C - NASA Technical Reports Server

40 downloads 204 Views 8MB Size Report
followed, for example, in [61 and [7]. ..... The closed-loop migration due to various f in (3-7) and (3-13) ap- pear in Fig. 3-1 and 3-2, ..... 0.676, al = 0,0625, and a0 = - 0.0338 from (3-32)-(3-43), yields the pole-zero ...... X111 J = W11-1 ). Y11J -r11 ...
https://ntrs.nasa.gov/search.jsp?R=19810012231 2017-12-03T20:04:24+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-C6-1b3992) SIMULATED LU11YED-PANAMETEM STSTLM hFDULr.D-O-T)dh ALAeIIVL Lob'rRUL .iTU1.j1;: (V1r jiaid Polytaca nlc duu Stdt fa Uuiv . ) USLL 098 11b P HL AJb/MF A01

s

081-20760

lust.

Unclas

5 R's1

I

t ^ 1"A Rev

Virginia Polytechnic Institute q

nd nia

te Uni'versitv

Electrical Engineering BLACKSBURG, VIRGINIA 24061

SIMULATED LUMPED-PARAMETER SYSTEM REDUCED-ORDFR ADAPTIVE CONTROL STUDIES

by C. Richard .Johnson, Jr., D. A. Lawrence, T. Taylor and M. V. Malakooti

March 1981

1

Technical Report No. EE-8119 Department of Electrical Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24061

.

i.

i

This work supported by NASA Grant NAG-I-7. NASA Technical Officer: Dr. R. C. Montgomery, Flight Dynamics and Control Division, NASA Langley Research Center, Hampton, VA 23665.

i

I. INTRODUCTION Very little conclusive insult- is currently available for predicting l

the behavior of reduced-order adaptive controllers (ROAC), i.e. an adaptive controller based on a plant model of lower dimension than that of the actual plant. In [11 the ROAC problem is seen to be an unI

avoidable consequence of the application of any finite-dimensional, lumped-parameter system (LPS) adaptive control strategy to an infinite

C dimenHtona1.distr'buted-parameter system (UPS). In [2] and [31 the relative orders of the plat:;,, model, and controller are noted to be critical. In

[4] the problem

of

adaptive parameterization of a C order controller for

a M order m,.,,lc 1 of a N orderHystCm it, addressed when N - M > C. However, j

aH notL-d 111 121 and 131, the practical, poorly understood ense Is when

1

N ^ M

t:. This conditirn, i.e. the system order exceeds that of the plant

fmodel used for adaptive controller parameterization, will be considered to constitute the ROAC problem in this report. Though numerous strategies have been espoused [5] for extracting a low order model from a too complex system description, none currently seem 1

fully applicable to the real-time, recursive requirements of on-line adaptive control algorithms. These reduced-order modaling techniques seem to fall into two broad categories: (1) Extract tbuse "modes" (or componentsubsystems) from the full ;system description that are most tnfluentlil in the performance of the model in its subsequent use. This strategy is followed, for example, in [61 and [7]. (ii) Parameterize the reducedorder structure• to provide the best prediction of the desired output. This latter strategy will produce a model the "modes" of which need not currespon:: to any of those of the full system as noted in [3]. This latter strategy includes the model reference approach prominent in adaptive systems [8j. Two methods of interpreting the misbehavior of ROAC, one

P

1

L

1.2

based on system input - output description

[

3) [91 and one on state-

variable description [11 1101, have emerged recently from attempts to !

1

develop adaptive controllers for flexible spacecraft. Consider the implementation of the proper, single-input, singleoutput (STSO), autoregroo live, moving-average (ARMA) system N

^

y(k) _

[ai y(k-i) + b i u(k-i)) (N even),

(1-1)

i=1

where u is the system input and y the output, in parallel, i.e. partial fraction expanded, form as

I

Y^

(k) -

t

[exi t

y t (k-i) +

pit u(k-i))

(1-2)

i =1

N/2 y (k) - X Y;( k ).

(1-3)

^=1

where y y is the output of the R-th mode. As interpreted in 131 the first strategy in the preceding paragraph when used for identification would lead to approximation of (1-3) as M/2 of [1,N/21 Y s (k) -

YJt(k)

(1-4)

t with (1-2) describing the dynamics of each y,(k). The M/2 modes chosen in i.

(1 +) may by selected as those M/2 from the N /2 in (1-3) that provide the "best" fit of y s to y. Note that the order M of (1-4) refers to the order of the underlying reduced-order ARMA model. If the dimension of (1-4) (and (1-1)) were based on the number of quadratic "modes" then M (and N) would be replaced by M = 2 (and N = 2). This quadratic "'modal" designation of order is common in the flexible spacecraft literature [3). As noted in [11, [3), and [111 the extraction of the y f chosen in (1-4) from the y in

1.3

(1-3) remains an open que= stion. However, these y, would be required

for identification of the appropriate (1-2) parameters a iR and Bit. Alternatively, the second strategy would approximate tl-3) with

N M/2 of [1, Y1 9(k)

Y$(k)

(1-5)

in, e.g., a le=ast-squares sense by selection of the j,M M. These estimated "moual" outputs need not match the corresponding values in ( 1-2) and, therefore, need not lead to identification of the corresponding a il and

Oil

in (1 - 2) as noted in [3]. The successive y l chosen to fit (1-5) to (1-3) may not even obey a time-invariant difference equation of the form of (1-2)

With y t replaced by y C The problem with closing, the adaptive control loots via a simultaneous ide= ntification and control strategy could be intensified

by

feeding hack the ^^^ instead

of the unavailable y, to meet .1 modal

control objective. The alte= rn ate interpretation of the ill-effects of ROAC, derived from the flexible spacecraft control problem [1) [101, begins with the separation of a SISO, state-space model for, e.g., (1-1) into the reduced-order and unmodeled (or residual) segments as

xN(k+l) xR(k+1)

AN ANR

xN(k)

ARN A R

xR(k)I

+

bN

u(k)

(1-6)

b

XN(k) (1-7)

y (k) - [ c N cR1 xR(k)

As outlined in [1] the derivation of (1-6) - (1-7) can be viewed as a

I.4

Iprojection operation on the full system. From (1-7)

the "spillover"

of the residual modes into the observation of y(k) via c g x R (k) and from

(1-6) the ":spillover" of tl• e control designed for the reduced model into

residual

the

possible

modes x R (k+l) via b

u(k) are clearly displayed. Also the

coupling of reduced model modes and residual modes via

I

ANR

and

ARN

is

immediately apparent. Shown in [1] and [10; is the predictable fact that j

if

ANR

0 and c R

0 then,

assuming the residual modes remai.a stable,

any full-order (N), stable adaptive controller identifying AN , bN , and cN explicitly or implicitly from y and u alone would retain its stability. If ANR = 0 but

C

and b

are nonzero then the degradation of RUAC has two

sources. Unmodeled components in y via c

will generate an error that

Is Indistinguishable from parameter error thereby causing .ada.ption. 11io .application of control u to the residual states x

via b

will contribute

further Lo this unmodeled component of y. Not only will the parameter e:stim,aLo!; be :ncorrvt , t from use of y and a to identify only AN , b N , and c but also ti l t , s g ait, cast im.aters provided by an adaptive observer will be incorrect, whiell if fed back could lead to an unpredictable "controlled" resp,,nse. These two problems of inappropriate parameter and state estimation are the same ones noted in the first interpretation with y approximation of y in (1-5). The ability to extract the y t and obtain y $ corresponds to an effective zeroing of c R . This report will, in part, attempt to implement, compare, and contrast these two strategies embodied in (1-4) and (1-5). The next seetion details the specific objectives of this study. Section III presents the example autoregressive, moving-average plants that are to be used in

the simulations.

Section IV presents the adaptive

t control algorithms to bs used and their sources in the literature. Section V outlines the formats for the simulated tests including that

i 1

description of numerical figures of merit to be tabulated in Section VI.

I

Section VII offers interpretations of the test results and Section VIII draws conclusions relevant to the RnAC problem. The last sections of this report include the referenced literature and the appendices Including computer program listings.

1

11.1

11. OBJE CTIVES

}

The principal objective of this study is to test the usefulness of the folklore of reduced -order modeling with respect to adaptive control. In particular four "facts" will be tested: (i)

heavily damped modes may be neglected relative to more lightly

damped nx)dcs in reduced- order -model derivation. (ii)

Finite bandwidth actuatoraz limit the number of moles necessary to be

models-".. (iii) An "optinwal" reduced-order controller neglects the modes contributice measure. ing the least degradation in the control system perforwr (iv)

Indirect and direct adaptive control are essentially equivalent and

intvirchangeable. The iml"1 icat irna to the BOAC. problem of each of these statements will be developed in the following paragraphs. The .9imulations of the following sections will be chosen to test the veracity of these implications. The conclu:aion of this report will summarize the useful "facts" that either escape unscathed or emerge from these tests. Since each of these facts has

been accepted into the reduced-order

and/or adaptive control folklore it is difficult to pinpoint particular references suocinctly stating these points. However, several classical control texts contain the source of point (i) in the concept of dominant roots or poles. For example: "The complex conjugate roots near the origin of the s-plane relative to the other roots of the closed-loop system are labeled the dominant roots of the system since they represent or dominate the transient response. The relative dominance of the roots is determined by the ratio of the real parts of the complex roots and

{

11.2

will result in reasonable dossinance for ratios exceeding five. ... Dominance .. also depends upon the relative magnitudes ... of the residues evaluated at the complex roots, [which) depend upon the I,ocation of the zeros ict the s-plane" [121. Or: "The relative dominance of closed-loop poles is determined by the ratio of the real parts of the closed-loop poles, ns well as by the relative magnitudes of the residues evaluated at the closed-loop poles. The magnitudes of the residues depend tipon both the closed-loop poles and zeros. If the ratios of the

real parts exceed five, and there are no zeros nearby, then the

closed-loop poles nearest the jW axis will dominate in the transientresponse behavior because these poles correspond ro trans ient-response terms which

viol IV

SI„wIN" I I i, p. ." )1 1.

'his t,vllarat I«n

cc,ssovpt has hvvii

forma-

lized via singular perturbation theory [141. Despite the concomitant warning in both 1121 and [13] for caution in the use of this rule and the explication of its applicatIon to the closed-loop system, point (i) is commonly (though admittedly inappropriately) used for model reduction prior to control design. The (mis)implication for discrete systems is that if the open-loop singulafities are separable into a group in the z-plane outside a radius of r (rR CKI + F: 0 tK1 RESULTING CHAR. FUN. s Pkx: -Ik tA1 + A?+F« (B + EI ) + A1wA2 +F>4 t8wt1?*1 xAll PARAMETERS: At-0.9

A4=0.1

810.1

E=-0.01

Fig. 3-3: Closed-loop Root Migration due to Output Feedback for Example 2.

I1I.9

10.00

._...POL i_ S _?[HO PLAN, t Y (x) - (Ai + API r (K-11 - (A1%A21 T (K-4`1 + (B+Ft oW (K 11 - (A1 «E+BkA;' xl1 tK- 2) MESULTING CHAR. EON.t 7Ak2-1x(A1+A2+Fk5j+RIxA2+BmA2xF i

PRRAMETERSt AI : 0.9

R2=0.1

0=0.1

E=-0.01

Fig. 3-4: Closed-loop Root Migration due to Partial State Feedback for Example 2.

r

III.1O

9

Z

• Ir.

—POLES ._...ZERO "L ANT: T IKl x (Ai+A21 T lK-1J - (AINA21 T tK

CONTROL = U tK1 = FINK W +F, I %T

-21 + t8+E1 xUIK-11 - IA1xE+IiKA2j KIIIK-21

IK1

MESULT;NG CHAR, FUN.: ?x+.2 ix i n 1 + A2 + Fx ($+EI ) +A1KA2+Fx tBx p 2*FxP; )

PARAMETERS: Al=0.9

A2-('.R

B=0.08

E=0.02

Fig. 3-5: Closed-loop Rost,: Migration due to Output Feedback for Example 3.

ou

C

71 LW

ja -

I. -

- - -

- -, -

n

a

4

- 1

v

V.

0z) -_ - - , b, 00' 0 - 0

VA4.

A

-,



- T -13 U

IV. GO

r C Tci

— Pot

t5

- __ 71 Flo N ANT ,

1

y K

ME 5UL T I N5 C PWIAMt I t R )-

k

I - :A1

I 11:

0. 9

P,:

Fig. 3-6: Closed-loop Root Migration due to Partial State Feedback for Example 3.

a

111

.12

important mode for partial state feedback by either swapping the elements

of they state feedback gain vector in (3-14) or swapping the designation of

a i , b and a 2 , t results in the cl o sed -loop roo t s shown in Fig. 3-7. Note in Fig.

3-5 for f ^ -

the faster

mode

3.8 the near-c a ncellation of the slower mode while

matches that desired. The degree of closeness of this near

cancellation is not maatLhed in either Fig. 3-6 or 3-7. Mote that in Fig.

3-6 if f is chosen as -5 tee cause q l - 0.5, use of the same f in Fig. 3-5 WOUld result in overcoanpcnsation. Neither in the open-loop plant nor for any f placing one pole near the desired location of d - 0.5 are the

singu,arities separable as in cattg;ory (iii).

?:x 0

(4-83)

u 2 > 0

(4-84)

P 1 > 0

(4-85)

P 2 > 0

(4-86)

1V.9

z -1 + q 2 x-2 1 -1 a 11 z - a12x -z

1+ q x^ 1 -

> o

q l could be chosen as -0.98 and q.,

v

as

(Z(K 1

(4-137)

zero for the rapidly sampled

examples 5 and h and (4-87) would be satisfied.

I ; la

(4-88)

li is nominally chosen as one unlotisa such a value would c:a yse e 2 (k)

0 or

.4 1 (k)a I (k) + h' 2 (k) - a,(k) ti l` (k)/.^,(k) = 0. Then h is chuNen within the range of (4-88) such that the absolute value of both terms

c = 0+.

Each of thr last three algorithms in (4-50)-(4-8H) provides a

( fx.,(k), t, M

r2(k) for

user

I s l (k-1) - 7 1 - a i (k)

vl(k-1)

l (k),

in (refer to (3-21)-(3-30)).



(4-89)

l(k)--^ 2 (k)al( W) Pi I (k-1) a 2 (k)+(n l (k-IYx l (k)-a 2 (k)+ti l ) t eax

_._ ... ^. ___ a 2 (W (k)-a (k)/61(k)l I (k)+e 2 1 ( y l (k)

2(k))l

(4- 9n) n,(k-1) ,(k-1)

x l (k)si l (k-1) + '2 -• t z l (k)v 1 (k-1)

(k)

n.,(k-1) ^2(k),'RZ(k)

(4-91) (4-92)

for parameterization of u(k-1)

a 6r(k-1) + 1 1 1 (k-1)u(k-2) + n2(k-1)u(k-3) + V (k-1)y(k-2) + %-,,(k-1)y(k-1)

(4-93)

tor application to the difference equation repres ont.at ion 1 1 (3-17) y ( k)

21 + tx ll )^ (k-1) + ( x L2 - .x 11 "` 21 + "1L)y(k-2) - (xll`a2^, + ^`12"21)y(k-3) - a12`a22y(k-s) +(6 11 + ^, 1 )u(k-1) - (;^ ll : x V1 612 + 21 (t 11 - Bz.y)u(k-2) - 6 11x 22 + 6 12`x 21 + ti, 1 `a 12 + F22"11)u(k-3) t2 - (tz12 x "''' + r 4 :'x )u(k-4)

(4-94)

^.

IV. 10

!

generating y(k). Mote that all of the preceding schows in (4-4)-(4-93) use the current information as efficiently as possible and therefore I result

in causal rather than strictly causal adaptive controllers (111.

(See Appendix F for programs of each of these controllers.)

•R

v.1

V. TEST FORMATS Having specified the non-adaptive &ad adaptive control strategies and objectives the remaining items to be selected for the testing of the guidelines in the second section are the reference inputs, adaption stepsize constants, parameter estimate initializations, and performance measures. Selection of the reference signal is important for two reasons: richness and magnitude. The magnitude of the reference signal is important due to the nunlinearity of the adaptive control system and therefore the anticipated transient (at least) differences due to different signal levels. The richness is Important because it is well-recognized [381 that a sufficient "input" richness in necessary to perturb all of the modus of the system for their "identification." This "input" differs for the indirect and direct approaches and the equation and output error formulation.. For the equation error indirect approach the plant input and output must be sufficiently rich. Since the plant is linear this translates to

it

sufficient frequency content of the plant input (or control)

signal, of which the reference is only one component. The difficulty of assuming adaptive control input richness based on reference signal richness is addressed in 1301. For the output error indirect approach the plant input and identifier output must 1-e sufficiently rich. In an openloop output error identification task the identifier output richness can be translated [391 solely to input richness necessity under the assumption that the identifier output asymptotically converges to the plant output, which requires sufficient identifier order absent from ROAC. For direct adaptive control the control paraw-ter identification problem must be

r

i

v. 2

recast as an open-loop identification task as in 119

1

and [371. In the

equation error case the richness rrquiresents are converted principally to conditions on the model output to be tracked or, if generated by a 1

linear, timer - invariant model, to the forcing or reference signal 139].

Once regain this assumes sufficient controller order. The requirements for output error based direct aaiaptive control, though as yet unspecified, are assumed to be similar.

