Biomass Conversion - Springer Link

7 downloads 0 Views 324KB Size Report
biotechnology, microbiology, energy technology, chemistry, materials science, ...... Kalyan Gayen Department of Chemical Engineering, Indian Institute of Tech-.
Biomass Conversion

Chinnappan Baskar Shikha Baskar Ranjit S. Dhillon •

Editors

Biomass Conversion The Interface of Biotechnology, Chemistry and Materials Science

123

Editors Chinnappan Baskar Department of Environmental Engineering and Biotechnology Myongji University San 38-2 Namdong, Cheoin-gu Yongin 449-728 South Korea

Ranjit S. Dhillon Department of Chemistry Punjab Agricultural University Ludhiana 141004 Punjab, India

Shikha Baskar THDC Institute of Hydropower Engineering and Technology, Tehri Uttarakhand Technical University Dehradun, Uttarakhand India

ISBN 978-3-642-28417-5 DOI 10.1007/978-3-642-28418-2

ISBN 978-3-642-28418-2

(eBook)

Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012933321 Ó Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to our beloved parents Mr. S. Chinnappan & Mrs. Mariya Chinnappan and Mr. Pawan Kumar Sambher & Mrs. Sudesh Sambher

Foreword

Souring prices of petroleum, concern over secured supply beside climate change are major drivers in the search for alternative renewable energy sources. The use of biomass to produce energy is an alternative source of renewable energy that can be utilized to reduce the adverse impact of energy production on the global environment. Current biomass resources comprise primarily industrial waste materials such as sawdust or pulp process wastes, hog fuel, forest residues, clean wood waste from landfills, and agricultural prunings and residues from plants such as lignocellulosic materials. The increased use of biomass fuels would diversify the nation’s fuel supply while reducing net CO2 production (because CO2 is withdrawn from the atmosphere during plant growth) and reduce the amount of waste material that eventually ends up in landfills. It is important that biomass uses have a high process efficiency to increase the overall resource productivity from past commercial applications. Biomass is considered carbon neutral because the amount of carbon it can release is equivalent to the amount it absorbed during its lifetime. There is no net increase of carbon to the environment in the long term when combusting the lignocellulosic materials. Therefore, biomass is expected to have a significant contribution to the world energy and environment demand in the foreseeable future. This new book entitled ‘‘Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science’’ assembles 14 chapters authored by renowned specialists. This book provides an important review of the main issues and technologies that are essential to the future success of the production of biofuels, bioenergy, and fine-chemicals from biomass, and the editors and authors are to be applauded for constructing this high quality collection. The scientific and engineering breakthroughs contained in this book are the essential building blocks that construct the foundation and future development of biomass conversion with interface of biotechnology, bioengineering, chemistry, and materials science. This book therefore reviews the state of the art of biomass conversion, along with their advantages and drawbacks. By disseminating this information more widely, this book can help bring about a surge in investment in the use of these vii

viii

Foreword

technologies and thus enable developing countries to exploit their biomass resources better and help close the gap between their energy needs and their energy supply. I am delighted that the editors, Dr. Baskar, Dr. Shikha, and Dr. Dhillon, took their strong involvement in this enterprise, and the authors, whose liberally contributed expertise made it possible and will guarantee success. March 2012

Prof. D. S. Chauhan Vice Chancellor Uttarakhand Technical University Dehradun, Uttarakhand India

Foreword

High worldwide demand for energy, unstable and uncertain petroleum sources, and concern over global climate change has led to resurgence in the development of alternative energy that can displace fossil transportation fuel. Biomass is considered to be an important renewable source for securing future energy supply, production of fine chemicals and sustainable development. Having looked at a lot of integrated multi-disciplinary research on biomass conversion into energy and fine chemicals, I was delighted to find that this book does exactly what it says on the cover - it provides a guide to conversion of biomass into energy, biofuels and fine chemicals. This timely book covers many different topics: from biomass conversion to energy, the concept of green chemistry (the applications of ionic liquids for biomass conversion), catalysts in thermochemical biomass conversion, production of biobutanol, bioethanol, bio-oil, biohydrogen and fine chemicals, the perceptive of biorefinery processing and bioextraction. The majority of chapters survey topics that will allow the reader to obtain a greater understanding about biomass conversion and the role of multidisciplinary subjects which include biotechnology, microbiology, green chemistry, materials science and engineering. I am pleased that the editors took on the challenge to give an excellent overview of the different techniques for biomass conversion applied in academia and industry. Their expertise and their valuable network of contributors have made this volume a highly respected work that has a central place in this series on renewable resources. National University of Singapore Singapore, February 2012

