Catalytic composition for the aromatization of

17 downloads 0 Views 1MB Size Report
Jun 21, 2000 - atoms, paraffins, olefins, cycloparaffins, cyclo-olefins or their mixtures may well be used. Preferably, aliphatic hydro- carbons containing from 4 ...
Europäisches Patentamt

(19)

European Patent Office

*EP001063013B1*

Office européen des brevets

(11)

EP 1 063 013 B1

EUROPEAN PATENT SPECIFICATION

(12)

(45) Date of publication and mention

(51) Int Cl.7:

of the grant of the patent: 12.10.2005 Bulletin 2005/41

B01J 29/40, B01J 29/70, C10G 50/00

(21) Application number: 00202163.2 (22) Date of filing: 21.06.2000 (54) Catalytic composition for the aromatization of hydrocarbons Katalysatorzusammenzetsung zur Aromatisierung von Kohlenwasserstoffen Composition catalytique pour l’aromatisation d’hydrocarbures (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 24.06.1999 IT MI991400 26.05.2000 IT MI001168

(43) Date of publication of application: 27.12.2000 Bulletin 2000/52

• Tagliabue, Marco 20093 Cologno Monzese (Milan) (IT) • Perego, Carlo 20040 Carnate (Milan) (IT) • Millini, Roberto 20077 Cerro al Lambro, Milan (IT) • Amarilli, Stefano 20138 Milan (IT) • Terzoni, Giuseppe 29100 Piacenza (IT)

(73) Proprietors: • ENI S.p.A. 00144 Roma (IT) • Polimeri Europa S.p.A. 72100 Brindisi (IT) • ENITECNOLOGIE S.p.A. 20097 S. Donato Milanese (Milano) (IT)

(72) Inventors:

EP 1 063 013 B1

• Carati, Angela 20098 San Giuliano Milanese (Milan) (IT)

(74) Representative: De Gregori, Antonella et al Ing. Barzano’ & Zanardo Milano S.p.A. Via Borgonuovo 10 20121 Milano (IT)

(56) References cited: EP-A- 0 130 251 EP-A- 0 309 089 US-A- 3 926 782 US-A- 4 891 463

EP-A- 0 151 351 EP-A- 0 378 916 US-A- 4 543 347

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 75001 PARIS (FR)

EP 1 063 013 B1 Description

5

10

15

20

25

30

35

40

45

50

55

[0001] The present invention regards a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides, and a zeolite of MFI structure, the crystal lattice of which is made up of silicon oxide and at least one metal oxide chosen from among aluminium oxide, boron oxide and gallium oxide, characterized by crystallites which for at least 90% have a diameter smaller than 500 Å. Preferably they can form agglomerates of submicron dimensions characterized by possessing at least 30% of the extrazeolitic porosity in the region of the mesopores. In addition, the catalytic compositions of the present invention can contain rhenium. These catalytic compositions are useful in processes of aromatization of aliphatic hydrocarbons having from 3 to 6 carbon atoms. The reaction of aromatization of paraffins and light olefins (C2-C5) to yield mixtures of benzene, toluene, ethylbenzene and xylenes (BTEX) has for many years been a subject of study. In 1973, the use was described of zeolites having an MFI structure (ZSM-5, ZSM-11, ZSM-21) for the aromatization of light hydrocarbons (both saturated and unsaturated) resulting from cracking, and from the production of coker gasoline or pyrolysis gasoline (US 3,756,942 and US 3,845,150). [0002] US 4,175,057 and US 4,180,689 describe the reaction of aromatization of propane and butane in the presence of a catalyst with a base of gallium and an MFI zeolite. These patents were followed by numerous others regarding various modifications of this process involving modifications of the catalyst (US 4,795,844), of the throughput (EP 252705, EP 050021 and US 4,350,835) and of the system of introduction of gallium (EP 120018 and EP 184927). In particular, EP 252705 describes a process for producing aromatic compounds from feedstock containing C2-C12 aliphatic hydrocarbons, using a catalyst comprising a zeolite, having a constraint index from 1 to 12, a preferably very high silica/alumina ratio, and from 0.5 to 10% of gallium. Possibly, other elements chosen from among the metals belonging to the Groups I-VIII may be present. [0003] It has moreover been found that the addition of platinum and palladium to the Ga and MFI zeolite-based catalyst determines an improvement in the aromatic-compound selectivity and reduces the formation of coke on the catalyst (US 4,407,728 and EP 215579, 216491, 224162, 228267). The presence of these metals increases, however, the formation of methane and ethane deriving from cracking. Subsequently, it was found that the introduction of rhenium, in the presence of platinum or palladium, determines a further improvement in the aromatic-compound selectivity, but also in this case there is an increase in the amount of C1-C2 light paraffins among the products (US 4,766,265). Catalytic compositions containing copper, or chromium, and an MFI zeolite determine the formation of smaller amounts of methane, but the aromatic-compound selectivity remains smaller than the one obtained with catalytic compositions containing gallium and an MFI zeolite (P. Meriaudeau et al., Zeolites: Facts, Figures, Future, 1423-1429, 1989; E. S. Shapiro et al., International Symposium on Zeolites as Catalysts, Sorbents and Detergent Builders, Wurzburg (RFA), p.73, 1988). [0004] Also described are catalysts containing an MFI zeolite, a noble metal of the Pt family, a metal chosen from among Sn, Ge, In and Pb, and an alkaline and/or alkaline earth component (EP 474536). This catalytic system involves an improvement in the aromatic-compound selectivity as compared to the foregoing materials. [0005] US-A-4891463, US-A-4543347 and EP-A-0309089 disclose, respectively, a process of aromatization of hexane, a process of conversion of synthesis gas and a process of aromatization of a feed containing more than 80% of paraffin compounds, using catalytic compositions with no indication about the zeolite crystallites sizes. [0006] All the catalytic systems described above are characterized by a very short life, since, an account of the high temperatures necessary for the reaction of aromatization of olefins and light paraffins, there is an important phenomenon of fouling and formation of coke inside the pores of the catalyst. This phenomenon is linked essentially to phenomena of cracking and/or of polycondensation of the compounds present in the reaction environment. [0007] There has now been surprisingly found a catalytic system comprising gallium, at least one element chosen in the group of the lanthanides and a zeolite based on silica and at least one metal oxide chosen from among alumina, boron oxide and gallium oxide, belonging to the MFI family, which, in the reaction of aromatization of C3-C6 light hydrocarbons, enables higher levels of selectivity to be obtained as compared to known catalytic systems, in particular those based on gallium and MFI zeolite, and moreover presents a greater resistance to deactivation, with a consequent considerable increase in life. A first subject of the present invention is therefore a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides and a zeolite belonging to the MFI family, the crystal lattice of which is made up of silicon oxide and at least one metal oxide chosen from among aluminium oxide, boron oxide and gallium oxide, characterised by crystallites which for at least 90% have a diameter smaller than 500 Angstrom. This catalytic composition can, in addition, contain rhenium, and hence a particular aspect of the present invention is a catalytic composition comprising rhenium, gallium, at least one element chosen in the group of the lanthanides and a zeolite belonging to the MFI family, the crystal lattice of which is made up of silicon oxide and at least one metal oxide chosen from among aluminium oxide, boron oxide and gallium oxide characterised by crystallites which for at least 90% have a

2

EP 1 063 013 B1

5

10

15

20

25

30

35

40

45

50

55

diameter smaller than 500 Angstrom. [0008] The zeolite of the MFI family which is particularly suited for being used in the present invention is the zeolite ZSM-5 having a crystal lattice based on silicon oxide and aluminium oxide, as described in US 3702886. Other zeolites of the MFI family which are particularly suited for being used in the present invention are the zeolites having an MFI structure based on silicon oxide, gallium oxide, and possibly aluminium oxide, as described in EP 252705, as well as the zeolites having an MFI structure based on silicon oxide and boron oxide, as described in US 4656016. [0009] Forming a particularly preferred aspect of the present invention are the catalytic compositions containing the ZSM-5 zeolite. [0010] Preferably, in the catalytic composition of the present invention the zeolite is partially in acid form, i.e., part of the cationic sites present in the zeolite is occupied by hydrogen ions. [0011] The molar ratio in the crystal lattice of the zeolite between silicon oxide and metal oxide, where the metal oxide is chosen from among aluminium oxide, boron oxide and gallium oxide or their mixtures, is preferably greater than 20. A preferred aspect is that said ratio is greater than 20 and less than 500, preferably, greater than 20 and less than 400. An even more preferred aspect is that said ratio is greater than 20 and less than 200, preferably, greater than 20 and less than 100. A still more preferred aspect is that said ratio is greater than 20 and less than or equal to 70, preferably, greater than 20 and less than 60. [0012] It has, in particular, been found that using, in the catalytic system of the present invention, an MFI zeolite characterized by an appropriate size of the crystallites, in the reaction of aromatization of C3-C6 light hydrocarbons, particularly high yields are obtained as compared to the known catalytic systems, with a greater percentage, in the fraction of the by-products, of recoverable products. Moreover, this catalytic system containing an MFI zeolite with sizes of the crystallites appropriately selected presents greater resistance to deactivation, with a consequent considerable increase in life. [0013] A particular subject of the present invention is consequently a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides and a zeolite belonging to the MFI family characterized by crystallites which for at least 90% have diameters smaller than 500 Å, the zeolite being partially in acid form. [0014] Also this particular catalytic composition can, in addition, contain rhenium. The crystallites of the MFI zeolite used in this particular aspect of the present invention can present in the form of submicron mulberry-shaped aggregates with an extrazeolitic porosity of a meso-macroporous nature. By "extrazeolitic porosity" is meant the porosity obtained by summing the fraction of mesoporosity and macroporosity (determined by means of mercury-intrusion porosimetry up to a pressure of 2000 bar) present in the aggregate, hence excluding the contribution of the microporosity of the zeolite. The total volume of said extrazeolitic porosity is constituted for at least 30% by mesopores (diameter < 500 Å). Preferably, in said catalytic compositions MFI zeolites are used consisting of crystallites with a diameter of less than 500 Å. [0015] The zeolite of the MFI family having for at least 90% diameters of less than 500 Å which is very suitable for being used in this particular aspect of the invention is an MFI zeolite the crystal lattice of which is made up of silicon oxide and aluminium oxide (ZSM-5). A preferred aspect is that the molar ratio between the silicon oxide and aluminium oxide in the crystal lattice of said zeolite is greater than 20. [0016] Preferably, said molar ratio is greater than 20 and less than 500, preferably, less than 400. An even more preferred aspect is that said ratio is greater than 20 and less than 200, preferably, greater than 20 and less than or equal to 100. [0017] A process that can well be used for preparing this MFI zeolite having crystallites which for at least 90% have diameters smaller than 500 Å is described in US 3926782. According to the method described in this patent, the MFI zeolites with crystallites of diameters for at least 90% smaller than 500 Å, usable in the catalytic compositions of the present invention, are prepared using a solution containing sources of tetra-propyl-ammonium ion, sodium oxide, aluminium oxide, silicon oxide, and water, having the following composition expressed as molar ratios: OH-free / SiO2 (C3H7)4N+ / SiO2 H2O / OH-free SiO2 / Al2O3 Na+ / SiO2