All of the preceding richness requirements are for complete identification and assume non-reduced adaptive model order. As is well-recognized

[221 (341 1371,for a control objective complete identification may nut be necessary. Consider the control of any order system with n single constant

i a

output feedbat-k gain and a ref erenve.= signal gain. Tea achieve ARymptotic convergence to a particular DC level set-point any feedback grain stabilizg

T S

in

the system in can jun: tion with the appropriate reference gain will be

adequate. This applies readily to examples 1-4 in section three. As noted in [401 for open-loop output error (and by implication equation error) identification the richness of the input signal for stable reducedorder identification its dependent on the reduced-order model dimension, not that of the higher order plant. From a frequency response point of view, the viewpoint promote) in [411 for reduced-order modelling, the minimum number of sinusoids providing this richness matchets the number of points at which the controller can specify the steady-state frequency response. Therefore, if this reduced-order controller stabilizes the system, asymptotically convergent steady-state control seems possible up to the richness level of the reduced-order model. When the signal to be tracked (or equivalently the reference signal) has a higher frequency content,

^I T

reduced-order tracking will onlv be approximate at best. The reference

G

t

v. 3

signal should be chosen to test this boundary condition, with the principal case of interest being reference signal over-richness. Therefore the following reference signals (all zero prior to k - 0) will be considered: INPUT 1 (unit step input): r

1

M - 1

(5-1)

INPUT 2 (single low-frequency sinusoid): r1 (k) - 2

Kin(kw 2T) (5-2)

Note that the sample period T Ilia f requenev :. r 2 ex.t111111

`x 1-4, i.e.

resspvt , t iveiy, and 5 and

iss

0,

In assumed

to be one second for examples 1-4.

chosen an 201 below the desired cutoff frequency for

0.17851, 0.34443. 0.5502, and 0.40866 radianK per second, 2U'; below

the dominant natural fregt-eney for examples

i.e. 0.40 radian-: per

isc • comd,

with T - 0,5 second$,

INPUT 3 (;single high-frequency minussoid): r (k) - 2 sink, 1)

(5-3)

ABaiss the sample period is assumed to be one second for examplvs 1-4. The frvgtjvnev . 3

1.4 double the dt • sirea cutoff for examples 1-4, I.e. respective-

ly 0.44tQ9, 0.86157,

1.38629, .snd 1.02170, and double thc= dominant natural

frequency for examples 5 and 6, i.e. 1.00, with T - 0.5 second;., INPUT 4 (non-zero mean, uniform, white noise): r 4 (k,)

t

1-0-5,1- S ]

(5-4)

This is clearly the over-rich input of most interest. Since the rate of convergence and parameter estimate variance near convergence are commonly acknowledged as being affected by the adaptive step-size (SS) coefficients pi and p i , two cases will be considered. t

TOO

v.4

SS - 1.

ui -Pi -

1



(5-.S',

SS 2 - 0.1: (5-6)

u i - p 3 - 0.1.

Given the approximate nature of the

gradient

formulas for GOI embodied in the

required u and p smallness noted in (4-20)-(4-21) and (4-71)-(4-14) the u acrd p of (5-5) may lead to unstable behavior for C;01 while (5-6) :should prove more satisfacLory. (Note that h in the normalizing term of all of the algorithms is selected as unity). For output error type algorithms such as SOI and SOD the error smoothing coefficients q in (4-24), (4-47), and (4-77) are to be selected in satisfaction of (4-32), (4-48), and (4-b7), respectively. As noted in [42] selection of these q to make (4-32), (4-48), and (4-87) equal unity does not offer tht, most rapid convergence. Furthermore, in a reducedorder application these q can influence the mean convergence paint. Such factors may be used to advantage in (4-48) where f is known a priori, but In (4-32) and (4-87) the strictly positive real (SPR) condition is dependent on unknown p1nnt parameters. 'Therefore several values will be tested. They are sunurzarized in Table 5-1. Since only Local convergence is currently anticipated three settings of the initial plant (and therefore controller) parameter estimates (EST) will be considered corresponding to the nominal values from control design based on neglecting the second mode (i.e.

e =

0 for examples 1-4 and a 2 - 0

for examples 5 and 6) and ± 20% of these val , aes. These values are summarizer) in Table 5-2. The controller parameter initializations for the direct schemes are based on the corresponding plant parameter initializations and

V.5

Lx^^raplc ( s)

Algorithm

Coefficients)

1.r)l^el

-0.9

SC-

-0.95

SCO

-0.97

SC+

-0.7

SG-

-0.8

SCO

-0.9

SG+

So

-0.9

SCO

St)1

-0.9

SCO

Sol)

-0.5

SC

-0.8

Sc:—

--0.9

SCO

-0.95

SC-+-

-0.4

Sc-

-0.6

SCO

-0.g

SC+

Sol

Sul)

-- -

Error S mo othing

1

Su 1

SOD

-.

5&6

`Sul

q1--0.9,g2-0

SG-

g 1 =-1.846,g 2 -0.9515

SGO

g 1 4 -0.96,g2-0

SC+



TABLE 5-1; Error Smoothing Coefficients

i

I^ I'

1



~

- -

_--__~~^

V.6

Example

Parameter

SST -f20%

EST

20%

0.052 -

0.76 0.08

0.72 -------~---0.064 0.72 0.4 0.72 --------'--0.046 14 12

0.139

0.093

0.116

ti&6

l.477 1.086

-0.905

-0.?-)4 ^ -'-'--------/

TABLE 5-2: Paromo,r Estimate Initial loztIons.

f

I

V.7

1 (3-8)

and

( 3-9)

for examples 1-4 and

(3-27)-(3-30)

for examples 5 and 6.

Nnte the instability of the EST - + 20% initializations. Since the control objective of all of the examples in section 3 is model-following, the tracking error is the principal performance measure. For the expectation of asymptotic tracking, the figures of merit should be divisible into short and long term quantities. The mean and variance of they tracking errors should be normalized and tabulated for comparison among the examples and between the fixed and adaptive contro' schemes. Similarly the input cost and controller (and plant, for indirect schemes) parameter estimates should be observed. Therefore the following quantities will be tabulated at k

- 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000

iterations. Instantaneous desired output: IDO (k) = s (k)

(5-7)

Instantaneous controlled output: `

IO(k) - y(k)

(5-8)

Normalized instantaneous tracking error:

NITE(k) - (s(k) - y(k))

(5-9)

s (k)

Normalized average segmented tracking error:

(

l ki

NASTE - I

1

l k

i

- k

(5-10)

NITE( ,j )

J k1-1+1 i-1 Jj

Normalized segmented tracking error variance

NSTEV

(

^n (ri 1) j n l

ki NITE2 (j ) j=k

i-1+1



r k

L

i

j^ki_1+1

2l NITE (j )] r 1

(5-11)

r f

V.8

(Note that n is k

- k 1-1 minus the number of times s ( k) - 10 -3 , which

are excluded due to (5-9).

If NSTL•'V is negative due to round-off, it

is print ed as zero.) Seymentvd average squared input ki 1

ki - k

Segmented average

l-1

i-ki-l4.1

controller parameter c:st im.-atC for f

i

._.k

1

k

^'

- J .3'kt-1+1 i-1

(Similarly for g, a, b, ,t, r,

f (k)

(5-13)

v, and n.)

Segmented controller parameter estimate variance for g ki (k i "1kl-1) (k

i- k

i - 1- 11

j ( k i - ki-1) `

Y

f*1(.1)

i-1

ki

ink 1-1*1 (5-14)

(Similarly for g, a, b, i t e, v, and n.) These quantities are tabulated for each of the combinations of example, adaptive controt algorithm, reference input, step-:size weights, error Smoothing coefficients (if necessary), and parameter estimate initialization.

(Sve Appendix F for listings of the programs ooml•ilinyt these

figures tit mor i t .) Table S-3 summarizeas all the various combinations that were simulated.

a

V. 9

Example

control Alg.

nonadaptive

1

--

S ize

Smooth

Coeff -

Actuator Conf1guration -

Total

FST - 0

zero

all 3

both

-

-

Gc)1 (2)

all 4

all 'I

both

-

-24

Sol (3)

all 4

all i

both

all 3

-

72

GED/SFD (4)

all 4

all 3

but11

-

-

24

SUD (5)

call 4

all 3

both

all 3

-

72

all 4 all 4

EST = 0 EST - 0

zero SSl

-

-

4 4

GUI (2)

all 4

EST = 0

SS1

-

-

4

Sol (3)

all 4

EST - 0

SS1

SCO

-

4

GED/SED (4)

all 4

EST - 0

SS l

-

-

4

SOD (5)

all 4

EST - 0

SS 1

S CO

-

4

all 4

EST - 0

zero

-

-

4

all 4

I:ST - 0

SS1

-

-

4

(DUI (2)

all 4

EST = 0

SSl

-

-

4

Sl)1

(3)

'111

4

FS -

0

I's

SCO

-

4

GI:1)/sr:11 (^^

al

4

I:ST ^

n

ss l

-

-

4

Sol) (5)

all

4

EST - 0

SS1

SCU

-

(1)

nonadnpt ive _ (1111/SEI (1)

-

24

-

-

24

-

72

-

24

xo-aro " hoth

t:lI (2)

all 4

' ill 3

both

(3)

all 4

all 3

both

all

GED/SFD (4)

all 4

all 3

both

-

Sol) (5)

all 4

all 3

both

all 4 all 4

all 3 all 3

zero both

all 3 _ ^ __

GUI (2)

all 4

all 3

SUI (3)

all 4

nonadaptive (;1;I/SF1 (1)

4

4

p' EST x111 3

! 1

4 24

: -

1111 4 ill 4

Sol

3

.^^_

72

-

-

12 24

both

-

-

24

all 3

both

All 3

-

72

all 4 all 4

all :3 all 3

zero both

-

ig.12a&b all 3

24 72

GUI (2)

all 4

all 3

both

-

all 3

72

SO1 (3)

all 4

all 3

both

all 3

all 3

216

nonadaptive (=E1/SE1 (1) b

snit.

error

all 4

GEE /SEl

5

Step

all 4

nonadapt ive

3

Par. Fmt.

GEI/SFl (1)

nonadaptive GEI/SFI (1)

2

Inputs

1008

TABLE 5-3; Tested Combinational.

V1.1

Vl. RESULTS Due

to the number (1008) of printouts for the examples shown in

Table 5-3 the tabulated results are under separate cover. (Sec s Appendix F for pert iuent program listings.) The next section provides an evaluation of thus a numc• r ic.al results.

V11.1

VII. TEST RESULTS INTERPRETATIONS

Refer to section 2 for the statement of the ob_jertives of this study. The four questicxas raised in than section will be addressed In this section with respect to the simulations of Section 6. QUESTION (1) : Are heavily damped open-loop nacsdes negIvet.able relative to more lightly damped mudrs? In particular: a)

Are the accepted criteria for neglecting modes, baaPsvd tin relative damping, realistic for the examples conesidere • d here in a fixed (non- adaptive) reduced-order controller?

b)

For these examples, haw dt. the vartoues adaptive control eachrmvs l area under they reduced order modeling "rulvs" e concerning relativ damping? More specific questions might be: Do the reduced-order adaptive control systemab remain stable? Can the adaptive mechanism compensate for mismodeling to yield improved performance over non-adaptive (modal) controllers of the same order?

In example 1, the open loop and closed loop modes are separable based tin the accepted criteria for relative damping, so the good closedloop (non-adaapeive) reduced-order performance was to be expected (despite the fact that in this example and all the others the reduced-order modal model was based strictly can the partial fraction expansion term without DC gain correction). Fxnmple 2 represents a marginally separable system in closed loop, yet the (nun-adaptive) reduced-order controller traacRing errors are only slightly worse than in example I. 'this Indicates

that, for these examples, this boundary between separable and inseparable

VII.2

modes is reasonable but fuzzy (as expected). Example 3 possesses neither closed loop nor open

loop

separability,

but sa pole-zero near-c-incellation should leave one mode dominating, the system bahavior. As shtwn in the stmulat ion, t l, e reduced-order lnatdeling cause•sa significant errors. This is presumably due to the relative closeness of the "cancelled" pole to the unit rircle< compared to the "domillant"

pule.

Smill errorn in cancellation In this erase may have

large effects t »t system behavior and the performance of reduced-circler t ont ro I. i'he approximat:lon of a pair of complex pules by a simple real axis pole ias studied in example 4. Here, no first order aasodel can be found to

clost > l y represt -tit

this

second order :system, and considerable deagrad-

:at lon in portoinwat-v by re.luced order coo;,trol should be expected. Tile sltrul.at ions show this to

lit-

true; the ssto ady state tracking errors are

sst gni f ic.aut . tit

the five .adaptive control algorithms, all but the second one,

tile gradIt'llt --otitptit -vrror- ludiroot (Gol) scht'mv. were s-table.

Ill v%ample tint',

whit'll has the most accurate reduced order model, a larger slumber of test combilnations

tut

input:t, step sizes, and Initial parameter estimatt'ss

produce stabl y responses than the other examples. Even at), the only consistent results were for zero Initial parameter error (with respect to the extracted modal model) and the step and random inputs. In ticese cases, the step response is improved over the non-adaptive case to essentially zero :steady state error, while the .random input causes a stable yet more widely ranging response. The other four adaptive algorithms produced essentially equivalent responses for most inputs, step sizes and smoothing coefficients. Parameter convergence occurred

(t

{Fj{ 2

between 50 and 500 iterations for

t VI1.3 I most run g , the random input ca g e being consistently faster. Also, t1,e error between the desired and actual outputs alw+aym resultNd in improvement over the non-adaptive output error. Some minor differences in responses were: • Example 3 usually responded f:.:.ter, due to the dominant pole being, more highly damped. • Algorithm 5 (stahiaity-output-P , ,or-ciirect, SOD) prod red consistently smaller steady sta f r output tracking errors. • Smaller step sizes improved the steady state tracking error variance, but lengthened convergence times. • The smmpomition of linear svat ems with applications to modal roduct ion," Ittt . ,1. Control, to appear.

The Model Refer -eAl,^roach, Now York: 181 Y. 11. I.indau, Adccwivc Control: _ _.. Kircel-Dokker, 190.

. and R. C. Montgomery, "A distributed sytstem adaptive [91 C. R. Johnson, Jr. control strateg y ," IEE E Tra ns. on Ae raaspac e an d I:lo1 tr ^^., vol. AFS-15, no. 5, pp. 601-612, Scptember^1979.

(101 M. .1. Iialas and C: R. Johnson, Jr., "Townrd adaptive control cif large space structures," In Ali.Elicat i onts of Adapti ve Control, eds. K. S. Narcndrea and R. V. Motiollol 1. New York: Academic Pres.-4, pp. 113-344, 1980. [ 1 1 1 C. R. Johnson, Jr. and M.

T. R alrals, "Distributed parameter system coupled ARMA expansion Went If teat ion and adaptive parallel I IR fI Ito rIngl* A uuit it , d problem :statement," Pror. lath AsIIomnr Conf. on ('IrcuIts Svti -• and Computers, , 1"aril it t,ruvc , CA, p p 21N - '".S November

1979,

[12] R. C. Dort, Modern Control Sy -st1-ms. Reading, MA: Addis " in-IN . •Av, p.

1131 K. t [

'i

F 4

e

t)9AL 1 %,

11.111,

M,,dorn Control l_ at;itll^^rin^,. _

1()70.

Fnglowood C1ifis, N.1. Pronttee-.

l

IX.2

[ 14

j

B. F. Gardner, Jr. and

.l.

B. Cruz, Jr., "Lower order control for

systems with fast and slow modes," Autoamatica, vol. 16, no.2, pp. 211-213, March 1980.

1151 P. C. Hughes And T. M. Abdel-R.ahmman, "Stability of proportionalxible spacecra ft," plus-derivative-plus-integral control of Journal of Guidance and Control, vol. 2, pp. 499-503, NovemberDecember 1979. [161 K. S. Narendra and L. S. Valavani, "Direct and indirect model reference adaptive control," Automatica, vol. 15, no.6, pp. 653-664, November 1979. 1171 C. R. Johnson, Jr., "Input matching, error augmentation, self-tuning, and output error identification: Algorithmic similarities in discrete adaptive model following," IEEE Trans. or -A uto. Control, vol. AC-25,

:eo.4, pp.697 -703,

f

Augut't 1980.

118 1 C. R. .tolanaaon, Jr., "Explication of a simple output error based model

reference adaptive controller," VI'I&SU Dept. of Elec. MR. Tech. Report No. EE8013, June 1980. 119] C. R. Johnson, Jr., "An output error identification interpretation of

modei reterviii-v adaptive control," Autonuiticaa, vol. I6, no.4, pp. 419421,

1980,

[201 K. S. Narendraa and Y-H. Lin, "Stable discrete adaptive control," IEEE

Trans. on Auto. Control, rol. AC-25, no.3, pp. 456-461, ,tune 1980.M

Jr.,

(.' 1 1 B. Widrow, .1. M. McCool, M. G. Larimore, and C. R. Johns on , "Stationar y and nonstrationary learning characteristics of the LMS .adaptive filter," Proc. IEEE,vo1. 64, no.8, pp. 1151-1162, August 1976. [ 2 2] C. R. Johnson, Jr., . "Adaptive parameter matrix and output vector estimation via an equation error formulation," I EEE Tra ns . _En .+mss. , M. an^^a nd C yt+ernetic s, vol. SMC-9, no.7, pp. 392-397. July 1979.

1231 1). Parikh and N. Ahmed, "the an adaptive algorithm for 11R filters," Prue. IEEE, vol.66, no.5, pp. 585-587, May 1978. [241 C. R. Johnson, Jr., "A convergence proof for a hyperstaable adaptive recursive filter," IEEE Trans. on Info. Ttay., vol. IT-25, no.6, -pp. 745-749, November 1979. [251 C. R. Johnson, Jr., "A stable family of adaptive IIR filters," Proc. 1980 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Denver, CO, pp. 997-1000, April 1980. 126] C. R. Johnson, Jr. and M. J. Bralaas, "Reduced order adaptive controller studies," Proc. 1980 .It. Auto. Control Conf., San Frnncisco, CA, Paper WP24, August 1980.

f

[271 C. P. Newman and C. S. Bfaraadello, "Digital transfer functions for microcomputer control," IEEE Trans.

on Sys., Mean, sand Cybern etics,

no. 12, pp. 856-860, Uecomher 1979.

vol. SMC - 9,

--

T

..