Dr. Seeram Ramakrishna Professor of Mechanical Engineering and Bioengineering Vice-President (Research Strategy)

ix

Preface

Conventional resources, mainly fossil fuels, are becoming limited because of the rapid increase in energy demand. This imbalance in energy demand and supply has placed immense pressure not only on consumer prices but also on the environment, prompting mankind to look for sustainable energy resources. Biomass is one of the few resources that has the potential to meet the challenges of sustainable and green energy systems. Biomass can be converted into three main products such as energy, biofuels and fine-chemicals using a number of different processes. Today, its a great challenge for researchers to find new environmentally benign methodologies for biomass conversion, which are industrially profitable as well. This book aims to offer the state-of-the-art reviews, current research and the future developments of biomass conversion to bioenergy, biofuels, fatty acids, and fine chemicals with the integration of multi-disciplinary subjects which include biotechnology, microbiology, energy technology, chemistry, materials science, and engineering. The chapters are organized as follows: Chaps. 1 and 2 provide an overview of biomass conversion into energy. Chapters 3 and 4 cover the application of ionic liquids for the production of bioenergy and biofuels from biomass (Green chemistry approach towards the biomass conversion). Chapter 5 focuses on the role of catalysts in thermochemical biomass conversion. This chapter also describes the role of nanoparticles for biomass conversion. Chapter 6 gives an overview of catalytic deoxygenation of fatty acids, their esters, and triglycerides for production of green diesel fuel. This new technology is an alternative route for production of diesel range hydrocarbons and can be achieved by catalytic hydrogenation of carboxyl groups over sulfided catalysts as well as decarboxylation/decarbonylation over noble metal supported catalysts, and catalytic cracking of fatty acids and their derivatives. The common examples of biofuels are biobutanol, bioethanol, and biodiesel. Biobutanol continuously draws the attention of researchers and industrialists because of its several advantages such as high energy contents, high hydrophobicity, good blending ability, and because it does not require modification in present combustion engines, and is less corrosive than other biofuels. xi

xii

Preface

Unfortunately, the economic feasibility of biobutanol fermentation is suffering due to low butanol titer as butanol itself acts as inhibitor during fermentation. To overcome this problem, several genetic and metabolic engineering strategies are being tested. In this direction, Chap. 7 outlines the overview of the conversion of cheaper lignocellulosic biomass into biobutanol. Chapter 8 discusses some of the strategies to genetically improve biofuel plant species in order to produce more biomass for future lignocellulosic ethanol production. Chapter 9 describes the production of bioethanol from food industry waste. Hydrogen is an attractive future clean, renewable energy carrier. Biological hydrogen production from wastes could be an environmentally friendly and economically viable way to produce hydrogen compared with present production technologies. Chapter 10 reviews the current research on bio-hydrogen production using two-stage systems that combine dark fermentation by mixed cultures and photo-fermentation by purple non-sulfur bacteria. Organosolv fractionation, one of the most promising fractionation approaches, has been performed to separate lignocellulosic feedstocks into cellulose, hemicelluloses, and lignin via organic solvent under mild conditions in a biorefinery manner. Chapter 11 focuses particularly on new research on the process of organosolv fractionation and utilization of the prepared products in the field of fuels, chemicals, and materials. Production and separation of high-added value compounds from renewable resources are emergent areas of science and technology with relevance to both scientific and industrial communities. Lignin is one of the raw materials with high potential due to its chemistry and properties. The types, availability, and characteristics of lignins as well as the production and separation processes for the recovery of vanillin and syringaldehyde are described in Chap. 12. The production of consistent renewable-based hydrocarbons from woody biomass involves the efficient conversion into stable product streams. Supercritical methanol treatment is a new approach to efficiently convert woody biomass into bio-oil at modest processing temperatures and pressures. The resulting bio-oil consisted of partially methylated lignin-derived monomers and sugar derivatives which results in a stable and consistent product platform that can be followed by catalytic upgrading into a drop-in-fuel. The broader implications of this novel approach to obtain sustainable bioenergy and biofuel infrastructure is discussed in Chap. 13. Industrialization and globalization is causing numerous fluctuations in our ecosystem including increased level of heavy metals. Bioextraction is an alternative to the existing chemical processes for better efficiency with least amount of by-products at optimum utilization of energy. The last chapter provides an overview of bioextraction methodology and its associated biological processes, and discusses the approaches that have been used successfully for withdrawal of heavy metals using metal selective high biomass transgenic plants and microbes from contaminated sites and sub grade ores. This book is intended to serve as a valuable reference for academic and industrial professionals engaged in research and development activities in the