0,07 - 1,0 0,01 - 1 10 - 300 >5 0,6 - 5

where by OH-free are meant the OH- ions not neutralized by H+ ions added to the reaction mixture directly, for example by means of acid compounds, or indirectly, for example using Al(NO3)3 or Al2(SO4)3. [0018] Preferably, the composition of the synthesis mixture is the following:

3

EP 1 063 013 B1

5

10

15

20

25

30

35

40

45

50

55

OH-free / SiO2 (C3H7)4N+ / SiO2 H2O / OH-free SiO2 / Al2O3 Na+ / SiO2

0,1 - 0,3 0,05 - 0,25 20 - 60 50 - 120 1-4

[0019] To obtain MFI zeolites having crystallites with diameters that for at least 90% are less than 500 Å, a high rate of stirring is required, and preferably the peripheral rate must be between 20 and 200 m/min. The conditions in which crystallization is conducted comprise a temperature in the range of from 90 to 130°C, under stirring for a time interval which ranges from 3 hours to 15 days, possibly followed by a second stage which can last up to 5 days in which the temperature is raised to a value ranging from 110 to 160°C to accelerate completion of crystallization. [0020] The source of tetra-propyl-ammonium ion can be the corresponding hydroxide or bromide, or tri-n-propylamine in a mixture with n-propyl bromide, dissolved in an appropriate solvent, such as methyl-ethyl-ketone. [0021] The sources of silicon oxide comprise sodium silicate, silica hydrosol, silica gel and silicic acid. The source of aluminium oxide can be chosen from among sodium aluminate, alumina, aluminium salts, such as aluminium sulphate or aluminium nitrate. [0022] The source of sodium can be chosen from among salts of sodium such as hydroxide, halides and/or sulphate. In addition or as an alternative, the sodium may be derived from the sources of aluminium and/or silicon which contain it. [0023] To obtain the desired concentration of free OH- ions, mineral acid reagents, such as sulphuric acid or nitric acid can be added to the mixture. [0024] The reagents can be mixed together in any order, crystallization is preferably conducted in autoclave. [0025] In the catalytic compositions of the present invention, the element belonging to the group of the lanthanides that is preferably used is chosen from among neodymium and lanthanium, alone or in mixture with cerium and/or praseodymium. An even more preferred aspect is that the present invention uses mixtures of neodymium and lanthanium, possibly also containing cerium and/or praseodymium. [0026] The lanthanide, or lanthanides, present in the catalytic composition according to the invention can be in the form of oxide, ion or metal, or can be present in a mixture of these forms. The amount of lanthanide, or lanthanides, expressed as element, can range from 0.01 to 10 wt%, preferably from 0.1 to 2 wt%, with respect to the total weight of the catalytic composition. [0027] The gallium present in the catalytic composition can be in the form of oxide, gallium ion or metallic gallium, or can be a mixture of said forms. The amount of gallium, expressed as element, can range from 0.05 to 10 wt% with respect to the total weight of the catalytic composition, and is preferably from 0.5 to 4 wt%. [0028] The gallium and the lanthanide can be introduced in the catalytic composition in any order, treating the zeolite, preferably in acid form, with a gallium compound and a lanthanide compound, or else, using a mixture containing both a gallium compound and a lanthanide compound, it is possible to introduce both the elements in the catalytic composition simultaneously. [0029] When the catalytic composition of the present invention contains more than one lanthanide in its preparation, a mixture of compounds of these lanthanides will be used. [0030] The best results in terms of catalytic activity are obtained when the catalytic composition is prepared by first introducing the gallium and then the lanthanide. [0031] To introduce the gallium, any one of the known techniques can be used, such as mechanical mixing with gallium oxide, ion exchange or impregnation. Preferably, ion exchange or impregnation is used. In the first case, the zeolite is treated, preferably, in acid form, with an aqueous solution of a gallium salt having a concentration which can range from 0.01 to 0.5 M, for example a solution of gallium nitrate, gallium chloride or gallium sulphate, refluxed for 1-24 hours. [0032] The specimen resulting from ion exchange, after appropriate washings with demineralized water, is dried at 100-150°C and then calcined at a temperature ranging from 400 to 600°C for 1-10 hours. [0033] In the case where it is chosen to introduce the gallium using the impregnation technique, the zeolite is treated with the aqueous solution of a gallium salt, proceeding according to the known art of wet imbibition. This is followed by drying and calcining as in the case of ion exchange. [0034] The stage of calcining determines at least partial transformation of the gallium ion into the corresponding oxide. [0035] Ion exchange or impregnation are the techniques which are preferably used to introduce the gallium. [0036] In the zeolite containing gallium, prepared in the foregoing stage with one of the techniques described above, the lanthanide can be introduced by means of the known techniques of mechanical mixing with an oxide of a lanthanide, impregnation or ion exchange. The techniques of ion exchange or impregnation are preferably used. In the former case, the composition containing the zeolite and the gallium is treated with an aqueous solution of a salt of the lantha-

4

EP 1 063 013 B1

5

10

15

20

25

30

35

40

45

50

55

nide, for example an aqueous solution of the corresponding nitrate, acetate, chloride or sulphate with a concentration of 0.01-0.5 M, refluxed for 1-24 hours. The specimen resulting from ion exchange, after appropriate washings, is dried and then calcined at a temperature ranging from 400 to 600°C for 1-10 hours. [0037] In the case where the lanthanide is introduced by impregnation, the procedure is according to the known art of wet imbibition. This is followed by drying and calcining as in the case of ion exchange. [0038] On account of calcining, there will be an at least partial transformation of the lanthanide ion into the corresponding oxide. [0039] Impregnation is the technique which is preferably used to introduce the lanthanide. [0040] The two foregoing stages of introduction of the gallium and of the lanthanide can be carried out inverting the sequence and introducing the lanthanide before the gallium. [0041] Whatever the sequence chosen, the calcining between the stage of introduction of the first metal and the stage of introduction of the second metal is optional; in the case where calcining was not carried out, the partial transformation of the metal ions into the corresponding oxides will take place simultaneously during calcining performed at the end of the second stage. [0042] According to a particularly preferred aspect, the catalytic compositions of the present invention are prepared by depositing the gallium on the zeolite in acid form by means of ion exchange or impregnation, possibly calcining the product thus obtained, then depositing the lanthanide by impregnation and calcining the product obtained. [0043] This may be followed by a stage of at least partial reduction of the lanthanide ion and of the gallium ion to the corresponding metals. The reduction to metal may be obtained by means of treatment of the catalytic composition with hydrogen or with a reducing agent, and can be performed on the catalytic composition before its use, or else in the reactor itself in which the catalytic composition will be used. [0044] When the catalytic compositions of the present invention also contain rhenium, this can be in the form of oxide, ion or metal, or can be a mixture of said forms. The amount of rhenium, expressed as element, can range from 0.05 to 10 wt% with respect to the total weight of the catalytic composition, and preferably is from 0.5 to 4 wt%. [0045] The rhenium can be introduced in any order into the catalytic composition with respect to the introduction of gallium and lanthanide, or else a mixture which contains all three elements can be used. [0046] To introduce the rhenium any of the known techniques can be used, such as mechanical mixing with rhenium oxide, ion exchange or impregnation. Preferably, ion exchange or impregnation is used, performed with the techniques already previously described. Impregnation is the method which is preferably used, performed, for example, with an aqueous solution of rhenium chloride having a concentration of 0.01-0.5 M, applying the known art of wet imbibition. The product is then dried and calcined. During calcining, there is the at least partial transformation of the rhenium ion in the corresponding oxide. [0047] A particularly preferred aspect is to introduce the rhenium into the catalytic composition after introducing the gallium and the lanthanide, i.e., treating the zeolite by means of ion exchange or impregnation with an aqueous solution of a gallium salt, drying, possibly calcining the resulting product, and then treating it by means of impregnation with an aqueous solution of lanthanide, drying it, possibly calcining it, and finally treating the resulting product with an aqueous solution of a rhenium salt, drying and calcining. A stage of reduction performed after introduction of the rhenium ion will result in the at least partial transformation of this ion into metallic rhenium. [0048] The catalytic composition of the present invention can be used in mixture with appropriate binders, such as silica, alumina, and clay. The catalytic composition and the binder are mixed in a proportion ranging from 50:50 to 95: 5, preferably from 60:40 to 90:10. The mixture of the two components is processed to obtain the desired final form, for example as cylindrical or spheroidal extrudate, or other known forms. [0049] The catalytic compositions described above are useful in processes for the production of aromatic hydrocarbon compounds from light aliphatic hydrocarbons. [0050] A further subject of the present invention is therefore a process for the production of aromatic hydrocarbon compounds, which comprises setting in contact one or more aliphatic hydrocarbons containing from 3 to 6 carbon atoms with a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides and a zeolite belonging to the MFI, family, having a crystal lattice made up of silicon oxide and at least one oxide chosen from among aluminium oxide, boron oxide and gallium oxide characterised by crystallites which for at least 90% have a diameter smaller than 500 Angstrom. [0051] A preferred aspect of the aromatization process according to the present invention uses a zeolite in the partially acid form. Among the zeolites that may be used, the zeolite ZSM-5 is preferred. The molar ratio in the crystal lattice of the zeolite between silicon oxide and metal oxide, where the metal oxide is chosen from among aluminium oxide, gallium oxide or their mixtures, is preferably greater than 20. A preferred aspect of the present invention is that said ratio is greater than 20 and smaller than 500, preferably smaller than 400. An even more preferred aspect is that said ratio is greater than 20 and less than 200, and still more preferably smaller than 100. [0052] The best results are obtained when said ratio is greater than 20 and less than or equal to 70, preferably less than 60.

