Bis(l-glutamic acid) sulfate hemihydrate - IUCr Journals

2 downloads 0 Views 2MB Size Report
The unit cell of the crystal structure of the title compound,. 2C5H10NO4БSO4Б0.5H2O, contains eight crystallographically independent glutamic acid residues ...
organic papers Bis(L-glutamic acid) sulfate hemihydrate

Acta Crystallographica Section E

Structure Reports Online ISSN 1600-5368

B. Sridhar,a N. Srinivasanb and R. K. Rajarama* a Department of Physics, Madurai Kamaraj University, Madurai 625 021, India, and b Department of Physics, Thiagarajar College, Madurai 625 009, India

Correspondence e-mail: [email protected]

Key indicators Single-crystal X-ray study T = 293 K Ê Mean (C±C) = 0.006 A R factor = 0.033 wR factor = 0.087 Data-to-parameter ratio = 6.7

# 2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

B. Sridhar et al.

Received 9 January 2002 Accepted 4 February 2002 Online 22 February 2002

Comment

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

o272

The unit cell of the crystal structure of the title compound, 2C5H10NO4SO40.5H2O, contains eight crystallographically independent glutamic acid residues protonated at the N atom, four sulfate anions and two water molecules. The glutamic acid residues are in different conformations. Both the - and carboxyl groups are involved in strong OÐH  O hydrogen bonding; at the same time each residue shows a different hydrogen-bonding scheme. Owing to the differences in conformational features and hydrogen-bonding patterns of each residue, there is no pseudosymmetry or higher symmetry in the structure.



Glutamic acid is a dicarboxylic amino acid which is a signi®cant constituent in proteins. It also plays an important role in the metabolism of sugar and fats. The crystal structures of l-glutamic acid (Hirokawa, 1955), l-glutamic acid hydrochloride (Sequeira et al., 1972), dl-glutamic acid monohydrate (Ciunik & Glowiak, 1983) and anhydrous dl-glutamic acid (Dunitz & Schweizer, 1995) have been reported. In order to determine the hydrogen-bonding pattern and the conformation of protonated glutamic acid cation in the crystal structure of its sulfate, the X-ray diffraction study of the title compound, (I), was undertaken.

The unit cell contains eight crystallographically independent protonated glutamic acid residues, four independent sulfate anions and two water molecules (Fig. 1). An attempt to look for higher symmetry using the LEPAGE program (Spek, 1999) resulted in a C-centred monoclinic cell with a transformation (100/102/010). However, the intensity data did not conform to a monoclinic system (Rint = 0.58). The average bond lengths and angles of the sulfate anions con®rm nearly ideal tetrahedral symmetry. The geometries of the glutamic acid residues agree well with l-glutamic acid hydrochloride (Sequeira et al., 1972). In the present study, the doubly bonded O atoms of - and -carboxyl groups are

2C5H10NO4+SO42ÿ0.5H2O

DOI: 10.1107/S1600536802002234

Acta Cryst. (2002). E58, o272±o276

organic papers

Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

labelled A and C, and the single-bonded O atoms are labelled B and D. The backbone conformation angle 1 indicates the cis form for all eight residues. For all residues except II and III, the branched side-chain conformation angle 1 is in the sterically least favoured closed gauche-I conformation, and 2 is in the trans form, as found in l-glutamic acid hydrochloride (Sequeira et al., 1972). In the case of residues II and III, the conformation angle 1 is in the trans form for the former [ÿ172.2 (6) ] and the sterically most favoured open gauche-II conformation for the latter [ÿ64.6 (4) ]. The conformation angles 31 and 32 indicate the cis and trans form for all residues except for residue II, where the conformation is in the trans and cis form [ÿ179.0 (7) and ÿ2 (1) ]. All the O atoms of sulfate anions are involved in hydrogen bonding with the amino and -carboxyl groups or water molecules. This plays a vital role in stabilizing the structure (Fig. 2). All the -carboxyl O atoms (B) form strong OÐH  O hydrogen bonds with -carboxyl O atoms (C), with the exception of residues II and V, which form a strong OÐH  O hydrogen bond with water molecules. These amino acids are interconnected by the hydrogen bonding as corrugated sheets, as found in dl-lysine complexes (Saraswathi et al., 2001). The -carboxyl O atoms (D) form strong OÐH  O hydrogen bonds with sulfate anions in a three-dimensional hydrogen-bonding network. Interestingly, residue VIII forms a chelated OÐH  O hydrogen bond with the sulfate anion. Acta Cryst. (2002). E58, o272±o276

There are three types of NÐH  O hydrogen bonding in the crystal of the title compound, viz. two-centred, threecentred and chelated three-centred hydrogen bonding. Twocentred NÐH  O hydrogen bonding is observed in the case of amino N atom with (i) the - and -carboxyl O atom (A and C) and (ii) the sulfate anions in all residues except residue III. It is very interesting to note that, among these, residues I and IV are involved only in two-centred NÐH  O hydrogen bonds. Three-centred hydrogen bonds are observed in residues II, III, V and VIII, involving the amino N and the carboxyl O atoms (A and C). Chelated three-centred hydrogen bonding is present in residues III, V, VI and VII, involving the amino N atom of the glutamic acid residue and the O atoms of the sulfate anion (Jeffrey & Saenger, 1991). Interestingly, in the case of residue III, only the three-centred and chelated type of hydrogen bonding are observed, while in the case of residue VII, two such chelated three-centred hydrogen bonds are involved. In the amino group of residues I and IV, a class I hydrogenbonding pattern, involving three two-centred hydrogen bonds (Jeffrey & Saenger, 1991), is present. In the case of residues II, VI and VIII, a class II hydrogen bonding, with one threecentred hydrogen bond and two two-centred hydrogen bonds, is observed, while in the case of residues V and VII, a class III hydrogen bond, with two three-centred hydrogen bonds and one two-centred hydrogen bond, is observed. Interestingly, in the case of residue III, the sterically least favourable class IV hydrogen-bonding pattern, with only three-centred hydrogen bonding, is observed. In general, the class II hydrogenB. Sridhar et al.



2C5H10NO4+SO42ÿ0.5H2O

o273

organic papers

Figure 2

Packing diagram of the crystal, viewed down the a axis.

bonding pattern is the most favoured con®guration and occurrence of class IV is rare. Both water molecules form OÐH  O hydrogen bonds with the sulfate anions and the -carboxyl group (C) of the glutamic acid residues. In the present study, the residues are aggregated as characteristic layers along the diagonal plane parallel to (011). The glutamic acid residues II, IV, VI and VIII, sulfate anions 2 and 3, and the OW1 water molecule are interconnected by hydrogen-bonded ribbons as a linear chain along the diagonal (011) plane (Fig. 3). Similarly, residues I, III, V and VII, sulfate

Figure 4

Packing diagram of the crystal, viewed down the c axis (for the sake of clarity only glutamic acid residues I, III, V and VII, sulfate anions 1 and 4, and the second water molecule are shown).

anions 1 and 4, and the OW2 water molecule are interconnected by hydrogen-bonded ribbons (Fig. 4) running as an in®nite chain parallel to the same diagonal plane and lying in between two adjacent ribbons of the ®rst type.

Experimental The title compound was crystallized by slow evaporation from an aqueous solution of l-glutamic acid and sulfuric acid in a 2:1 stoichiometric ratio. Crystal data

Figure 3

Packing diagram of the crystal, viewed down the b axis (for the sake of clarity only glutamic acid residues II, IV, VI and VIII, sulfate anions 2 and 3, and the ®rst water molecule are shown).

o274

B. Sridhar et al.



2C5H10NO4+SO42ÿ0.5H2O

2C5H10NO4+SO42ÿ0:5H2O Mr = 401.35 Triclinic, P1 Ê a = 12.536 (2) A Ê b = 12.596 (2) A Ê c = 13.306 (2) A = 79.09 (1) = 62.05 (1)

= 65.88 (1) Ê3 V = 1693.9 (5) A Z=4 Dx = 1.574 Mg mÿ3

Dm = 1.568 Mg mÿ3 Dm measured by ¯otation in carbon tetrachloride and xylene Mo K radiation Cell parameters from 25 re¯ections  = 11.3±13.6  = 0.26 mmÿ1 T = 293 (2) K Block, colourless 0.6  0.6  0.5 mm

Acta Cryst. (2002). E58, o272±o276

organic papers Data collection Enraf±Nonius CAD-4 diffractometer !±2 scans Absorption correction: scan (North et al., 1968) Tmin = 0.730, Tmax = 0.776 6238 measured re¯ections 6238 independent re¯ections

5814 re¯ections with I > 2(I) max = 25.0 h = 0 ! 14 k = ÿ13 ! 14 l = ÿ13 ! 15 3 standard re¯ections frequency: 60 min intensity decay: none

Re®nement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.033 wR(F 2) = 0.087 S = 1.03 6238 re¯ections 936 parameters H atoms treated by a mixture of independent and constrained re®nement

w = 1/[ 2(Fo2) + (0.055P)2 + 0.7347P] where P = (Fo2 + 2Fc2)/3 (/)max < 0.001 Ê ÿ3 max = 0.42 e A Ê ÿ3 min = ÿ0.32 e A Extinction correction: SHELXL97 Extinction coef®cient: 0.0219 (11) Absolute structure: Flack (1983); 298 Friedel pairs Flack parameter = 0.06 (6)

Table 1

Ê ,  ). Selected geometric parameters (A O11AÐC111 O11BÐC111 C115ÐO11C C115ÐO11D O21AÐC211 O21BÐC211 C215ÐO21C C215ÐO21D O31AÐC311 O31BÐC311 C315ÐO31C C315ÐO31D O41AÐC411 O41BÐC411 C415ÐO41C C415ÐO41D

1.213 (5) 1.301 (5) 1.202 (5) 1.306 (5) 1.207 (5) 1.296 (5) 1.158 (6) 1.323 (6) 1.195 (5) 1.311 (5) 1.216 (5) 1.284 (5) 1.197 (5) 1.317 (5) 1.216 (5) 1.301 (5)