I

1X.3

I

[28] C. R. Johnson, Jr., "On direct adaptive control of nonminimum-phase plants," Information Sciences, vol. 20, pp. 165-179, April 1980. [29] G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems. Reading, MA: Addison-Wesley, p. 64, 1980. [30] G. Kreisselmeier, "Adaptive control via adaptive observation and asymptotic feedback matrix synthesis," IEEE Trans. on Auto. Control, vol. AC-25, no.4, pp. 717-722, August 1980. [31] G. C. Goodwin and K. S. Sin, "Adaptive control of nonminimum phase systems," Univ. of Newcastle Dept. of Elec. Eng. Tech. Report No. EE 7918, August 1979. [32] A. L. Hamm and C. R. .Johnson, Jr., "Model reference ada p tive control using an adjustable model," Proc. 12th Southeastern Symp. on Sys. Thy., Virginia Beach, VA, pp. 269-273, May 1980. [33] C. R. Johnson, .Jr., "An adjustable model reference adaptive control reconfiguration of self-tuning pole replacement," Proc. IEEE, vol. 68, no.2, pp. 295-296, February 1980. [34] J. M. Mendel, Discrete Techniques of Parameter Estimation: The Equation Error Formulation. New York: Marcel Dekker, 1973. [35] K. J. Astrom, U. Borisson, L. Ljung, and B. Wittenmark, "Theory and application of self-tuning regulators;'Automatica, vol. 13, no.5, pp. 507-517, September 1977. [36] G. C. Goodwin, P. J. Ramadge, and P. E. Caines," Discrete-time multivariable adaptive control," IEEE Trans. on Auto. Control, vol. AC-25, no.3, pp. 449-456, June 1980. (37] C. R. Johnson, Jr. and E. Tse, "Adaptive implementation of one-stepahead optimal control via input matching," IEEE Trans. on Auto. Control, vol. AG-23, no.5, pp. 865-872, October 1978.

[38] J. S.-c;.

Yuan and W. M. Wonliam, "Probing signals for model reference identification," IEEE Trans. on Auto. Control, vol. AC-22, no.4, pp. 530-538, August 1977.

[39] B. D. 0. Anderson and C. R. Johnson, Jr., "Exponential convergence of adaptive identification and control algorithms," University of Newcastle Dept. of Elee. Eng. Tech. Report, April 1980. [40] C. R. Johnson, Jr. and B. D. 0. Anderson, "On reduced-order adaptive output error identification and adaptive IIR filtering," May 1980.

i

[41] S. A. Marshall, "The design of reduced-order systems," Int. J. Control, vol. 31, no.4, pp. 677-690, April 1980. [42] C. R. Johnson, Jr. and T. Taylor, "CHARY convergence studies," Proc. 13th Asilomar Conf. on Circuits, Sys., and Computers, Pacific Grove, CA, pp. 403-407, November 1979.

W

i

t

Appendix A: Hoot Locus Program Listings and Tabular outputs

Contents: p. A-1: A-2: A-3: A-4: A-5: A-6:

A-7:

Program determining

p

and p 2 in ( 3-12) for Examples 1-4

p l , p 29 h, and f for Example 1 (Fig. 3-1) pit

p2, h, and f for Example 2 (Fig. 3-3)

p l , p 2 , h, and f for Example 3 (Fig. 3-5) P

1' P2' h, and f for Example 4 (Fig. 3-8)

Program determining q for Examples 1-4 ql ,

and q 2 in (3-15)

q2, h, and f for Example 1 (Fig. 3-2)

A-8:

q l , q 2 , h, and f for Example 2 (Fig. 3-4)

A-9:

q l , q 2 , h, and f for Example 3 (Fig. 3-6)

A-10:

q l , q 2 , ;,, and f for Example 4 (Fig. 3-9)

A-11:

Program determining q l - a l , q 2 = a 2 + cf,

i.e.[0 f]

in (3-14), for Example 3

A-12:

q l , q 2 , h, and f for Example 3 (Fig. 3-7)

A-13:

Sample Plot Program

(Fig. 3-1)

A-1

IJola C C C C

4AiFIV91(,P-^49PALEx1009IIMtalOn k7L1: ROOTLOCUS IN7LkPKE7A71L'N OF TMi- UNACAPTif PLANT, T.F.:Y(Z )/F ( Z)=( (B+E )*Z-(E3*A2+E*Al IM Z**2- (A! A20 *( +E ) ) *Z-tAI*A F +F*(8*AZ+L *A1 ) ^ L DIMENSION t( 4) XX1(50 0) t XX2(500) YYl(5U0 )9YY21`.U(lvA Z(^u0)9Fi(50) UIMENSION 9 A2(4) 9 6(4) 9YM1l50U ► 9YMA2l!UO) COM P LEX GC } FCrZC(2I

Al(41

DATA E/U.U19-U.U1U.U19-0.3/

DATA Al/C.95g0.')96.Yr0.9./ rA7A A2/U.^ ii 0.1 O.tIr0.7/ L`ATA B /0.()67 9 0. 90.0E9005/ UU 3UO J=1 94 2U l.I

40.)

Wk1TE(4 20U)A1(J) A2 WvB(J) FORMAT( ;Xr'Ain' F13.t)95X99AZ='9FI3.695Xr'ii¢'rF13.E,) WKIICl(,94UU)E(Jj FORMAT(// ' E.= '9F13.b)

DC 100 K=l950 1F(J.EC.4) VU Tv 13

13 1

F2(K)=-0.2*(K-1) G(i r1) 1

F?lK)=0.?*1K-11 G=(AlIJ1+A2(J?*r^IK)*lblJl+t:l ))) F = (A1(J)*A2(J)+F2(K)*(B(J1*AZ J)+E(J)*A1(J)))

GL=CMPLX(Ut0.0) FC=cc iP X ((F J.D) ZC (1 ,)=^GCtZS6;k1 (GC#*^-4.0*F 1 1/2.0 ZC (2)=(GC-C:((;C-T (`'2C**?- 4.0*F^) 1/x.0 1G1=Q EALILC(?11 Z11=AI M r 1C(111 Z I : A I M A ZCC-6

XX1(KI=:.R1 XX70 ) =ZR? YYZ00=Z 14: YY1(K)=ZI1

YMA ; ^ cC. tT tZK!**?+CI?**r 1 Z

Y'M1(K)=YMAG1

YM2(K) =YMAu2

V=R(J)+E(J) W=(t3(J)*A?(J)+i(J)*A1(J)) AZ (K)=w /V 10 11) ("U

!^9 UU .Q UO

C^NT1NUL w^II^(L'9U,) FLkMAT(/95X9'REAL'•EX9'IMAUIN'98XrlMA;;l'9^-Xr'I:EAL'9GX9'IMAGIN'93X +•'MAG2)'•£'X'ZLk!)'•8X9'FELDBACK'1

DO 500 1=^ 950 WRITE(e-9::-))XX11I1rYYl(I)rYMl(I)9XX2(1)9YY2lI)9YM:;(1)•AI(I)rFz(1) FORMAT (P F13.6) CiINTINUk CLINT IVUE

SKIP

END

A-2

tON.tOYDON.^U11 O'N4 inN'O'N4s[1P O uj 0 01 1 1^1 1 1 1 1 1 U.

IN;NNrl1±11^1

W

tll1l^0'• J ► 1► 0'r• l iflP 0' .+N1 ^e►PO'.wK1^1ti^••1*1^11^

1^11^11 Iil 1 1 1 1 1^1^10 1^1 1^^

oa0000aod00000000a00000a00000000000O00000OOOOOOOOo

000e o00oo0Qo^S^ooaooS^aooB

0000000000S000000000`c000000000^000JOOOOOOOOOa000c^io MM I'^1 M Mf rt MMR1 R1 r1 MM M M M M M M f wl^+l M MM M Pr1M M tr1R1 R1R1 MM M Mnll'^) Mf^1 M Al f^lf'^1 M R1A1 R1 N1M OC00o0000000000000000000000000000000OOOOUOOOOOU00000

W N

Ou1P .r •'+ .0U)No 0- moolAo, 0(y- %0Q"4 MIA0- 4 . 1ANN .4 ^1N.ra00 .D^lOPMC 71 G 0QQW100%00h-N O'0u1 (^••'O f'^l •yO• cDOM .t13 'UN^fI MP ' t(1P(r1^N 1f1 O'*► ^.tO'M tnf^ .0 ^f'OMU'1.tNO M. + OaOf^-Jr•+ Z' ar, ^ ,t O'O ^•! 1^ O' 00 ou il ► .,,0 O' •^+• -^Of^ ^'^► f^ O'O` f^ ^ uJ.+r+O '0o N CJO J1 W O' aD ,t P O Jv O M U^ f`" f^ OI L ^1t^1. -r tT D ^1' ^i W ^t r1 O D t^1 O O N V' u^.+.0 NIA N P N N^ •.Y.17 Q !' 1^.-^.t f^ O N.t 'O o0 O •-^ 0 u1 u'^ vi' Kl K1 M O'TaTO+ O'W w ms ,NNP-I+ DO .D K1Y1.t ,t,tMMNN •••^OdPti ' aDtif^OU1^ .t MNr+.rOp•.•NM^t^[','0

a

N N.+.^.-+.-r.^.r.r.+.+.^.+.^.•+.r.-+.+.a.^,.•^-+.+^Y.r.+.r..^.+.+00000 O 00 O O 00 O O 00 00 4 p O INtr►►l^ Oac9 Q.+N .tu' 041*-hc>,aP00`aD^+ ►^aOl' h d ►!?WO CfJ ►{1 0r+1 tf l hPO . -• NNMM.tof ul./1 K1tf1 O^JO JDJOJG BNNhf^hr``hnhhhhh^ r•.r^.r•.•.-1 dPWW.0 ►f1sNOa ,14. uIM.4 PhInmo-40 , f`6nM0-40 , r-mm-a k 1` 1t1M •-4 pJ t`U1M•r01 h ►nM• 0N4lo w 0 NWh hhhhN t"P-.i^L •O •A^ ^!'1 ►f1tl1 J1tll^• ,t td^MMMMMNNNNN-+.•••.w.a+-•QOdO0000dQ.•• eJ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

C) In r ')CCco '`J G :^C.7:.I^D:JJC: tJ':)JGJ :-O JvUC ^. :^J^:.••^:,•_?:J ^C'7U^v%:I?CIJCJ • U?::. 7v :.;•'JGOG-1GOC. ' ^.7-^JC'C •).J »J tr .^'. 7'' .v Jv 3 "C J.. .J^C, :) ,vim.)' ../ Tv - , ^ r. ,J .7^ JC. J'J .JC , . T4rr.t.t4t tra y ,t.r.r^rt•t.trrs t.rrra'rr.trarr^rr

'JGGJC.J:.^,r,..i .) ..Gr; s

J:)

rr^rrr tr#t ttr

^^ i • • f f • • • • • • • • • • • 1 • • • • • f • • • • • • • • • • • • • • • • • • • • • • • • • • YC`,:,' L:C ^^O: at' ,^ , r -^ "1 J .''711 ')C 7...'.C)C :.Jt1.7:,^:1 7C J ..7J:..' N

r1 `^i •+ I w {' . •"'• ^L' .ew1M •-t 1 ..r. #f+ '`^ - ^•

^h+-i.-, (,

.",..

,

+ r1 r , .

't .

J

.o.. ..

L . i I-* Y I

#.t` J » . SJ « J -",.4 -Itt :

,: J w1 ' .J

.•» ^ul.•

't

J J

J 7-rv1 t, r # P

:J

« J. f., f

.1 4j„v..,^ t .I'^».^f,-.,

i ,,(. J '' 1

r >1+,,nr J.

V

,L

M.J.-V

,t :, t,w

, -.4

N C, I • .-

-J r • n

,+IG ,,',.J J •-•.J -4tn r

t ^lri. J1`-a....j,•1, J.r

1^ u.l

)+-•••^' .^_.:l l? b ^-1n,,. -C-I^I`-P^f` h- p Oa, JLa0 Aj'0" ,s7 » td.in ,. w,1 1.11 » J + .0 JJJ.t t.t tJ J J J J J-: t tJ :4J J4 J ^7 • • • • • • • •-• • • • • • •»•»• • • • • • • • • • • • • • • • • • • • • • SJ4 • • • • • • • • • • • • C'tf.rt.-•,; r •• L^l t t `)'^ )

'••... ^J :;• . • ti - ,i' , . ' ; ^ .^ ) % ii .'. v

1 ` v

S.

, •

J

C

c> 1'+ I ` t.

n 'J ',J ^ ^ C

.. :JJ

v J

,.I^ ... J

•J ... .JC):: JrL J-J .^ C- > >

.:I .^..,

L• J.. _, _. 3 -:,. .. +..• .!

.J'

Zo

h.-+tt.,-r.`R,.r111«, ,►. .•: 1n vl +• J,T a) 't:) ^ J',C. ,lt(^r ' 1 uJ :J: 1r)f+(, O»'. ► 4en"- ,- 1 .111 : O 111 J' -^ I- O t ^i ^.1 ' '1 ^anGG=.;~I^^.JCC7GCJ^J^;^^.'.o x

r'J.e

if

•1.-•^f^»ti ,r/n..^,:,•cJ'o1•"t,(„v 0m J • J.^M T 7, Jh' . ^- ,:::^ fi S .-+t-w, "e rr r y •-,..0 y V;'^.t.-i, .. V ^.l J .• (. rJ .J N 1 1 .I,t te r-. ' J 7 '.,1:,.^ V N' •7 N^ Y , .... '.^ .) V aJ r t » 1 ^ J n•1 V V^ J ./' r l^r .rw 11J J 1`J ,tti J+-4A ?: 4,T ^.T•N,n:J•+r.', ^ 1 J{'J^ ,J.-ati•^ 1n T-+# .^ ^?`J' :•." ^ 3

t 1. 7» • t. ^:,

J

J^,^^1J Jt-+ : JJ• t . • •.1 `1 47 t



r,

..-..•,')':.r ;. ;_, _•7C : J :,^vG C• jt^:J :i^^J ^G )._".^ c' 7 ^v)` 1 ,J ) .. J_.0 J.1 J. ',. ) J ^^ ., ^j_ ^.J J+ 7 "I .I ..+ .. .. .^ JC vC 7C C.),7 :J :j G', _ C "]:..J•I'.JC 'a `DC l:. ,7JJvGC '7 j L, ., G

^^ J

, ^ 7 '_ ^ ^, ;. ^ 14, t .^ ;~ 1t^ ^ C J ^ 7 ^` Cie G l 7 '• yJ .) .^ (^^ ^ .^

te,J.,J. . - • r J ^ 1 i Yt t .?` ? :• T C ._ .-. 1 J11t+ .^ ^ ;) i'^ • t'-• t) Q • • s • • • • • • • • • • • • • • • • • • • • s • • • • • • • • • • • • • • • • • • s • • • • • • jJJJ.JC+ • • r y• "..,L^ J-11v,',T {,(.` ,.f)r •v 1 J'J C: J^vt .t•1 J`r^.. 4•U0?').JP..rw1J.'11^••"4J)T } i{ J")

^v,rr -1. - 1. - irH1 - ••1 -•r/rlryr•+'•rr1• - 1. - t. - +n-J•.i+^I.•^1 - ir1`J, J' J'J , J ; w. J J V1 J1^. J. , J v. ^1^.'J• J • J, J J • J' ^'1^'•1 0 1,

vG 7'`JJ^:G 7. ..J°: 7 : ?.l..C:. ]C :v 7'•iJC., C . J . ) ., )'^ U..`. :I JJ:JV ^V'7CJ:Jv ^r l'J' ^ JJ , ^C..>^^ Z n _ ^_i' ^^^ J!) )^C ^^^C'^1^ J:)^0 ? ^ ^ 7 7C l ".)co ?D ,-) , ^ ^ f) ' ^ r,r l am"'

o ^r

)GC

J

JC•. 7.i r ^J ^.^. i^ I.. _ • ^l. 7;

1:7 .J Cam . -,)')L) „1 c1 "•1 ,),^ •7 J7 J' - '1 ^. l.. Cl y Li .74 1 .... (.. .r.v J 3 1,J V. Jl , ^)^^.. .7 CJ ',,..^,, r JL• =i . J . .-.., ..J :'• CJ , ^'v J J'. _.:11J'7... (, .J ^ ( J J)..,C

V•1

C J •

1

P 1)^ r.ir O r p n ^, ON !. 1 C.n ► t.J ?tr QJ:J N .-i* 1H, 7f j,,-rc 4 D f,J'trJ r xr ' ,4 t oo .4Ln. »nxt 0 f` :J C 4 0%, : J J h♦ 1) ..'1 Ir CJ P- Q J1 Lr 61 1.41n ♦J f^ .'.1I N CO 07 Lj C)) .611 -) -+ O 0 ,:. 7 t • « J i. J J v J ::, r• V • J .4 Y 1 n. C,, J_ 1` {* 4 Y-I f ^', .J .I Y 1 V ..I I " t- 1 Al 1 V ,i1 { ^.' t V{ y J G -41 ^^ V 1 V^ -^ ^^ f ^•• r^ .* V. ./ I T J 4 w 1 T w J ti e, J - 1 O 't -* .. At T s , M : 't J' u u, t+ --) 1 .t J J, '] . • ,*) .1 u ., T V 1 * t + , u 7 C .••1 ' J 1 # ^a;'•J'J3 -4 Z -4;.^+. 1 C.1« ^.: 1^ l^.^ u T1.JJ C:-,f'- J N r^..1 T 1' • ». 4L C Z .} ,,J 1T{)::.vQ J ,r 2` r /

Q3



T C. 4 .4

^1

n:

J "^ +")

^!' ^, ^, w {• '^ N (^- ^'^

."+...-1.-4r4,.4r4«-1.•4.-4.-4-4-4r1

I' t

(' ?



4,-4-4

tV 1, j

-I M

1'4C4:J/J•4,J,v[^.lJ J

r

.,



,...!.,. r

4(*W1R`,

ORIGINAL PAGE IS OF POOR QUALITY

a

A-6

G J'7 b

WAIF IV•ki'T;49PAvEz1C1(),1IML2 R TL - s

100

RUL, TLJLUS lN1t P\t , Ri 7A11UN JF THL UNA:1APTt:) NLINI.