5

EP 1 063 013 B1

5

10

15

20

25

30

35

40

45

50

[0053] A particular aspect of the aromatization process of the present invention uses the catalytic compositions which additionally contain a rhenium ion, and hence a particular aspect of the present invention is a process for the production of aromatic hydrocarbon compounds which comprises setting in contact one or more aliphatic hydrocarbons containing from 3 to 6 carbon atoms with a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides and a zeolite belonging to the MFI, MEL family, having a crystal lattice made up of silicon oxide and at least one oxide chosen from among aluminium oxide, boron oxide and gallium oxide, characterised by crystallites which for at least 90% have a diameter smaller than 500 Angstrom. [0054] A further particular subject of the present invention is a process for the production of aromatic hydrocarbon compounds which comprises setting in contact one or more aliphatic hydrocarbons containing from 3 to 6 carbon atoms with a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides and a zeolite belonging to the MFI family characterized by crystallites which for at least 90% have diameters smaller than 500 Å, the zeolite being in a partially acid form. [0055] This catalytic composition can in addition contain rhenium. [0056] Preferably, MFI zeolites are used consisting of crystallites having diameters of less than 500 Å. A particularly preferred aspect is to use MFI zeolites having for at least 90% diameters of less than 500 Å, the crystal lattice of which is made up of silicon oxide and aluminium oxide. Preferably, the molar ratio between silicon oxide and aluminium oxide in the crystal lattice of the said zeolite is greater than 20. A preferred aspect of the present invention is that said ratio is greater than 20 and smaller than 500, preferably smaller than 400. An even more preferred aspect is that said ratio is greater than 20 and less than 200, still more preferably, less than or equal to 100. [0057] Preferred catalytic compositions are those containing neodymium or lanthanium, either alone or in mixture with cerium and/or praseodymium. An additional preferred aspect of the present invention is to use mixtures of neodymium and lanthanium, possibly also containing cerium and/or praseodymium. [0058] In the aromatization process of the present invention, as aliphatic hydrocarbons containing from 3 to 6 carbon atoms, paraffins, olefins, cycloparaffins, cyclo-olefins or their mixtures may well be used. Preferably, aliphatic hydrocarbons containing from 4 to 5 carbon atoms are used. [0059] Examples of aliphatic hydrocarbons that can well be used in the process of the present invention are npentane, n-pentenes, n-butane, n-butenes, iso-butane, iso-butene, methylbutenes, cyclopentenes, isopentane, cyclopentane, or their mixtures. [0060] According to a preferred aspect of the invention, mixtures of hydrocarbons containing from 20 to 90 wt%, preferably from 40 to 70 wt%, of olefins, are used. [0061] The aliphatic hydrocarbons having from 3 to 6 carbon atoms used in the process of the present invention can derive from steam cracking, FCC (fluid catalytic cracking) and thermal cracking, by means of the known methods of separation and distillation, and can contain smaller amounts of other types of hydrocarbons, such as aromatic hydrocarbons. They may also contain dienes (either linear or cyclic) in an amount not higher than 5 wt%. When this percentage of dienes is higher than 5 wt%, the charge of aliphatic hydrocarbons is subjected to a treatment of selective hydrogenation according to known methods, for example with a palladium-based catalyst, so as to bring the percentage of dienes to a value smaller than 5 wt%. [0062] The process of the present invention is conducted at a temperature of between 300° and 800° C, preferably between 400° and 650°C, at a pressure of from 0 to 20 barg, preferably from 1 to 10 barg. The process is preferably conducted continuously, in a fixed-bed or fluidized-bed reactor, in the gas phase or partially liquid phase, at a weight hourly space velocity (WHSV, expressed as grams of feedstock / (grams of catalyst . hour)) ranging from 0.1 to 30 hours-1, preferably from 0.5 to 10 hours-1. [0063] Hydrogen or inert gas (nitrogen) can be introduced in the reaction system as diluent. [0064] Before the catalytic composition of the present invention is used, it was activated in nitrogen at a temperature ranging from 300 to 800°C, preferably from 300 to 700°C, for a period of between 1 and 24 hours, and at a pressure of between 0 and 10 barg. [0065] In addition to or as a substitution for the foregoing procedure, activation with hydrogen can be performed at a temperature of 300-700°C, a pressure of 0-10 barg, for a period of between 1 and 24 hours. Example 1 (comparative) Preparation of Ga-ZSM-5

55

[0066] 25 g of a commercially available ZSM-5 zeolite (PQ Zeolites, CBV 3020), having a SiO2/Al2O3 ratio of 30 and already exchanged into acid form, was treated with 470 ml of an aqueous solution of Ga(NO3)3.9H2O (0.02 M). Ion exchange was conducted under stirring and reflux for 2 hours. The catalyst was subsequently filtered, washed with distilled water, filtered again, and dried in air at 120°C. Finally it was calcined in air at 550°C for 5 hours. The final content of Ga was 2 wt%. The specimen is referred to as Ga-ZSM-5.

6

EP 1 063 013 B1 Example 2 (comparative) Preparation of GaNd (0.4)-ZSM-5 5

[0067] A catalyst having a final content of neodymium of 0.4 wt% was prepared starting from 8 g of the foregoing specimen of Example 1 (Ga-ZSM-5) by means of impregnation with 10 ml of an aqueous solution of Nd(NO3)3.6H2O (0.020 M). The catalyst was subsequently dried at 120°C and calcined in air at 550°C for 5 hours. The specimen is referred to as GaNd (0.4)-ZSM-5.

10

Example 3 (comparative) Preparation of GaNd (1.0)-ZSM-5

15

[0068] The catalyst having a final content of neodymium of 1 wt% was prepared starting from 8 g of the Ga-ZSM-5 specimen of Example 1 by means of impregnation with 10 ml of an aqueous solution of Nd(NO3)3.6H2O (0.045 M). The catalyst was subsequently dried at 120°C and calcined in air at 550°C for 5 hours. The specimen is referred to as GaNd (1.0)-ZSM-5. Example 4 (comparative)

20

Preparation of Ga(i)Nd (0.4)-ZSM-5

25

30

[0069] The catalyst Ga(i)Nd (0.4)-ZSM-5 (with a final content of Nd of 0.4 wt%) was prepared starting from 8 g of a commercially available ZSM-5 zeolite (PQ Zeolites, CBV 3020), having a SiO2/Al2O3 ratio of 30 and already exchanged into acid form, by means of impregnation with an aqueous solution first of Ga(NO3)3.9H2O (7.5 ml, 0.32 M), and then of Nd(NO3)3.6H2O (10 ml, 0.020 M). Between the two impregnations, the catalyst was subjected to drying (in air at 120°C). At the end of the operations, the specimen was subsequently dried at 120°C and calcined in air at 550°C for 5 hours. The specimen is referred to as Ga(i)Nd (0.4)-ZSM-5. Example 5 (comparative) Preparation of Nd-ZSM-5

35

[0070] The Nd-ZSM-5 specimen was prepared by impregnation of 8 g of a commercially available ZSM-5 zeolite (PQ Zeolites, CBV 3020), having a SiO2/Al2O3 ratio of 30 and already exchanged into acid form, by means of 10 ml of an aqueous solution of Nd(NO3)3 (0.020 M). The catalyst was subsequently dried at 120°C and finally calcined in air at 550°C for 5 hours. The final content of Nd was 0.4 wt%. The specimen is referred to as Nd-ZSM-5. Example 6

40

Aromatization test of 1-pentene / n-pentane with HZSM-5 (comparative)

45

50

55

[0071] An aromatization test of a charge of C5 hydrocarbons (made up of 1-pentene and n-pentane in a weight ratio of 40:60) was conducted using an experimental apparatus consisting of a steel reactor (length = 710 mm, internal diameter = 12.5 mm, external diameter = 35 mm) equipped with an internal thermometric sheath for control of the temperature. Heating took place with the aid of 4 ovens arranged in series along the reactor itself. The catalyst was introduced in the form of granules of appropriate sizes (20-40 mesh) and diluted with inert material. The feeding of the reagents (contained in a special refrigerated tank and kept under pressure in nitrogen) was performed using an HPLC pump. The products coming out of the reactor were condensed (at a temperature of 5 °C) and collected, partly in the liquid phase, and partly in the gas phase. Both the phases then underwent gas-chromatography analysis. [0072] The catalyst used in this test was a commercially available ZSM-5 zeolite in acid form (commercial specimen PQ CBV 3020) having a SiO2/Al2O3 ratio of 30. [0073] The reaction conditions during the test were the following: Reaction temperature Pressure WHSV

7

350-400°C 5 barg 5 g/g/hr

EP 1 063 013 B1 (continued) [1-pentene]/[n-pentane] 5

10

15

40:60 w/w

[0074] 3 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered ZSM-5 zeolite at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 3-4 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0075] Table 1 gives the results of the test. In this table and in the tables of the ensuing examples of activity, the results are expressed in terms of conversion of the 1-pentene, value of the conversion of the n-pentane, final content by weight of BTEX product (benzene, toluene, ethylbenzene and xylene), of aromatic compounds (where C6-C10 benzene aromatic compounds are meant), of olefins (where all the olefins are meant, with the exclusion of non-reacted 1-pentene), of paraffins (where all the paraffins are meant, with the exclusion of non-reacted n-pentane) and of naphthalenes (C10-C13). Finally, the overall value of BTEX productivity is given (obtained from the start of the test up to value of time on stream of the corresponding sampling) calculated as: BTEX productivity = kg BTEX producted / kg of catalyst

20

Table 1

25

30

35

Time on stream (hours)

4.5

7.5

17.5

Temperature (°C)

400

350

350

Conversion of 1-pentene (%)

99.9

99.9

99.9

Conversion of pentane (%)

98.5

88.2

36.8

BTEX (wt % over total)

15.2

10.7

8.4

Total aromatic compounds (wt %)

18.4

15.9

13.4

Total olefins (wt%)

0.4

0.6

1.6

Total paraffins (wt%)

75.9

73.4

44.4

Total naphthalenes (wt%)

2.9

1.3

0.3

BTEX productivity (kg/kg)

2.9

4.2

8.2

Example 7 40

Aromatization test of 1-pentene/n-pentane with Ga-ZSM-5 (comparative) [0076] [0077] [0078]

45

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the Ga-ZSM-5 zeolite prepared as indicated in Example 1. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

400-500°C 5 barg 10 g/g/hr 40:60 w/w

50

55

[0079] 2 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered Ga-ZSM5 zeolite of Example 1 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0080] Table 2 gives the results of the test, expressed in a similar way as in Table 1.

8

EP 1 063 013 B1 Table 2

5

10

15

Time on stream (hours)

4.5

9.5

14.0

21.5

25.5

Temperature (°C)

400

400

400

500

500

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

98.6

Conversion of pentane (%)

97.6

87.9

52.2

57.0

0.0

BTEX (wt% over total)

16.8

14.2

11.8

14.6

3.3

Total aromatic compounds (wt%)

21.1

18.9

17.1

17.3

4.9

Total olefins (wt%)

0.4

1.3

2.6

9.4

19.2

Total paraffins (wt%)

75.3

70.7

49.4

43.5

10.3

Total naphthalenes (wt%)

0.7

0.3

0.4

2.76

0.3

BTEX productivity (kg/kg)

7.6

15.1

20.9

29.2

31.3

Example 8 (comparative) 20

25

30

35

Aromatization test of 1-pentene/n-pentane with Nd-ZSM-5 [0081] [0082] [0083]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the Nd-ZSM-5 zeolite prepared as indicated in Example 5. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

400-500°C 5 barg 10 g/g/hr 40:60 w/w

[0084] 2 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered Nd-ZSM5 zeolite of Example 3 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0085] Table 3 gives the results of the test, expressed in a similar way as in Table 1. Table 3

40

45

50

55

Time on stream (hours)

5.5

9.0

17.2

Temperature (°C)

400

400

500

Conversion of 1-pentene (%)

99.9

99.9

92.1

Conversion of pentane (%)

95.3

73.3

13.3

BTEX (wt% over total)

15.0

13.1

2.6

Total aromatic compounds (wt%)

19.0

18.8

3.4

Total olefins (wt%)

0.8

1.4

24.9

Total paraffins (wt%)

69.8

60.5

13.2

Total naphthalenes (wt%)

0.4

1.1

2.8

BTEX productivity (kg/kg)

7.5

12.8

18.0

[0086] In contrast to the foregoing comparative catalysts, the catalyst which contained neodymium alone revealed a loss of activity at 500°C, at lower time-on-steam values. The comparative catalyst that presented the best BTEX yields was the one containing gallium alone, whereas the catalyst containing neodymium alone had the worst yields, above all at 500°C, as well as a rapid decay.

9

EP 1 063 013 B1 Example 9 (comparative) Aromatization test of 1-pentene/n-pentane with GaNd (0.4)-ZSM-5 5

[0087] [0088] [0089]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaNd(0.4)-ZSM-5 zeolite prepared as indicated in Example 2. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

10

15

400-500°C 5 barg 10 g/g/hr 40:60 w/w

[0090] 2 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaNd (0.4)-ZSM-5 zeolite of Example 2 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0091] Table 4 gives the results of the test, expressed in a similar way as in Table 1.