O51AÐC511 O51BÐC511 C515ÐO51C C515ÐO51D O61AÐC611 O61BÐC611 C615ÐO61C C615ÐO61D O71AÐC711 O71BÐC711 C715ÐO71C C715ÐO71D O81AÐC811 O81BÐC811 C815ÐO81C C815ÐO81D

O11AÐC111ÐC112ÐN111 N111ÐC112ÐC113ÐC114 C112ÐC113ÐC114ÐC115 C113ÐC114ÐC115ÐO11C C113ÐC114ÐC115ÐO11D O21AÐC211ÐC212ÐN222 N222ÐC212ÐC213ÐC214 C212ÐC213ÐC214ÐC215 C213ÐC214ÐC215ÐO21C C213ÐC214ÐC215ÐO21D O31AÐC311ÐC312ÐN333 N333ÐC312ÐC313ÐC314 C312ÐC313ÐC314ÐC315 C313ÐC314ÐC315ÐO31C C313ÐC314ÐC315ÐO31D O41AÐC411ÐC412ÐN444 N444ÐC412ÐC413ÐC414 C412ÐC413ÐC414ÐC415 C413ÐC414ÐC415ÐO41C C413ÐC414ÐC415ÐO41D

ÿ1.9 (5) 61.3 (5) 175.1 (4) ÿ61.4 (7) 120.7 (5) ÿ29.5 (5) ÿ172.2 (6) ÿ167.5 (7) ÿ179.0 (7) ÿ1.8 (11) ÿ16.3 (5) ÿ64.6 (4) ÿ161.4 (3) 49.6 (6) ÿ129.7 (4) ÿ1.3 (5) 67.1 (4) 177.5 (3) ÿ19.5 (5) 161.5 (3)

O51AÐC511ÐC512ÐN555 ÿ18.2 (5) N555ÐC512ÐC513ÐC514 78.2 (4) C512ÐC513ÐC514ÐC515 170.2 (3) C513ÐC514ÐC515ÐO51C ÿ41.7 (5) C513ÐC514ÐC515ÐO51D 139.9 (3) O61AÐC611ÐC612ÐN666 ÿ6.3 (5) N666ÐC612ÐC613ÐC614 62.9 (4) C612ÐC613ÐC614ÐC615 ÿ179.7 (3) C613ÐC614ÐC615ÐO61C ÿ13.5 (5) C613ÐC614ÐC615ÐO61D 167.4 (3) O71AÐC711ÐC712ÐN777 ÿ3.1 (5) N777ÐC712ÐC713ÐC714 72.2 (4) C712ÐC713ÐC714ÐC715 168.9 (3) C713ÐC714ÐC715ÐO71C ÿ22.9 (6) C713ÐC714ÐC715ÐO71D 159.9 (4) O81AÐC811ÐC812ÐN888 ÿ7.9 (5) N888ÐC812ÐC813ÐC814 72.0 (4) C812ÐC813ÐC814ÐC815 173.0 (4) C813ÐC814ÐC815ÐO81C ÿ6.8 (9) C813ÐC814ÐC815ÐO81D 172.8 (4)

Acta Cryst. (2002). E58, o272±o276

1.198 (4) 1.297 (5) 1.227 (5) 1.290 (5) 1.204 (4) 1.310 (5) 1.202 (5) 1.307 (5) 1.197 (5) 1.313 (5) 1.197 (5) 1.304 (5) 1.199 (5) 1.313 (5) 1.183 (6) 1.288 (6)

Table 2

Ê ,  ). Hydrogen-bonding geometry (A DÐH  A

DÐH

H  A

D  A

DÐH  A

O11BÐH1B  O21Ci O21BÐH2B  OW2ii O31BÐH3B  O51C O41BÐH4B  O71C O51BÐH5B  OW1 O61BÐH6B  O41C O71BÐH7B  O11Ciii O81BÐH8B  O31Civ O11DÐH1H  O34v O21DÐH2F  O12vi O31DÐH3F  O14vii O41DÐH4F  O32 O51DÐH5F  O41viii O61DÐH6F  O42iii O71DÐH7F  O33iii O81DÐH8E  O22i O81DÐH8E  O23i N111ÐH11A  O24v N111ÐH11B  O42viii N111ÐH11C  O51C N222ÐH22A  O24 N222ÐH22B  O44ix N222ÐH22C  O51A N222ÐH22C  O61Cviii N333ÐH33A  O43 N333ÐH33A  O44 N333ÐH33B  O33 N333ÐH33B  O32 N333ÐH33C  O71Cv N333ÐH33C  O41Av N444ÐH44A  O14vii N444ÐH44B  O23 N444ÐH44C  O21Ax N555ÐH55A  O31vii N555ÐH55A  O34vii N555ÐH55B  O11ii N555ÐH55C  O71Avii N555ÐH55C  O11Cxi N666ÐH66A  O34x N666ÐH66A  O33x N666ÐH66B  O13 N666ÐH66C  O21Cxii N777ÐH77A  O13 N777ÐH77A  O14 N777ÐH77B  O22iv N777ÐH77B  O21iv N777ÐH77C  O31Civ N888ÐH88A  O43 N888ÐH88B  O31 N888ÐH88C  O41C N888ÐH88C  O61A OW1ÐH1WA  O21 OW1ÐH1WB  O61Cviii OW2ÐH2WA  O11 OW2ÐH2WB  O81Ciii

0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.85 (6) 0.79 (6) 0.81 (7) 0.94 (8)

1.83 1.72 1.93 1.92 1.70 1.86 1.78 1.81 1.77 1.76 1.81 1.78 1.78 1.86 1.86 2.20 2.39 1.82 2.18 2.13 1.89 1.95 2.15 2.40 1.93 2.46 2.08 2.49 2.34 2.36 1.92 1.94 2.23 2.15 2.39 1.95 2.41 2.48 1.92 2.59 2.02 2.03 2.20 2.21 1.97 2.62 2.43 1.84 1.95 2.40 2.48 1.88 (6) 2.07 (6) 1.96 (7) 1.78 (8)

2.644 (4) 2.525 (5) 2.733 (4) 2.720 (4) 2.495 (4) 2.657 (4) 2.591 (4) 2.625 (5) 2.585 (4) 2.555 (4) 2.604 (4) 2.577 (4) 2.595 (4) 2.659 (4) 2.625 (4) 2.958 (6) 3.081 (6) 2.708 (4) 2.943 (5) 2.998 (4) 2.767 (4) 2.801 (4) 2.913 (4) 2.835 (4) 2.795 (4) 2.992 (4) 2.886 (4) 3.061 (4) 3.070 (4) 3.036 (4) 2.804 (4) 2.797 (5) 2.922 (4) 2.928 (4) 3.193 (4) 2.727 (5) 3.095 (4) 3.056 (4) 2.798 (4) 3.254 (4) 2.844 (5) 2.807 (4) 2.962 (5) 2.992 (5) 2.830 (5) 3.084 (5) 3.160 (5) 2.717 (4) 2.827 (4) 3.084 (4) 3.151 (4) 2.732 (4) 2.803 (5) 2.706 (5) 2.725 (6)

176 165 165 164 163 164 169 177 173 161 162 163 172 166 155 153 142 171 144 164 168 159 144 110 164 119 151 122 139 133 172 161 134 146 151 145 134 123 166 132 154 145 143 147 162 114 140 169 170 134 133 175 (5) 155 (5) 151 (6) 174 (6)

Symmetry codes: (i) x; 1 ‡ y; z ÿ 1; (ii) x ÿ 1; y ÿ 1; z; (iii) x; y; 1 ‡ z; (iv) x; 1 ‡ y; z; (v) x; y; z ÿ 1; (vi) x ÿ 1; y ÿ 1; 1 ‡ z; (vii) x; y ÿ 1; z; (viii) x ÿ 1; y; z; (ix) x ÿ 1; y; 1 ‡ z; (x) 1 ‡ x; y; z; (xi) x; y ÿ 1; 1 ‡ z; (xii) 1 ‡ x; 1 ‡ y; z ÿ 1.

The H atoms attached to water molecules were located and re®ned Ê ). All other H in the isotropic approximation (OÐH = 0.79±0.94 A atoms were placed in geometrically calculated positions and included in the re®nement in a riding-model approximation with Uiso equal to 1.2Ueq of the carrier atom. Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell re®nement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);

B. Sridhar et al.



2C5H10NO4+SO42ÿ0.5H2O

o275

organic papers program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

BS and RKR thank the Department of Science and Technology (DST), India, for ®nancial support.

References Ciunik, Z. & Glowiak, T. (1983). Acta Cryst. C39, 1271±1273. Dunitz, J. D. & Schweizer, W. B. (1995). Acta Cryst. C51, 1377±1379. Enraf±Nonius (1989). CAD-4 Software. Version 5.0. Enraf±Nonius, Delft, The Netherlands.

o276

B. Sridhar et al.



2C5H10NO4+SO42ÿ0.5H2O

Flack, H. D. (1983). Acta Cryst. A39, 876±881. Hirokawa, S. (1955). Acta Cryst. 8, 637±641. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351± 359. Saraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366±371. Sequeira, A., Rajagopal, H. & Chidambaram, R. (1972). Acta Cryst. B28, 2514±2519. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany. Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.