Preface

xiii

emerging field of biomass conversion. Some review chapters are written at an introductory level to attract newcomers including senior undergraduate and graduate students and to serve as a reference book for professionals from all disciplines. Since this book is the first of its kind devoted solely to biomass conversion, it is hoped that it will be sought after by a broader technical audience. The book may even be adopted as a textbook/reference book for researchers pursuing energy technology courses that deal with biomass conversion. All chapters were contributed by renowned professionals from academia and government laboratories from various countries and were peer reviewed. The editors would like to thank all contributors for believing in this endeavor, sharing their views and precious time, and obtaining supporting documents. Finally, the editors would like to express their gratitude to the external reviewers whose contributions helped improve the quality of this book. February 2012

Dr. Chinnappan Baskar Dr. Shikha Baskar Dr. Ranjit S. Dhillon

Acknowledgments

Words are compendious in expressing our deep gratitude and profound indebtedness to Prof. D. S. Chauhan, Vice Chancellor, Uttarakhand Technical University, Dehradun for his dexterous guidance, invaluable suggestions and perceptive enthusiasm which enabled us to accomplish this project. His association, inspiration, constructive criticism and encouragement throughout the period of our academic and our personal life, especially for the time spent in informal discussions have all been a valuable part of our learning experience. We accord our cordial thanks to Prof. Wook-Jin Chung (Director, Energy and Environment Fusion Technology Center, Myongji University, South Korea) and Prof. Hern Kim (Department of Environmental Engineering and Energy, Myongji University, South Korea) for their timely support and suggestions during our stay at Myongji University. We owe our sincere thanks to Prof. Seeram Ramakrishna, Vice-President (Research Strategy), National University of Singapore for his motivation. Our heartfelt thanks to Mr. A. L. Shah, Director, THDC Institute of Hydropower Engineering and Technology, Tehri (Constitute Institute of Uttarakhand Technical University) for his encouragement. We would like to thank the production team at Springer-Verlag Heidelberg, particularly Dr. Marion Hertel, Beate Siek, Elizabeth Hawkins, Birgit Münch and Tobias Wassermann for their patience, help and suggestions. We extend our sincere gratitude, love, and appreciation to our family members, especially parents, Mr. Chinnappan, Mrs. Mariya, Mr. Pawan Kumar Sambher and Mrs. Sudesh Sambher, brother Doss Chinnappan, and sister Amutha Chinnappan (Department of Environmental Engineering and Energy, Myongji University, South Korea) for their support throughout this book project. We are also indebted to our sons Suvir Baskar and Yavin Baskar, who missed our company in many days, we were working on this project. We hope they will appreciate this effort when they grow up. This book is also dedicated to my late brother, Julian Chinnappan.

xv

xvi

Acknowledgments

As editors we bear responsibility for all interpretations, opinions and errors in this work. We welcome valuable comments and suggestions from our readers. February 2012

Dr. Chinnappan Baskar E-mail: [email protected]; Website: www.baskarc.com Dr. Shikha Baskar