20

Table 4

25

30

35

Time on stream (hours)

5.5

9.0

17.2

31.2

36.2

Temperature (°C)

400

400

400

500

500

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

99.9

Conversion of pentane (%)

92.7

86.5

72.5

84.8

48.3

BTEX (wt% over total)

17.7

16.2

14.1

21.8

14.4

Total aromatic compounds (wt%)

22.8

21.5

18.8

25.1

17.6

Total olefins (wt%)

0.6

0.7

1.3

3.7

8.5

Total paraffins (wt%)

69.9

66.5

60.0

59.2

40.7

Total naphthalenes (wt%)

0.7

1.3

1.4

1.5

0.8

BTEX productivity (kg/kg)

8.7

14.1

25.2

40.7

48.4

[0092] As compared to the foregoing comparative catalysts, the catalyst of the present invention revealed better BTEX yield values both at 400°C and at 500°C, as well as long performance life over time. 40

Example 10 (comparative) Aromatization test of 1-pentene/n-pentane with GaNd (1.0)-ZSM-5

45

50

55

[0093] [0094] [0095]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaNd(1.0)-ZSM-5 zeolite prepared as indicated in Example 3. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

400-500°C 5 barg 10 g/g/hr 40:60 w/w

[0096] 2 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaNd (1.0)-ZSM-5 zeolite of Example 3 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0097] Table 5 gives the results of the test, expressed in a similar way as in Table 1.

10

EP 1 063 013 B1 Table 5

5

10

15

Time on stream (hours)

5.5

9.0

17.2

24.2

31.2

Temperature (°C)

400

400

400

500

500

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

99.9

Conversion of pentane (%)

92.8

87.6

46.9

88.2

36.0

BTEX (wt% over total)

15.4

16.9

11.0

23.2

15.2

Total aromatic compounds (wt%)

19.5

22.2

15.1

25.6

18.1

Total olefins (wt%)

2.2

1.0

1.6

2.5

5.0

Total paraffins (wt%)

68.9

65.9

49.0

62.0

35.2

Total naphthalenes (wt%)

1.3

1.5

0.7

1.3

1.1

BTEX productivity (kg/kg)

7.8

13.1

23.1

31.1

42.7

Example 11 (comparative) 20

25

Aromatization test of 1-pentene/n-pentane with GaNd (0.4)-ZSM-5 [0098] [0099] [0100]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaNd(0.4)-ZSM-5 zeolite prepared as indicated in Example 2. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[ n -pentane]

30

35

350-475°C 5 barg 1-2 g/g/hr 40:60 w/w

[0101] 3 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaNd (0.4)-ZSM-5 zeolite of Example 2 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 3-4 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0102] Table 6 gives the results of the test, expressed in a similar way as in Table 1. Table 6

40

45

50

Time on stream (hours)

17.5

41.5

69.5

93.5

136.5

177.5

185

WHSV (hours -1 )

2

1

1

1

1

1

1

Temperature (°C)

350

350

375

400

425

450

475

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

99.9

99.9

99.9

Conversion of pentane (%)

85.4

72.0

81.4

90.7

91.5

88.0

75.3

BTEX (wt% over total)

13.1

16.5

20.5

21.8

28.9

25.6

24.6

Total aromatic compounds (wt%)

19.6

25.5

28.4

29.1

36.9

31.9

29.4

Total olefins (wt%)

0.7

1.2

1.2

1.1

1.4

2.6

3.3

Total paraffins (weight%)

68.1

47.9

54.6

57.4

48.2

53.3

48.9

Total naphthalenes (weight%)

0.4

3.3

1.2

2.6

3.9

1.8

1.2

BTEX productivity (kg/kg)

5.3

10.5

16.8

23.3

34.6

47.3

49.6

55

11

EP 1 063 013 B1 Example 12 (comparative) Aromatization test of 1-pentene/n-pentane with GaNd (0.4)-ZSM-5 (1-pentene 60 wt%) 5

[0103] [0104] [0105]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaNd(0.4)-ZSM-5 zeolite prepared as indicated in Example 2. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

10

15

350-475°C 5 barg 1 g/g/hr 60:40 w/w

[0106] 3 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaNd (0.4)-ZSM-5 zeolite of Example 2 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 3-4 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0107] Table 7 gives the results of the test, expressed in a similar way as in Table 1.

20

Table 7 Time on stream (hours)

25

30

35

24.5

48.5

72.5

96.5

132.3

139.3

WHSV (hours-1)

1

1

1

1

1

1

Temperature (°C)

350

375

400

425

450

475

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

99.9

99.9

Conversion of pentane (%)

81.3

93.4

93.1

97.2

94.5

90.0

BTEX (wt% over total)

21.8

30.1

27.2

39.7

29.8

25.8

Total aromatic compounds (wt%)

31.1

42.0

35.2

48.1

35.6

31.5

Total olefins (wt%)

1.4

0.6

0.9

0.7

1.7

2.3

Total paraffins (wt%)

51.0

47.0

53.5

41.4

54.6

53.8

Total naphthalenes (wt%)

3.8

2.2

4.0

4.6

2.7

5.5

BTEX productivity (kg/kg)

9.0

18.5

26.7

38.2

51.3

52.7

Example 13 (comparative) 40

45

Preparation of GaLa (0.4)-ZSM-5 [0108] A catalyst having a lanthanium content of 0.4 wt% was prepared starting from 8 g of the foregoing specimen of Example 1 (Ga-ZSM-5) by means of impregnation with 12 ml of an aqueous solution of La(NO3)3.6H2O (0.015 M). The catalyst was subsequently dried at 120°C and calcined in air at 550°C for 5 hours. The specimen is referred to as GaLa (0.4)-ZSM-5. Example 14 (comparative)

50

Aromatization test of 1-pentene/n-pentane with GaLa(0.4)-ZSM-5 [0109] [0110] [0111]

55

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaLa(0.4)-ZSM-5 zeolite prepared as indicated in Example 13. The reaction conditions during the test were the following: Reaction temperature Pressure

12

425-500°C 5 barg

EP 1 063 013 B1 (continued) WHSV [1-pentene]/[n-pentane]

1 g/g/hr 60:40 w/w

5

10

[0112] 3 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaLa (0.4)-ZSM-5 zeolite of Example 13 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 3-4 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0113] Table 8 gives the results of the test, expressed in a similar way as in Table 1. Table 8

15

20

24.5

48.5

72.5

96.5

WHSV (hours-1)

1.25

1.25

1.25

1.25

Temperature (°C)

425

450

475

500

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

Conversion of pentane (%)

90.1

85.4

95.5

96.3

BTEX (wt% over total)

33.2

44.8

48.5

50.7

Total aromatic compounds (wt%)

39.7

52.5

54.0

54.8

Total olefins (wt%)

2.7

0.7

0.4

0.6

4Z1.0

19.2

30.2

25.1

Total naphthalenes (wt%)

8.0

16.0

9.1

13.4

BTEX productivity (kg/kg)

13.8

26.6

40.8

55.8

Total paraffins (wt%)

25

30

Time on stream (hours)

Example 15 (comparative) Aromatization test of 1-pentene/n-pentane with GaNd (0.4)-ZSM-5

35

40

45

50

55

[0114] [0115] [0116]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaNd(0.4)-ZSM-5 zeolite prepared as indicated in Example 2. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

425-500°C 5 barg 1 g/g/hr 60:40 w/w

[0117] 3 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaNd (0.4)-ZSM-5 zeolite of Example 2 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 3-4 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0118] Table 9 gives the results of the test conducted using the catalyst and the procedure specified in Example 15. Table 9 Time on stream (hours)

24.5

72.5

96.5

102.5

WHSV (hours -1 )

1.25

1.25

1.25

1.25

Temperature (°C)

425

450

475

500

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

Conversion of pentane (%)

98.9

99.5

99.4

98.3

13

EP 1 063 013 B1 Table 9 (continued)

5

10

BTEX (wt% over total)

40.7

43.8

43.4

42.4

Total aromatic compounds (wt%)

47.2

49.4

48.0

46.4

Total olefins (wt%)

0.3

0.4

0.5

0.6

Total paraffins (wt%)

42.1

39.4

41.4

46.4

Total naphthalenes (wt%)

6.3

6.6

6.7

9.2

BTEX productivity (kg/kg)

10.8

37.8

51.1

54.3

Example 16 (comparative) Preparation of GaNd(0.4)Re-ZSM-5 15

[0119] A catalyst having a neodymium content of 0.4 wt% and a rhenium content of 0.5 wt% was prepared starting from 13 g of the foregoing specimen of Example 2 (GaNd(0.4)-ZSM-5) by means of impregnation with 15 ml of an aqueous solution of ReCl3 (0.023 M). The catalyst was subsequently dried at 110°C and calcined in air at 550°C for 5 hours. The specimen is referred to as GaNd(0.4)Re-ZSM-5. 20

Example 17 (comparative) Aromatization test of 1-pentene/n-pentane with GaNd(0.4)Re-ZSM-5 25

[0120] [0121] [0122]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaNd(0.4)Re-ZSM-5 zeolite prepared as indicated in Example 16. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

30

35

[0123] 3 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaNd (0.4)Re-ZSM-5 zeolite of Example 16 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 3-4 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0124] Table 10 gives the results of the test conducted using the catalyst and the procedure specified in Example 17.

40

Table 10 Time on stream (h)

24.5

72.5

114.0

138.0

)

1.25

1.25

1.25

1.25

Temperature (°C)

425

450

475

500

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

Conversion of pentane (%)

96.4

99.0

95.7

96.3

BTEX (wt % over total)

46.7

47.7

47.7

49.1

Total aromatic compounds (wt %)

53.8

54.0

52.0

52.8

Total olefins (wt %)

0.4

0.2

0.6

1.1

Total paraffins (wt %)

31.0

32.5

35.0

35.1

Total naphthalenes (wt %)

8.4

8.0

6.6

5.5

BTEX productivity (kg/kg)

14.4

40.9

63.0

77.8

WHSV (hours 45

50

55

425-500°C 5 barg 1.25 g/g/hr 60:40 w/w

-1

14

EP 1 063 013 B1 Example 18 (comparative) Preparation of GaTR(0.4)-ZSM-5 5

[0125] A catalyst having a rare-earth content of 0.4 wt% was prepared starting from 10 g of the foregoing specimen of Example 1 (Ga-ZSM-5) by means of impregnation with 15 ml of an aqueous solution containing 0.1 g of a mixture of carbonates of rare earths and 0.2 cc of HNO3. The mixture of carbonates of rare earths comprised the following compounds: La (37.2 wt%), Nd (10.8 wt%) Ce (7.3 wt%), and Pr (4.5 wt%). The catalyst was subsequently dried at 110°C and calcined in air at 550°C for 5 hours. The specimen is referred to as GaTR(0.4)-ZSM-5.