Acta Cryst. (2002). E58, o272±o276

supporting information

supporting information Acta Cryst. (2002). E58, o272–o276

[doi:10.1107/S1600536802002234]

Bis(L-glutamic acid) sulfate hemihydrate B. Sridhar, N. Srinivasan and R. K. Rajaram S1. Comment Glutamic acid is a dicarboxylic amino acid which is a significant constituent in protein. It also plays an important role in metabolism process of sugar and fats. The crystal structures of L-glutamic acid (Hirokawa, 1955), L-glutamic acid hydrochloride (Sequeira et al., 1972), DL-glutamic acid monohydrate (Ciunik & Glowiak, 1983) and anhydrous DL-glutamic acid (Dunitz & Schweizer, 1995) have been reported. In order to determine the hydrogen-bonding pattern and conformation of protonated glutamic acid cation in the crystal of its sulfate, the X-ray diffraction study of the title compound, (I), was undertaken. The unit cell contains eight crystallographically independent protonated glutamic acid residues, four independent sulfate anions and two water molecules (Fig. 1). An attempt to look for higher symmetry using the LEPAGE program (Spek, 1999) resulted in a C-centred monoclinic cell with a transformation (100/102/010). However, the intensity data did not conform to a monoclinic system (Rint = 0.58). The average bond lengths and angles of sulfate anions confirm its nearly ideal tetrahedral symmetry. The geometries of the glutamic acid residues agree well with L-glutamic acid hydrochloride (Sequeira et al., 1972). In the present study, the doubly bonded O atoms of α- and γ-carboxyl groups are labelled as A and C and the single bonded O atoms are labelled as B and D, respectively. The backbone conformation angle ψ1 indicates the cis form for all eight residues. The branched side-chain conformation angle χ1 is in the sterically least-favoured closed gauche I conformation and χ2 is in the trans form for all the residues as found in DL-glutamic acid hydrochloride (Sequeria et al., 1972) except for residues II and III. In the case of residues II and III, the conformation angle χ1 is in trans form for the former [-172.2 (6)°] and sterically most favoured open gauche II conformation for the latter [-64.6 (4)°]. The conformation angles χ31 and χ32 indicate the cis and trans form for all residues except for residue II where the conformation is in trans and cis form [-179.0 (7) and -2(1)°]. All the O atoms of sulfate anions are involved in hydrogen bonding with amino and γ-carboxyl group or water molecules. It plays a vital role in stabilizing the structure (Fig. 2). All the α-carboxyl O atoms (B) form strong O—H···O hydrogen bonds with γ-carboxyl O atoms (C) with the exception of residues II and V, which form a strong O—H···O hydrogen bond with water molecules. These amino acids are interconnected by the hydrogen bonding as corrugated sheets as found in DL-lysine complexes (Saraswathi et al., 2001). The γ-carboxyl O atoms (D) form strong O—H···O hydrogen bonds with sulfate anions in a three-dimensional hydrogen-bonding network. Interestingly, in the case of residue VIII, it forms a chelated O—H···O hydrogen bond with the sulfate anion. There are three types of N—H···O hydrogen bonding in the crystal of the title compoud, viz. two-centered, threecentered and chelated three-centered hydrogen bonding. Two-centered N–H···O hydrogen bonding is observed in the case of amino N atom with (i) the α- and γ-carboxyl O atom (A and C), (ii) the sulfate anions in all residues except residue III Acta Cryst. (2002). E58, o272–o276

sup-1

supporting information It is very interesting to note that among these, residue I and IV are involved only in two-centered N—H···O hydrogen bonds. Three-centered hydrogen bonds are observed in residues II, III, V and VIII involving the amino N and the carboxyl O atoms (A and C). Chelated three-centered hydrogen bondings are engaged in residues III, V, VI and VII involving the amino N atom of the glutamic acid residue and the O atoms of the sulfate anion (Jeffrey & Saenger, 1991). Interestingly, in the case of residue III, only the three-centered and chelated type of hydrogen bonding are observed, while in the case of residue VII, two such chelated three-centered hydrogen bonds are engaged. In the amino group of residues I and IV, a class-I hydrogen-bonding pattern, involving three two-centred hydrogen bonding (Jeffrey & Saenger, 1991), is present. In the case of residues II, VI and VIII, a class-II hydrogen-bonding pattern, with one three-centred hydrogen bonding and two two-centred hydrogen bonding, is observed, while in the case of residues V and VII, a class-III hydrogen-bonding structure, with two three-centred hydrogen bonding and one twocentred hydrogen bonding, is observed. Interestingly, in the case of residue III, the sterically least favourable class-IV hydrogen-bonding pattern, with only three-centred hydrogen bonding, is observed. In general, the class-II hydrogenbonding pattern is the most favoured configuration and occurrence of class-IV is rare. Both water molecules form a O—H···O hydrogen bonding with the sulfate anions and the γ-carboxyl group (C) of the glutamic acid residues. In the present study, the residues are aggregated as characteristic layers along the diagonal plane. The glutamic acid residues II, IV, VI and VIII, sulfate anions 2 and 3, and the OW1 water molecule are interconnected by hydrogen-bonded ribbons as a linear chain along the diagonal (011) plane (Fig. 3). Similarly, the residues I, III, V and VII, sulfate anions 1 and 4, and the OW2 water molecule are interconnected by hydrogen-bonded (Fig. 4) ribbons running as an infinite chain parallel to the same diagonal plane and lying in between two adjacent ribbons of the first type. S2. Experimental The title compound was crystallized by slow evaporation from an aqueous solution of L-glutamic acid and sulfuric acid in a 2:1 stoichiometric ratio. S3. Refinement The H atoms attached to water molecules were located and refined in the isotropic approximation (O—H = 0.79–0.94 Å). All other H atoms were placed in geometrically calculated positions and included in the refinement in a riding-model approximation with Uiso equal to 1.2Ueq of the carrier atom.

Acta Cryst. (2002). E58, o272–o276

sup-2

supporting information

Figure 1 The asymmetric unit of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

Acta Cryst. (2002). E58, o272–o276

sup-3

supporting information

Figure 2 Packing diagram of the crystal viewed down the a axis.

Acta Cryst. (2002). E58, o272–o276

sup-4

supporting information

Figure 3 Packing diagram of the crystal viewed down the b axis (for the sake of clarity only glutamic acid residues II, IV, VI and VIII, sulfate anions 2 and 3, and the first water molecule are shown).

Acta Cryst. (2002). E58, o272–o276

sup-5

supporting information

Figure 4 Packing diagram of the crystal viewed down the c axis (for the sake of clarity only glutamic acid residues I, III, V and VII, sulfate anions 1 and 4, and the second water molecule are shown). Bis(L-glutamic acid) sulfate hemihydrate Crystal data 2C5H10NO4+·SO42−·0.5H2O Mr = 401.35 Triclinic, P1 a = 12.536 (2) Å b = 12.596 (2) Å c = 13.306 (2) Å α = 79.09 (1)° β = 62.05 (1)° γ = 65.88 (1)° Acta Cryst. (2002). E58, o272–o276

V = 1693.9 (5) Å3 Z=4 F(000) = 844 Dx = 1.574 Mg m−3 Dm = 1.568 Mg m−3 Dm measured by flotation in carbon tetrachloride and xylene Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25 reflections

sup-6

supporting information Needle, colorless 0.6 × 0.6 × 0.5 mm

θ = 11.3–13.6° µ = 0.26 mm−1 T = 293 K Data collection Enraf-Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω–2θ scans Absorption correction: ψ scan (North et al., 1968) Tmin = 0.730, Tmax = 0.776 6238 measured reflections

6238 independent reflections 5814 reflections with I > 2σ(I) Rint = 0.000 θmax = 25.0°, θmin = 1.7° h = 0→14 k = −13→14 l = −13→15 3 standard reflections every 60 min intensity decay: none

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.033 wR(F2) = 0.087 S = 1.03 6238 reflections 936 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.055P)2 + 0.7347P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.42 e Å−3 Δρmin = −0.32 e Å−3 Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0219 (11) Absolute structure: Flack, (1983); 298 Friedel pairs Absolute structure parameter: 0.06 (6)

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

S1 O11 O12 O13 O14 S2 O21 O22 O23

x

y

z

Uiso*/Ueq

0.89414 (8) 0.9579 (3) 0.9784 (3) 0.8625 (4) 0.7679 (3) 0.39345 (9) 0.4676 (3) 0.4032 (4) 0.4436 (3)

0.83198 (7) 0.8278 (5) 0.8449 (3) 0.7303 (3) 0.9309 (3) 0.07025 (7) 0.0820 (3) −0.0497 (3) 0.1050 (4)

0.55962 (7) 0.6275 (3) 0.4415 (2) 0.5734 (4) 0.6012 (2) 0.82172 (8) 0.7006 (2) 0.8480 (4) 0.8846 (3)

0.0280 (2) 0.0851 (15) 0.0557 (8) 0.0833 (14) 0.0473 (7) 0.0292 (2) 0.0468 (7) 0.0870 (16) 0.0763 (13)

Acta Cryst. (2002). E58, o272–o276

sup-7

supporting information O24 S3 O31 O32 O33 O34 S4 O41 O42 O43 O44 O11A O11B H1B C111 C112 H112 N111 H11A H11B H11C C113 H11D H11E C114 H11F H11G C115 O11C O11D H1H O21A O21B H2B C211 C212 H21A N222 H22A H22B H22C C213 H21B H21C C214 H21D H21E C215

0.2566 (3) 0.35802 (8) 0.4005 (3) 0.4490 (3) 0.3487 (3) 0.2267 (3) 0.86182 (8) 0.9563 (3) 0.9182 (3) 0.7382 (3) 0.8350 (3) 0.0725 (3) 0.2397 (3) 0.2002 0.1746 (4) 0.2422 (4) 0.3250 0.1664 (3) 0.1938 0.0826 0.1771 0.2755 (4) 0.3288 0.3267 0.1597 (5) 0.1044 0.1102 0.1988 (4) 0.2575 (3) 0.1605 (3) 0.1854 −0.1021 (3) 0.0550 (4) 0.0047 0.0047 (4) 0.0941 (4) 0.1850 0.0663 (3) 0.1185 −0.0160 0.0799 0.0695 (5) 0.1163 −0.0224 0.1115 (10) 0.2057 0.0806 0.0692 (6)

Acta Cryst. (2002). E58, o272–o276

0.1465 (2) 0.55049 (7) 0.6452 (3) 0.4403 (2) 0.5374 (2) 0.5790 (3) 0.30737 (8) 0.2206 (3) 0.3919 (3) 0.3642 (3) 0.2476 (3) 0.4852 (3) 0.5417 (3) 0.5925 0.4748 (3) 0.3794 (3) 0.3317 0.3038 (3) 0.2584 0.3476 0.2598 0.4177 (4) 0.4638 0.3492 0.4871 (5) 0.5526 0.4391 0.5317 (4) 0.5963 (3) 0.4979 (3) 0.5251 −0.0092 (3) −0.1851 (3) −0.2041 −0.0744 (3) −0.0340 (3) −0.0800 0.0902 (3) 0.1141 0.1317 0.0999 −0.0457 (4) −0.0076 −0.0071 −0.1680 (5) −0.2008 −0.2086 −0.1950 (4)