Contents

1

2

Biomass Conversion to Energy . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Biomass and Energy Generation. . . . . . . . . . . . . . . . . . . . 1.2.1 Methods of Biomass Conversion . . . . . . . . . . . . . 1.2.2 Conversion of Biomass to Biofuels: The Biorefinery Concept . . . . . . . . . . . . . . . . . . . 1.2.3 Biomass Conversion into Electricity . . . . . . . . . . . 1.3 Economics and Modeling of Biomass Conversion Processes to Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Future of Biomass Conversion into Energy . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Biomass Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Energy Plantation . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Biomass Production Techniques . . . . . . . . . . . . . . . 2.4 Biomass Conversion Processes . . . . . . . . . . . . . . . . 2.4.1 Direct Combustion Processes . . . . . . . . . . . 2.4.2 Thermochemical Process . . . . . . . . . . . . . . 2.5 Types of Gasifiers . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Updraught or Counter Current Gasifier . . . . 2.5.2 Downdraught or Co-Current Gasifiers . . . . . 2.5.3 Cross-Draught Gasifier . . . . . . . . . . . . . . . 2.5.4 Fluidized Bed Gasifier . . . . . . . . . . . . . . . 2.5.5 Other Types of Gasifiers . . . . . . . . . . . . . . 2.6 Briquetting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Screw Press and Piston Press Technologies . 2.6.2 Compaction Characteristics of Biomass and Their Significance . . . . . . . . . . . . . . . . . .

. . . .

1 1 4 7

.. ..

56 79

.. .. ..

84 87 88

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

91 91 93 94 95 96 97 102 102 102 103 103 104 104 104

.......

107

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . .

xvii

xviii

Contents

2.7

Anaerobic Digestion . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 Batch or Continuous . . . . . . . . . . . . . . . . . . . . . 2.7.2 Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.3 Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.4 Number of Stages . . . . . . . . . . . . . . . . . . . . . . . 2.7.5 Residence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.6 Feedstocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Methane Production in Landfills. . . . . . . . . . . . . . . . . . . 2.9 Ethanol Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . 2.10 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 First-Generation Versus Second-Generation Technologies . 2.12 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

109 112 113 113 114 115 115 116 117 119 120 121 122

Lignocellulose Pretreatment by Ionic Liquids: A Promising Start Point for Bio-energy Production . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Ionic Liquids: Good Solvents for Biomass. . . . . . . . . . . . . . . 3.2.1 Relationship Between Ionic Liquids’ Structure and Solubility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Molecular Level Understanding of the Interaction of Ionic Liquids and Lignocellulose: The Key for Lignocellulose Pretreatment . . . . . . . . . . . . . . . . 3.3 Toward Better Understanding of the Wood Chemistry in Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Ionic Liquids Pretreatment Technology for Enzymatic Production of Monosugars . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Ionic Liquids Pretreatment Technology for Chemical Production of Monosugars . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Enzymatic Compatible Ionic Liquids for Biomass Pretreatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Conclusions and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

138 140 140

Application of Ionic Liquids in the Conversion of Native Lignocellulosic Biomass to Biofuels . . . . . . . . . . . . . . . . . . 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Pretreatment of Native Biomass . . . . . . . . . . . . . . . . . 4.2.1 Cellulose and Lignin Composition in Biomass . 4.2.2 Dissolution of Biomass in Ionic Liquids . . . . . 4.2.3 Effect of Ionic Liquid Chemical Composition . 4.2.4 Effect of Temperature . . . . . . . . . . . . . . . . . . 4.2.5 Effect of Density . . . . . . . . . . . . . . . . . . . . . 4.2.6 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . .

145 145 146 146 147 149 150 151 151

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

123 123 124 125

126 128 130 132

Contents

4.2.7 Acid Hydrolysis . . . . . . . . . . . . . . . . . . . . . . . 4.2.8 Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9 Pretreatment with Ammonia . . . . . . . . . . . . . . 4.2.10 Microwave Heating and Ultrasounds. . . . . . . . . 4.2.11 Biomass Size Reduction . . . . . . . . . . . . . . . . . 4.2.12 Comparison with Other Pretreatments . . . . . . . . 4.2.13 Water Adsorption as an Issue. . . . . . . . . . . . . . 4.2.14 Presence of Impurities. . . . . . . . . . . . . . . . . . . 4.3 Mechanism of Delignification and Cellulose Dissolution . 4.3.1 Analytical Techniques . . . . . . . . . . . . . . . . . . . 4.3.2 Purified Cellulose Substrates and Lignin Models 4.3.3 Swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Regeneration and Reduction of Cellulose Crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.5 Hydrogen Bonding . . . . . . . . . . . . . . . . . . . . . 4.3.6 Empirical Solvent Polarity Scales . . . . . . . . . . . 4.4 Compatibility with Cellulases. . . . . . . . . . . . . . . . . . . . 4.4.1 General Toxicity of Ionic Liquids. . . . . . . . . . . 4.4.2 Deactivation of Cellulases in ILs . . . . . . . . . . . 4.4.3 Temperature and pH Dependence of Cellulase Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.4 Effect of High Pressure . . . . . . . . . . . . . . . . . . 4.4.5 Identification of Cellulases Resistant to Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . 4.4.6 Designing New Ionic Liquids Suitable for Cellulose Dissolution and Cellulase Activity . . . 4.4.7 Stabilization of Cellulases in Microemulsions and by Immobilization . . . . . . . . . . . . . . . . . . 4.5 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 How Green are ILs? . . . . . . . . . . . . . . . . . . . . 4.5.2 Recycling Attempts . . . . . . . . . . . . . . . . . . . . 4.5.3 Biodegradability . . . . . . . . . . . . . . . . . . . . . . . 4.6 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.1 Applications of Purified Cellulose Substrates . . . 4.6.2 Applications of Native Biomass . . . . . . . . . . . . 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Catalysts in Thermochemical Biomass Conversion . . . . . . . . 5.1 Thermochemical Biomass Conversion . . . . . . . . . . . . . . 5.2 Types of Catalysts in the Thermochemical Biomass Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Known Catalyst Types for Biomass Gasification 5.2.2 Catalyst Types for Biomass Pyrolysis . . . . . . . .