L

7.F.sY(L)/R(Z)zz ((4+t ) * Z — (3 *a2 +L *A111/(1 **: — IA1+Ai+F *F )+A1*AZ+N*A`

r_ C

DIN.tNSI'N t{w)

M ("L0) XX?(SLO)•YYI(5 LL' IrYY;(_.C ±

lc14Ir^ T41

)•AZl`•OC`1•F?(^-G1

C.L'MPLEXJC CI} FC,LG u.cti•^ ► .t•. •—u.'/ C`ATA E

/t.(^I,-

".1 , loo J=1.4 wklltk , ('())A:tJ)22 ^0(, 4Ut)

F:rMAT1IX i I A1 =

I.(J)•t (J)A

F13

.

vr`>X•'t'=',1 15.t.)

F L kMAI ( / /,'

t

Km I •' DL . II,, IF IJ.L. 4 1 i+

=', r 13.6)

1'..• 11

GL TJ I

17 1

J11

=lAl fGL=C'IPLX A JI*A (?lJ ,il.t.) L



A) Jl)

l

FL= LMPLX

F , j.^)

ZL111=(L•C+C`-,ki(V*'.-4.

(

*tC1)/..L ZLG1=(i,C—L;, - 1(k,L*a1--r.C'*F Zk1= KC^lt^Lll)1 Z I-AI M r'. t ZC 1') ) Z 1 I 1)

XXitK)=Z k:1 Xx4 M =Zk2 YYI(K)=ZI1

ln (1

YY2(-()=.I, V-r i (J)+; w=(a(J1*/-; (., 1+; A[ ( JC' n ^ 7G"r;r0 7^^-`C.V•: J.rC)^.•JUJ,_)C^^..^^. .CJ"^: "l_'

"°'^'^", -,^'

+r .;

7 ^ .:

'^ l "` r'^

--



rs^'')'r^ i^ .77"C'`G'`J' '}J'• ► "^r'1^1" i 7"G 7C^'}"O:), -) - i ^ l " . 1'J.i J7r ^'^ 1 l)^V 1 C^rG^'" }U7 )^" 'a .JJ 7^ 7l-

?-!»'.7C7C)f^tlh7^^^"^.^^-)t^'y^''7t_ 1

}J,^^'+'^'1f,-)I::^./^`7•.:

-+

11

^^.7i/7^:'

.

v. I ^

:^...1^..:3•-, ^c7^^'7`f'1^'7r1 ??^"3^'f.

.J 3 ^^)\

.-\.

.J ..J ^l. ^_. ,%_1 . ,.. J

.

.Jr

--4

{t^~^ ^,!'; s^-.. ^T7CJ'^: ^^ .^ J .^^I ^ :^a,w JJ' ^ v • s.. ) 3?

J J i ' 1 _) . l 7 ^- i .. 7 ./ .- / ^ -'1 . cr J J •_ ^ J J`I .' J i _^f.+^• 1.1 ^-J J./.%1)~._1•^ ') '1 ... ^_ J'..^v "}.)'- 1-J. _ ). ♦.^'^+ ... .) V r-+..r -i ► 1wN..f ^i r-1 ^♦ .I.M.-A....1»IWr•♦...... -11.+1«^..y rl ra-^.^a.1r q .'•.-1.^.-1. 1-1 4r-1 i• 1 '^ -- _ . 1 J J..IJ.d1

.J

-

-

1

1 ^ 7 . ^^

..r

V

: l

.(.

r

`) .. ^ ' "^

^ 1

" .

.1^ -)

^ ^

1 ^ 1 ..^ ^ ..

^. 1 7 \ ' ^ ...

, ^ ^ ..^ . / 1 1 ^._r. ', .^) .-. ^. 1 ) L.7 1 ^ i .. !• I1 r _ 'l. 1

• • • • • • • • • • • . • • • • • • •

C: n. _t7C 7^''/' •- 7n'`C)OC j L )

a •

^ • l 7

DL

1 .. U ^

^ J n ^ ^ ^ tom . '^^rr" - I r°

II

t

l ,._/ .l \./ r V

)).. \ ^ I -,

.) , ^ .I r C

I

1

J L-.

^ ^ f . '^ 11 ^') /. -, /-Vii. -1^ -11.

• • • • • • • • • • • • • • • • • • • • • • • • • •` • • •

0 0nIc , r'n'7ri r N

n S- 4enrr)•-4'1;!:CC}L"1

j4CJ_ .,^^C,.^..c^ L ../ J ^ t'7 _^ . , v C::? J J ' ._..:.., ^ :I . ; ^1, G -^ J 1;; J V tJ ^^ J i^J ^.).l ^r ..J::.. dr^I0—ZI(4:.-..4..t j. :^JJt•,..)aG'O•t 4C)L-441: JV..14•"i., J•O C) C, Q + w^QO+a7!•tir..t_h. a C .p C 4D Va sJNIAI Itd.t t1^'.n (^1 1 ' (nNNn.N(IjH 4 1HH-4HHH.-.1H •-•+ M..a CivCCQJtOaOC) OGO (70JJGOOJC^JLa^7A 70 C.GGO JC + GI'_t ,0 ^CJQGiJO'000GG " '^ ^ " ..^ : a 3 _

^ ^ .I .J .^ _. ^ ^ . .:.

YL. 3C,,0C ^^^-_ L • \»l.)1 .)^

C) i fJ C.J ^ t../!,') n 'Zo L- :3 1 Irivl! r 1

r••

1 J . I .J ^ -

1

A-9

fi

M

^.^ . .:.1 S 7 ^JJ J 4 %r ! J .7 ? J . J`i 1 w1 .. . J`J : J .: JC•`^; ^j y .• J• iJ 7 V"C`J'J l71 JJ\: AfC:JC:. ^v GJ p c'J ^..JJ. JJ 3 *•^PJ JC.,JtlJOGJJJ`JJv : JJ`17.::J

i

-

v JJ:+= JU ^ •Ja %Il i J J' J .J S J 3 J':JJ J 77 J` . J`.3 1 J C 1 J c J • ; 1 J d` J J': Ar T J J — ! „ :'la C> \.J C d C >4 J J 0' .)' a D J :.` J li' S Q T O J ? J .l` J' 1 J .. • J 'tj %; .-+ Jam„+0.-a r^ 1+J .a tr„`^J r•e ,y,t+J . 411"W41-J'.. r014.,.. J ..c^ .t .1a t.. 'd.tK•(`-O Vdu , r-1 • • • r • • • • • • • • • • • • • • • • • a • • • • • • • • It • • • • • • • It • • • • • • • • • • JJ .+•..4 ..M n••.-•.-•Ni`. ♦1 . f`f+r,f•^.•11.14.}'

'J': l'^^.

I I I Y I 1 1 1 1 I I( I I i t l l l i t

^+.

l



,'^J a.r'.1 .^ J

0

l l t l l i l

a'-I-. - ;.. i^"?-A. c'. '_l l.. J

l 1 1 l l i l l t l l l l l l l

J•t^J o rJJ•^^^*Q^^*^ ='J^!J J 1 mac . ^\rt?1 ^jt^J J r ^ i J .. l . J j r J 7`J^ ?J 1 , 'r "J J. J . '*JJJJC ^JJ`Jr J:*J. \. I '• ^ 1^ J r J J ` J 1: l ,: J" T J J JJ ..J r• 1.-i ^i .d r-/nr. 4.H.1 r.,.+.^1^v41•-. w q .^.l .w.411.-4-1 ►•^Mr•i.••1^l•grin••Ir-4•Mw•.N..••.-t.Me-f•-•-••.^ ►1.+i ►1 .4nr r y ...•4 f- .f' •f •.f. .. .. .^^JJ.:.JyI. ^ w•AP .^ J' ! u1^ w J f ^C ^JC?^y^rJ^JU' .0 j

^ J - .i J J JJ"?4.rJ.. JJ^ S J. .` J J J-

'.1 I r .l ^ ^ J \r

3

.. ^

_

r J

._ \.. -

J•

\. J .r • .^

... J v

J V ^ -. ^ ^ .^ ^

e J

_J ^ .- J . / ..J

J^ It

rl

^-,

fir_-•C

11

^^•.^



t

.^

^

^. ;f 7

r... .i

i

♦ _

_

J

1

^.^: ^

^

y

JT —

I1^. I" f .

_

^ - ^ ^)

111

1

^-.

f

)

r

^ Jam.. ..r J

_^.^_J.: -i T x O 1 rrl •-4 U C J • 7 ?• J` J a, .t J J, ,'J J` J^ . T J J cr r J J I J: J x T .^ J` J• z J` T 3 ?? 4",7, J U U :J atrID ?cJUlCoI- -f + P-r- fl- r-r-Pr-n f l- f-r• r-r-rl-t^^t^l^r-t-t^-0.,r-r^"^r-h-r•r-P-r-N`P^r-mfr ^C17OG JJOJOG7O0GC ^oOUJC ?OJC • C;G( :] 08 .OG JUC J')CJ >CC) 7\:.UJC^JC.

1

t 1 1;{11;NAL

IS OF PC"t PAGE

QUAl rj'Y

A-10

CC ') t t ,

J : J.JTJJJ l i Jd • JC7J 3 i J' «u ., J^J J a'u J J 0, C)0 J' J U- J' J J J .; J J , J J- J J r 0 ^C _^,;C,•.rC,r rJ `C7CC?' -7C 7 JT7, ;;- ,JJJ^`nJJ. J . J. I CJ • C

...^•.





7..J

IlJ •^ _ ^w`. .)



_ 7



f

^•

f` l hA-i' . V r .-- i (3)Wmm L I", a tr'G,h,'-t,-t+' m 17 Lra, MJ T T: .T J O J Q J .7 J T J J J' uh J J :* J , J ,r J' J , J Cr, J, * J J• J` :t' J` J` jr J• J 0 .: J` J' C Jr, J s J J' C' a, J, .r J• J ;^ J• J ^:_^JJ•.: ^J°JT(7`Jl,' 1 J ^ O',J'JJ01,CJJT 0r ?,: TJ•:J,J;JTO'T«TT :% J,rJJ J °3, J% r, 2, JTJ'. "JQ+ J. JJ JJ?J' Z, 1 .'^Cr.`TJ'3' _JJ`iT'TJJ 1 .TJ ?.TJ % d J, %7 7'J^J^'aa J• J`ClJ^JO 1 TJ ICJ J TJ J' J J`J TJ'?v J'^J ^O TJ a ;C^G ^(^Jrt1.tU", c ( n ?' ao,-,NJN) ll .0 't Cy, n.rhfr•^[C1 ^4 N a'JrJ•-•^r,••1.r ► v.a.-•,-•.^N(J.V,J,VN,J•VN JM("1(^1^ir tT(^1rr 1(^1K1Md t^f 1.! 5.1^1.r^fJlInInw)&AU1[C\[f1

It

•-r

A-11

iJLT C t L

I It't *lttwA1F IVr^f =^Y^I At^C L It c %, IL.- I R(.: 1L I( u t o iti1 f KP t ► 7A Y " cN 4 1 h 111E t.NAt A P I 1 l 1LANI '-"t.'+L*alil/tL *,`^IA1•t.++*t T. F

*F)

L

M, N' LiN

t

L',' % f ( - x A t = t

^^. i •^t. I,VrI l^ t :1,Yrs'1^^t^ 1,A^ (. L( I,r^

XX) t tt J

t t, F

i+

l ^"

r,+tl*t 1

• ^. i. S

'^

:` t l .t t i =0

atl^

r 1 ^.^ 1

I- FtKFAII Ic ,^;ri It

ntillr 4+.,

r r I

1^,

t.t

f',t

F a ^P1* e , ttiltlttF.'th^) .-I I M VLXl.,ir.^ I Ft =L "'FIXiF,.... i w, /.- t, + L d t

♦ 1 1,t,. T'.

I I I t

..

.^.1 ^'t .

l

i/

a. .(

r.l-ht AL t a^l 1 1 ) .h,:hct L l.^t1. )) a la.=A 'I MA( . l ^4 1 r Ii [C.111i . t1-AI

f

XX11K I A [ nl

XX.Ihi=l.. 1F) =" 1. rr; rtll^l =1 11 ^- 1

A.

E *..

If.i

+. *dl i

=1tV

t^1 lhi:k w^Ilklt-•rh) !

rLt%VA1

5t.

^t, t^t I=1 c .t .•hlt, 1^ ^^^1*Ail ► t t kVAI tt f 13.' 1 ( r.^vTltiLlt t !^"

9-4

tL

t,aL',t ^,';ti'A

^c

y rlllF,x

1N

`t

AL

I

, IN'^:,x,'Z ► }^

VY411I tAtl 11•f.l I1

^•,a'S

a

A-12

,.,), sf:

rte; ^J 7

.

_ ^

. .. «J

1. ' 3 .

3



l.

_ .

...

^

r

_ J

*

r I

`.Jl J J



_

J

•r .. 3 . ^. J

^1..

1.. _^J

.J ^

J: JY J,

* >' -J J .rJ'.J7

7 _

) , J' J`

r _

J

1^

ti

J, J

* r

3v

• t

Ty- T J r

I ^ r f J • v

T.

hJ

J J.^J

IX•.

t J• 1•J•`?` 1

5)^J'

^ ^,.. •l` a - ' t .-•• -7` ) - .i •-^ T 4 (1 — r .. J 'X i. )'. " :. t 'j 1 '`* . y jr ""` 7 • , n a l f^ :r. • M* 'W I`' \J • • • • • • • • • • • • • • • • • • • • • • • • r • • • • • • • • • • • • •• ,• • • • • • • • • • • • t. . I• ^: r .n-•n.^.••.I ra r+v^ x W • ,1r - Iri 1 )P n\ )iJ vw. i il".'f^•'t^; .+s • NA ,.. . Jt .v x

.± :.

..1...; : ••,r

•,.f.

- ♦ r. 7, „t \?' .

J • t7`,T ^ ^ J J• .I I .T J' J .••^^ X :.' ^ J`J • ^ X X *' J`J•t?• l• rc' r .. • v a J .,.'•T`^..' J J J I J' J ,r J ° .7 .• J- J J J 1^ T ' J / r`iT S) ,, i, .i T 1 w J :w T w J' S ..r N' X .I• ,r X r T I J, n J I r ,T J '.N' J` 'T J T T I- J T J r ' Jr JT T I ^ J, J . r,.. J , .'. p I J J ,, +, , • 1 ^ %, - I` 71 1, T I. J r : • G 1, .I` J ) - J, )I• r J` J '. T J r J J, Y." • ► • . • / r +f a.. r.Mr •l ri r-•r•/ r• r-1 ^r.r •r^-^f .. J rN r-i. fl"• • M raw 4— N^I— -1-4— -4 —4 -4 •r4 A.w.•..a. w. 1.. r"`.. J_- t '-. Jx.... i-. r.: .. a ^Y 7.V-1 .4/J:.j.. 'J !.-. J_. f1.v 7

J

r^•.J

t J

J,

^ . , .. ,J . 3 J ...+ ,r 1

._)

+

^• •.

G T J

.)..

,,-

!^.

,3

\,J J ...

J 3 +

J

./ iJ . .J 4J.. J ...

. t. .3 . J 4 ^., J., ' =/ J I.. u J ^.+ ..: .J J \.. ,.J ),,.J

.J J,..I .J . 1 ... 3 I),,),)..

Jt.•.. .J .J .J J_. .J .,..I.3 .J., ,,,,_ _ ..J- . .i..•.,JJ., JJ. 33 4r)J

J .. i , - ^. .J

.J ..._.^

J_ ..

• ti • • • • • • • • • • • • • • • • •,• • • • • • • • • • • • • • • • • • • r • • M•

. ` - r,., J+1. 14

rl

? -^ ...

J )

i• ..•. ..

1, +

..1-4 ^

•:w ,. .)

r -..

-I,I ^•. J

I % mot • ) J'`,

J ./ .,' .,. J ,. JJ `1 . 1 ^ _^ L .t a •! r . -Yr ♦ 7.

} 7 1/

„+.!.11. N) .. J

.! -. d ......

f

` f :.J J ^.1 •..I ) J v IJ .D C ..t L) ..J _J _j Co .. J tJ •..) (,J J C.) \J ^J :.> O J ^ I t^.1 J 0 0 0.> Cd 'J t k !

l,^

^ :

t

e

t



V ^ r 1 .J +..'v

!^

T





.,J •









lr/r-•.').-+ V d, I ..

. ^ 1 T

f + i. `r^V J' ..+^.^ ...

^. l : '.) . •1 ^^. '' L y r,^ 1` ^.. 1. v ♦ J .)`. i .' . • i . ti x r J i i f . J •. ti L% J + L) 4 J 7* )^ .^ J` J T ,.'` J 7 J J. J` J J` T .r ; r J` T y YS J` .J J` 7 r t' • T ,7 • J J. f T J` J T J ti ; T * 1" JI' r,T:. Y- 31 -11 J J` r ..J ,r..^ r 3 J^ J+ IJ `JTJ') J J` J J J • J S S .J * .'' . J` J )* J J J I' .;' ., J ,T• T'„ J v^,1 ,7, T ,r J u r J r )` .: J r w f jr, d 1 r _h . .r .) t4 r -T J , .r N, 'J I + ? J T S Jl v' J- cl S J` J T (7 J` J • J• J' r I-” 'T 1 lT a .0,1.):...a..c/ xJ JI •• ,(. "(,+...•J 1.1 'A, .1". J_ J K... .7...,.^ '/1 J3 .- r :1,.),n,.,..1, -3 Y'1 u. 'r„] •, J,J

'

'





.'t.+••

I ,.-. -• J

^til^ .. . ..



.. J ...

/r. .I .

J.. .J J ), _)_. 3 ..).. .J •

..



