loading on in-plane auxetic honeycombs”, The Journal of Strain Analysis for Engineering Design, 35 (5), pp. 383–388. Scarpa, F., Smith, F. C., and Chambers, B. (2003), “Mechanical and electromagnetic behaviour of auxetic honeycomb structures”, The Aeronautical Journal, 107 (1069), pp. 175 – 183. Scarpa, F. and Tomlin, P. J. (2000), “On the transverse shear modulus of negative poisson’s ratio honeycomb structures”, Fatigue and Fracture of Engineering Materials and Structures, 23 (8), pp. 717 –720. Scarpa, F. and Tomlinson, G. (2000), “Theoretical characteristics of the vibration of sandwich plates with in-plane negative poisson’s ratio values”, Journal of Sound and Vibration, 230 (1), pp. 45 – 67. Schaeffer, M. and Ruzzene, M. (2015), “Wave propagation in multistable magneto-elastic lattices”, International Journal of Solids and Structures, 56-57, pp. 78 – 95. Sch¨onfeld, B., Huang, J., and Moss, S. (1983), “Anisotropic mean-square displacements (msd) in single-crystals of 2h-and 3r-mos2”, Acta Crystallographica Section B: Structural Science, 39 (4), pp. 404–407. Shokrieh, M. M. and Rafiee, R. (2010), “Prediction of young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach”, Materials & Design, 31, pp. 790–795.

Bibliography

283

Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., Kvashnin, A. G., Kvashnin, D. G., Lou, J., Yakobson, B. I., and Ajayan, P. M. (2010), “Large scale growth and characterization of atomic hexagonal boron nitride layers”, Nano Letters, 10 (8), pp. 3209–3215. Srivastava, A. (2015), “Elastic metamaterials and dynamic homogenization: a review”, International Journal of Smart and Nano Materials, 6 (1), pp. 41–60. Srivastava, A. (2016), “Metamaterial properties of periodic laminates”, Journal of the Mechanics and Physics of Solids, 96, pp. 252 – 263. Stavroulakis, G. E. (2005), “Auxetic behaviour: appearance and engineering applications”, physica status solidi (b), 242 (3), pp. 710–720. Sun, J., Gao, H., Scarpa, F., Lira, C., Liu, Y., and Leng, J. (2014), “Active inflatable auxetic honeycomb structural concept for morphing wingtips”, Smart Materials and Structures, 23 (12), p. 125023. Tang, P., Chen, P., Cao, W., Huang, H., Cahangirov, S., Xian, L., Xu, Y., Zhang, S.-C., Duan, W., and Rubio, A. (2014), “Stable two-dimensional dumbbell stanene: A quantum spin hall insulator”, Phys. Rev. B, 90, p. 121408. Tang, T. and Felicelli, S. D. (2015), “Micromechanical models for time-dependent multiphysics responses of polymer matrix smart composites”, International Journal of Engineering Science, 94, pp. 164 –180. Triantafyllidis, N. and Schraad, M. W. (1998), “Onset of failure in aluminum honeycombs under general in-plane loading”, Journal of the Mechanics and Physics of Solids, 46 (6), pp. 1089 – 1124. Tu, Z.-c. and Ou-Yang, Z.-c. (2002), “Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective young’s moduli dependent on layer number”, Phys. Rev. B, 65, p. 233407. van den Broek, B., Houssa, M., Iordanidou, K., Pourtois, G., Afanasev, V. V., and Stesmans, A. (2016), “Functional silicene and stanene nanoribbons compared to graphene: electronic structure and transport”, 2D Materials, 3 (1), p. 015001.

van den Broek, B., Houssa, M., Scalise, E., Pourtois, G., Afanasev, V. V., and Stesmans, A. (2014), “Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization”, 2D Materials, 1 (2), p. 021004. Vanmarcke, E. (1983), Random fields: analysis and synthesis, World Scientific Publishing Co. Pte. Ltd., Cambridge. Vanmarcke, E. and Grigoriu, M. (1983), “Stochastic finite-element analysis of simple beams”, Journal of Engineering Mechanics-ASCE, 109 (5), pp. 1203–1214. Verma, V., Jindal, V. K., and Dharamvir, K. (2007), “Elastic moduli of a boron nitride nanotube”, Nanotechnology, 18 (43), p. 435711. Vilchevskaya, E. and Sevostianov, I. (2015), “Effective elastic properties of a particulate composite with transversely-isotropic matrix”, International Journal of Engineering Science, 94, pp. 139 – 149. Vogt, P., Padova, P. D., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., Resta, A., Ealet, B., and Lay, G. L. (2012), “Silicene: compelling experimental evidence for graphenelike two-dimensional silicon”, Physical review letters, 108, p. 155501. Wang, D., Chen, L., Wang, X., Cui, G., and Zhang, P. (2015), “The effect of substrate and external strain on electronic structures of stanene film”, Phys. Chem. Chem. Phys., 17, pp. 26979–26987. Wang, X. and Xia, F. (2015), “Van der waals heterostructures: stacked 2d materials shed light”, Nature materials, 14 (3), pp. 264–265. Wang, Z. and Hu, H. (2014), “Auxetic materials and their potential applications in textiles”, Textile Research Journal, 84 (15), pp. 1600 – 1611. Whitney, J. M. (1987), Structural Analysis of laminated Anisotropic Plates, Technomic Publishing Company Inc, Lancaster, PA. Wieting, T. and Verble, J. (1971), “Infrared and raman studies of long-wavelength optical phonons in hexagonal mos2”, Physical Review B, 3 (12), p. 4286. Wilbert, A., Jang, W. Y., Kyriakides, S., and Floccari, J. F. (2011), “Buckling and progressive crushing of laterally loaded honeycomb”, International Journal of Solids and Structures, 48 (5), pp. 803 – 816.