xix

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

152 153 153 154 154 155 155 156 157 157 159 160

. . . . . .

. . . . . .

. . . . . .

. . . . . .

160 161 163 165 165 165

.... ....

167 168

....

169

....

169

. . . . . . . . . .

. . . . . . . . . .

170 171 171 171 173 173 173 174 177 177

.... ....

187 187

.... .... ....

188 188 191

. . . . . . . . . .

. . . . . . . . . .

xx

Contents

5.2.3 Nanocatalysts for Biomass Conversion . . . . . . . . . . . 5.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Fatty Acids-Derived Fuels from Biomass via Catalytic Deoxygenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Deoxygenation Processes. . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Hydrodeoxygenation of Fatty Acids . . . . . . . . . 6.2.2 Decarboxylation/Decarbonylation of Fatty Acids 6.2.3 Deoxygenation of Fatty Acids via Catalytic Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.4 Comparison of Deoxygenation Methods . . . . . . 6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

194 196 196

. . . . .

. . . . .

. . . . .

. . . . .

199 199 201 201 207

. . . .

. . . .

. . . .

. . . .

214 215 217 218

7

Biobutanol: The Future Biofuel. . . . . . . . . . . . . . . . . . . . . . . . 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Microbiology of ABE Fermentation . . . . . . . . . . . . . . . . . 7.3 Biomass as Feedstock . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Improvements in Fermentation Processes. . . . . . . . . . . . . . 7.4.1 Batch and Fed-Batch Fermentation Processes. . . . . 7.4.2 Continuous Fermentation Process . . . . . . . . . . . . . 7.5 Recovery Techniques Integrated with Fermentation Process. 7.6 Economic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Prospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

221 221 223 223 225 226 229 229 231 232 232

8

Molecular Genetic Strategies for Enhancing Plant Biomass for Cellulosic Ethanol Production . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Strategies for Enhancement of Biomass. . . . . . . . . . . . . . . 8.2.1 Genetic Basis of Plant Architecture . . . . . . . . . . . 8.2.2 Phytohormone-Related Genes and Developmental Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.3 Functional Genomics Approaches for Identification of Useful Genes . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.4 Plant Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.5 Biotechnological Approaches to Further Improve Biofuel Crops. . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Conclusions and Future Perspectives. . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. . . .

237 237 239 239

..

241

.. ..

244 244

.. .. ..