10

Example 19 (comparative) Aromatization test of 1-pentene/n-pentane with GaTR(0.4)-ZSM-5 (1-pentene 60 wt%) 15

[0126] [0127] [0128]

The aromatization test was conducted according to same procedure as indicated in Example 6. The catalyst used in this test was the GaTR(0.4)-ZSM-5 zeolite prepared as indicated in Example 18. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/n-pentane]

20

25

425-500°C 5 barg 1.25 g/g/hr 60:40 w/w

[0129] 3 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered GaTR (0.4)-ZSM-5 zeolite of Example 18 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 3-4 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0130] Table 11 gives the results of the test conducted using the catalyst and the procedure specified in Example 19.

30

Table 11 Time on stream (h)

24.5

48.5

79.5

102.5

1.25

1.25

1.25

1.25

Temperature (°C)

425

450

475

500

Conversion of 1-pentene (%)

99.9

99.9

99.9

99.9

Conversion of pentane (%)

98.3

97.6

94.3

95.6

BTEX (wt % over total)

39.0

41.0

42.0

43.8

Total aromatic compounds (wt %)

46.0

47.3

47.7

49.0

Total olefins (wt %)

0.5

0.4

1.1

1.3

Total paraffins (wt %)

36.2

36.9

37.0

36.6

Total naphthalenes (wt %)

10.3

10.1

8.0

7.7

BTEX productivity (kg/kg)

11.1

23.6

41.4

53.6

WHSV 35

40

45

(hours-1)

Example 20 50

55

[0131] A solution A was prepared dissolving in succession 84.4 g of Al2(SO4)3.16 H2O, 327.6 g of tetrapropyl ammonium bromide, and 984.0 g of sodium chloride in 3096.0 g of water; next, 220.0 g of 96 wt% sulphuric acid were added. A solution B was prepared, made up of 2808 g of sodium silicate (27 wt% SiO2, 8 wt% Na2O) and 4480 g of water. [0132] The solution B was introduced in a 20-litre autoclave, and the solution A was added under vigorous stirring. The final mixture obtained was crystallized at autogenous pressure, at a temperature of 100°C for 10 days, stirring at a peripheral speed of 65 m/min. [0133] After this period, the autoclave was cooled, the crystallization slurry was discharged, the solid phase was separated, washed by re-dispersion in water, and calcined at 550°C for 5 hours. Next, the specimen was exchanged

15

EP 1 063 013 B1

5

10

into acid form by treatment with ammonium acetate. The specimen thus obtained was characterized by a final SiO2/ Al2O3 molar ratio of 76.5. [0134] At XRD analysis, the product was found to consist of pure MFI, characterized by the following cell parameters: a = 20.1241(27)Å, b = 19.9184(24)Å, c = 13.4035(17)Å, V = 5372.7(28) Å3, mean size of the crystallites according to Scherrer's equation = 280 Å in diameter. At TEM analysis, the zeolitic phase appeared in the form of relatively dense, mulberry-shaped submicron aggregates, which in turn consisted of regularly sized crystallites having diameters ranging from 200 to 500 Å. Figure 1 presents a TEM micrograph of the specimen (enlargement 40000x). The specimen was characterized by means of mercury-intrusion porosimetry up to a pressure of 2000 bar: in the pressure range considered this analysis enables determination of the distribution of the pores with radiuses greater than 37 Å. The specimen was found to possess an extrazeolitic porosity of a substantially meso-macroporous nature, presenting 60.3 % of the volume of the pores in the mesoporous region (diameter < 500 Å). 90% of the porosity was between 37 and 1000 Å in radius, with a mean diameter of 480 Å. Example 21

15

20

[0135] 20 g of zeolite obtained in foregoing example were impregnated with an aqueous solution first of Ga(NO3)3. 9H2O (20 ml, 0.43 M) and subsequently of Nd(NO3)3.6H2O (20 ml, 0.023 M). Between the two impregnations the catalyst was subjected to drying (in air at 120°C). At the end of the operations, the specimen was subsequently dried at 120°C and calcined in air at 550°C for 5 hours. The specimen thus obtained was characterized by a final SiO2/Al2O3 molar ratio of 76.5, a final Ga content of 3.17 wt% and a final Nd content of 0.31 wt%. Example 22

25

[0136] Example 20 was repeated using 99.6 g of Al2(SO4)3.16H2O and 213.3 g of H2SO4 (96 wt%).The final specimen exchanged into acid form was characterized by a SiO2/Al2O3 molar ratio of 65.8. At XRD analysis the product was found to consist of pure MFI, characterized by the following cell parameters: a = 20.1232(29) Å, b = 19.9155(26) Å, c = 13.40045(18) Å, V = 5370.4(29) Å3, mean size of the crystallites according to Scherrer's equation = 245 Å in diameter. At TEM analysis, the zeolitic phase appeared in the form of relatively dense, mulberry-shaped submicron aggregates, which in turn consisted of regularly sized crystallites having diameters within the 200-500 Å range.

30

Example 23

35

[0137] 20 g of zeolite obtained according to the foregoing example were treated as described in Example 21, using an aqueous solution first of Ga(NO3)3.9H2O (40 ml, 0.22 M) and subsequently of Nd(NO3)3.6H2O (38 ml, 0.013 M). A catalyst was obtained with a final Ga content of 2.73 wt% and Nd content of 0.44 wt%. Example 24 (comparative)

40

45

50

[0138] For this example, a commercially available ZSM-5 zeolite (PQ Zeolites, CBV 3020) was used, already exchanged into acid form, consisting of crystallites having a wide diameter distribution of between 100 and 1000 Å, and a mean diameter, estimated by means of Scherrer's equation, of 505 Å. A specimen of this zeolite was characterized by means of mercury-intrusion porosimetry up to a pressure of 2000 bar. The specimen was found to possess substantially an extrazeolitic porosity distributed in the macroporosity range, only 8.5 % of the porous volume being included in the mesoporosity region (diameter < 500 Å). The mean diameter of the pores was 1790 Å. Figure 2 presents the TEM micrograph of the specimen (enlargement 40000x), in which a significant presence of crystallites of diameter greater than 500 Å may be noted, as well as a wider distribution of the diameters of the crystallites as compared to the specimen of Example 20 (Fig. 1). [0139] 20 g of the zeolite described above were impregnated with an aqueous solution first of Ga(NO3)3.9H2O (20 ml, 0.43 M) and subsequently of Nd(NO3)3.6H2O (20 ml, 0.023 M). Between the two impregnations, the catalyst was subjected to drying (in air at 120°C). At the end of the operations, the specimen was subsequently dried at 120°C and calcined in air at 550°C for 5 hours. The resulting specimen was characterized by a final SiO2/Al2O3 molar ratio of 32.1, a final Ga content of 2.96 wt%, and a final Nd content of 0.23 wt%. Example 25

55

Aromatization test at constant temperature of 1-pentene / n-pentane [0140]

An aromatization test of a charge of C5 hydrocarbons (made up of 1-pentene and n-pentane in a weight ratio

16

EP 1 063 013 B1

5

of 60:40) was conducted using an experimental apparatus consisting of a steel reactor (length = 710 mm, internal diameter = 12.5 mm, external diameter = 35 mm) equipped with an internal thermometric sheath for control of the temperature. Heating took place with the aid of 4 ovens arranged in series along the reactor itself. The catalyst was introduced in the form of granules of appropriate sizes (20-40 mesh) and diluted with inert material (corindone). The feeding of the reagents (contained in a special refrigerated tank and kept under pressure in nitrogen) was performed using an HPLC pump. The products coming out of the reactor were condensed (at a temperature of 5 °C) and collected, partly in the liquid phase, and partly in the gas phase. Both the phases then underwent gas-chromatography analysis. [0141] The catalyst used in this test was the one prepared according to Example 21. [0142] The reaction conditions during the test were the following:

10

Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

15

20

450°C 5.7 barg 1.25 g/g/hr 60:40 w/w

[0143] 3.07 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered catalytic composition of Example 21 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0144] Figure 3 gives the BTEX (benzene, toluene, ethylbenzene and xylene) yield values (wt% over total of the effluents of the reactor) that were obtained in the course of the test as the time on stream (t.o.s., hours) varied. Example 26

25

30

Aromatization test at constant temperature of 1-pentene / n-pentane [0145] [0146] [0147]

The aromatization test was conducted according to the same procedure as the one indicated in Example 25. The catalyst used in this test is the catalytic composition prepared according to Example 21. The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene)/[n-pentane]

35

40

45

500°C (constant throughout the test) 5.7 barg 1.25 g/g/hr 60:40 w/w

[0148] 3.07 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered catalytic composition of Example 21 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0149] Figure 4 gives the BTEX yield values (wt% over total of the effluents of the reactor) that were obtained in the course of the test as the time on stream (t.o.s., hours) varied. Example 27 Aromatization test at constant temperature and high WHSV of 1-pentene / n-pentane

50

55

[0150] The aromatization test was conducted according to the same procedure as the one indicated in Example 25. [0151] In order to assess the performance of the catalyst in conditions of greater stress, the test was carried out at a WHSV value four times the value adopted in the foregoing examples. [0152] The catalyst used in this test is the catalytic composition prepared according to Example 21. [0153] The reaction conditions during the test were the following: Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

500°C (constant throughout the test) 5.7 barg 4 g/g/hr 60:40 w/w

17

EP 1 063 013 B1

5

[0154] 3.10 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered catalytic composition of Example 21 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0155] Figure 5 gives the BTEX yield values (wt% over total of the effluents of the reactor) that were obtained in the course of the test as the time on stream (t.o.s., hours) varied. (Line j). Example 28 (comparative)

10

Aromatization test at constant temperature and high WHSV of 1-pentene / n-pentane [0156] [0157] [0158]

The aromatization test was conducted according to the same procedure as the one indicated in Example 27. The catalyst used in this test is the catalytic composition prepared according to Example 24. The reaction conditions during the test were the following:

15

Reaction temperature Pressure WHSV [1-pentene]/[n-pentane]

20

25

30

500°C (constant throughout the test) 5.7 barg 4 g/g/hr 60:40 w/w

[0159] 3.10 g of catalyst were introduced in the reactor (the catalyst being obtained by tableting the powdered catalytic composition of Example 24 at a pressure of 10 ton/cm2, and by grinding it and sifting it in granules having a size of 20-40 mesh) between two layers of inert material (corindone). The catalytic bed had a depth of 2-3 cm. Before the reaction, the material was activated in a current of nitrogen at 400°C for 3-4 hours. [0160] Figure 5 gives the BTEX yield values (wt% over total of the effluents of the reactor) that were obtained in the course of the test as the time on stream (t.o.s., hours) varied. (Line m). [0161] An examination of the data of BTEX yield (wt% over total of the effluents of the reactor) given in Figure 5, obtained from the aromatization tests conducted at T = 500°C and WHSV = 4 h-1 described in Examples 27 and 28, reveals how the catalytic performance of the catalyst of Example 21 and of the catalyst of Example 24 are similar for t.o.s. values smaller than 50 hours, whilst they differ for t.o.s. values greater than 50 hours. Example 29

35

40

Aromatization tests at variable temperature of 1-pentene / n-pentane [0162] With the purpose of maximizing the performance of the catalyst, it is a consolidated procedure to increase the temperature in the course of time. The ensuing Table 12 gives the data referring to two distinct tests, which were conducted according to the operating procedure described in Example 25, using the catalysts prepared according to Examples 23 and 24. In the course of these tests, the temperature T (expressed in °C) was increased at the end of time intervals ∆t (in hours) set in an identical manner for each of the two catalysts. [0163] Note that for equal t.o.s. values, at all the reaction temperatures considered the catalyst of Example 23 presents higher BTEXT yield values, as compared with the catalyst of Example 24.