0.8577 (2) 0.35519 (7) 0.3437 (3) 0.3754 (2) 0.2528 (2) 0.4510 (2) 0.07589 (7) 0.1131 (3) 0.0036 (3) 0.1714 (3) 0.0105 (3) 0.1525 (3) 0.0450 (3) 0.0937 0.0693 (3) −0.0173 (3) −0.0143 0.0194 (3) −0.0383 0.0414 0.0772 −0.1405 (3) −0.1616 −0.1888 −0.1625 (4) −0.1103 −0.1487 −0.2841 (4) −0.3217 (3) −0.3441 (3) −0.4084 0.8785 (3) 0.8477 (3) 0.8388 0.8680 (3) 0.8853 (3) 0.8372 0.8553 (3) 0.8653 0.8997 0.7829 1.0112 (3) 1.0227 1.0590 1.0450 (5) 1.0072 1.0158 1.1706 (4)

0.0384 (6) 0.02470 (19) 0.0454 (7) 0.0395 (6) 0.0406 (7) 0.0427 (7) 0.0279 (2) 0.0555 (8) 0.0478 (7) 0.0497 (8) 0.0529 (8) 0.0494 (7) 0.0558 (9) 0.084* 0.0345 (8) 0.0316 (8) 0.038* 0.0327 (7) 0.049* 0.049* 0.049* 0.0381 (9) 0.046* 0.046* 0.0590 (13) 0.071* 0.071* 0.0398 (9) 0.0448 (7) 0.0544 (8) 0.082* 0.0467 (7) 0.0607 (9) 0.091* 0.0325 (8) 0.0302 (8) 0.036* 0.0301 (7) 0.045* 0.045* 0.045* 0.0453 (10) 0.054* 0.054* 0.118 (4) 0.142* 0.142* 0.0544 (13)

sup-8

supporting information O21C O21D H2F O31A O31B H3B C311 C312 H31A N333 H33A H33B H33C C313 H31B H31C C314 H31D H31E C315 O31C O31D H3F O41A O41B H4B C411 C412 H41A N444 H44A H44B H44C C413 H41B H41C C414 H41D H41E C415 O41C O41D H4F O51A O51B H5B C511 C512

0.1025 (4) −0.0002 (5) −0.0188 0.3345 (3) 0.4258 (3) 0.3589 0.4226 (4) 0.5440 (3) 0.6203 0.5484 (3) 0.6131 0.4735 0.5612 0.5421 (4) 0.4682 0.5296 0.6635 (5) 0.7388 0.6617 0.6756 (4) 0.6642 (4) 0.6979 (3) 0.7032 0.6074 (3) 0.7360 (4) 0.6961 0.6931 (4) 0.7642 (3) 0.8559 0.7108 (3) 0.7364 0.6244 0.7398 0.7568 (3) 0.8042 0.7987 0.6186 (4) 0.5728 0.5760 0.6060 (4) 0.6914 (3) 0.4898 (3) 0.4850 0.1523 (3) 0.3267 (3) 0.3082 0.2441 (4) 0.2775 (3)

Acta Cryst. (2002). E58, o272–o276

−0.2908 (3) −0.1038 (3) −0.1259 0.2939 (3) 0.1011 (3) 0.1073 0.2048 (3) 0.1986 (3) 0.1458 0.3168 (3) 0.3177 0.3674 0.3365 0.1518 (4) 0.2058 0.0783 0.1333 (4) 0.1006 0.2077 0.0529 (3) −0.0410 (3) 0.0923 (2) 0.0449 0.2339 (3) 0.3273 (3) 0.3743 0.2412 (3) 0.1516 (3) 0.1175 0.0570 (3) 0.0137 0.0882 0.0126 0.2072 (3) 0.2593 0.1467 0.2747 (3) 0.2214 0.3323 0.3351 (3) 0.3585 (2) 0.3614 (2) 0.3944 0.0100 (2) 0.0384 (3) 0.0900 −0.0133 (3) −0.1087 (3)

1.1994 (3) 1.2394 (3) 1.3055 0.1785 (3) 0.1653 (3) 0.1637 0.1729 (3) 0.1766 (3) 0.1166 0.1538 (3) 0.1644 0.2011 0.0824 0.2918 (3) 0.3507 0.3056 0.3017 (4) 0.2311 0.3138 0.3985 (3) 0.4133 (3) 0.4660 (2) 0.5166 0.9270 (2) 0.8054 (2) 0.8577 0.8368 (3) 0.7427 (3) 0.7278 0.7842 (3) 0.7255 0.8183 0.8334 0.6321 (3) 0.6035 0.5757 0.6473 (3) 0.6732 0.7066 0.5430 (3) 0.4601 (2) 0.5526 (2) 0.4947 0.6287 (2) 0.4872 (3) 0.5286 0.5373 (3) 0.4615 (3)

0.0542 (8) 0.0836 (15) 0.125* 0.0475 (7) 0.0548 (9) 0.082* 0.0315 (8) 0.0259 (7) 0.031* 0.0285 (6) 0.043* 0.043* 0.043* 0.0340 (8) 0.041* 0.041* 0.0431 (10) 0.052* 0.052* 0.0355 (9) 0.0578 (9) 0.0477 (8) 0.072* 0.0437 (7) 0.0531 (8) 0.080* 0.0318 (8) 0.0282 (8) 0.034* 0.0306 (7) 0.046* 0.046* 0.046* 0.0285 (7) 0.034* 0.034* 0.0309 (8) 0.037* 0.037* 0.0282 (7) 0.0370 (6) 0.0404 (7) 0.061* 0.0385 (6) 0.0544 (9) 0.082* 0.0298 (8) 0.0263 (7)

sup-9

supporting information H51A N555 H55A H55B H55C C513 H51B H51C C514 H51D H51E C515 O51C O51D H5F O61A O61B H6B C611 C612 H61A N666 H66A H66B H66C C613 H61B H61C C614 H61D H61E C615 O61C O61D H6F O71A O71B H7B C711 C712 H71A N777 H77A H77B H77C C713 H71B H71C

0.3713 0.2099 (3) 0.2441 0.1259 0.2191 0.2459 (4) 0.3133 0.2484 0.1159 (4) 0.0476 0.1069 0.0975 (4) 0.1830 (3) −0.0180 (3) −0.0229 0.8369 (3) 0.9292 (3) 0.8617 0.9269 (4) 1.0502 (3) 1.1244 1.0443 (3) 1.1110 0.9702 1.0482 1.0684 (3) 1.0783 1.1477 0.9554 (4) 0.9453 0.8764 0.9708 (4) 1.0507 (3) 0.8856 (3) 0.8967 0.3825 (3) 0.4783 (3) 0.4131 0.4713 (4) 0.5906 (3) 0.6666 0.5790 (3) 0.6510 0.5111 0.5680 0.6097 (4) 0.6373 0.6787

Acta Cryst. (2002). E58, o272–o276

−0.1530 −0.1885 (3) −0.2535 −0.1544 −0.2057 −0.0574 (3) −0.0296 −0.1193 0.0410 (3) 0.0103 0.0972 0.1022 (3) 0.1266 (3) 0.1290 (3) 0.1620 0.5348 (2) 0.3415 (2) 0.3449 0.4469 (3) 0.4451 (3) 0.4009 0.5678 (3) 0.5694 0.6117 0.5952 0.3875 (3) 0.3067 0.3889 0.4468 (3) 0.5277 0.4450 0.3927 (3) 0.2991 (2) 0.4590 (2) 0.4272 0.7818 (2) 0.5892 (3) 0.5898 0.6965 (3) 0.6984 (3) 0.6576 0.8212 (3) 0.8240 0.8598 0.8536 0.6352 (3) 0.5523 0.6486

0.4316 0.5303 (3) 0.4911 0.5467 0.5945 0.3598 (3) 0.3045 0.3240 0.3886 (3) 0.4330 0.4356 0.2860 (3) 0.2023 (2) 0.2961 (2) 0.2382 0.4112 (2) 0.4107 (3) 0.4124 0.4078 (3) 0.4043 (3) 0.3371 0.3925 (3) 0.3992 0.4467 0.3246 0.5101 (3) 0.5122 0.5047 0.6203 (3) 0.6175 0.6253 0.7254 (3) 0.7278 (3) 0.8149 (2) 0.8708 0.6482 (2) 0.6526 (3) 0.6518 0.6501 (3) 0.6516 (3) 0.5834 0.6438 (3) 0.6392 0.7055 0.5822 0.7557 (3) 0.7462 0.7593

0.032* 0.0312 (7) 0.047* 0.047* 0.047* 0.0300 (8) 0.036* 0.036* 0.0332 (8) 0.040* 0.040* 0.0306 (8) 0.0425 (7) 0.0403 (7) 0.060* 0.0395 (6) 0.0435 (7) 0.065* 0.0285 (8) 0.0285 (7) 0.034* 0.0365 (8) 0.055* 0.055* 0.055* 0.0271 (7) 0.032* 0.032* 0.0308 (8) 0.037* 0.037* 0.0302 (8) 0.0468 (8) 0.0387 (6) 0.058* 0.0401 (6) 0.0572 (9) 0.086* 0.0312 (8) 0.0270 (7) 0.032* 0.0376 (8) 0.056* 0.056* 0.056* 0.0324 (8) 0.039* 0.039*

sup-10

supporting information C714 H71D H71E C715 O71C O71D H7F O81A O81B H8B C811 C812 H812 N888 H88A H88B H88C C813 H81A H81B C814 H81C H81D C815 O81C O81D H8E OW1 H1WA H1WB OW2 H2WA H2WB

0.4890 (4) 0.4715 0.4162 0.4956 (4) 0.5668 (3) 0.4088 (3) 0.4135 0.6027 (3) 0.7564 (4) 0.7294 0.6904 (4) 0.7377 (4) 0.8308 0.6689 (3) 0.7017 0.5847 0.6789 0.7192 (4) 0.7374 0.7823 0.5837 (4) 0.5218 0.5612 0.5697 (5) 0.6571 (4) 0.4519 (3) 0.4502 0.3168 (4) 0.360 (5) 0.250 (6) 0.9207 (4) 0.923 (6) 0.830 (8)