245 246 247

Contents

9

Production of Bioethanol from Food Industry Waste: Microbiology, Biochemistry and Technology . . . . . . . . . . 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Wheat Straw . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Sugarcane Bagasse . . . . . . . . . . . . . . . . . . . 9.2.3 Rice Straw. . . . . . . . . . . . . . . . . . . . . . . . . 9.2.4 Fruit and Vegetable Waste. . . . . . . . . . . . . . 9.2.5 Coffee Waste . . . . . . . . . . . . . . . . . . . . . . . 9.2.6 Cheese Whey . . . . . . . . . . . . . . . . . . . . . . . 9.2.7 Spent Sulfite Liquor . . . . . . . . . . . . . . . . . . 9.2.8 Bioethanol from Algae . . . . . . . . . . . . . . . . 9.3 Microorganisms for Bioethanol Production . . . . . . . . 9.3.1 Microorganisms and Their Characteristics . . . 9.3.2 Substrate and Microorganisms . . . . . . . . . . . 9.3.3 Lignocellulosic Material for Ethanolic Fermentation . . . . . . . . . . . . . . . . . . . . . . . 9.3.4 Fermentation of Syngas into Ethanol . . . . . . 9.4 Biochemistry of Fermentation . . . . . . . . . . . . . . . . . 9.4.1 Fermentation of Carbohydrates. . . . . . . . . . . 9.4.2 Efficiency of Ethanol Formation. . . . . . . . . . 9.4.3 Metabolic Engineering for the Production of Advanced Fuels . . . . . . . . . . . . . . . . . . . . . 9.5 Genetically Modified Microorganisms for Bioethanol Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.1 Escherichia coli . . . . . . . . . . . . . . . . . . . . . 9.5.2 Zymomonas mobilis . . . . . . . . . . . . . . . . . . 9.5.3 Pichia stipitis . . . . . . . . . . . . . . . . . . . . . . . 9.5.4 Kloeckera oxytoca . . . . . . . . . . . . . . . . . . . 9.5.5 Saccharomyces cerevisiae . . . . . . . . . . . . . . 9.6 Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.1 Fermentation Kinetics . . . . . . . . . . . . . . . . . 9.6.2 Fermentation Process for Bioethanol. . . . . . . 9.7 Technology of Bioethanol Production . . . . . . . . . . . . 9.7.1 Sugar Molasses . . . . . . . . . . . . . . . . . . . . . 9.7.2 Apple Pomace . . . . . . . . . . . . . . . . . . . . . . 9.7.3 Orange Waste . . . . . . . . . . . . . . . . . . . . . . 9.7.4 Banana Waste . . . . . . . . . . . . . . . . . . . . . . 9.7.5 Potato Waste . . . . . . . . . . . . . . . . . . . . . . . 9.7.6 Wheat Straw . . . . . . . . . . . . . . . . . . . . . . . 9.7.7 Rice Straw. . . . . . . . . . . . . . . . . . . . . . . . . 9.7.8 Rice Husk . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.9 Barley . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.10 Whey . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxi

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

251 251 254 254 255 256 256 259 259 259 260 260 260 260

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

261 263 263 263 271

......

272

. . . . . . . . . . . . . . . . . . . .

275 276 276 277 277 278 279 279 283 286 286 287 289 290 291 291 291 292 292 292

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

xxii

Contents

9.7.11 Cassava Roots . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.12 Hydrolysed Cellulosic Biomass . . . . . . . . . . . . . . 9.7.13 Recent Advances in Bioethanol Production Process . 9.7.14 Boiethanol Refinery . . . . . . . . . . . . . . . . . . . . . . 9.8 Future Perspectives and Conclusions. . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . .

. . . . . .

293 293 300 300 301 302

10 Enhancement of Biohydrogen Production by Two-Stage Systems: Dark and Photofermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Dark Fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 Dark Fermentation with Pure Cultures . . . . . . . . . . . 10.2.2 Dark Fermentation with Mixed Cultures . . . . . . . . . . 10.2.3 Substrates for Dark Fermentation . . . . . . . . . . . . . . . 10.2.4 Factors Influencing Dark Fermentation . . . . . . . . . . . 10.2.5 Pre-treatment of Mixed Culture . . . . . . . . . . . . . . . . 10.2.6 pH and Temperature . . . . . . . . . . . . . . . . . . . . . . . . 10.2.7 Partial Pressure of Produced Hydrogen . . . . . . . . . . . 10.2.8 Reactor Configuration . . . . . . . . . . . . . . . . . . . . . . . 10.3 Photofermentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.1 Substrates for Photofermentation . . . . . . . . . . . . . . . 10.3.2 Factors Influencing Photofermentation . . . . . . . . . . . 10.3.3 C/N Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.4 Inoculum Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.5 Light Source and Light Intensity . . . . . . . . . . . . . . . 10.3.6 pH and Temperature . . . . . . . . . . . . . . . . . . . . . . . . 10.3.7 Reactor Configuration . . . . . . . . . . . . . . . . . . . . . . . 10.4 Two-Stage Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