Bibliography

285

Woo, S., Park, H. C., and Son, Y.-W. (2016), “Poisson’s ratio in layered two-dimensional crystals”, Phys. Rev. B, 93, p. 075420. Xu, M., Liang, T., Shi, M., and Chen, H. (2013), “Graphene–like two–dimensional materials”, Chemical Reviews, 113 (5), pp. 3766–3798. Yang, L., Harrysson, O., West, H., and Cormier, D. (2015), “Mechanical properties of 3d re-entrant honeycomb auxetic structures realized via additive manufacturing”, International Journal of Solids and Structures, , doi: http://dx.doi.org/10.1016/j.ijsolstr.2015.05.005. Yang, W., Li, Z. M., Shi, W., Xie, B. H., and Yang, M. B. (2004), “Review on auxetic materials”, Journal of Materials Science, 39 (10), pp. 3269–3279. Yao, Y. T., Alderson, A., and Alderson, K. L. (2008), “Can nanotubes display auxetic behaviour?”, physica status solidi (b), 245 (11). Yongqiang, L. and Zhiqiang, J. (2008), “Free flexural vibration analysis of symmetric rectangular honeycomb panels with scsc edge supports”, Composite Structures, 83 (2), pp. 154–158. Yu, S. D. and Cleghorn, W. L. (2005), “Free flexural vibration analysis of symmetric honeycomb panels”, Journal of Sound and Vibration, 284, pp. 189 – 204. Zakharchenko, K. V., Katsnelson, M. I., and Fasolino, A. (2009), “Finite temperature lattice properties of graphene beyond the quasiharmonic approximation”, Phys. Rev. Lett., 102, p. 046808. Zenkert, D. (1995), An Introduction to Sandwich Construction, Chameleon Press, London. Zhang, C., Zhao, S., Jin, C., Koh, A. L., Zhou, Y., Xu, W., Li, Q., Xiong, Q., Peng, H., and Liu, Z. (2015a), “Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method”, Nature communications, 6. Zhang, J. and Ashby, M. F. (1992), “The out-of-plane properties of honeycombs”, International Journal of Mechanical Sciences, 34 (6), pp. 475 – 489. Zhang, J. and Ellingwood, B. (1994), “Orthogonal series expansion of random fields in reliability analysis”, Journal of Engineering Mechanics-ASCE, 120 (12), pp. 2660–2677. Zhang, Y. J., Yoshida, M., Suzuki, R., and Iwasa, Y. (2015b), “2d crystals of transition metal dichalcogenide and their iontronic functionalities”, 2D Materials, 2 (4), p. 044004.

Zhao, H., Min, K., and Aluru, N. (2009), “Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension”, Nano letters, 9 (8), pp. 3012–3015. Zhao, S. and Xue, J. (2013), “Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations”, Journal of Physics D: Applied Physics, 46 (13), p. 135303. Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P.-H., and Eda, G. (2013), “Evolution of electronic structure in atomically thin sheets of ws2 and wse2”, ACS Nano, 7 (1), pp. 791–797. Zhu, F., Chen, W., Xu, Y., Gao, C., Guan, D., Liu, C., Qian, D., Zhang, S., and Jia, J. (2015), “Epitaxial growth of two-dimensional stanene”, Nature materials, 14 (10), pp. 1020–1025. Zhu, H. X., Hobdell, J. R., Miller, W., and Windle, A. H. (2001), “Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs”, Journal of the Mechanics and Physics of Solids, 49 (4), pp. 857–870. Zhu, H. X., Thorpe, S. M., and Windle, A. H. (2006), “The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs”, International Journal of Solids and Structures, 43 (5), pp. 1061 – 1078. Zolyomi, V., Wallbank, J. R., and Fal’ko, V. I. (2014), “Silicane and germanane: tight-binding and first-principles studies”, 2D Materials, 1 (1), p. 011005.