45

50

55

18

EP 1 063 013 B1

5

10

15

20

25

30

Claims 1.

Catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides and a zeolite belonging to the MFI family, the crystal lattice of which is made up of silicon oxide and at least one metal oxide chosen from among aluminium oxide, boron oxide and gallium oxide, the zeolite being characterised by crystallites which for at least 90% have diameters smaller than 500 Å.

2.

A composition according to Claim 1, in which the zeolite is chosen from among ZSM-5, zeolites having an MFI structure based on silicon oxide, gallium oxide and possibly aluminium oxide, zeolites having an MFI structure based on silicon oxide and boron oxide.

3.

A composition according to Claim 2, in which the zeolite is ZSM-5.

4.

A catalytic composition according to Claim 1, in which the molar ratio between silica and the metal oxide is greater than 20.

5.

A catalytic composition according to Claim 4, in which the molar ratio between silicon oxide and metal oxide is greater than 20 and less than 500.

6.

A catalytic composition according to Claim 5, in which the molar ratio between silicon oxide and metal oxide is greater than 20 and less than or equal to 70.

7.

A catalytic composition according to Claim 6, in which the molar ratio between silicon oxide and metal oxide is greater than 20 and less than 60.

8.

A catalytic composition according to Claim 1, in which the MFI zeolite consists of crystallites with diameters smaller than 500 Å.

35

40

45

50

55

19

EP 1 063 013 B1 9.

5

A catalytic composition according to Claim 1, in which the crystallites of the MFI zeolite present in the form of mulberry-shaped submicron aggregates with an extrazeolitic porosity of a meso-macroporous nature.

10. A catalytic composition according to Claim 9, in which the total volume of said extrazeolitic porosity consists for at least 30% of pores with diameters of less than 500 Å. 11. A catalytic composition according to Claim 1, in which the crystal lattice of the MFI zeolite is made up of silicon oxide and aluminium oxide.

10

12. A catalytic composition according to Claim 11, in which the molar ratio between silicon oxide and aluminium oxide is greater than 20. 13. A catalytic composition according to Claim 12, in which the molar ratio between silicon oxide and aluminium oxide is greater than 20 and less than 500.

15

14. A catalytic composition according to Claim 13, in which the molar ratio between silicon oxide and aluminium oxide is greater than 20 and less than or equal to 100. 15. A catalytic composition according to Claim 1 , in which the zeolite is partially in acid form. 20

16. A catalytic composition according to any one of the foregoing claims, containing, in addition, rhenium. 17. A catalytic composition according to Claim 1 or Claim 16, in which the lanthanide is present in the form of an oxide, ion, metal, or is a mixture of these forms. 25

18. A catalytic composition according to Claim 1 or Claim 16, in which the amount of lanthanide, expressed as element, ranges from 0.01 to 10 wt%.

30

19. A catalytic composition according to Claim 18, in which the amount of lanthanide, expressed as element, ranges from 0.1 to 2 wt%. 20. A catalytic composition according to Claim 1 or Claim 16, in which the lanthanide is chosen from among neodymium and lanthanium, either alone or in mixtures with cerium and/or praseodymium, and mixtures of neodymium and lanthanium, possibly also containing cerium and/or praseodymium.

35

21. A catalytic composition according to Claim 1 or Claim 16, in which the gallium is present in the form of an oxide, gallium ion, metallic gallium, or is a mixture of said forms.

40

22. A catalytic composition according to Claim 1 or Claim 16, in which the amount of gallium, expressed as element, ranges from 0.05 to 10 wt%. 23. A catalytic composition according to Claim 22, in which the amount of gallium, expressed as element, ranges from 0.5 to 4 wt%.

45

24. A catalytic composition according to Claim 16, in which the amount of rhenium, expressed as element, ranges from 0.05 to 10 wt% with respect to the total weight of the catalytic composition. 25. A catalytic composition according to Claim 24, in which the amount of rhenium ranges from 0.5 to 4 wt%.

50

26. A catalytic composition according to Claim 16, in which the rhenium is present in the form of an oxide, ion, metal, or is a mixture of said forms. 27. A catalytic composition according to Claim 1 or Claim 16, containing a binder chosen from among silica, alumina and clay, in a proportion by weight ranging from 50:50 to 95:5.

55

28. A catalytic composition according to Claim 1 or Claim 11, in which the zeolite is prepared by subjecting to vigorous stirring a solution containing sources of tetra-propyl-ammonium ion, sodium oxide, aluminium oxide, silicon oxide, and water, having the following composition expressed as molar ratios:

20

EP 1 063 013 B1 OH- free /SiO2 (C3H7)4N+/SiO2 H2O/OH-free SiO2/Al2O3 Na+/SiO2

5

0.07-1.0 0.01-1 10-300 >5 0.6-5

up to completion of crystallization. 10

15

20

25

29. A catalytic composition according to Claim 28, in which the composition of the synthesis mixture is the following: OH-free/SiO2 (C3H7)4N+/SiO2 H2O/OH-free SiO2/Al2O3 Na+/SiO2

0.1-0.3 0.05-0.25 20-60 50-120 1-4

30. Composition according to Claim 28, in which the crystallization is performed at a temperature in the range from 90 to 130°C, under stirring for a time which ranges from 3 hours to 15 days, and possibly comprises a second stage that can last up to 5 days in which the temperature is raised to a value ranging from 110 to 160°C. 31. Composition according to Claim 28, in which the source of the tetra-propyl-ammonium ion is chosen from among the corresponding bromide or hydroxide or tri-n-propylammine in mixture with n-propyl bromide. 32. Composition according to Claim 28, in which the source of silicon oxide is chosen from among sodium silicate, silica hydrosol, silica gel, and silicic acid.

30

33. Composition according to Claim 28, in which the source of aluminium oxide is chosen from among sodium aluminate, alumina, aluminium sulphate, and aluminium nitrate. 34. Composition according to Claim 28, in which the source of sodium is chosen from among the corresponding hydroxide, halides, sulphate and/or from among the sources of aluminium and/or silicon which contain it.

35

40

35. A process for preparing the catalytic compositions according to Claim 1, which comprises treating the zeolite with a gallium compound and a lanthanide compound in any order, or with a mixture comprising a gallium compound and a lanthanide compound, drying and calcining. 36. A process according to Claim 35 in which the zeolite is in acid form. 37. A process according to Claim 35 or Claim 36, in which the treatment with a gallium compound and the treatment with a lanthanide compound are chosen from between ion exchange and impregnation.

45

50

38. A process according to Claim 37, in which ion exchange and impregnation are performed using an aqueous solution of a gallium salt and an aqueous solution of a lanthanide salt. 39. A process according to Claim 37 or Claim 38, in which the treatment with a gallium compound consists in an ion exchange or impregnation with an aqueous solution of a gallium salt, and the treatment with a lanthanide compound consists in an impregnation with an aqueous solution of a lanthanide salt. 40. A process according to Claim 38, in which the gallium salt and the lanthanide salt are chosen from among the corresponding nitrates, chlorides and sulphates.

55

41. A process according to Claim 35 or Claim 39, which comprises the treatment of the zeolite by means of ion exchange or impregnation with an aqueous solution of a gallium salt, drying, possibly calcining the resulting product, treating it by means of impregnation with an aqueous solution of a lanthanide salt, drying and calcining.

21

EP 1 063 013 B1 42. A process for preparing the catalytic composition according to Claim 35, which comprises treating the zeolite with a gallium compound, a lanthanide compound and a rhenium compound, in any order, drying and calcining.

5

10

15

43. A process according to Claim 42, which comprises: a) the treatment of the zeolite by means of ion exchange or impregnation with an aqueous solution of a gallium salt, drying, and possibly calcining the resulting product; b) treating it by means of impregnation with an aqueous solution of a lanthanide salt, drying and possibly calcining the resulting product; and c) treating it by means of impregnation with an aqueous solution of a rhenium salt, drying and calcining. 44. A process for the production of aromatic hydrocarbon compounds which comprises setting in contact one or more aliphatic hydrocarbons containing from 3 to 6 carbon atoms with a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides, a zeolite belonging to the MFI family, the crystal lattice of which is made up of silicon oxide and at least one metal oxide chosen from among aluminium oxide, boron oxide and gallium oxide, the zeolite being characterised by crystallites which for at least 90% have diameters smaller than 500 Å. 45. A process according to Claim 44, in which the zeolite is ZSM-5. 46. A process according to Claim 44, in which the molar ratio between silicon oxide and metal oxide is greater than 20.

20

47. A process according to Claim 46, in which the molar ratio between silicon oxide and metal oxide is greater than 20 and less than 500.

25

48. A process according to Claim 47, in which the ratio between silicon oxide and metal oxide is greater than 20 and less than or equal to 70. 49. A process according to Claim 48, in which the ratio between silicon oxide and metal oxide is greater than 20 and less than 60.

30

50. A process according to Claim 44, in which the MFI zeolite consists of crystallites with diameters smaller than 500 Å. 51. A process according to Claim 44, in which the crystallites of MFI zeolite present in the form of mulberry-shaped submicron aggregates with an extrazeolitic porosity of a meso-macroporous nature.

35

52. A process according to Claim 51, in which the total volume of said extrazeolitic porosity consists for at least 30% of pores with diameters of less than 500 Å. 53. A process according to Claim 44, in which the crystal lattice of the MFI zeolite is made up of silicon oxide and aluminium oxide.

40

54. A process according to Claim 53, in which the molar ratio between silicon oxide and aluminium oxide is greater than 20.

45

55. A process according to Claim 54, in which the molar ratio between silicon oxide and aluminium oxide is greater than 20 and less than 500. 56. A process according to Claim 55, in which the molar ratio between silicon oxide and aluminium oxide is greater than 20 and less than or equal to 100.

50

57. A process according to Claim 44, in which the zeolite is partially in acid form. 58. A process according to Claim 44, in which the catalytic composition in addition contains rhenium.

55

59. A process according to Claim 44 or Claim 58, in which the lanthanide is chosen from among neodymium and lanthanium, either alone or in mixture with cerium and/or praseodymium, and mixtures of neodymium and lanthanium, possibly containing cerium and/or praseodymium. 60. A process according to Claim 44 or Claim 58, in which the hydrocarbon or the aliphatic hydrocarbons are chosen

22

EP 1 063 013 B1 from among olefins, cyclo-olefins, paraffins, and cycloparaffins. 61. A process according to Claim 44 or Claim 58, in which the hydrocarbon or the aliphatic hydrocarbons contain from 4 to 5 carbon atoms. 5

62. A process according to Claim 60 or Claim 61, in which the aliphatic hydrocarbon is chosen from among n-pentane, n-pentenes, n-butane, n-butenes, iso-butane, iso-butene, methylbutenes, cyclopentenes, isopentane, cyclopentane, or their mixtures. 10

63. A process according to Claim 44 or Claim 58, in which mixtures of aliphatic hydrocarbons are used containing from 20 to 90 wt% of olefins. 64. A process according to Claim 63, in which mixtures of aliphatic hydrocarbons are used containing from 40 to 70 wt% of olefins.