313 313 314 317 318 320 321 322 322 323 323 324 326 327 327 328 328 329 329 330 332 333

11 Organosolv Fractionation of Lignocelluloses for Fuels, Chemicals and Materials: A Biorefinery Processing Perspective . . . . . . . . . . 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Overview of Organosolv Fractionation . . . . . . . . . . . . . . . . . 11.3 Ethanol Fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Effect of Treatment on the Structure of Lignocellulosic Material . . . . . . . . . . . . . . . . . . . . . 11.3.2 Process of Ethanol Fractionation and Lignin Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.3 Applications of the Products . . . . . . . . . . . . . . . . . . 11.4 Organic Acid Fractionation . . . . . . . . . . . . . . . . . . . . . . . . .

341 341 342 343 343 347 350 355

Contents

xxiii

11.4.1

Effect of Treatment on the Structure of Lignocellulosic Material . . . . . . . . . . . . . . . . . . 11.4.2 Process of Organic Acid Fractionation and Lignin Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3 Applications of the Products . . . . . . . . . . . . . . . 11.5 Other Fractionation Processes Using Organic Solvents . . . 11.5.1 Methanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.2 Ethylene Glycol . . . . . . . . . . . . . . . . . . . . . . . . 11.5.3 Ethanolamine . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.4 Acetone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5.5 Dimethyl Formamide . . . . . . . . . . . . . . . . . . . . 11.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Lignin, a Fascinating Complex Polymer . . . . . . . . . . . . 12.2 Main Lignin Types: Origin, Producers, End Users and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 Kraft Lignins . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.2 Lignosulfonates . . . . . . . . . . . . . . . . . . . . . . . 12.2.3 Organosolv Lignins. . . . . . . . . . . . . . . . . . . . . 12.2.4 Other Lignins. . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Lignin as Source of Monomeric Compounds . . . . . . . . . 12.3.1 General Overview. . . . . . . . . . . . . . . . . . . . . . 12.3.2 Industrial Vanillin Production . . . . . . . . . . . . . 12.4 Production of Vanillin and Syringaldehyde by Lignin Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.1 Reaction Conditions . . . . . . . . . . . . . . . . . . . . 12.4.2 Evolution of Products and Temperature During Lignin Oxidation . . . . . . . . . . . . . . . . . . . . . . 12.4.3 Influence of the Parameters in Lignin Oxidation and Vanillin Oxidation . . . . . . . . . . . . . . . . . . 12.4.4 Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.5 The Continuous Process of Lignin Oxidation . . . 12.4.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Separation Processes for Oxidation Products of Lignin . . 12.5.1 Conventional Process of Extraction. . . . . . . . . . 12.5.2 Ion Exchange Processes . . . . . . . . . . . . . . . . . 12.5.3 Membrane Processes . . . . . . . . . . . . . . . . . . . . 12.5.4 Supercritical Extraction and Crystallization . . . . 12.5.5 The Integrated Process for Vanillin Production . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

355

. . . . . . . . . .

. . . . . . . . . .

358 360 364 364 367 367 368 369 370 370

.... ....

381 381

. . . . . . . .

. . . . . . . .

383 384 385 388 390 390 390 390

.... ....

394 394

....

399

. . . . . . . . . . .

400 405 406 408 408 409 409 410 410 411 413

. . . . . . . .

. . . . . . . . . . .

. . . . . . . . . .

. . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xxiv

13 Liquefaction of Softwoods and Hardwoods in Supercritical Methanol: A Novel Approach to Bio-Oil Production . . . . . 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 13.2.1 Supercritical Fluid Processing . . . . . . . . . . . . 13.2.2 Chemical Characterization . . . . . . . . . . . . . . . 13.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 13.3.1 Biochar Characterization . . . . . . . . . . . . . . . . 13.3.2 Bio-Oil Characterization . . . . . . . . . . . . . . . . 13.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