0.6733 (3) 0.7523 0.6748 0.5986 (3) 0.4991 (2) 0.6557 (2) 0.6140 0.7434 (2) 0.8013 (3) 0.8519 0.7324 (3) 0.6371 (3) 0.5942 0.5565 (3) 0.4946 0.5926 0.5339 0.6863 (3) 0.6224 0.7223 0.7757 (3) 0.7371 0.8346 0.8343 (5) 0.8227 (7) 0.8995 (3) 0.9294 0.1925 (3) 0.158 (4) 0.237 (5) 0.7206 (3) 0.736 (6) 0.761 (6)

0.8671 (3) 0.8833 0.8578 0.9683 (3) 0.9635 (2) 1.0626 (2) 1.1170 0.3993 (2) 0.2601 (3) 0.3060 0.3057 (3) 0.2228 (3) 0.2002 0.2860 (3) 0.2430 0.3035 0.3496 0.1156 (3) 0.0719 0.0695 0.1374 (3) 0.1753 0.1889 0.0336 (4) −0.0583 (4) 0.0523 (3) −0.0076 0.5882 (3) 0.627 (4) 0.630 (4) 0.8310 (3) 0.768 (6) 0.868 (6)

0.0429 (10) 0.051* 0.051* 0.0329 (8) 0.0443 (7) 0.0459 (7) 0.069* 0.0404 (6) 0.0618 (10) 0.093* 0.0333 (8) 0.0292 (7) 0.035* 0.0304 (7) 0.046* 0.046* 0.046* 0.0333 (8) 0.040* 0.040* 0.0370 (9) 0.044* 0.044* 0.0550 (13) 0.163 (4) 0.0501 (8) 0.075* 0.0419 (7) 0.053 (15)* 0.049 (16)* 0.0481 (8) 0.08 (2)* 0.09 (2)*

Atomic displacement parameters (Å2)

S1 O11 O12 O13 O14 S2 O21 O22 O23 O24 S3

U11

U22

U33

U12

U13

U23

0.0270 (5) 0.0422 (19) 0.059 (2) 0.059 (2) 0.0498 (18) 0.0283 (5) 0.0381 (16) 0.082 (3) 0.0404 (19) 0.0289 (14) 0.0245 (4)

0.0313 (5) 0.179 (5) 0.072 (2) 0.0401 (19) 0.0435 (16) 0.0254 (4) 0.0532 (18) 0.0257 (16) 0.123 (3) 0.0405 (15) 0.0271 (4)

0.0249 (4) 0.0380 (18) 0.0251 (14) 0.112 (3) 0.0388 (16) 0.0307 (5) 0.0358 (15) 0.084 (3) 0.064 (2) 0.0461 (16) 0.0226 (4)

−0.0124 (4) −0.041 (2) −0.0240 (18) −0.0244 (18) 0.0011 (14) −0.0069 (4) −0.0128 (14) −0.0119 (18) −0.003 (2) −0.0089 (12) −0.0096 (3)

−0.0109 (4) −0.0208 (16) −0.0102 (14) −0.001 (2) −0.0241 (14) −0.0140 (4) −0.0115 (13) 0.006 (2) −0.0311 (18) −0.0173 (12) −0.0108 (3)

0.0043 (3) 0.001 (2) 0.0018 (14) −0.002 (2) −0.0082 (12) 0.0029 (3) 0.0058 (13) 0.0108 (16) −0.038 (2) −0.0071 (12) 0.0018 (3)

Acta Cryst. (2002). E58, o272–o276

sup-11

supporting information O31 O32 O33 O34 S4 O41 O42 O43 O44 O11A O11B C111 C112 N111 C113 C114 C115 O11D O11C O21A O21B C211 C212 N222 C213 C214 C215 O21C O21D O31A O31B C311 C312 N333 C313 C314 C315 O31C O31D O41A O41B C411 C412 N444 C413 C414 C415 O41C

0.0393 (16) 0.0451 (16) 0.0536 (18) 0.0305 (14) 0.0236 (4) 0.054 (2) 0.0436 (17) 0.0361 (16) 0.0369 (16) 0.0399 (17) 0.061 (2) 0.034 (2) 0.0304 (19) 0.0335 (16) 0.042 (2) 0.051 (3) 0.042 (2) 0.070 (2) 0.0518 (18) 0.0470 (18) 0.062 (2) 0.037 (2) 0.0315 (19) 0.0316 (16) 0.055 (3) 0.196 (9) 0.087 (4) 0.079 (2) 0.164 (5) 0.0347 (16) 0.063 (2) 0.033 (2) 0.0284 (18) 0.0301 (16) 0.040 (2) 0.058 (3) 0.049 (2) 0.108 (3) 0.082 (2) 0.0578 (18) 0.075 (2) 0.036 (2) 0.0257 (18) 0.0345 (17) 0.0299 (19) 0.0289 (19) 0.0301 (18) 0.0363 (15)

0.0369 (15) 0.0292 (13) 0.0429 (15) 0.0636 (19) 0.0341 (5) 0.061 (2) 0.0622 (19) 0.0592 (19) 0.065 (2) 0.0531 (17) 0.0537 (19) 0.038 (2) 0.045 (2) 0.0327 (16) 0.042 (2) 0.086 (4) 0.053 (2) 0.078 (2) 0.0529 (18) 0.0455 (16) 0.0388 (17) 0.0332 (19) 0.0305 (18) 0.0326 (16) 0.053 (3) 0.052 (3) 0.057 (3) 0.0387 (17) 0.0371 (18) 0.0433 (16) 0.0405 (17) 0.0311 (19) 0.0257 (17) 0.0280 (15) 0.042 (2) 0.056 (3) 0.031 (2) 0.0401 (17) 0.0365 (15) 0.0497 (16) 0.0622 (19) 0.041 (2) 0.038 (2) 0.0288 (15) 0.0326 (18) 0.0383 (19) 0.0256 (17) 0.0456 (15)

Acta Cryst. (2002). E58, o272–o276

0.0616 (19) 0.0422 (15) 0.0289 (14) 0.0287 (14) 0.0228 (4) 0.059 (2) 0.0422 (16) 0.0431 (17) 0.0551 (19) 0.0392 (16) 0.0466 (17) 0.0285 (19) 0.0225 (17) 0.0250 (15) 0.031 (2) 0.046 (3) 0.040 (2) 0.0426 (17) 0.0469 (17) 0.0598 (19) 0.100 (3) 0.0289 (19) 0.0289 (18) 0.0265 (15) 0.034 (2) 0.039 (3) 0.027 (2) 0.0361 (16) 0.0453 (19) 0.064 (2) 0.093 (3) 0.0315 (19) 0.0245 (17) 0.0264 (15) 0.0260 (18) 0.039 (2) 0.038 (2) 0.061 (2) 0.0491 (17) 0.0244 (13) 0.0323 (15) 0.0241 (18) 0.0242 (17) 0.0263 (15) 0.0230 (17) 0.0252 (18) 0.0327 (19) 0.0356 (15)

−0.0185 (13) −0.0039 (12) −0.0151 (14) −0.0178 (14) −0.0099 (4) −0.0228 (17) −0.0312 (15) −0.0219 (14) −0.0127 (15) −0.0149 (14) −0.0331 (17) −0.0107 (17) −0.0180 (17) −0.0114 (13) −0.0190 (18) −0.037 (3) −0.032 (2) −0.0568 (19) −0.0335 (15) −0.0174 (14) −0.0188 (16) −0.0134 (17) −0.0135 (16) −0.0134 (13) −0.025 (2) 0.011 (4) −0.028 (3) −0.0241 (16) −0.027 (2) −0.0095 (13) −0.0283 (15) −0.0108 (17) −0.0103 (15) −0.0134 (13) −0.0232 (18) −0.037 (2) −0.0184 (18) −0.0380 (19) −0.0299 (15) −0.0305 (15) −0.0480 (18) −0.0192 (17) −0.0127 (16) −0.0071 (13) −0.0106 (15) −0.0134 (16) −0.0104 (14) −0.0213 (13)

−0.0174 (15) −0.0268 (14) −0.0246 (13) −0.0090 (12) −0.0086 (4) −0.0369 (17) −0.0191 (14) 0.0027 (13) −0.0137 (14) −0.0037 (14) −0.0036 (16) −0.0138 (17) −0.0112 (15) −0.0091 (13) −0.0136 (18) −0.026 (2) −0.0243 (19) −0.0292 (16) −0.0295 (15) −0.0356 (15) −0.048 (2) −0.0178 (17) −0.0150 (16) −0.0121 (13) −0.024 (2) −0.049 (4) −0.029 (2) −0.0167 (16) −0.056 (3) −0.0273 (15) −0.057 (2) −0.0188 (16) −0.0129 (14) −0.0113 (13) −0.0162 (17) −0.033 (2) −0.0276 (19) −0.061 (2) −0.0453 (17) −0.0087 (13) −0.0099 (14) −0.0141 (17) −0.0133 (15) −0.0157 (13) −0.0126 (15) −0.0126 (15) −0.0176 (16) −0.0201 (13)

−0.0058 (13) 0.0033 (11) 0.0046 (11) 0.0020 (13) 0.0011 (3) 0.0208 (16) 0.0183 (14) −0.0224 (14) −0.0281 (16) −0.0084 (13) −0.0151 (15) 0.0021 (15) 0.0018 (15) 0.0033 (12) 0.0001 (16) 0.029 (3) 0.0186 (19) 0.0224 (15) 0.0184 (14) 0.0092 (14) −0.0034 (17) 0.0076 (15) 0.0090 (14) 0.0010 (12) 0.0109 (18) 0.004 (2) 0.000 (2) 0.0016 (13) 0.0137 (15) 0.0055 (14) 0.0166 (16) 0.0095 (15) 0.0026 (13) 0.0054 (12) 0.0124 (15) 0.0214 (19) 0.0074 (16) 0.0140 (15) 0.0113 (13) −0.0022 (11) −0.0054 (13) 0.0020 (15) 0.0025 (14) 0.0007 (12) 0.0006 (14) 0.0049 (15) 0.0029 (14) 0.0131 (12)

sup-12

supporting information O41D O51A O51B C511 C512 N555 C513 C514 C515 O51C O51D O61A O61B C611 C612 N666 C613 C614 C615 O61C O61D O71A O71B C711 C712 N777 C713 C714 C715 O71C O71D O81A O81B C811 C812 N888 C813 C814 C815 O81C O81D OW1 OW2