..J 4 w J ,,, • 4J .

r

r

J' J

v1 T TTry r .r r J J l : * I` JJ:d,

1.

(.:)'.J CJ ^ ^ t .J 1.

A-13 PO

ii pp

T12 ^^^^

App

RR MkN 1a X7NlT l 'KSO K I TAT UN 01 iTIYE I NOO ► APYL1

UMN iUNxxx1511 C M L X GC9K#Zl

F

YYl5l 9X31 0 !

N1Tl3 i 500! 9F21 Sl 1

YMAX*1.25

YMINsl,25 AJ* 0.95 A0.1 ^= •0.065

=U.0 1 DO 1 0 K*ltbl F2(K *-092*( K -I ) G=(AI+At+F2 IK )*I8+r I I F=A 1*A2+F21 K) *^d *A2+E *Al ) N=b0

GCaLMPLX4{ 690*0 FC*LMP X!F U,0))

zzt 111 * ^bL+^cc 34RTlG4 **?-4.0*FL 11/2.0 (GC**2-4.0*FC )1/2,0 f6t (21 ( I -C 1 IKT ZR' :KEAL I x C 12 )

ZI*AIMAGIZLI 1! ZI1= A MA6IZLII ► 1 AXIIK =Z11

XX2``K mZI2 YlllK =IRI

YY21K ► =ZK2

VWB+E

W;B*A +L*A1 Y3(K *M/V

XXX(K s-0.2*IK-11 CxuxXXIl) LYUYY3411

CONTINUE

100

LALL PLOT IU.0 0.09511

CALL PLUT^S.Ut^.09-3) CALL FALTOKIJ.5)

UT*XXX(51)/10.9► CALL AXIS IU.G 9 0.(j 'FLLUbALK PAK.' t - 13 10 . 0900090.1,tUT

CALL GK10 IO.Ut-5.t^t1091.0t10t1.Ot-3054) Y'T*ABS(YMAX IFIABS ( YMIN .GT.Y11 V16AS5IYMINI YS ART*-YT UY =YT /^* o

CALL PLOT( XXX(I)/U1:YYMII/DY931 CALLUPLUTlXXX(I)/DTrYY3(I1/DYt2) CALL AXIS (t+90r-5.0 9 'PLAN PULLS

I

AND ZEkU't20t10.0990.0tYSTART9DY

CALL NLWPEN(3 LALL PLOlIXXxl11/UT9YYl(l)/VYq3) DO t0 I=2 N CALL PLUTlXXXfIJ/UTqYY1(I)/DYv2) Lau PLUTIXXX(l) / DT9YYZ111/DY0) DG 30 I*2 N LALL PLUT^XXX(I)/UT9YY2(I)/D"92) GALL PLOT - U.br-C.5t3j LALL PLOT( - 0929-b.9tZ CALL NLWPEN(I) CALL PLOT(-0.59-7.0:31 CALL PLOT(-092t-7.Or2) ALL PLU110.0 000931 L ALL SYMBJLI-a.lbr-b.5r0.15t • PULLS • O.Oc51 CALL SYMbUL(-U.15r-7.0.0.1!`v'ZERC'ra.0 4)

20 ,^G

CALL SYMbUL(-0.5 9 -7.5r'J.15 PLAN12 YIK) (A l +A2)YIK-1l-IA1*A21Y(K+(b+L)*U(K-1)-(A1*E+b*A2 ) (K-21' 9 0.0 71) ALL SYMbULI — U.79 — bee tU.l5 9 LUN UL: U(KlsF1*KtK)+F2 *Y(KI9t09092V

t^

CALL SYMBUL ( - 19.5 -b.5 0 15 :'RLSULTINI. CHAR. L4N.: Z**2 - Z *(Al+A2 +F *(q+L )+A1*AZ+F*(A*AZ+t^*All .0.0.64) +^ShLL SYMBULt-0.59"9.090.15 9 ' PARAMETERS: A1*0.95 A2=092 B*0.0 L*0.01' 9 0.0 v) CALL PLUTIlb.O 0.09-3) LALL PLOT! O.V t6?3 r+ yq 9 )

l

+

STOP L NE;

99:99

C

Appendix B: Supporting Alebra for (3-31) - ( 3-43) and Simulated Check

}

Contents:

p. B-1-3: Supporting; ++lgebra B-4-5: Step response test program

e B-6

I f

R

t

Step response watch

B-1

From (3-31)

6z2^

Y(z)

(Bllz+612)(x2 - a21z -0 22) + (^1z + 622)(z2 2 R(z) _ (z 2 _ n l z - n 2 )(z - a 11 z - a 12 )( z 2 - a 21 - a22)

- (1 22 ) + (6 21 z + 622) ( x2 - a 11 z - a12))

- (v l z + v2 ) 1(811z + 612)(z2 - C121

= b 5 z 5 + b 4 z4 + b 3z 3 +

a z 6 + a z5 + u z 6 5 4

4

b2

Z

2

+ b z + b0

N z D(z)

I

+ a z3+a x2+a 3

2

a ll z - ai 2)^

1

z+a

(B-1)

0

Evaluating the numerator N(z) _ Sz 2 [a lz3 - 01 12 `122 0 + 22 z2

11121z 2 - Bll t22z +

0 21 z ^

5

'z 2 -

1.

6 ()L,)Iz

21 (16210112z (1

+ [,5(-[;

11 11 22 B 12 a 21

+[6(-61

B

^.'.)°1 1 z - d22U121

_ [n( o 11 + V21) 1z +[6(



22 - 0 a 12

11 `121

0 21 x 12

+ 12 - 621"`11 + 622)1

z4

`22a11))z3

z2

(B-2)

yields (3-32) - (3-36). Define the denominator as D(z)

(B-3)

D 1 (z) - D 2 (z)

where D 1 (z) _ (z 2 - n z - rj 2 )(z 2 - a ll z - a 12 )( z 2 - a 21 z - a 22 )

(B-4)

1

and

D2 (z) _

0

z + v2)

N(z) 6z

(B-5)

W-2 F

t

Expanding D 1 (z) yields D 1 (z) - (z2 - n 1 z - n 2 )(z 4 - a21z3 - a22z2 - a11z3 + a11a21z2 1 + 11 a22 z2 a 12 z2 + u12`121z + a12a22)

!

_ (z2 - n 1 r. - 1 1 2 )[ z

+(Yll`A22 -4 a = z('- (u,

'.

i t

4

- ( `x 21 + a 11 ) z 3 - ( a 22 - (111a21 + a12)z2

12' x 21 )z

+ 112a22I - a ^x

+ On 00000000

0.000C(w

2• s>28,4

O .U000UO 00 100000 0.0L►U(100

2.423[1411

Po 3b5542 2.349549, 2.3255 8V

n•()C► no (,*n

090("OCOO

:. 3( 1 743&1

O.OR nnno 000 0u ( ) nu

7.241431,

O•uODUUU 00000c(u

1'.

2&12944

&9c06 080 ko 207924

0.00OOGO

U.OL10000

00000000

0.0C1uuoJ

o•ou()0 00

e 2 U3118 y

c. q 00uuo

2.209402 2.206744

U•ODUUUO 0.00OCOO

?•198537 2.20549'u 1:.199988 :.1056313

2.2"'0881 2.221515

2.22064? a 2.222 2. 22 049 6

OOOVOOM

do 4' 8698

4.41557" 2.4172 F+b

2.2:0891 1516 cc4 15 4 c.2.2^ 2 2210 69 29223914 2.2??711 2.: &1 17 9 2.22 3778 2.212480 2.222UoU

t rc-rul**2

000UQODU () . nt)no ()O O,OL► 0t,U0

2.ti47(i1 Z 2125?3 2.41ts133

4.201040

-0.4712t^4

Z.3'J51 t11 7.35 b 45 1)

2.214733 2.2125 5 2o •.16134

2o219666 2.219666 2.217241 2.272535

NUZ

^• 7 tt^

C► •4490506'

402zbIO2

?:203193

NUI

U. 1:._'94911

LoU951aS

2.2[ullO

1.1G6086 2 20 7929

-1.523571

095!cbt3 O.00OCK)O 0.0o0C((^ 0• '700000

SY S YU: UVLKALL 1 .F u• uuuu uu

2.2'1303U :..:u 1j39

950

0.116359

u. rib? 111

O.u70 0 16

-0.1590bb

A21

L22

621

2.2u3e4!, 2.441444

.

A14

() (10()GO 0.000(IUO U00GOU00 0.000C.00

00000000 CF.nonnt►t) O.00JCUO

7. r y bht, 2.217240 ?.??2535

00000000 0.0 (,UU00 G•OUOCCO

1.214151

0.0UUUU0

202"'3912 2.272713 . f-,41736 2.2&13774

U.OLOCOO O.1t► (1U(10

1.221067

2.121037 2.212470

2.212U!7 2.2208 o 2.2: &134. 2. 2.: r► 4t t

00000000 (1.0oC)(i('o

('40001,00

().000('0()

0.1)(.0('(10 U40uU000 Va0tl()(IC10

U•3OU(K'0 C.0('OL00

00±)000!)l

0• () L I CN OO( ►

. . ??OSrN? 2o2ZU979 2• ^: 1 05. 3 0979 e.1109b I .2r G'+R2

000000100 9*000000 t),ov n ( •n0 O.JUJUuO 0.000000 oeuoouuu

2•220 y 7 40

o.oGa(f)O

Appendix C: Factorization of i for BxsWle 5 Contents: p. C-1-2: Factorization program C-3-7: IMSL routine - ZRPOLY C-8:

Destabilizing A 2 effect

C-4:

Plot routine for Fig. 3-10

C-10:

Plot routine for Fig. 3-11

...._.,r .,

^ — C-1

1f;1^ t'f^:,CKAt° , ► IIRMIALL YLANI NAb.. AN., ilht',,. L/ fl, tt.;/Ltv LIi. ).F1 1•Wl?i+ALIe ud.l/i•F.1.! U m -, LtA t -^l

L

•talc I/t •:`/• /1/I.^ rl.^/rt{i

L,u lc. 1=1rG

/:•irl.• ^t/rt./l,.`>r:. ►

/•/t

Ik /t

•t/

^l l l ls•.+Exi•1`^ t) 11 ► ^..{ ; ► +1 ► t +. ► : Iwl 1 i^'1+...r.11 1 — t.t t t l /^"• GI 1

1f i 1•E:.•I Ai ir4.II1

+

IFII.Lt 0 . I i1: I li=-t At- ( +tt]li 1' ^rlllxll lF 1 1 .tL'9 IA1. _^.. I1 1 It t I -)A^^ », *r 1(li =I^L111/>^1,1**.'/'+tl — thF^ — colt

III1aJJ +Il11

+j)

1F1^.t l..l«ia -i :I1) 1h11.I ^....lt.al- ► 1 t.. ) F11I1=INl +^Italil*1*s;t.it;`.t i111 # +:

1f • f I •LL.I)L>1 lc

i

1n 111+^1 ► xlt.^:tw.11l*i:..hill—.:

4 t I I1 '..) - I

il^tttlll

F. Ir,r1))^► i*'.'. ► 1t1—..;'1:1 ► ^. 1)

it. It1+11ItAir tr{11x11-1:. l!'.:t.711 — .}1111++. J1^'•1'vtkll/°'I^

=f . I l 1

1h 110Et,01.11L..

tl,hII'tit.t :"+1 Z :4tXYi — Lltt ri

L—t^

:—LXY( —: a lt tr'^4♦111 ^1 I h3gc:I1+.:.1 L r ;` — t 1 1'+ M.. l +t' l a — t L l^hi l ^^ Gl t , lr—t l 1*e^. —t la * t.^l—< < 1*'D1.:.—^.^.'^► ^ 1 I

A4z- 1 .^ F_ —a.l—rtl

F4= ► !i't's..:.

t (r tl,

wom^Iltlt,t.t,ls

t.Ar t

r . ` :f jt.y .L, ,",ti,, r t,l Sl gF't.t,.f., ) IIF"s,,. i- iJ1%,'"T1111Aq'L,._19F'. t Wl',iI ` (ti. 1ti,,._ ,A.,t-ItA L ^ i -A M A I1 ^Ar r A-,.af , l y .L, hr'A_= r ,f 1.r,,. A t r A 4 9.6 9 F ;.r ..: Xr'Alurri .j'.t. f•. f LI1 A f 4Ul=

.

tt11* A 1C+t : i ;A . t — sL

+t, M. )*la.l — t► lt k t.11/L I. I ► /l.

il r rl

L T« = A 1 1 A r I 1 }:.I 1'. — x 1 .1"r '.l I —A 2c I :*A1-.41 i. w H.liclt •.;1,)cil•'1fr`v.^t•% +uf •r'1•^"'c r9 1-V L r• R , 'NQ19 F r] {iA}r^1,-'}r4. t ,.,A,ft 9

t F,

^.

.,i,., 1r+I041lLt.rrI,LAI t f'I L k4 t It FIIf- Ai (1/ 1 r I't Lt hhi It It ,-,.,1 F —,I+,.11/rr

t.^r

r.L"z, Lt ttiu: f )

I•i.Lf,yti,rl't:arr`+r,rhtttr•it,^1"'ti.•1

^ t I =1,« 4AL1ic.iI)) .^rLI..I t I i

L

S

i

l.• I t t,

a. IL t t Ii It • v/^- ^f._1 M f I M i. 1 t l x r t t, _, . t ) - T I. L L,aa.%

}

t^ltltULtd AC. pAQrZ'ri^' I9

POUR

QUALM

9

:

+c :.

—'i !

,r't.t



C-2

{

INI LUck

NLJ iu,ItK

C,,hPA^c LL l4

N. t(yay

F11)a ,4 FI 4

FI

zi j

.1=AL

r j r.,% t h a^

..+1,..al`txt`t R

-

EaL WIN ►

t (tit- s^ k t 1 1.

Et„

.•a7

`^ti.,

t so,iL

l.::

r:

',t a,t t,^ • t l

C-3

IMSL ROUTINE NAME

C

- ZRPOLY

N!!Nl M^!!-i!N!f!i ll----li^!!r!/!!^

4 C

C

-Ia

COMPUTER

- IBM/DOUBLE

LATEST REVISION

- JANUARY 1 9 1973

PURPOSE

- dE

USAGE

- CALL ZRPOLY IArNDEG,Ztl[RI

ARGUMENTS

a

WITH COEFFICIENTS Y IJENK1N L AUD)

INPUT -

NDEG

ORDER OF NGEP"RERSEUFITMLENTS I N - INPUT INTEGEk 01: RE RF POLYNOMIAL. NMEG MUUS

BE

tHAN 0 AND LESS

GPEATE

Z ^CONTAINI NGtTHEFC G OM PUT ED S OF POLYNOMIAL. L NOTE - THE ROUTINE TREATS Z AS A REAL VECTOR OF LENGTH 2*NQM AN APPROPRIATE G EQUIVALENCE SiTATEM ENT MAY BE REQUIRED.

C

`

C

IER

G`

IER ; 130

C

N

INDICATES THAT THE LEADING

IER=1319 INDICATES THAT ZRPOLY FOUND FEWER THAN NDEG ZEROS. IF ONLY M ZEROS ARE

`

L L C

TEAM

COIFFICIENT IS ZERO.

C

G

AL ERROR

POLYNOMIAL IS GREATER THAN 100 OR LESS

G

C



IE,si6Rr INDICATES THAT THE DEGREE OF THE

C

C

RM OR EXIOUTPUT PARAMETTR I

-

POSITfVEIMAaHINE1 NF INIAYG ARE SET TO PRECISION / HARDWAkE - SINGLE AND DOUBLE/H32 - SINGLE/H369H48,H60 REQO. IMSL ROUTINES -- UERTST UGETIU,ZRPQLE^ ZRPQLC ZRPQLD,ZRPQLt, ZRPQtF , ZRPQLGrZRPQCHr1RPQtI NOTATION - INFORMATION ON SPECIAL NOTATION AND CONVENTIONS IS AVAILABLE IN THE MANUAL INTRODUCTION OR THROUGH IMSL ROUTINE UHELP COPYRIGHT - 1978 BY IMSLr INC, ALL RIGHTS RESERVED.

G

WARRANTY

- IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN

APPLIED TO THIS CODE. NU OTHER WARRANTY,

C

EXPRESSED OR IMPLIED, IS APPLICABLE.

!!!i!!lN^M!!!l Nri!!!!!l^lY^!-^^!!!!!!!!!^, !A!!-^CM!!i!! M^•!!M!!^!l^l^r^f!