15

65. A process according to Claim 44 or Claim 58, conducted at a temperature ranging from 300° to 800° C, and at a pressure ranging from 0 to 20 barg.

20

66. A process according to Claim 65, conducted at a temperature ranging from 400° to 650° C, and at a pressure ranging from 1 to 10 barg. 67. A process according to Claim 65, conducted at a WHSV ranging from 0.1 to 30 hours-1.

25

Patentansprüche 1.

Katalytische Zusammensetzung, umfassend Gallium, mindestens ein Element, gewählt aus der Gruppe der Lanthanide, und einen zu der MFI-Familie gehörenden Zeolith, dessen Kristallgitter aus Siliciumoxid und mindestens einem Metalloxid besteht, gewählt aus Aluminiumoxid, Boroxid und Galliumoxid, wobei der Zeolith durch Kristallite gekennzeichnet ist, die zu mindestens 90 % Durchmesser von kleiner als 500 Å haben.

2.

Zusammensetzung nach Anspruch 1, wobei der Zeolith gewählt ist aus ZSM-5, Zeolithen mit einer MFI-Struktur auf Basis von Siliciumoxid, Galliumoxid und gegebenenfalls Aluminiumoxid und Zeolithen mit einer MFI-Struktur auf Basis von Siliciumoxid und Boroxid.

3.

Zusammensetzung nach Anspruch 2, wobei der Zeolith ZSM-5 ist.

4.

Katalytische Zusammensetzung nach Anspruch 1, wobei das Molverhältnis zwischen Silica und dem Metalloxid größer als 20 ist.

5.

Katalytische Zusammensetzung nach Anspruch 4, wobei das Molverhältnis zwischen Siliciumoxid und Metalloxid größer als 20 und kleiner als 500 ist.

6.

Katalytische Zusammensetzung nach Anspruch 5, wobei das Molverhältnis zwischen Siliciumoxid und Metalloxid größer als 20 und kleiner als oder gleich 70 ist.

7.

Katalytische Zusammensetzung nach Anspruch 6, wobei das Molverhältnis zwischen Siliciumoxid und Metalloxid größer als 20 und kleiner als 60 ist.

8.

Katalytische Zusammensetzung nach Anspruch 1, wobei der MFI-Zeolith aus Kristalliten mit Durchmessern von kleiner als 500 Å besteht.

9.

Katalytische Zusammensetzung nach Anspruch 1, wobei die Kristallite des MFI-Zeoliths in der Form von maulbeerförmigen Submikron-Aggregaten mit einer extrazeolithischen Porosität einer meso-makroporösen Natur vorliegen.

30

35

40

45

50

55

10. Katalytische Zusammensetzung nach Anspruch 9, wobei das Gesamtvolumen der extrazeolithischen Porosität zu mindestens 30 % aus Poren mit Durchmessern von weniger als 500 Å besteht.

23

EP 1 063 013 B1 11. Katalytische Zusammensetzung nach Anspruch 1, wobei das Kristallgitter des MFI-Zeoliths aus Siliciumoxid und Aluminiumoxid besteht.

5

12. Katalytische Zusammensetzung nach Anspruch 11, wobei das Molverhältnis zwischen Siliciumoxid und Aluminiumoxid größer als 20 ist. 13. Katalytische Zusammensetzung nach Anspruch 12, wobei das Molverhältnis zwischen Siliciumoxid und Aluminiumoxid größer als 20 und kleiner als 500 ist.

10

14. Katalytische Zusammensetzung nach Anspruch 13, wobei das Molverhältnis zwischen Siliciumoxid und Aluminiumoxid größer als 20 und kleiner oder gleich 100 ist. 15. Katalytische Zusammensetzung nach Anspruch 1, wobei der Zeolith teilweise in Säureform vorliegt.

15

16. Katalytische Zusammensetzung nach mindestens einem der vorausgehenden Ansprüche, welche zusätzlich Rhenium enthält. 17. Katalytische Zusammensetzung nach Anspruch 1 oder Anspruch 16, wobei das Lanthanid in der Form eines Oxids, Ions, Metalls vorliegt oder eine Mischung dieser Formen ist.

20

18. Katalytische Zusammensetzung nach Anspruch 1 oder Anspruch 16, wobei die Menge von Lanthanid, ausgedrückt als Element, im Bereich von 0,01 bis 10 Gew.-% liegt.

25

19. Katalytische Zusammensetzung nach Anspruch 18, wobei die Menge von Lanthanid, ausgedrückt als Element, im Bereich von 0,1 bis 2 Gew.-% liegt. 20. Katalytische Zusammensetzung nach Anspruch 1 oder Anspruch 16, wobei das Lanthanid gewählt ist aus Neodymium und Lanthan, entweder allein oder in Mischungen mit Cerium und/oder Praseodymium, und Mischungen von Neodymium und Lanthan, gegebenenfalls auch enthaltend Cerium und/oder Praseodymium.

30

21. Katalytische Zusammensetzung nach Anspruch 1 oder Anspruch 16, wobei das Gallium in der Form eines Oxids, Galliumions, metallischen Galliums vorliegt oder eine Mischung der genannten Formen ist.

35

22. Katalytische Zusammensetzung nach Anspruch 1 oder Anspruch 16, wobei die Menge von Gallium, ausgedrückt als Element, im Bereich von 0,05 bis 10 Gew.-% liegt. 23. Katalytische Zusammensetzung nach Anspruch 22, wobei die Menge von Gallium, ausgedrückt als Element, im Bereich von 0,5 bis 4 Gew.-% liegt.

40

24. Katalytische Zusammensetzung nach Anspruch 16, wobei die Menge von Rhenium, ausgedrückt als Element, im Bereich von 0,05 bis 10 Gew.-% bezüglich des Gesamtgewichts der katalytischen Zusammensetzung liegt. 25. Katalytische Zusammensetzung nach Anspruch 24, wobei die Menge von Rhenium im Bereich von 0,5 bis 4 Gew.% liegt.

45

26. Katalytische Zusammensetzung nach Anspruch 16, wobei das Rhenium in der Form eines Oxids, Ions, Metalls vorliegt oder eine Mischung der genannten Formen ist.

50

27. Katalytische Zusammensetzung nach Anspruch 1 oder Anspruch 16, enthaltend ein Bindemittel, gewählt aus Silica, Aluminiumoxid und Ton, in einem Gewichtsverhältnis im Bereich von 50 : 50 bis 95 : 5.

55

28. Katalytische Zusammensetzung nach Anspruch 1 oder Anspruch 11, wobei der Zeolith hergestellt wird durch Unterwerfen einem kräftigen Rühren einer Lösung, enthaltend Quellen von Tetrapropylammoniumion, Natriumoxid, Aluminiumoxid, Siliciumoxid und Wasser, mit der folgenden, als molare Verhältnisse ausgedrückten Zusammensetzung: OH-frei / SiO2

0,07 - 1,0

24

EP 1 063 013 B1 (fortgesetzt)

5

(C3H7)4N+ / SiO2 H2O / OH-frei SiO2 / Al2O3 Na+ / SiO2

0,01 - 1 10 - 300 >5 0,6 - 5

bis zur Vollendung der Kristallisation. 10

15

29. Katalytische Zusammensetzung nach Anspruch 28, wobei die Zusammensetzung der Synthesemischung die Folgende ist: OH-frei / SiO2 (C3H7)4N+ / SiO2 H2O / OH-frei SiO2 / Al2O3 Na+ / SiO2

0,1 - 0,3 0,05 - 0,25 20 - 60 50 - 120 1-4

20

30. Katalytische Zusammensetzung nach Anspruch 28, wobei die Kristallisation bei einer Raumtemperatur im Bereich von 90 bis 130°C unter Rühren über einen Zeitraum erfolgt, welcher von 3 Stunden bis 15 Tage reicht, gegebenenfalls umfassend eine zweite Stufe, die bis zu 5 Tage dauern kann, in welcher die Temperatur auf einen Wert im Bereich von 110 bis 160°C erhöht wird.

25

31. Zusammensetzung nach Anspruch 28, wobei die Quelle des Tetrapropylammoniumions gewählt ist aus dem entsprechenden Bromid oder Hydroxid oder Tri-n-propylamin in Mischung mit n-Propylbromid. 32. Zusammensetzung nach Anspruch 28, wobei die Quelle von Siliciumoxid gewählt ist aus Natriumsilicat, Silicahydrosol, Silicagel und Kieselsäure.

30

33. Zusammensetzung nach Anspruch 28, wobei die Quelle von Aluminiumoxid gewählt ist aus Natriumaluminat, Aluminiumoxid, Aluminiumsulfat und Aluminiumnitrat.

35

34. Zusammensetzung nach Anspruch 28, wobei die Quelle von Natrium gewählt ist aus dem entsprechenden Hydroxid, Halogeniden, Sulfat und/oder aus den dieses enthaltenden Quellen von Aluminium und/oder Silicium. 35. Verfahren zur Herstellung der katalytischen Zusammensetzungen nach Anspruch 1, umfassend das Behandeln des Zeoliths mit einer Galliumverbindung und einer Lanthanidverbindung in beliebiger Reihenfolge oder mit einer Mischung, umfassend eine Galliumverbindung und eine Lanthanidverbindung, Trocknen und Kalzinieren.

40

36. Verfahren nach Anspruch 35, wobei der Zeolith in Säureform vorliegt. 37. Verfahren nach Anspruch 35 oder Anspruch 36, wobei die Behandlung mit einer Galliumverbindung und die Behandlung mit einer Lanthanidverbindung zwischen einem Ionenaustausch und einer Imprägnierung gewählt sind. 45

38. Verfahren nach Anspruch 37, wobei der Ionenaustausch und die Imprägnierung unter Verwendung einer wässrigen Lösung eines Galliumsalzes und einer wässrigen Lösung eines Lanthanidsalzes erfolgt.

50

55

39. Verfahren nach Anspruch 37 oder Anspruch 38, wobei die Behandlung mit einer Galliumverbindung in einem Ionenaustausch oder einer Imprägnierung mit einer wässrigen Lösung eines Galliumsalzes besteht und die Behandlung mit einer Lanthanidverbindung in einer Imprägnierung mit einer wässrigen Lösung eines Lanthanidsalzes besteht. 40. Verfahren nach Anspruch 38, wobei das Galliumsalz und das Lanthanidsalz aus den entsprechenden Nitraten, Chloriden und Sulfaten gewählt sind. 41. Verfahren nach Anspruch 35 oder Anspruch 39, umfassend das Behandeln des Zeoliths mittels Ionenaustausch oder Imprägnierung mit einer wässrigen Lösung eines Galliumsalzes, Trocknen, gegebenenfalls Kalzinieren des

25

EP 1 063 013 B1 resultierenden Produkts, Behandeln von diesem mittels Imprägnierung mit einer wässrigen Lösung eines Lanthanidsalzes, Trocknen und Kalzinieren.

5

42. Verfahren für die Herstellung der katalytischen Zusammensetzung nach Anspruch 35, umfassend das Behandeln des Zeoliths mit einer Galliumverbindung, einer Lanthanidverbindung und einer Rheniumverbindung in beliebiger Reihenfolge, Trocknen und Kalzinieren.