0.0334 (15) 0.0432 (16) 0.062 (2) 0.035 (2) 0.0214 (16) 0.0363 (17) 0.035 (2) 0.0310 (19) 0.034 (2) 0.0392 (16) 0.0359 (15) 0.0320 (14) 0.0413 (17) 0.0307 (19) 0.0241 (18) 0.0296 (17) 0.0252 (17) 0.0294 (19) 0.0303 (19) 0.0449 (17) 0.0437 (16) 0.0324 (14) 0.059 (2) 0.033 (2) 0.0232 (17) 0.0368 (18) 0.0268 (19) 0.047 (2) 0.043 (2) 0.0547 (18) 0.064 (2) 0.0417 (16) 0.087 (3) 0.038 (2) 0.0293 (19) 0.0336 (17) 0.033 (2) 0.036 (2) 0.041 (3) 0.049 (3) 0.0449 (18) 0.0484 (19) 0.053 (2)

0.0524 (17) 0.0427 (15) 0.068 (2) 0.0334 (19) 0.0280 (17) 0.0231 (15) 0.0279 (17) 0.0350 (19) 0.0284 (18) 0.0562 (18) 0.0493 (17) 0.0397 (15) 0.0384 (16) 0.0356 (19) 0.0311 (18) 0.0415 (19) 0.0253 (17) 0.0298 (17) 0.0290 (18) 0.0364 (16) 0.0430 (15) 0.0413 (15) 0.0361 (16) 0.034 (2) 0.0284 (18) 0.0367 (18) 0.036 (2) 0.037 (2) 0.030 (2) 0.0313 (15) 0.0346 (14) 0.0386 (14) 0.066 (2) 0.0345 (19) 0.0290 (18) 0.0269 (15) 0.0348 (19) 0.039 (2) 0.071 (3) 0.262 (8) 0.0574 (19) 0.0441 (17) 0.0576 (19)

0.0384 (15) 0.0257 (14) 0.0406 (17) 0.0254 (18) 0.0250 (17) 0.0297 (16) 0.0228 (17) 0.0278 (18) 0.036 (2) 0.0399 (16) 0.0443 (16) 0.0474 (16) 0.0598 (19) 0.0177 (15) 0.0261 (17) 0.0396 (18) 0.0270 (17) 0.0298 (18) 0.0315 (18) 0.0388 (16) 0.0268 (13) 0.0475 (16) 0.102 (3) 0.0304 (19) 0.0264 (17) 0.045 (2) 0.0290 (19) 0.029 (2) 0.0287 (19) 0.0336 (15) 0.0272 (14) 0.0350 (15) 0.0490 (19) 0.036 (2) 0.0292 (18) 0.0292 (15) 0.0262 (18) 0.033 (2) 0.031 (2) 0.042 (2) 0.0390 (16) 0.0383 (16) 0.0414 (18)

−0.0159 (13) −0.0182 (13) −0.0471 (18) −0.0141 (16) −0.0076 (14) −0.0089 (13) −0.0077 (15) −0.0118 (16) −0.0153 (15) −0.0278 (14) −0.0212 (13) −0.0090 (13) −0.0158 (13) −0.0112 (17) −0.0080 (15) −0.0201 (15) −0.0038 (14) −0.0081 (15) −0.0150 (16) −0.0050 (14) −0.0129 (13) −0.0118 (13) −0.0207 (15) −0.0128 (17) −0.0088 (14) −0.0216 (15) −0.0112 (16) −0.0063 (18) −0.0155 (17) −0.0073 (14) −0.0131 (14) −0.0119 (13) −0.056 (2) −0.0157 (17) −0.0100 (15) −0.0095 (13) −0.0077 (16) −0.0116 (17) −0.006 (2) 0.029 (4) −0.0075 (15) −0.0157 (15) −0.0277 (17)

−0.0232 (13) −0.0085 (13) −0.0078 (15) −0.0163 (17) −0.0079 (14) −0.0139 (14) −0.0114 (15) −0.0105 (16) −0.0187 (17) −0.0227 (14) −0.0236 (13) −0.0222 (13) −0.0276 (15) −0.0107 (14) −0.0104 (15) −0.0165 (15) −0.0140 (15) −0.0136 (16) −0.0128 (16) −0.0164 (14) −0.0180 (12) −0.0223 (13) −0.054 (2) −0.0173 (16) −0.0100 (14) −0.0191 (16) −0.0110 (16) −0.0131 (18) −0.0174 (17) −0.0169 (14) −0.0155 (14) −0.0125 (14) −0.0179 (18) −0.0231 (18) −0.0142 (15) −0.0138 (14) −0.0116 (16) −0.0173 (18) −0.013 (2) −0.006 (2) −0.0243 (14) −0.0234 (16) −0.0232 (16)

0.0148 (12) −0.0037 (11) −0.0036 (15) 0.0038 (14) −0.0001 (13) 0.0031 (12) −0.0020 (13) 0.0052 (15) 0.0046 (15) 0.0225 (13) 0.0109 (13) 0.0025 (12) −0.0015 (13) 0.0011 (13) 0.0025 (14) 0.0175 (15) 0.0023 (13) 0.0021 (14) 0.0070 (14) 0.0147 (12) 0.0057 (11) 0.0071 (12) 0.0036 (17) 0.0024 (15) 0.0024 (14) 0.0092 (14) 0.0061 (15) 0.0038 (16) 0.0034 (15) 0.0018 (11) 0.0023 (11) −0.0055 (11) −0.0039 (16) 0.0053 (15) 0.0027 (14) −0.0004 (12) −0.0021 (14) 0.0063 (16) 0.008 (2) 0.050 (3) 0.0092 (14) −0.0020 (14) 0.0089 (15)

Geometric parameters (Å, º) S1—O11 S1—O13

Acta Cryst. (2002). E58, o272–o276

1.443 (4) 1.445 (4)

C414—C415 C414—H41D

1.496 (5) 0.9700

sup-13

supporting information S1—O12 S1—O14 S2—O21 S2—O22 S2—O23 S2—O24 S3—O31 S3—O33 S3—O32 S3—O34 S4—O43 S4—O41 S4—O42 S4—O44 O11A—C111 O11B—C111 O11B—H1B C111—C112 C112—N111 C112—C113 C112—H112 N111—H11A N111—H11B N111—H11C C113—C114 C113—H11D C113—H11E C114—C115 C114—H11F C114—H11G C115—O11C C115—O11D O11D—H1H O21A—C211 O21B—C211 O21B—H2B C211—C212 C212—N222 C212—C213 C212—H21A N222—H22A N222—H22B N222—H22C C213—C214 C213—H21B C213—H21C C214—C215 C214—H21D

Acta Cryst. (2002). E58, o272–o276

1.449 (3) 1.480 (3) 1.449 (3) 1.453 (3) 1.464 (4) 1.468 (3) 1.451 (3) 1.466 (3) 1.467 (3) 1.479 (3) 1.456 (3) 1.459 (3) 1.465 (3) 1.472 (3) 1.213 (5) 1.301 (5) 0.8200 1.505 (5) 1.476 (5) 1.522 (5) 0.9800 0.8900 0.8900 0.8900 1.491 (6) 0.9700 0.9700 1.520 (6) 0.9700 0.9700 1.202 (5) 1.306 (5) 0.8200 1.207 (5) 1.296 (5) 0.8200 1.522 (5) 1.476 (5) 1.544 (5) 0.9800 0.8900 0.8900 0.8900 1.466 (7) 0.9700 0.9700 1.513 (7) 0.9700

C414—H41E C415—O41C C415—O41D O41D—H4F O51A—C511 O51B—C511 O51B—H5B C511—C512 C512—N555 C512—C513 C512—H51A N555—H55A N555—H55B N555—H55C C513—C514 C513—H51B C513—H51C C514—C515 C514—H51D C514—H51E C515—O51C C515—O51D O51D—H5F O61A—C611 O61B—C611 O61B—H6B C611—C612 C612—N666 C612—C613 C612—H61A N666—H66A N666—H66B N666—H66C C613—C614 C613—H61B C613—H61C C614—C615 C614—H61D C614—H61E C615—O61C C615—O61D O61D—H6F O71A—C711 O71B—C711 O71B—H7B C711—C712 C712—N777 C712—C713

0.9700 1.216 (5) 1.301 (5) 0.8200 1.198 (4) 1.297 (5) 0.8200 1.512 (5) 1.480 (5) 1.539 (5) 0.9800 0.8900 0.8900 0.8900 1.511 (5) 0.9700 0.9700 1.504 (5) 0.9700 0.9700 1.227 (5) 1.290 (5) 0.8200 1.204 (4) 1.310 (5) 0.8200 1.515 (5) 1.498 (5) 1.530 (5) 0.9800 0.8900 0.8900 0.8900 1.522 (5) 0.9700 0.9700 1.498 (5) 0.9700 0.9700 1.202 (5) 1.307 (5) 0.8200 1.197 (5) 1.313 (5) 0.8200 1.515 (5) 1.482 (5) 1.533 (5)

sup-14

supporting information C214—H21E C215—O21C C215—O21D O21D—H2F O31A—C311 O31B—C311 O31B—H3B C311—C312 C312—N333 C312—C313 C312—H31A N333—H33A N333—H33B N333—H33C C313—C314 C313—H31B C313—H31C C314—C315 C314—H31D C314—H31E C315—O31C C315—O31D O31D—H3F O41A—C411 O41B—C411 O41B—H4B C411—C412 C412—N444 C412—C413 C412—H41A N444—H44A N444—H44B N444—H44C C413—C414 C413—H41B C413—H41C