C C

C

SUBROUTINE ZRPOLY (A,NDEG , Z91LR) SPECIFICATIONS FOR ARGUMENTS

INIEGER DOUBLE PREC ISION

NDE691ER

INTEGER

N NN J JJ I,NMI ICNT^N2 L,NtrNPI EfA ^IM E , I , FPr^EPSP 9 RAdIX Rl0 XX,YY,SINR

I RE AL

REAL 1 DOUBLE PRECISION

1 UOUBLE PRECISION 2LOi^ICAL

I COMMON /ZRPQLJ/

A11),t(l)

SPECIFICATIONS FOR LOCAL VARIABLES

COS aR1MAXRINrXrSCrXM,FFttxgR rBNOrXXX,AI^E PTIl TEMPI101)r"(101)rQP1101)rRK1101)rQK(101)r SVK(101) SR,SI,UrVrRA,RB CvD A1rA2rA3r A6 A7 ErF G H ssOR , SL1 RLZR RLZI

ZETROKaSICar^A^TORrREP R1rZ^P.0r0NErFN P iQP,RK QK,SVK,SR SI U V,RA RB,C:D A1rA2rA39A6r A7, E, F , a ,H,SZR,SZ^A ZR,RLZ^,ETAA^tE,RMRE,N,NN

O-4

V^ LOW4 S, AET S

I

I

$ON PANT SV1, t E " Rfi " N 4 S PA S' " Me AN t0 14"Uh I HE ROG I AMI 0 1 9 OF T h k FOUR C ST NT AR — REM k xj;Uwl RlAlIVE R E kpk A ON OR WHI A N Q ,TIAS '" I t .1 AMLEST L 05 111% L DA ING P POINT NUMBER SUCH THAT le+REPSR1 IS GREATER T HAN I RINFP 111! LARGEST FLOATING-PUINT

tqkv l

ERR

NUMB Vt

i ST RLPtS 14E SRA ff

F A IN G —PUN 19 t I TI Y l: TH E XPONENT RANGE UYFFERS R I IN SINGLE N i ND UOUBV PRECISION THEN REPSP ANU kINF $1 HOUL NDICAIL THE SMALk[K RANGE

RADIX HE 6AJkUFlUE FLOATING—POINT

NUMBER SYS EM USED E k IN V P/L 7 V F F f-f- kF,*

DATA

REP SP / RADI X/ 600.4 REPSN1/13410000000000000/ ZERO/000UO/AONE/ld / Z POLY S S SINGLE PRECISIUN Cj%CULArlUNS FOR SCALING 9 BOUNDS ERROR CALCULONSe A

DA TA DATA

DATA DATA

EXECUTABLE STA71 ATLMEN7

TER IF (NDE6 . Tale 100 9 0R * NDEG * LT * 11 60 IU 165 LIA a RLP.11*1 ARkEm,EIA ETA RM

RLO

E

RLPSP/LIA INII JAVIJAIIUN Or CONSTANTS FOR H

XX a 01071068

0 AlION

YY s -XX

NR x . 9975641 U SR r. -,06975647 GO

N

C c

NN

NDEG

N+l

IF (A(I).NE.ZEKO) GO 70 5

IERTO a130 GO 19 000

E

5 If- (AfNN)oNEoZER0) GO 10 10 J NDEG-N+1 ii J+NDE6 ztj) a ZERO I(JJI ZLKIJ NN NN-1 N

C C C C

ALGORITHM,FAILS IF THE LEADING COL FIC LN I S ZERO* REMOVE THE ZLROS AT THE URIGIN IF ANY

N-1

IF (NN.kQol) GO 10 9005 GO TO 5 10 DO 15 1- 1 9NN r. A Pi )-M 15 CONTINUE

TV30 20 IF (N.GI * 2) GO TO IF IN.Llol) GU

MAKE A COPY OF THE COEFFICIENTS

STAR) THE ALGORITHM FUR ONE ZERO

9005 CALCULATE THE FINAL ZERO UR PAIR OF Ztfaus

IF (N * EQ o Z) GO TO 25 ZINDEG) a -P(2)/P(l) Z NOEG + NDEG) z ZERO GO TU 145 25 CALL ZRP^LI4PI119PI2)vP(3)vZ(NDEG-I)tZ(NDk(i*NUEG-I)tZINDEG)o E) I Z(NDE + N EG))

GO 10 145

C C

30 RMAX a Go RMIN a RINFF

DO 35 1=1 NN X = Ab9( S NGLQ(I))) IF IX.,G] , RMAX ) RMAX v X

FIND LARGEST AND SMALLEST MODULI OF CULFFICIENTS*

IF (XoNEo0ooAND.XoL`T9RMIN) R14IN a X

35 CONTINUE

C-5 SC ALL

THERE ARE LARGE OR VERY FCC ii X FA TpF RC TMNM^TIP LV T MEA MEN OF THE ROLVNIAL.

CE O THE FAQ.

AND I TO DA ID UADE:T CTED LO INTERFERR NG WITH HE NGEN ` E CRITERION.

rOR 1S A POWER OF THE BASE

SC : RLOAMIN

*10.l OGOO1^055 IF JRSCMA- Xe[1 .O. S +^ REPSP *RADIX*RADIX lf• St.E p

GQ TO 45

40 IF I RINFP / C.LT.RMAX) GO TO 55 ALOGIRADIXI*.5 : ALOGISCO),/

45

DbLE **l FACTaR ov1RADIX! %a W/IIOc1FAtNInk*P1I1

COMPUTE LOWER BOUND ON MUDULI OF

ZcKus.

cc

=$ASS

{SNGL(PII ► G) 60 PT 110! PT INN! ; °P11NN!

COMPUTE UPPER ESTIMATE OF BOUND X = EXP(^ALUG(-PT` NNI!-ALUGIPTI111) /N)

C

IF IPTIN .k4 . 0.) GU TU 65

C

i

C

BETTER S USE IT.

XM a -P11 NN 1/P11 N!

IF IXM . LI.XI X v XM

CHOP THE INTERVAL 10 * X) UNTIL rF.LC.0

65 XM : X*01 FF a P1 1 I) Go 70 1=29NN 70 FF s FF*XM*PT11! IF tFF . LE-0o) GO TU 15 X = XM GO TU 65 75 DX = X

G

If NEWTON STEP AT THE ORIGIN IS

80

IF fF

OF

/ Xl.LE..005)

s A FT^II c FF

DO NEWTON ITERATION UNTIL X CUNVERGLS TO TWU UECIMRL PLACES GrOTO

90

UU FF s F^*X+P1111 DO- s DF*X+FF 85 CONTINUE FF s FF*X+PT(NN) DX = FP /DP

X = X-DX

GO TO 80

90 BND = X

COMPUTE THE DERIVATIVE AS THE 1NTIAL

C C

K POLYNOMIAL AND 00 5 STEPS WITH NO SHIFT

C

NMI = N-1 FN = ONE/N

a

95 Kt1 ) s

AA :



N- I) * Pll)*FN

P(NN) Be : PIN) ZEROK = RK(N).LQ.ZERo

DO CG5 J RK IN1 IF 1ZLkUK) 60 TO 105 C

C

T = -AA/CC DO 100 I=1tNMl 100

K

USE SCALED FORM OF RECURRENCE IF VALUE OF K AT 0 IS NUNZERO

J = NN -* RKIJI = T*RKIJ-11+PIJ1 CONTINUE P(1)

ZERUK s GABS(RK(N ) l.LE.DAI$)S(88) G O 1 0 115

* ETA*10.

C

0-A

105 110

C

vu

ll q Iw1M M1

KKIJl N +^ f kKtJ^-ll

kKI1 1 0E ZERO x w RKIN

) 115 Co NT ROK

. EQ*Zk RO

SAVE K FUR RESTARTS WITH NEW SHIFTS

DU 120 I a l N

120 TE MPI l)

_

AK(I)

LOON T O SELECT T HE QU ADRA TIC

CORRESPONDING TO EACH NEW SHIFT

DO 14G ICNT x l 9 2V

C

USE UN SC ALED FORM OF RECURRENCE

aUA^1F)I^IlCARNUNI-^A6 P^IIAV OANn l 1 S OMPLLX CONJUGA E. THE PUNT HA MUUl1US RNU AND AMPITUDE ROTATED

C

XXX

CUSR * XX-SINR*YY

^k6RkES FkOM

HE

PREVILIUS

SINk* XX+COSR*YY XXX

YY XX

SK Sl U V

SHIFT

bNU*XX 8NU*YY -SR-SR 6NU*HNU

G

SECOND STAGE CALCULAT IUNt FIXED

C

CALL ZkPQLb 120*ICNT NI) IF

(NZ.E0.0)

QUADRATIC

GO TO 1 .30

C

1NE. SECOND STAGE JUMPS DIRECTLY TO

C

ONE OF THL THIRD STAGE ITERATIONS

L

AND R( TURNS HLkL IF SUCCE SSPYL.

L C

G

J s NDE V-N^!, I JJ J +NDL'G

DtF^LATE THE POLYNUMIAL STORE 1`HE ZERO Ok ZER[^ S ANU RE,tURN TU HE MAIN ALGLIRITHM.

ZIJ) x S1k l(JJ) a SZi

NN = NN-NZ N NN-1 $ Utz 125 I

125

& 1 NN

P(l) * QP(11 IF

G>UI

.

J

J r t J .1 . • 1' I ?

li it ^U

U

.CS •d

4

.1 J

tt J1 l Ul

1 a to to 7'A

11;

'1 J •

It) J`

-n

.'11'i .',

ON

i

v-n

x

y^ t^n•,w N cc

N

(f

t

4001®"00 3c 0000. •-+4f^t y t^ c.1 i

n

111.41 r) c Ol(')*OC Jio.Q. -P- .t,*1in44 .4 J.v•-•- mocnec

GL w V-4,0 J, NIOLfN►c1G J` T'r-,' i ' Or)t... • •7J 0c) 1 ^^^^11OC ill it 1-•>

Q

1Q soU,in NN

c?^OCaOA 1

N WNP-F-00

(To P.- --4P.-.W J ..lOOU1nU1^10 o Qenl•inil,ao" 0. W••'^"'^•.t^tNN 4c inr. o •o aoao

OO,afjr'1t^ 111

^l.1QUICa

Q H

s

^ ,

tlniGiNAL PAGE V 4

n

1

OF POOR WALM

C-9

U14I1 CIKLLL: IHIS PROCCKAM PkAWS A UNIT LIRCLL ANU LOCA1L5 PULLS C ZERO!) OF A

4

L

SYSILM Its 110 U1MEN` lUN X11 hLGli X.ibi)(11 X3(00011 X44 bout I Yl(6t^0lltlikt1-001)tY*k I +4d(j I19Y-4 80L ) XP1 ,91 YP44 X101 0 YZ^3ItAXZ,44 AV

X111)eX^?I1•X.11^rX11^/t.0«^► •LtU,4.^^^.t^/ DATA Y iI) t Y^ t119Y 1I V4111 / 4 .o U.t t -4.C; G.^ #C UAIA

uAlA — 0.7t +1 N`>t-t► . lta 'Ikl / !,t-00!)1966 UAIA Y) I /L.,33Cr(.Ab. t -U«4'(J uts ro UAIA Xt/ — L.1441^ t — c .1^,Ai^a --v.4► a y t 8/ 01 UATA N*6000

YMAXXI.0 YMly=—l.c LrJ 45 1 = s r vtrl

X/ 1)=X. I1-1 )U.UUO -° Y.:^ I )--fiUS( s4;Kl 11ta.( — X/1 I )**Z) 1 J -L^ tUJ-1 X111 J = W11-1 ) Y11J -r11 -1 X.^(J -^x^l 1 — I ) Y.11 J )= Yr (1-1 ) A4 1 1 ) = — X.'( I ) Y41 1 )=-Y;,! I ! WN 1NUL

:.ALL PLL;1' 4 1Q' t C.^ tLV011 LALL PLoIla.Lrc.Ut-J) LALL )-ALTUR(C.6t ) XS1Ahl=-1.t Lt1-1/^t.l

LALL AX15 YI - AW,IYt-,AXl Ii^-1At A .S YN1N i.u19Yf ) Yl=Aba 4YM1N)

Y51'Ak1: -YT UY=Y 1 /w.c

CALL AX1:^ 4L.l^9-- 4 .tor LALL N1 WPkkN( .t)

• I M At>1NARY • 9 9 +43« (,t 9k, . 9 VAlAKI L'Y)

LALL PLL)IIX111)rYlill93) C-u (j 1µ49N aU

LALL CALL

PtUI(XIMvYll1 ► tc)

PLkalX-11)fY2 1 )r:+) LALL PLt1(Xe(1)9Y2tI)91') t,ALL PLO X.11)tYa11)f3) L.1 4U 1=..rN GALL 1'1.011Xi 1)tYJ1I)t.:) LL) Jo 1 = tN

^L

CALL PL1^1( X4 Ui,I ',I, 1--ctN

I) f Y`t

1 1 9 3)

CALL PL(Jl(X tt111fY41I )rwl U Y Y Ll .:; 5

L)O 100 1=1 t4 GALL '"YMbUL1 XP( l WUXtYF'111YMbJLIAXZIJ)•AVZ(J)tJ.6'•11-'-'vL-Ut-11 k. Q 0

CUNT I'iu^

CALL PLUT ( I b -U 90- 6 #--0

LALL FLUI(O-LvU*UV+199 ► .S1 UP

LNU

I^

''I Appendix V: Overall Transfer functions for Example 6 Contents: p. D-1-2: Supporting algebra D-3-4: Simulated stop response check for (3-48) D - 5 - 6: Simulated step response check for (3 - 61)

Note: a's and b's In privitout correspond to p's and q's in (3-48) and (3-61)



Consider the control configuration in Fig. 3-12 a ( or c) with a convergent

identifier, i.e. the time-invariant, asymptotic c an *. For the plant in (3-17) with the controller in (3-46) and the actuator of (3-45) with B A -aT

(D-1)

then, since

z

6 R(z) + (v1 z + v2 U(z) c

z

n2

Mz) 2

z

(D-2)

and

Y- z UU (Z) C

Y r, U(z)

U (Z)

U

C

(Z) 11 1z

(D-3) z -2 )

-1 -

Y W

n2 ( Z—) -2 U (z) 0 C 6 R(z) + (v i z-1 + V 2 Z ) Y(Z)

a

6 11 z + 6 12

I z 2 - a 11

Cross-multiplying

I FS Z)



Z - 'A

a 21

12

I

Z - 01

L=.4 I . z - g

I

(p- 4)

22

in (Uf-^4) and rearranging yields

(%,)I Z - (1

32

it

(z - g)(z 2_ OL

- (vi

021 z + a 22 _ Z2

2 0 ) (z z + ^

R(Z)

+

+ "' ) ( 1

2

Z 11

-

22

z2 _ 1 12)( 0

g)

(1 - g) IN (z)

(z - g) D 1 (z) - (1 - g) U

) a

+ 01.1 z + fA

21

11,z + X 12)

Z - CI

22 )

(z 2 - a

q5 z5 +

21

12

(z

)( z 2 a-

2 _

Z - 01

it V —a

12 1

ts (I - g )1-,

t) z - r'2) I

2_rA Z-C% 11 22 )+( 11 z + a 12) (z IL 2

q4z 4 + q3z 3 + q2z

+ q lz + qo

2 (z) -1p7z 7 + P6z 6 + p 5z 5 + P4z 4 + P3z 3 + p 2 z + P z + Poll 1

2

(D-5)

wliere N(z), D I (z), and D2 (z) are from (B-2), (B-4), and (B-5), respectively.

o-2

Note that the q, of (D-5) are equal to the 0-0 b, of (3-321 ) - (3-36) an shown in (3-49) - 0-53). From (h-6) and (P-7) Ov,

pt

Of (3-54) - (3-6o)

are readily foniied. Similarly for 010 control configuration of Fig. 3-12b after Identifier convergence, from nkwhip, the pickoff point across the actuator Z - 2 ) Ile(z) ^^^^) U W - 6 RW + Ili(V_g

z

2

+ IV V_ + v ') z^~ I Y(r) 1 6

(D-6)

and Y .(.- L— . ( j-7.0 11 c

W

) uv_^

Z-g UW

Therefore

3 I Z - 9z2

(1-0 z - n,, (1-8) 1 YW O-g)

2

z 6 RW + 1%, 1 z+ V, 1 1 Y

F 6 11 z L r-

+ 11 (4

Ji

12

+

11 -

0

z + 6 21

22 -

7 2 - t1ilz - (I

12

22-1

(D-7) Again eross-mullipl}filg and rearranging yields

Y , (z)

Z,

6

0 - g) I

!t (x)

rl

11 + 1 ^12 I

W -

o ') I z

(1

2

(-j

O-Oz - g 2 0 -1,0

z

") 21

11 Z



+ (0 21 Z + (^" )(z U 12)(z

2

0

11

Z - Q

I z - a22)



^i (1 7 21 a v.) 1(1-9) 14. 11 z + i-))(z2 21 22) 4 (02- 1 Z + 11 22 ) (

v 1, +

[ z 3 _ gz 2-

i l z -112(1-8)1(x2

_ tA 11 Z - (1 12)(.-

where N(z) and 1),,(z) are from (11-2) and

yields (3-62) - (3-68).

(B - 7),

12

Kx21 z - (1

it

Z - kx

121

22) -(I-g)D2(z)

respectively. Expansion

p-9

S,N lU (vi( t' 1- 11,!)94LIUitWl.. rAf ik' Irtr1 i11t F11/ 1 .^}.t /rG► /f..5< ZETA/t o6/ g 8IMEN ATA T/4J.^/9A L/1:011 V/ u zbI/U04r^.tar / UAlA

Y1

luto

9YZ9Y. tY4Y: rt r 19.* f pU ,39UNtU / 0 . ► 90.U 4 . t► tU.Catt► . l► t^1.Ur^J.f^ 0*0

UA11. YUlo Let YL .A tY%."rYI, K rYLCsYL // U*Uv0•Ur0 • UtG•1;r 1^.Q909C1r0.0/rK1rR +.' ftt+iwtR`^ftt , tK7r ►t/tCry . l;tt..C^r4 . tr9C^.C^rll . C'rU.lwt/ Ut lt! 1=1r^

r^111l^2*^x ►^i-^^!.T11{*will*11*c.t^.^iwlll^► [*,^^111-l^Tii!**t11 IFIIotnj.1lAll-t,ll l; 1 Fi1.*t7,2 ),t I&C 214 1 t,2IIll a -2 L t^11I ► *^I l ► *1 ! II- I L.v.l..l #Ali =L,241!