421 421 423 423 424 424 425 427 431 432

14 Bioextraction: The Interface of Biotechnology and Green Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1 Disadvantages of Metal Extraction Process, its Environmental Concerns and Need of Bioextraction . . . . . . . . . . . . . . . . . . . 14.2 Brief Description of Bioextraction Process . . . . . . . . . . . . . . 14.2.1 Phytoextraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.2 Biomining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Contribution of Microbes/Microorganisms in Bioextraction . . . 14.3.1 Role of Microbes in Biomining . . . . . . . . . . . . . . . . 14.3.2 Role of Fungi in Biomining . . . . . . . . . . . . . . . . . . . 14.4 Various Chemical Processes for Extraction of Heavy Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4.1 Concentration of the Ore (Removal of Unwanted Metals and Gangue to Purify the Ore). . . . . . . . . . . . 14.4.2 Conversion into Metal Oxide . . . . . . . . . . . . . . . . . . 14.4.3 Reduction of Metal Oxide to Metal . . . . . . . . . . . . . 14.4.4 Refining of Impure Metal into Pure Metals . . . . . . . . 14.5 Development of Metal Specific Chelating Resins to Extract Metal Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.6 Applications of Bioextraction. . . . . . . . . . . . . . . . . . . . . . . . 14.7 Economization of Bioextraction . . . . . . . . . . . . . . . . . . . . . . 14.8 Flow Diagram to Summarize the Chapter and the Process of Bioextraction . . . . . . . . . . . . . . . . . . . . . 14.9 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

455 456 456

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

459

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

461

435 436 436 437 441 444 445 446 447 447 447 448 449 451 451 454

Contributors

Alok Adholeya Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi 110003, India J. Andres Soria Agricultural and Forestry Experiment Station, University of Alaska Fairbanks, Palmer, AK 99645, USA; School of Engineering, University of Alaska Anchorage, Palmer, AK 99645, USA, e-mail: [email protected] Ashok N. Bhaskarwar Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India, e-mail: [email protected] Eduardo A. Borges da Silva Laboratory of Separation and Reaction Engineering—LSRE, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal Manab Das Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi 110003, India Kalyan Gayen Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad 382424, Gujarat, India, e-mail: [email protected] Patrick C. Hallenbeck Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, QC H3C 3J7, Canada, e-mail: [email protected] V. K. Joshi Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India, e-mail: [email protected] Tugba Keskin Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Environmental Biotechnology and Bioenergy Laboratory, Bioengineering Department, Ege University, 35100 Bornova, Izmir, Turkey

xxv

xxvi

Contributors

Manish Kumar Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad 382424, Gujarat, India Prakash P. Kumar Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore, e-mail: [email protected] A. K. Kurchania Renewable Energy Sources Department, College of Technology and Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, India, e-mail: [email protected] Ming-Fei Li Institute of Biomass Chemistry and Technology, Beijing Forestry University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China Wujun Liu Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, People’s Republic of China Marcel Lucas Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Päivi Mäki-Arvela Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, 20500 Turku/Åbo, Finland Armando G. McDonald Renewable Materials Program, College of Natural Resources, University of Idaho, Moscow, ID 83844-1132, USA, e-mail: [email protected] Dmitry Yu. Murzin Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, 20500 Turku/Åbo, Finland, e-mail: [email protected] Maneesha Pande Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India Aditi Puri Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi 110007, India Rengasamy Ramamoorthy Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore Neerja S. Rana Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India Kirk D. Rector Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, e-mail: [email protected] Alírio E. Rodrigues Laboratory of Separation and Reaction Engineering—LSRE, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200–465 Porto, Portugal, e-mail: [email protected]

Contributors

xxvii

Paula C. Rodrigues Pinto Laboratory of Separation and Reaction Engineering— LSRE, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200–465 Porto, Portugal Bartosz Rozmysłowicz Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, 20500 Turku/Åbo, Finland Rakesh Kumar Sharma Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi 110007, India, e-mail: rksharmagreenchem @hotmail.com Ali Sınag˘ Department of Chemistry, Science Faculty, Ankara University, Besßevler-Ankara 06100, Turkey, e-mail: [email protected] Run-Cang Sun Institute of Biomass Chemistry and Technology, Beijing Forestry University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, 510640 Guangzhou, China, e-mail: [email protected], e-mail: [email protected] Shao-Ni Sun Institute of Biomass Chemistry and Technology, Beijing Forestry University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China Gregory L. Wagner Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Abhishek Walia Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India Haibo Xie Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, People’s Republic of China , e-mail: [email protected] Feng Xu Institute of Biomass Chemistry and Technology, Beijing Forestry University, Qinghua Road No. 35, Haidian District, 100083 Beijing, China Zongbao K. Zhao Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, People’s Republic of China