0.9700 1.158 (6) 1.323 (6) 0.8200 1.195 (5) 1.311 (5) 0.8200 1.514 (5) 1.481 (4) 1.528 (5) 0.9800 0.8900 0.8900 0.8900 1.508 (6) 0.9700 0.9700 1.507 (5) 0.9700 0.9700 1.216 (5) 1.284 (5) 0.8200 1.197 (5) 1.317 (5) 0.8200 1.518 (5) 1.493 (5) 1.533 (5) 0.9800 0.8900 0.8900 0.8900 1.515 (5) 0.9700 0.9700

C712—H71A N777—H77A N777—H77B N777—H77C C713—C714 C713—H71B C713—H71C C714—C715 C714—H71D C714—H71E C715—O71C C715—O71D O71D—H7F O81A—C811 O81B—C811 O81B—H8B C811—C812 C812—N888 C812—C813 C812—H812 N888—H88A N888—H88B N888—H88C C813—C814 C813—H81A C813—H81B C814—C815 C814—H81C C814—H81D C815—O81C C815—O81D O81D—H8E OW1—H1WA OW1—H1WB OW2—H2WA OW2—H2WB

0.9800 0.8900 0.8900 0.8900 1.513 (5) 0.9700 0.9700 1.506 (5) 0.9700 0.9700 1.197 (5) 1.304 (5) 0.8200 1.199 (5) 1.313 (5) 0.8200 1.521 (5) 1.482 (5) 1.527 (5) 0.9800 0.8900 0.8900 0.8900 1.528 (5) 0.9700 0.9700 1.489 (5) 0.9700 0.9700 1.183 (6) 1.288 (6) 0.8200 0.85 (6) 0.79 (6) 0.81 (7) 0.94 (8)

O11—S1—O13 O11—S1—O12 O13—S1—O12 O11—S1—O14 O13—S1—O14 O12—S1—O14 O21—S2—O22 O21—S2—O23 O22—S2—O23 O21—S2—O24 O22—S2—O24

113.0 (3) 108.1 (2) 110.2 (2) 107.6 (2) 105.4 (2) 112.48 (19) 109.7 (2) 109.7 (2) 109.7 (3) 110.34 (17) 109.5 (2)

H41B—C413—H41C C415—C414—C413 C415—C414—H41D C413—C414—H41D C415—C414—H41E C413—C414—H41E H41D—C414—H41E O41C—C415—O41D O41C—C415—C414 O41D—C415—C414 C415—O41D—H4F

107.8 115.2 (3) 108.5 108.5 108.5 108.5 107.5 123.7 (3) 125.2 (3) 111.1 (3) 109.5

Acta Cryst. (2002). E58, o272–o276

sup-15

supporting information O23—S2—O24 O31—S3—O33 O31—S3—O32 O33—S3—O32 O31—S3—O34 O33—S3—O34 O32—S3—O34 O43—S4—O41 O43—S4—O42 O41—S4—O42 O43—S4—O44 O41—S4—O44 O42—S4—O44 C111—O11B—H1B O11A—C111—O11B O11A—C111—C112 O11B—C111—C112 N111—C112—C111 N111—C112—C113 C111—C112—C113 N111—C112—H112 C111—C112—H112 C113—C112—H112 C112—N111—H11A C112—N111—H11B H11A—N111—H11B C112—N111—H11C H11A—N111—H11C H11B—N111—H11C C114—C113—C112 C114—C113—H11D C112—C113—H11D C114—C113—H11E C112—C113—H11E H11D—C113—H11E C113—C114—C115 C113—C114—H11F C115—C114—H11F C113—C114—H11G C115—C114—H11G H11F—C114—H11G O11C—C115—O11D O11C—C115—C114 O11D—C115—C114 C115—O11D—H1H C211—O21B—H2B O21A—C211—O21B O21A—C211—C212

Acta Cryst. (2002). E58, o272–o276

107.82 (18) 111.49 (18) 110.60 (18) 108.29 (16) 107.75 (18) 107.75 (17) 110.94 (17) 112.1 (2) 111.36 (19) 108.39 (19) 106.62 (18) 108.2 (2) 110.1 (2) 109.5 124.9 (4) 123.0 (4) 112.0 (3) 108.8 (3) 112.0 (3) 116.3 (3) 106.4 106.4 106.4 109.5 109.5 109.5 109.5 109.5 109.5 113.9 (3) 108.8 108.8 108.8 108.8 107.7 111.5 (4) 109.3 109.3 109.3 109.3 108.0 122.1 (4) 122.6 (4) 115.3 (4) 109.5 109.5 126.0 (4) 122.1 (3)

C511—O51B—H5B O51A—C511—O51B O51A—C511—C512 O51B—C511—C512 N555—C512—C511 N555—C512—C513 C511—C512—C513 N555—C512—H51A C511—C512—H51A C513—C512—H51A C512—N555—H55A C512—N555—H55B H55A—N555—H55B C512—N555—H55C H55A—N555—H55C H55B—N555—H55C C514—C513—C512 C514—C513—H51B C512—C513—H51B C514—C513—H51C C512—C513—H51C H51B—C513—H51C C515—C514—C513 C515—C514—H51D C513—C514—H51D C515—C514—H51E C513—C514—H51E H51D—C514—H51E O51C—C515—O51D O51C—C515—C514 O51D—C515—C514 C515—O51D—H5F C611—O61B—H6B O61A—C611—O61B O61A—C611—C612 O61B—C611—C612 N666—C612—C611 N666—C612—C613 C611—C612—C613 N666—C612—H61A C611—C612—H61A C613—C612—H61A C612—N666—H66A C612—N666—H66B H66A—N666—H66B C612—N666—H66C H66A—N666—H66C H66B—N666—H66C

109.5 126.8 (4) 123.3 (3) 109.8 (3) 109.3 (3) 112.6 (3) 111.0 (3) 107.9 107.9 107.9 109.5 109.5 109.5 109.5 109.5 109.5 115.2 (3) 108.5 108.5 108.5 108.5 107.5 113.8 (3) 108.8 108.8 108.8 108.8 107.7 123.4 (3) 123.3 (3) 113.3 (3) 109.5 109.5 124.7 (4) 123.8 (3) 111.5 (3) 108.2 (3) 111.1 (3) 111.7 (3) 108.6 108.6 108.6 109.5 109.5 109.5 109.5 109.5 109.5

sup-16

supporting information O21B—C211—C212 N222—C212—C211 N222—C212—C213 C211—C212—C213 N222—C212—H21A C211—C212—H21A C213—C212—H21A C212—N222—H22A C212—N222—H22B H22A—N222—H22B C212—N222—H22C H22A—N222—H22C H22B—N222—H22C C214—C213—C212 C214—C213—H21B C212—C213—H21B C214—C213—H21C C212—C213—H21C H21B—C213—H21C C213—C214—C215 C213—C214—H21D C215—C214—H21D C213—C214—H21E C215—C214—H21E H21D—C214—H21E O21C—C215—O21D O21C—C215—C214 O21D—C215—C214 C215—O21D—H2F C311—O31B—H3B O31A—C311—O31B O31A—C311—C312 O31B—C311—C312 N333—C312—C311 N333—C312—C313 C311—C312—C313 N333—C312—H31A C311—C312—H31A C313—C312—H31A C312—N333—H33A C312—N333—H33B H33A—N333—H33B C312—N333—H33C H33A—N333—H33C H33B—N333—H33C C314—C313—C312 C314—C313—H31B C312—C313—H31B

Acta Cryst. (2002). E58, o272–o276

111.8 (3) 109.2 (3) 107.3 (3) 110.8 (3) 109.8 109.8 109.8 109.5 109.5 109.5 109.5 109.5 109.5 111.5 (4) 109.3 109.3 109.3 109.3 108.0 118.0 (5) 107.8 107.8 107.8 107.8 107.1 124.9 (4) 119.3 (4) 115.7 (4) 109.5 109.5 124.8 (4) 123.4 (3) 111.8 (3) 107.7 (3) 112.4 (3) 109.8 (3) 109.0 109.0 109.0 109.5 109.5 109.5 109.5 109.5 109.5 114.3 (3) 108.7 108.7

C614—C613—C612 C614—C613—H61B C612—C613—H61B C614—C613—H61C C612—C613—H61C H61B—C613—H61C C615—C614—C613 C615—C614—H61D C613—C614—H61D C615—C614—H61E C613—C614—H61E H61D—C614—H61E O61C—C615—O61D O61C—C615—C614 O61D—C615—C614 C615—O61D—H6F C711—O71B—H7B O71A—C711—O71B O71A—C711—C712 O71B—C711—C712 N777—C712—C711 N777—C712—C713 C711—C712—C713 N777—C712—H71A C711—C712—H71A C713—C712—H71A C712—N777—H77A C712—N777—H77B H77A—N777—H77B C712—N777—H77C H77A—N777—H77C H77B—N777—H77C C714—C713—C712 C714—C713—H71B C712—C713—H71B C714—C713—H71C C712—C713—H71C H71B—C713—H71C C715—C714—C713 C715—C714—H71D C713—C714—H71D C715—C714—H71E C713—C714—H71E H71D—C714—H71E O71C—C715—O71D O71C—C715—C714 O71D—C715—C714 C715—O71D—H7F

113.0 (3) 109.0 109.0 109.0 109.0 107.8 114.2 (3) 108.7 108.7 108.7 108.7 107.6 124.0 (3) 124.2 (3) 111.9 (3) 109.5 109.5 125.1 (4) 124.1 (3) 110.8 (3) 108.0 (3) 113.2 (3) 111.7 (3) 107.9 107.9 107.9 109.5 109.5 109.5 109.5 109.5 109.5 113.8 (3) 108.8 108.8 108.8 108.8 107.7 115.4 (3) 108.4 108.4 108.4 108.4 107.5 124.4 (3) 125.0 (3) 110.5 (3) 109.5

sup-17

supporting information C314—C313—H31C C312—C313—H31C H31B—C313—H31C C315—C314—C313 C315—C314—H31D C313—C314—H31D C315—C314—H31E C313—C314—H31E H31D—C314—H31E O31C—C315—O31D O31C—C315—C314 O31D—C315—C314 C315—O31D—H3F C411—O41B—H4B O41A—C411—O41B O41A—C411—C412 O41B—C411—C412 N444—C412—C411 N444—C412—C413 C411—C412—C413 N444—C412—H41A C411—C412—H41A C413—C412—H41A C412—N444—H44A C412—N444—H44B H44A—N444—H44B C412—N444—H44C H44A—N444—H44C H44B—N444—H44C C414—C413—C412 C414—C413—H41B C412—C413—H41B C414—C413—H41C C412—C413—H41C