Ilw II,r(J.2 )A rC, l& ► lIIImIALII1/ 1%111 *Y*,;Ivt1-Lx614-11.111 *wi 11*11*1G1::^1w11!*M WIRI11-Zh 1^i 4+Ft1t1-41 411** 11 0111*vd!I1+IL^.141 ► /SQKII1-1L1i1!**'1 *5► 1Ni11^1+

+11 1F1 l.t;^i.11k^ll =t°1 111 1F11.LtJ.2)Is2L^^lli: ► _ I *^Iw it! *T*4^1'1ti Z* 1iI1 *tili +t 111 111 %svk ll +4QPII 11-11.1 1 1!**.I1! 1 If I I-kQoIIt;UL+e. III

1 FI .Lt).: )144-tti2 ►

tiMl^^: +^X^1-ZElt► *will*11*t, fJ:±tt^t/i! *T*S^til t Mo*&' m - hXN 1- ,*1 Ll A *W ( l) *1 ►

_ *ZEL 1 Ili :

_ .! 1 I+S1NtWi! i *

I1.(}- L CiA* *111

k T l =UM 1-/.11 ANUI =I c.T Lrnle+ i l l l*A3 1-A lt+uMt l*1 All-A1l*tall/r«l^ l 1/ Ik+l, l ♦ A11+b12-AY f;T: ^AL1*tl l+t^F;::-k:,11*AtvUl-A1^

ANU2-=0: *A1L/t I+' t3 ^ = U* 1 1 . t^ -C^ 1 '^ t t^ 11 + b « 1 1 Lea=l^wl l,t : - 1, ► * 1-1j11't A.. 1+tal c - 1^.: t'tAll+hc::l 13:^=1^*I1.G - 1 1* t - LL1+'o..:. - ^al^*A.:1 - t^21*Al2 - is2c"*Ali ) ^+=L+il l.u - ^l+1 - 1^1.'^► ^.«: - '^^.."^tic1 t< 1 ^ +,+. U +f)=1 1 A7=l.Li

A Li m -t,-A,' I - A At)

1 1 L11

It lPt + I1+1.I1i-A..:+All

I A I i I11*A::I+L11* ►`,11-t 11 ►

OQ1*1.11 A4`1-Cx*1-A,,«+AII A.!I-F1.!+1•II A..14LII*AII-LIi1+14111":4+i L AiI+#,,.z *LII`A1 *1 1f:*A,^1+1,12*AII-ANU1' t°II-II I&I1*II.J-(Y1) ++A41. -L A.3 c 1-0+I0 11 A. +A11*ALI+LI I A,6, -L 11*A11+A41+LIIIAI: +LI.,*A,GI*I 'I: *A1 II*n"..--CII-% I.:*A..14 1..+rc. -kIie I1*A4'1+ F :b+Al4- O'NU *11 *A1,.*1..' - ►.1I +1^ 1 - ,.+11 4, A.1 +t+.:. + ►;aI., - t,: 1+AII 1^Ii. * - GI - ANN # Ib1I+«1!x'11.1: - G)! A IA1. 0 4,1.6 - 1, 11 41'aIt'a il4,! - 1 II*Al2 0 A,!I *LIt! 110 A/ ItII*A21*112*A1 A.:.--kI4+A1I*Ad4-LIL 1vA1«.+A'1 4 ANUL*IF'l1 A&,4LIk*A`1+I'41*A AI +12+ L^/ 4+t,11!*I I ov-:,t1-FNVe. °t l-E II *h.^l*1'42+L12-bdI* t,II I I I C-U ) Afju2*It3II* A .: 21 1 le AII t,.!;o+L_14':*AI "X A«: 1) - LI2 m i+It" A1 = t I L h I 12)*(IOV+11 )*I Io U - L, ► +ANUI*IL' +L, ) 1 AU=

c,J

C` i #A1."IrA .:+A14Uo.'V(01. *Avg+c^.:,:*A1 1 *11.-1 11-5 ,t O t t#3.1W « t b L tt•C• I- KM AIIIXt'Lt) 9 t V o 0 9 C Xt 0 b-4 vF 1Y,t,r,eXt F

w

y *LI

111 16 jCU

+•L^1=•tl'`,'.U^e.Xt•t:t,-• ♦ i-y.f► t2X1

•4X9 b2r•9F`F.ht2Ar

wK11L(o /G!A`lrA tAhtAtir i► . t A. j Al AG tF°"1.tarlXt•A`^-•rF4.Lr1Xr•114=•tFY. t,t^Xr 1^ UkMAlI1Xt•i,7='rF'`1.Lvt I • AL. +• A ^ =• t hy .b• iX t • F 4 =• •1-`i.fa•2x •• A l ^• •h^.bt «'X ♦ • l^G-' t F y .t^ t ^'X 1 WK1TL( bt.;tllt 1 9 LT2rANU1 •ANU2tt•M1 UMd t~uFMACIIX • L11 = • F •y .b t .'X • L11- • .!+l ?',t•t1U1-•tF^1.6r^Xt•NU1=•rl•Cl.b ^n ++2'X • GM1= t t h y obvix9 • uM = jtF- Y.hr1xl 4 R :If , rll► l}) 100 1= CJkh1AT(IX t 'Y1:LLN1KLLLLU SYS. 6 t -3 Xt 9 Y2:L3VLKALl T .F.•r.Xt •IY1- Y:1**'2 /G

OU :)5 J=19100

Y=t(,+Ae I+All)*Y1-( U *(ht!.1+A 11)-A22+Al1*A/1-Al2)* Yk - 1Al1 * Aie2 *A1k*A21 ♦ -U* 1- ►>12 *A1 1 *F,at -w12 i 1*Y,^-1 P1 2^A."_2- G *IA 11*AZi+A 12*A2111*Y4+G*^ 12*

+AZ2*Y:^+11.1.-U6*1111+c^^11*U2+11.U-t^1*i-E111*A21+1x27+1?11-t1+'1*Atli*U3 ♦ +t 1.G-G)*I-L! I1* AtL- ^L2*A21-till*Al2-b21*Aill*U4 + 1 l.C-G ► *1-'1112+A1c-132

+^ *Al21 *U^

U =Ca* i;+E1 1*L,1+k1c*UL+AP4Ul*Y1+,At4U.:* Y2 Y9 = Y4

Y4=Y3 Y ,=YL

Y=Y1 YL=Y

U5=l,-.

U4=U3 U =L1.? K -U1 U I U,

Y( a -AO*YL1-1!J

*.j *t • , y 7=Y,()

'

*YLw #t 1 v t>tti ♦ ea t *1-

-Al;*YLl)-AI*YL( ► -Aeto^Y(.7*U!)*Kt+ 4*K3+f4

l

y (I YLd YLt-=YL4

YL4=YCI YL,zYL;l YG;e-YC1 YL 1tYL K7xKo kbxKS K!)sK4

K4:K3 R3s92 K2's ►t1 K1;tt

uY=IY-Y41wt a y

w R I I E 6 5 V YL U F URMu111A9PIa. s., 9X t • 1:1 .1 5X1 lIi d L OCI INUL

X)

S7LN tNU

kid•

C1.O37 444

(.4-

< 1=

(l.UO(talltl 1.UL.'Ut,u^.)

EAU= ( .t O(Jv()L P)= - U07"lt.t-r.,l

(`.ty"ILL l,#

H1--l).:..»'^i I4

A7^ Ass

► »ht1=

I of o7iQ1

t,*" L t

E

E11--U .It)0561

j

Y1:LUNrKULLLi.. Z)Y;t. VOQUOOQU(:ti

i

u.(Uts^U((oUt, U. L3 1 4 k 44 4 , L • 11.4 01 0 4*0bb5LUL ,

i



ea .t^1'nIt-4#4

u1 r► vcv r► N1

1

a/ cis

14

.r1CJl1

1/ N

J r It IV 4ti l` D 0 0 ,jr,`,n.I ^ Q +^J'Q► +^1^

NMI 4

,Z-

^(^1f1JN'111

1^ 1!N a►1 t JO

^

N^

^^ J ^,^ ,!^ •„^

* .n

ti*^l3

ac^ OVUJ

r O^ux

r* ^D K ^ ^ ,x'11-

1

+i> 111f^AC

M olP4 It It .sJ^tir`f^t^u

u4a 1.a

NN:lft

46 W40

v^► ^a^vna

i1 N Al 3

rq .11f► Y +*11 - 4 u tN • J It .a1.a

nA

j

aD ~ ^c

F^ nA>



y

^°dcv^

P4 00

sly •••••

P

.t • 11

N u

x

_., 11

i^

sa

1r

1

r^1

^,.

^.,s

J

^1 (l .h "d d.'1

v

I'-.- A

I NO re

1

>D

r- +l

^a



a

•o A a ZO0% +-4

r r 10 ,^^,v + •..• T

./

• •

4

V

qr

s .A

4.4 It

d^v

all J O ^'• • •E

4

xc^.J••l...s nu

..•.•

a^^

I11

4 GJ J • .J a

ysnJ

1

n l%W A n

o ^ +n

4dP4 • dJ:i J tU v

J.t^cn V^V IAA^`^If+a+J► 9aTA^^iOau « zoo Q4 0

1% I 'll

-.' ►

JatoN Y4 J% 40 • J^ O 1it'. ' II f 1 V 'd dF- NIV 4 (1 1 V f„M- I" 04-41-4 u 4 1^,- r % I •••••••



.t e a

P4 if • •V

...•...

de

11

a0 I'YA = SS1'PA+ANAT(K-1) S5^' l'E+E=IIAT ( K-1) ** S.aYI ' Is SSCPF+F**2 SaCPG = S SCPG +(i *+2

**i:

300 TIME = FLOAT (N)

k r

it

IIr (N . LT.KD ( M+1)) F2TURN IDO (M) S (K) IO ( M ) = Y (K) RANGE = FLOAT ( KD (M+ 1) —KD (M) ) DIV = (RANGE — FLOAT (KUUNT)) * (RANGF — FLOAT(KOUNT) —1) RNG = RANGE — FLOAT ( KUUNT) NSTEV ( M) = 0.0 IF(DIV . GT.O.0) NSTEV (M) = (hNG*NASTE(M)-5TE ** 2)/DIV IF (NSTEV ( M) .LT.0 . 0D0) NSTlV (M) = O.ODO N ITE (M) = TE DIVSOR = BANGE* (RANGE-1) IF'(DIVSOR . LE.O.0) GOTO 1000 SI)PEVA ( M) : (RANGE * SSPPA —SAPPEA ( M) **2) /DIVSOR IF (SI'PEVA (M) .LT.O . ODO) SYPLVA (M) = 0.01)0 SITEVE (M) _ (RANGE*SSPPB--SAI)PrP(M) **2) /DIVSOR IN (SPPEVD ( M) .LT.O.ODO) SPPEVB (M) r O.ODO SCPF.VF (M) = (RAN(,E*SSC:II F — SA PEF(M) **2) /DIVSOR IF(SCPI VFI?I) .L T .O.ODO) SC:PFVF ( M) = O.ODO SCPEVG (M) = (RANGL *SSCPG —SACPLG ( M) **2) /DIVSOR I F (SCPEVG ( M) .LT.O . ODO) SCPEVG (M) = O.ODO GUTO 2000 l uou SI'PEVA (M) = 0.000 SPPI1VB ( M) =, O.UDO

SCPFSVF (m) s 0.0vo SCPtVG (lI) - O.OItO 000 CONTINUE SASI (M) s SASI (m) /MANGE SAPPEA (M) a SAPPRA (M) /IRANGE SAPPRO (M) s SAPPEL3 (H) /RANGt SACPEr (m) a SAc pzr (M) /MANGE SACPEG (M) s SACPEG (M) /RANGR N ASTE (H) a NASTE (M) /RANGE KOUNT s O STV s O.ODO SSPPA = 0.080

I

SSPPB = 600DO SSCPF = 0.080 SSCPG : 00080 h & M+1 RETURN

a

END

1

F-12

cccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCcCCCc cCCCCCCCCCCC4C GEI/SEI ALGORITHM EQUATIONS (4-4) - (4-8) , SUBROUTINE ADAFTI (CvDrKU,RH0dl) IMPLICIT REAL*H (A-H2O -Z) F+EAL*8 KU,8(4),U(4),Y(4),5(4),AliAT(4)oBHAT(4),E(4) REAL*8 THAT (4) ,GHAT(4) COMMON /SIGNAL/R,U,Y,S COMMON /C:ONTItL/F,(a,AHAT,EiHAT,FHATeCliAT DATA K /4/ AHAT (K-2) = AHAT lin-1) AHAT (K-1) = All" f (K) IJHAT (K-2) = HHAT (K-1) HHAT (K-1) Ulf AT (K) E (K-2) = F. (K-1) ,U (K-1) z E (K) FHAT (K-2) s THAT (K-1) FHAT (K-1) = FHAT (K) GHA`!' (K-2) = GIIAT (K-1) G11AT (K-1) = GHAT (K) E (K-1) = Y (K-1) — itHAT (K-1) *Y (K •-2) — GHAT (K-1) *U DE:NOM = H tMU*Y (K-2) **2+RHC)*U (K-2) **2 AHAT (K-1) +MU*Y (K-2) *E (K-1) /DENOM AHAT (K) IsHAT (K) = F HAT (K-1) *RHC)*U (K-1) *E (K-1) /DENOM GHAT (K-1) - C/AHAT (K) FIIAT(K-1) = (D—AHAT(K))/BHAT(K) F = FHAT (K-1) G = GHAT (K-1) RETURN END

(K-2)

F-11

:CCCL(;ccCCCCCCCCCCCCCCLVCC CCCCC:C"CC.CCCCCCCCcccce :CCCCCceccC (

GUT ALGORITHM EQUATIONS (4-12) - (4-19) iUBI',. ilTINE ADA11 T:! (C, D,MU,RHO,H) IMPLICIT RLA ! .*6 (A-H2O-Z) IiF,AL*Ci MU, R(4),U(4),Y(4),S(4),YHAT(4),AHAT(4),DHAT(4) hEAL*H E(4) vFHAT(4),GHAT(4) REAL*8 LAMBDA (4) ,GAMMA (4) COMMON /SIGNAL/BrU,Y,S COMMON /CONTtiL//P',G,AMAT,BHAT,PHAT,GHAT COMMON /MISC1/GAMMA,LAMBDA,YllAT DATA K/4/ LAMBDA (K-2) LAMI.iDA (K-1)

= LAMBDA (K-1) = LAMBDA (K)

GAMMA (K-2)

=

GAMMA(K-1) AHAT (K-2) AI)AT(K-1) WIAT (K-2)

AHAT (K-1) = All AT(K) = LA HAT (K-1)

1311AI (K-1) YHAT (K-2) YHA`!' (K-1)

tillAT (K) WHAT (K--1) r YHAT (K)

FflAT (K-2) FRAT(K-1)

E (K) = FIIAT (K-1) = FHAT(K)

GHAT (K-2) CHAT (K-1)

GHAT (K-1) = GHAT (K)

E (K- 1)

»-

GAMMA(K-1) = GAMMA(K)

=

YHAT (K-1) : AHAT (K-1) *YHAT (K-2) *DHAT (K-1) *U (K-2) LAMBDA ( K -1) = YIiAT (K-2) *AHAT(K-1)*LAMBDA (K-2) = U (K-2) *AHAT(K-1) *GAMMA (K-2) GAMMA (K-1)

E (K-1) = Y (K-/) -YHAT (K-1) »

VENOM = H*MU*LAMBDA (K-1) * *2 *RHO*GAMMA (K-1) * *2 AHAT (K) = AHAT (K-1) *MU*LAMBDA (K-1) *E (K-1) /DENUM AHAT (K) = BtIAT (K-1) *RHO*GAMMA (K-1) *E (K-1) /DENOM GHAT (K-1) = C/IiHAT (K) AIiAT(K-1) = (D-AHAT(K))/aHAT(K) F _ FHAT (K-1) G GMAT (K-1) RETURN END

i

F-14

'CCCCCCCCCCCCCCCCCCccCCCCCCCCCU'CCCCCCCCCCCCCCCCCCCCCCCCCCCC OI ALGORITHM EQUATIONS (4-23) - (4-24) SUbROUTINF. ADAPT3(C,D,MU,RHb,H,C) IMPLICIT HEAL.*H (A-U O-Z) REAL *F MUth(4),U( 4), Y(4 ),S(4),YHAT(4),AHAT(4)vl3HAT(4) HFAT. 0 8 V (u) ,Z (4) ,Ft,AT (u) #(;IIAT(4) COMMON /SIGNAL/k,U,Y,s COMMON /CONTIIL/FoUvAHATtVIIA7°,FHAT,c:IIAT COMMON /MISC2/YHAT,Z,,V DATA K/4/ Z (K-2) = Z (K-1) Z (K-1) = x (K) AIIAT (K-2) = AHAT (K-1) AIIAT(K-1) = AHAT(K) UIiAT (K-2) : BHAT (K-1) Ti IIAT (K-1) = VIIAT (K) VIIAT (K-2) = VHAT (K-1) YIIAT (K) YIIAT (K-1) V (K-2) = V (K-1) V ( K - 1 ) = V (K) FHAT (K-2) = WHAT (K-1) FHAT ( K -1) = PH All (K) GNAT (K-2) = GHAT (K-1) GNAT ( K -1) = GHAT (K)

'

YHAT ( K -1) = ANAT ( K -1) *Z (K-2) +BRAT(K-1) *U (K-2) DENOR = H4MU *2, (K-2) **2*hHO*U (K-2) **2 V (K-1) = (Y (K-1) -Y NAT ( K -1) *Q* (Y (K-2) -Z (K-2) )) /DFNOM ANAT (K) = AIIAT (K-1) +MU*Z (K-2) *V (K-1) 13HAT (K) 13H AT ( K -1) *RHO *U (K-2) *V (K-1) Z ( K -1) v AIIAT (K) *Z (K-2) *GHAT (K) *U (K-a) GIIAT (K-1) = C/BHAT (K) THAT (K-1) _ (D-AHAT(K))/I311AT(K) P = FIIAT(K-1) G = GHAT (K-1) RETURN END

F

^

F•1S

ICCCCCCCCCCCCCCCCCCCecccceccceeceeccccececcccccecccccccccc GtD/SED ALGORITHM EQUATIONS ( 4-14)

- (4-36)

Stf!)ROUTINr ADA1,T4(CeD,,MU*Hll0dl) IMPLICIT HLPL*8 (A—Hof?—Z ► REAL*b MU, R(4)tl)(4)tYI4)o$(4)tV(4)oYHAT(4)t6tfAT(4) HEAL*8 AHAT ( 4) sl31lAT(4) COMMON /SIGNAL/housyss CONNOR , "' O WTI(L /F e V jA HATs bit AT * F HATeGlIAT DATA K/4/ GHAT (K-2) w GliAT(K-1)

GHAT ( K-1) FHAT ( K-2)

GIIAT(K) PRAT (K-1)

FHAT(K-11) FHAT(K) V(K-2) V(K-1) V ( K -1) V (K) V(K-11 a - 11 0 (1. 0*MU*Y (K-2) **2+lkll0*U (K - 2) * *2) GHAT (K - 1) a GHAT (K-2) + RiiO*ii ( K-2)*V(K—I) / DENOII F1IAT(K-1) - PHAT(K-2) 4 mU*V ( K-2)*V ( K—I)/DENON Dh-NUM

G F

GHAT(K-1)

FHAT(K-1)

IR ETU H END

ggG

N

R-16

CrcCCCcCcc CCCCCCCCcCcucc "CCCCCccceCCCK'CCCCCcCCGCCCCCCCGL'CC SOD ALGORITHM VQUATIONS ( 4-40) - (4-44) SUbROUTINS ADA&T5 ( C,D,MU v RHQoH,Q) IMPLICIT EtEAL * 6 (A-HO-Z) ltEAL*f MU , It 1 4 ) . U14 )e Y 1 4 ) ^ S 1 4 ) ^V14 ) , F'HAT ( 4 ► •CIIAT(4) IRLAL*8 GAMMA(4),Hi1'A (4) ,AHA'1'(4) ► WHAT(4i

COMMON /SIGNAL/R,U,Y,S COMMON /CONTRL/F,G,AHAT#bHAT,FHAT,{THAT COMMON /MISC3/D TA,GAMMA,V DATA K/4/

GHAT (K-2) = GHAT (K-1) GHAT(K-1) = GHAT(K) WHAT ( K-2) - THAT (K-1) FIIAT (K-1) = THAT (K) BETA (K-2) = BETA (K-1) bf^'TA ( K-1) : BETA (K)

GAMMA (K-2) = GAMMA (K-1) GAMMA (K-1) = GAMMA (K) V (K-2) V (K--1) V (K-1) : V (K)

BETA ( K-1) = NitO * R (K-2) **2 + MU*Y (K-2) **2 GAMMA ( K-1) _ (D+U) *N * BETA (K-2.) * V (K-2) +D * GAMMA (K-2) DENUM = 1.0+H*bLTA (K-1) V (K-1) _ ( S ( K - 1) - Y ( K -1) *Q* (S(K- 2 )-Y (K-2) )-GAMMA ( K-1) )/DENOM GHAT ( K- 1) = GHAT ( K-2) +RHu+R (K-2) *V (K-1) FHAT ( K-1) FIIAT (K - 2) +MU *X ( K - 2) *V (K - 1) G = GHAT (K-1) F = FHAT(K-1) RETURN 1.ND

A

L L tr` Vi,.t.L LI. LLL 4 L.:,t.L

L

11`F

L

L LI~ LL.LL L L.LLL t. L L L G LLLL 6k.L LL LL

1U L S 1t1 1 N) I 1 A L Vt. L UC S IVLL^,,;, , t.Y 0. 11,t 'A M ULA1iuo, l a `-AMUL.AIL LXAPTI..L.S

1U

FtRLA(luLL+ L Y

V

t^ L 1.41.

l*, NhJi r%AM

VHOV

: L'I:kLL;I itiL

a ► Mt^Lc .

V' bLLt.K 1,k Is, 1MI^LlLI i 1,LnL a i'> 1^-^r;r..l^^ ) Kk,AL*u l i.:t.,l l to ► 9l Ii 1111)• 1\j111 1l Lt ► ,: A^lil1 ► 1* l.U • ;► AI'LA1I1t^1e:JA!• LA,.i IU) 9 ,...F'LV1I14 1•4Ai 'd'tltilt Si+ LVarttUi rPLV+.. 41vI9^1'LvVltluD,.1j ►aE;.Vbk4lu). A ;oAL LE: I I l u) ► ALf,i . f It;) 9 S; 61 .4111CJ) r" ALl:f li J +► ;,LL VLlt 1ul9:)L,V;«..tI u)9` k. c V+vIIIU)r`LLVNe,1Iu)r +k 10101L IL)919' 11.VII I

INIrL.Lk K,1 ► ^i LLiMML.-V /:, Ik I',/ IoLri«• .IIIv A;+i•'Ji.NttIt'>APite9'.APl1Ir:•APL lit •

0

#

*

14LvAI 'I'LV As. rS^`LVul•LI'tVu4#!)Aut:1:1r.^At.LL494ALt NI g t)AL Lice v SLtvLI.:L.LVtfrSL1 VNivaLCV1449 ILI Nh^IL.;C*j1LV SeAI,;,;. V A..•SL VI, 194bil l o.. LLISSLt. 55t.N1 9 SSLNe 91"19NO UPIA KU/v• 1 •. o 5 t 111r tt r^t^, IULl,:Lt(^i'JL'o•lUUG'tut ►(,/

tNL

L

kLAL ,,^I IA-^tires ^ ) LiYI L la).L+i0 ) 9 .:..1:•1 •1+MF114) RtAL 16 L Al Ir) IMPLA%.I 'I

t i LhIVA -

kLAL 40 kLAL*u Ii111L *c KLi, L*t, R AL's , ,.

ALFtnl.r11•IRt.IAI.'.•• ) tit'.).lila) LIMLLA I:'Ir1 t I:1.:),Lr.Mi'DAl.Li•L-AMMAlel ►. A t Li, 1 9 Lk;Ldl • 1 L:SIi. u LI ^, ►'

kt.AL VMIN1 Ii ► r.*if.1l^.) 11v1t.uLn 11 L, 11. 9 1 1L h1r P Ak.I ts 9 1 :.1:J1k4; ► •:L$1R1s) Iit) f K C AL L. 1;r,tiIL•) • S AP tl,liiu) ► :.A, ► ` ► t,cilL,19:ihl'!E IIIiJ )SA ►'Cbtllult

1

*

^I , LV A a,



,L.t

_) 9 .,N

4N[ I1.') •.a! LV 1) 111L,) ta L V11.:

t,ltt11tLJ),at-t.t 1 L I I iLi 9 _k,t VL,.. I IL'i 9

014"

(ANItl(j)•SALAN'IIV ...LvivI I iU ► 9 ;► LLViVL( 10



ht i ) O,lFho, I iiI) = ...0 ;"LXt'L,.i I V L 1:j r,1 ALF'tAti...) :. -11 A FL, .,1 s4 . 1 bLIPA i •i) (LAMINO.A11!/LAILyAlll'r° ^ iVII .l)-LAe;,ri'^ [LAIR I)**d. i )rr M IL.L oW l I (iL JAI I) /L.SL;KI I

*

/.0—

1,511.tJM0.I°1I1)4I4L,L0KiII.0-lk1044A)V'v.'.)1I)

pv;+?NCf

C`

Yl.d `it i!IM^YNngyy^

^ o.,wwxwaxvrs pW^ax cam.. ,. "r xaMeWM«M.bW.'k F A 1 + 1"► IL XI'Li txI~tiIt41.^1 = 4LAM i. ► 41, A01 6K I - %,U;iw l+l LL lAtI I/l,SQRl 41.0 - lt lt,t s )**,ell* 1 4,) I v4 L) i l l Wi.I I I.11 - ?,L IA411'► ..1111 LUPr i I(oki L

4AL4,ULAII.

L

LSlio1 :

Lb lLc

c

G

DLl- INt

t.

F 1%Uhi

il$k

Atf

l.(A.li l

lk+,*f:+

0L At' 4 U 11A10 1) l-SIuhA#1 i

I.-i,+LA

y Lt 111- 1- i. R t; iVL L Lk,'UO, I

L r

N.

AIIl Als.r - At.$) =

('t "'r^t ) .

ALit4.1,1

11

l , #,R AMLIL.KS

ON

I°, K

M

L

LK OL0

4,ALkfA4,..11

ALVtok41,,^I-ALPI A41.11 ► Al.PhAI I+ALPI it, C& 1 -• A Lill A41..: ► v ALPhAl '.}1l-ALk-HAl1.l/'► ALPHA44lprtI

J:lal = -AL1'► .A41 kI*.+00 HAI it: }.:1 bll r - I. L IA41.1S4r„LIAll.II ^b161

{

ul.a1

b141

v

iillA'L'I^I'A1^.1 ► » LIA1 I I I 1 "_L.IIktI : +b&.IA( = - AL Hoki`.r I NL I Al l911-ALPfiA1e.11*13t i A 4 1 •• 1 - b Li' t1A IA,.l*.i IAi4}i )-nL ►"t,t'II}II*BLiA4..•.1 J 0 6LIA1 J - -ALV IOiw}. I`µ 1.L IA i1}. ► •-A LI`I -A41

Wkl1LIr^•li.l

I

1-UKMAII • PNlNIUUI

A NIL KVAL ^

•1

RLAL1:+.” 1llvl V

4

Wit 11 t 4 t,

:u FUKMA 1 4 t ) kkAL/4:

(, ►

',]ARI 1 , vU A.4 L) LND 11 vG fivatU^i }NALkaLU

AL(;U-i I I NNiS

WKIIL(t1}tiU) ^u I• UKMAI • ^NiUUii.l( y ; LuLFFIGlLNI

=

• ►

FUR SuI ALUURI lhill

1,#.,if

=

lCoL I wkl it 4o FUl-h,ti14wt) F'iIVL Kt AL , Ib9z)71 L1rdJi tUKhiAI( I # I

.D!^

^l

1111

.,1iL

_

•)

ALIUA1UK LL,tdt I :IC.KAI 10-i Lu..F 41=-,iU ALILAIUR c=AL.IL A IL=+-, C ONO IULOI,(A IIuN (x 1 } J n At, iUA1LIR 41.4% L..iv1 JU. (LI ). ,L1 Looil It. (,.1 UU lu l u 0%^i„I=1,^^

L L L L L

A` L/ J APi iVL ALtCkI 1hJM^ LL( r JO JJu e v h L 4. — iiN, L 4) a1 } .-♦ .•.L V4 u INN I IAL I' LAN 1 1 41f UU I uit ,NL' I' = 1 • .^

I I V A I L

LU0t

L Li J

I u

J +`v) = 1

L 11-itvA41.L1.11 L L +r

bLf 1 - v111AL A1411=ALl-'lit,

L U,1

1vt h

c.,

VA1v01LILK LaIP-1AIE-` IALkllA(1}11 hA1

L6N.",.

LsLLLi'1LS (y-611-(4-` 1, 11.

^.`^ 1 =I. t

AI 411 I A z I I

— =

LSII11)L4ivLSlI ALh'hA41}1 IMULINa. SI1 cr ^ OL lA41} 1 *L I M U L ( N L I) ALt'' 1,A(I

b141) 13c411 = 0L IA11 ► 111LSIMWLtNESI

45 LUIv,i INUl

LAI,LUL,A i t INN 114L LL, :d -^L L.L+-, NARAML1 O%S L.d I;,L I I W-MilA)

L.ALL

L

wkI IEtIU,1L)PLIL-NLX•1111,}ovALG•LSISIkiNLSI/.SL:,IRt.r'-,L1• r^ t,L I } S 1 N:,1 -)U t• .1K MAl(AlgZX• • i,AAAPLL • =il. • Iiv:--U1'.11..• ALUJKIItlA It:• SSi - . A '+r • NA^1= •+► 1.'.• S1 =•}1.4..'/1 w • tS1 f • .A-i ' )L 9'vvLI Kk I I E ( t q 5C W L I L q N LX w INP I 'JAL(, 9 1 S I %UK INISti}SLSIR N ^ ,SirS1t PX0.L, = I L1L = .11 L t-i 0 PLiL Lt41 L R ;. 1M0LA i I L'f,4 S okoJ 1 14L F'1 L'-w = l'XLHu LALL A,MUL.; (r^Ll r1r,, ^.L I ., ,, 4-,C.A^1^it.,JI.L l rL,ah4^ i 1'vi 1 } N X}1v'i • 1'MIiv( 1 tF'l t YhiAXI IN1 , j } L:J '.LL0111v1 },VA I' i IV t 'MA X,t ; l ()1. LsIL).. •:,i^'`.^1Z1 l.iu Gk,i4l 11-4U L ^

^± L L L

G

LNL4 4 LE

r ka

•1

F'UIv1

F-19 511i^) = SPat,LiYih,! ► ^. A L L l i i^ L L 1 1 'I l +^i t_ ^ a l u^ ^+ r :^ Y R^ t ^,.^ L r Y hi 1 ^^ i Y P•1 ^^ X r l

^

L

Sh IF) luuu

VAKIALLL:,'N

KtK-'4!

10

t(n-,,)

F,iK-I ) ^21K-2! +^iK-1 ) UiK l 4! - LIK-:,1 KIK -j!

UtK-t) r u(K-1)

uC(K-4)

= L)Lik--)

UC I K—J

u41

K

-,^ 1

=

LC ( K —.e l^L { h -1 1

^^

ALLL1h

(;ALL.ULAIIUN

.1F

4

i< I. I l`^ 11!

NL• W VALULS

t I K—^ 1

_

= Y I K—,:1

F-21

Y IK — ^ 1 = Y (K—,.) + YZK -1^ - YIK)11

n— 1 .,I K - .: ) .1 K-.y I '"'

SIK- 14

$ K-1 1 ;;iKll) UPUA'IL PLAwi FAK AML IL l^ LSIIMAIi.`,

G

L

bL'1L

,itLL

i W L A LL OL l

1

UU1u ^oU &2C LALL UL i 1

9,40 j ,,rI1 r1, 1

bUIU J00 2.^U LALL SUIit,AP'+ifkgMi, r,N1,191itLI GC I Au4. 300 LUiv11NUL

G

FINO

C L

1NI U

k i,t,-1 )

i L,•Rih - 111 LALL INeiMLL,LrN9AM# , 0

L G L L L

h1040 tvLWrt LuINI , AJLLL t {

i'iil Ul

11,INALI.Lt..r) ;,01

10

ANL

1FiNALI .L 1.1 ) Uul.., At. `N1 11) 1 1 r-1 ) `Olubu FUKMA IlI ^,A(, VC Al` 9 «, II1'1)II.: 1 ► WkIILIlt, IUt":")I! , At. L II) 1-1" 7Utlb 1-UKMAIII1A 14LI,L ^"t.•, ^^I1 F ' C)^1.»^ ►► wkIIL(Iu sL,%,u ► It',L,LVLIIII s 7()VV ItUkMAlllint • SO V 1.1 0 9'"1 1I'D I.;,1! WKIIL(IU9lu li!.)(::,Lc,VLcII! 1=105 109.) I- U KMAI( 1Ix.t 1 o t LI- tV tF. I IP OII 1► WkIIL(IV9ItU(J)Ivt.LVO4111 1-1 a) 71UU I- URMAI(IIX# I w(' PkV 041 1 0 5 1Wi)tl., li WK11Lllu IlutJ) .',t..LVNejiI 1= It:^) 710 1-UKMA1I IIA, • S LP LV in iNil1.11 711U FukMAII IJA I SAkI'L Al II IPUII DJ )I INK I I L i I L's 'I I!'^Ioi , VL *At.iI) l-1 1, 711 y FUKMAIIII X / jAPP,: At, I I 1 LjII -,1) WklIt(lu l cuII'.APL,)lli) I=I ^1 '1'120 FUkMA1411A, t ^ANWL t1•,:^^I)"usl. it F ir'i+u



t•

nkIIL41G•ll., )I'^Ai*Lu.,II t-1 r1) 1 = 1 ' 4 1 k"^1Nt)1I.j • S^;N t,KIIL(10 it uII;,I'LVAlII ► 1-1 5)

7125 kUFMAIiI1 t

II.:u kUkMAll A # $ 4,i't^tV Al 1 " "1I;oI1..3 ►► WKIIL(IL.911 !^)1;)PLVAtc1 lrl=l ^) I FLiRMAI (IIX 1 14' 1't.V Ax 1 t 'a1ITuII. X11 Wkl I ( 1 h t 'I I-#u ) I SPCV011 1) r 1 = I t5 7140 i—ukMAIIIIA t 1 !)1't'LV Lil l IPOI1..11)

ViKI'l:(IL , 941 1o5)1: " rLVLiZ1I) I » I f " I 1145 i-LKMA'1 ( 1 ► x t ' t : 1POI l .,^ )^ ) ULIIU lb ok. ISUU LUNlIN UL

WkilL(ll.,/1.)u)

i7''=L f UkMA I l //// )

7t;utr %.UN1 IN-L L

6KIILi10•I0U 1011NL"11) 1/riII

%K11t li p"• lul'. 1 1 1k L,(IIt i - l•lu) t+kIIt iIL• IL,r,U) t it, 11 ( , 1.^1 WRIILiIt , tIL,-1 Ull'411t41) 1=:),1t^1

r,kIILlIC•tL4U)('N Az) II I

91-c.•il )

wKIILllt.•Ii."0)(,v.IL.tiII)t14boI()1 wkI IL I • Iutt," ) I A51(1)tit-•It"i

hRIIL• Ilur1UiU)l-s LLIIj ► •1-ttlu) WKIIL (1tP, tul5) 1:SA,.4t..!11) •1 z o Iul wk iI LIIU t IULU)t f+Vi AIll1 t ♦ z u It..!

wklILlIt^, I(4,:.)f.u.4L141 1)•1-t,tILI wk11L^IU t lu`b ISt.,-Vtcll^ri= bt10) wki1L It' 9 1u)Vo i:'..LVt-.I I ,l-c^tIU)

WRiILl1(, I1l.L)(L"ueV^vlilltl-4010

WRIILI1(,, 'IIU5ltSL,VN, 1 ,1 ,;+ 10^

W0111 1 Ov I I L%.d 'APt. Al1 / ^, C. 91V Wtt1 IL 10111.:"l4 SAPL At. ( I ► t -o IU! wKIILitL , t I1....n ;... ,.......«.-w..re,.,,. •.»,.aa.. ,...-.^wr.awM++«

.