108.7 108.7 107.6 111.6 (3) 109.3 109.3 109.3 109.3 108.0 122.1 (3) 123.7 (4) 114.2 (3) 109.5 109.5 125.2 (4) 123.3 (3) 111.5 (3) 108.5 (3) 112.9 (3) 111.5 (3) 107.9 107.9 107.9 109.5 109.5 109.5 109.5 109.5 109.5 113.0 (3) 109.0 109.0 109.0 109.0

C811—O81B—H8B O81A—C811—O81B O81A—C811—C812 O81B—C811—C812 N888—C812—C811 N888—C812—C813 C811—C812—C813 N888—C812—H812 C811—C812—H812 C813—C812—H812 C812—N888—H88A C812—N888—H88B H88A—N888—H88B C812—N888—H88C H88A—N888—H88C H88B—N888—H88C C812—C813—C814 C812—C813—H81A C814—C813—H81A C812—C813—H81B C814—C813—H81B H81A—C813—H81B C815—C814—C813 C815—C814—H81C C813—C814—H81C C815—C814—H81D C813—C814—H81D H81C—C814—H81D O81C—C815—O81D O81C—C815—C814 O81D—C815—C814 C815—O81D—H8E H1WA—OW1—H1WB H2WA—OW2—H2WB

109.5 125.0 (4) 123.9 (3) 111.0 (3) 106.9 (3) 113.2 (3) 112.1 (3) 108.1 108.1 108.1 109.5 109.5 109.5 109.5 109.5 109.5 114.7 (3) 108.6 108.6 108.6 108.6 107.6 114.9 (3) 108.6 108.6 108.6 108.6 107.5 122.0 (4) 124.2 (4) 113.8 (4) 109.5 106 (5) 93 (6)

O11A—C111—C112—N111 O11B—C111—C112—N111 O11A—C111—C112—C113 O11B—C111—C112—C113 N111—C112—C113—C114 C111—C112—C113—C114 C112—C113—C114—C115 C113—C114—C115—O11C C113—C114—C115—O11D O21A—C211—C212—N222 O21B—C211—C212—N222 O21A—C211—C212—C213 O21B—C211—C212—C213

−1.9 (5) 176.9 (3) 125.7 (4) −55.6 (5) 61.3 (5) −64.6 (5) 175.1 (4) −61.4 (7) 120.7 (5) −29.5 (5) 154.0 (3) 88.5 (4) −88.0 (4)

O51A—C511—C512—N555 O51B—C511—C512—N555 O51A—C511—C512—C513 O51B—C511—C512—C513 N555—C512—C513—C514 C511—C512—C513—C514 C512—C513—C514—C515 C513—C514—C515—O51C C513—C514—C515—O51D O61A—C611—C612—N666 O61B—C611—C612—N666 O61A—C611—C612—C613 O61B—C611—C612—C613

−18.2 (5) 163.2 (3) 106.6 (4) −72.0 (4) 78.2 (4) −44.6 (4) 170.2 (3) −41.7 (5) 139.9 (3) −6.3 (5) 175.9 (3) 116.3 (4) −61.4 (4)

Acta Cryst. (2002). E58, o272–o276

sup-18

supporting information N222—C212—C213—C214 C211—C212—C213—C214 C212—C213—C214—C215 C213—C214—C215—O21C C213—C214—C215—O21D O31A—C311—C312—N333 O31B—C311—C312—N333 O31A—C311—C312—C313 O31B—C311—C312—C313 N333—C312—C313—C314 C311—C312—C313—C314 C312—C313—C314—C315 C313—C314—C315—O31C C313—C314—C315—O31D O41A—C411—C412—N444 O41B—C411—C412—N444 O41A—C411—C412—C413 O41B—C411—C412—C413 N444—C412—C413—C414 C411—C412—C413—C414 C412—C413—C414—C415 C413—C414—C415—O41C C413—C414—C415—O41D

−172.2 (6) 68.6 (6) −167.5 (7) −179.0 (7) −1.8 (11) −16.3 (5) 165.0 (3) 106.4 (4) −72.4 (4) −64.6 (4) 175.6 (3) −161.4 (3) 49.6 (6) −129.7 (4) −1.3 (5) 179.9 (3) 123.7 (4) −55.1 (4) 67.1 (4) −55.3 (4) 177.5 (3) −19.5 (5) 161.5 (3)

N666—C612—C613—C614 C611—C612—C613—C614 C612—C613—C614—C615 C613—C614—C615—O61C C613—C614—C615—O61D O71A—C711—C712—N777 O71B—C711—C712—N777 O71A—C711—C712—C713 O71B—C711—C712—C713 N777—C712—C713—C714 C711—C712—C713—C714 C712—C713—C714—C715 C713—C714—C715—O71C C713—C714—C715—O71D O81A—C811—C812—N888 O81B—C811—C812—N888 O81A—C811—C812—C813 O81B—C811—C812—C813 N888—C812—C813—C814 C811—C812—C813—C814 C812—C813—C814—C815 C813—C814—C815—O81C C813—C814—C815—O81D

62.9 (4) −58.1 (4) −179.7 (3) −13.5 (5) 167.4 (3) −3.1 (5) 177.7 (3) 122.0 (4) −57.2 (4) 72.2 (4) −50.0 (4) 168.9 (3) −22.9 (6) 159.9 (4) −7.9 (5) 173.5 (3) 116.8 (4) −61.9 (4) 72.0 (4) −49.1 (5) 173.0 (4) −6.8 (9) 172.8 (4)

Hydrogen-bond geometry (Å, º) D—H···A i

O11B—H1B···O21C O21B—H2B···OW2ii O31B—H3B···O51C O41B—H4B···O71C O51B—H5B···OW1 O61B—H6B···O41C O71B—H7B···O11Ciii O81B—H8B···O31Civ O11D—H1H···O34v O21D—H2F···O12vi O31D—H3F···O14vii O41D—H4F···O32 O51D—H5F···O41viii O61D—H6F···O42iii O71D—H7F···O33iii O81D—H8E···O22i O81D—H8E···O23i N111—H11A···O24v N111—H11B···O42viii N111—H11C···O51C N222—H22A···O24

Acta Cryst. (2002). E58, o272–o276

D—H

H···A

D···A

D—H···A

0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.89 0.89 0.89 0.89

1.83 1.72 1.93 1.92 1.70 1.86 1.78 1.81 1.77 1.76 1.81 1.78 1.78 1.86 1.86 2.20 2.39 1.82 2.18 2.13 1.89

2.644 (4) 2.525 (5) 2.733 (4) 2.720 (4) 2.495 (4) 2.657 (4) 2.591 (4) 2.625 (5) 2.585 (4) 2.555 (4) 2.604 (4) 2.577 (4) 2.595 (4) 2.659 (4) 2.625 (4) 2.958 (6) 3.081 (6) 2.708 (4) 2.943 (5) 2.998 (4) 2.767 (4)

176 165 165 164 163 164 169 177 173 161 162 164 172 166 155 153 142 171 144 164 168

sup-19

supporting information N222—H22B···O44ix N222—H22C···O51A N222—H22C···O61Cviii N333—H33A···O43 N333—H33A···O44 N333—H33B···O33 N333—H33B···O32 N333—H33C···O71Cv N333—H33C···O41Av N444—H44A···O14vii N444—H44B···O23 N444—H44C···O21Ax N555—H55A···O31vii N555—H55A···O34vii N555—H55B···O11ii N555—H55C···O71Avii N555—H55C···O11Cxi N666—H66A···O34x N666—H66A···O33x N666—H66B···O13 N666—H66C···O21Cxii N777—H77A···O13 N777—H77A···O14 N777—H77B···O22iv N777—H77B···O21iv N777—H77C···O31Civ N888—H88A···O43 N888—H88B···O31 N888—H88C···O41C N888—H88C···O61A OW1—H1WA···O21 OW1—H1WB···O61Cviii OW2—H2WA···O11 OW2—H2WB···O81Ciii

0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.85 (6) 0.79 (6) 0.81 (7) 0.94 (8)

1.95 2.15 2.40 1.93 2.46 2.08 2.49 2.34 2.36 1.92 1.94 2.23 2.15 2.39 1.95 2.41 2.48 1.92 2.59 2.02 2.03 2.20 2.21 1.97 2.62 2.43 1.84 1.95 2.40 2.48 1.88 (6) 2.07 (6) 1.96 (7) 1.78 (8)

2.801 (4) 2.913 (4) 2.835 (4) 2.795 (4) 2.992 (4) 2.886 (4) 3.061 (4) 3.070 (4) 3.036 (4) 2.804 (4) 2.797 (5) 2.922 (4) 2.928 (4) 3.193 (4) 2.727 (5) 3.095 (4) 3.056 (4) 2.798 (4) 3.254 (4) 2.844 (5) 2.807 (4) 2.962 (5) 2.992 (5) 2.830 (5) 3.084 (5) 3.160 (5) 2.717 (4) 2.827 (4) 3.084 (4) 3.151 (4) 2.732 (4) 2.803 (5) 2.706 (5) 2.725 (6)

160 144 110 164 119 151 122 139 133 172 161 134 146 151 145 134 123 166 132 154 145 143 147 162 114 140 169 170 134 133 175 (5) 155 (5) 151 (6) 174 (6)

Symmetry codes: (i) x, y+1, z−1; (ii) x−1, y−1, z; (iii) x, y, z+1; (iv) x, y+1, z; (v) x, y, z−1; (vi) x−1, y−1, z+1; (vii) x, y−1, z; (viii) x−1, y, z; (ix) x−1, y, z+1; (x) x+1, y, z; (xi) x, y−1, z+1; (xii) x+1, y+1, z−1.

Acta Cryst. (2002). E58, o272–o276

sup-20