10

43. Verfahren nach Anspruch 42, umfassend a) das Behandeln des Zeoliths mittels Ionenaustausch oder Imprägnierung mit einer wässrigen Lösung eines Galliumsalzes, Trocknen und gegebenenfalls Kalzinieren des resultierenden Produkts; b) das Behandeln von diesem mittels Imprägnierung mit einer wässrigen Lösung eines Lanthanidsalzes, Trocknen und gegebenenfalls Kalzinieren des resultierenden Produkts; und c) das Behandeln von diesem mittels Imprägnierung mit einer wässrigen Lösung eines Rheniumsalzes, Trocknen und Kalzinieren.

15

44. Verfahren für die Herstellung von aromatischen Kohlenwasserstoffverbindungen, umfassend das In-Kontakt-Bringen von einem oder mehreren, 3 bis 6 Kohlentoffatome enthaltenden aliphatischen Kohlenwasserstoffen mit einer katalytischen Zusammensetzung, umfassend Gallium, mindestens ein Element, gewählt aus der Gruppe der Lanthanide, einem zu der MFI-Familie gehörenden Zeolith, dessen Kristallgitter aus Siliciumoxid und mindestens einem Metalloxid besteht, gewählt aus Aluminiumoxid, Boroxid und Galliumoxid, wobei der Zeolith durch Kristallite gekennzeichnet ist, welche zu mindestens 90 % Durchmesser von kleiner als 500 Å aufweisen.

20

45. Verfahren nach Anspruch 44, wobei der Zeolith ZSM-5 ist. 46. Verfahren nach Anspruch 44, wobei das Molverhältnis zwischen Siliciumoxid und Metalloxid größer als 20 ist. 25

47. Verfahren nach Anspruch 46, wobei das Molverhältnis zwischen Siliciumoxid und Metalloxid größer als 20 und kleiner als 500 ist. 48. Verfahren nach Anspruch 47, wobei das Verhältnis zwischen Siliciumoxid und Metalloxid größer als 20 und kleiner oder gleich 70 ist.

30

49. Verfahren nach Anspruch 48, wobei das Verhältnis zwischen Siliciumoxid und Metalloxid größer als 20 und kleiner als 60 ist.

35

50. Verfahren nach Anspruch 44, wobei der MFI-Zeolith aus Kristalliten mit Durchmessern von kleiner als 500 Å besteht. 51. Verfahren nach Anspruch 44, wobei die Kristallite des MFI-Zeoliths in der Form von maulbeerförmigen SubmikronAggregaten mit einer extrazeolithischen Porosität einer meso-makroporösen Natur vorliegen.

40

52. Verfahren nach Anspruch 51, wobei das Gesamtvolumen der extrazeolithischen Porosität für mindestens 30 % aus Poren mit Durchmessern von weniger als 500 Å besteht. 53. Verfahren nach Anspruch 44, wobei das Kristallgitter des MFI-Zeoliths aus Siliciumoxid und Aluminiumoxid besteht.

45

54. Verfahren nach Anspruch 53, wobei das Molverhältnis zwischen Siliciumoxid und Aluminiumoxid größer als 20 ist. 55. Verfahren nach Anspruch 54, wobei das Molverhältnis zwischen Siliciumoxid und Aluminiumoxid größer als 20 und kleiner als 500 ist.

50

56. Verfahren nach Anspruch 55, wobei das Molverhältnis zwischen Siliciumoxid und Aluminiumoxid größer als 20 und kleiner oder gleich 100 ist. 57. Verfahren nach Anspruch 44, wobei der Zeolith teilweise in Säureform vorliegt.

55

58. Verfahren nach Anspruch 44, wobei die katalytische Zusammensetzung zusätzlich Rhenium enthält. 59. Verfahren nach Anspruch 44 oder Anspruch 58, wobei das Lanthanid gewählt ist aus Neodymium und Lanthan, entweder allein oder in Mischung mit Cerium und/oder Praseodymium, und Mischungen von Neodymium und

26

EP 1 063 013 B1 Lanthan, gegebenenfalls enthaltend Cerium und/oder Praseodymium. 60. Verfahren nach Anspruch 44 oder Anspruch 58, wobei der Kohlenwasserstoff oder die aliphatischen Kohlenwasserstoffe gewählt sind aus Olefinen, Cycloolefinen, Paraffinen und Cycloparaffinen. 5

61. Verfahren nach Anspruch 44, oder Anspruch 58, wobei der Kohlenwasserstoff oder die aliphatischen Kohlenwasserstoffe 4 bis 5 Kohlenstoffatome enthalten.

10

62. Verfahren nach Anspruch 60 oder Anspruch 61, wobei der aliphatische Kohlenwasserstoff gewählt ist aus n-Pentan, n-Pentenen, n-Butan, n-Butenen, Isobutan, Isobuten, Methylbutenen, Cyclopentenen, Isopentan, Cyclopentan oder deren Mischungen. 63. Verfahren nach Anspruch 44 oder Anspruch 58, wobei Mischungen von aliphatischen Kohlenwasserstoffen verwendet werden, welche 20 bis 90 Gew.-% Olefine enthalten.

15

64. Verfahren nach Anspruch 63, wobei Mischungen von aliphatischen Kohlenwasserstoffen verwendet werden, welche 40 bis 70 Gew.-% Olefine enthalten.

20

65. Verfahren nach Anspruch 44 oder Anspruch 58, das bei einer Temperatur im Bereich von 300° bis 800°C und bei einem Druck im Bereich von 0 bis 20 Bar-g durchgeführt wird. 66. Verfahren nach Anspruch 65, das bei einer Temperatur im Bereich von 400° bis 650°C und bei einem Druck im Bereich von 1 bis 10 Bar-g durchgeführt wird.

25

67. Verfahren nach Anspruch 65, das bei einer WHSV im Bereich von 0,1 bis 30 h-1 durchgeführt wird.

Revendications 30

1.

Composition catalytique comprenant du gallium, au moins un élément choisi dans l'ensemble des lanthanides, et une zéolithe de type MFI dont le réseau cristallin est constitué d'oxyde de silicium et d'au moins un oxyde métallique choisi parmi de l'oxyde d'aluminium, de l'oxyde de bore et de l'oxyde de gallium, laquelle zéolithe est caractérisée en ce qu'au moins 90 % de ses cristallites ont moins de 500 Å de diamètre.

35

2.

Composition conforme à la revendication 1, dans laquelle la zéolithe est choisie parmi la zéolithe ZSM-5, les zéolithes de structure MFI à base d'oxyde de silicium, d'oxyde de gallium et le cas échéant d'oxyde d'aluminium, et les zéolithes de structure MFI à base d'oxyde de silicium et d'oxyde de bore.

3.

Composition conforme à la revendication 2, dans laquelle la zéolithe est de la zéolithe ZSM-5.

4.

Composition catalytique conforme à la revendication 1, dans laquelle le rapport molaire entre la silice et l'oxyde métallique est supérieur à 20.

5.

Composition catalytique conforme à la revendication 4, dans laquelle le rapport molaire entre l'oxyde de silicium et l'oxyde métallique est supérieur à 20 et inférieur à 500.

6.

Composition catalytique conforme à la revendication 5, dans laquelle le rapport molaire entre l'oxyde de silicium et l'oxyde métallique est supérieur à 20 et inférieur ou égal à 70.

7.

Composition catalytique conforme à la revendication 6, dans laquelle le rapport molaire entre l'oxyde de silicium et l'oxyde métallique est supérieur à 20 et inférieur à 60.

8.

Composition catalytique conforme à la revendication 1, dans laquelle la zéolithe de type MFI est constituée de cristallites qui ont moins de 500 Å de diamètre.

9.

Composition catalytique conforme à la revendication 1, dans laquelle les cristallites de la zéolithe de type MFI se présentent sous la forme d'agrégats de taille submicronique à l'aspect de mûres, dotés de méso-macropores extrazéolithiques.

40

45

50

55

27

EP 1 063 013 B1 10. Composition catalytique conforme à la revendication 9, dans laquelle une fraction d'au moins 30 % du volume total desdits pores extra-zéolithiques est constituée de pores de moins de 500 Å de diamètre.

5

11. Composition catalytique conforme à la revendication 1, dans laquelle le réseau cristallin de la zéolithe de type MFI est constitué d'oxyde de silicium et d'oxyde d'aluminium. 12. Composition catalytique conforme à la revendication 11, dans laquelle le rapport molaire entre l'oxyde de silicium et l'oxyde d'aluminium est supérieur à 20.

10

13. Composition catalytique conforme à la revendication 12, dans laquelle le rapport molaire entre l'oxyde de silicium et l'oxyde d'aluminium est supérieur à 20 et inférieur à 500. 14. Composition catalytique conforme à la revendication 13, dans laquelle le rapport molaire entre l'oxyde de silicium et l'oxyde d'aluminium est supérieur à 20 et inférieur ou égal à 100.

15

15. Composition catalytique conforme à la revendication 1, dans laquelle la zéolithe se trouve en partie sous forme acide. 16. Composition catalytique conforme à l'une des revendications précédentes, qui contient en outre du rhénium. 20

17. Composition catalytique conforme à la revendication 1 ou 16, dans laquelle le lanthanide se présente sous l'aspect d'oxyde, d'ions ou de métal, ou d'un mélange de ces formes.

25

18. Composition catalytique conforme à la revendication 1 ou 16, dans laquelle il y a de 0,01 à 10 % en poids d'élément lanthanide. 19. Composition catalytique conforme à la revendication 18, dans laquelle il y a de 0,1 à 2 % en poids d'élément lanthanide.

30

35

20. Composition catalytique conforme à la revendication 1 ou 16, dans laquelle le lanthanide est choisi parmi du néodyme et du lanthane, seuls ou mélangés avec du cérium et/ou du praséodyme, et des mélanges de néodyme et de lanthane, contenant aussi, le cas échéant, du cérium et/ou du praséodyme. 21. Composition catalytique conforme à la revendication 1 ou 16, dans laquelle le gallium se présente sous l'aspect d'oxyde, d'ions de gallium ou de gallium métallique, ou d'un mélange de ces formes. 22. Composition catalytique conforme à la revendication 1 ou 16, dans laquelle il y a de 0,05 à 10 % en poids de l'élément gallium.

40

23. Composition catalytique conforme à la revendication 22, dans laquelle il y a de 0,5 à 4 % en poids de l'élément gallium. 24. Composition catalytique conforme à la revendication 16, dans laquelle il y a de 0,05 à 10 % de l'élément rhénium, en poids rapporté au poids total de la composition catalytique.

45

25. Composition catalytique conforme à la revendication 24, dans laquelle il y a de 0,5 à 4 % en poids de rhénium. 26. Composition catalytique conforme à la revendication 16, dans laquelle le rhénium se présente sous l'aspect d'oxyde, d'ions ou de métal, ou d'un mélange de ces formes. 50

27. Composition catalytique conforme à la revendication 1 ou 16, qui contient un liant choisi parmi de la silice, de l'alumine et une argile, et présent en un rapport pondéral de 50/50 à 95/5.

55

28. Composition catalytique conforme à la revendication 1 ou 11, pour laquelle on a préparé la zéolithe en agitant vigoureusement, jusqu'à cristallisation complète, une solution contenant des sources d'ion tétrapropylammonium, d'oxyde de sodium, d'oxyde d'aluminium et d'oxyde de silicium, ainsi que de l'eau, et dont la composition, exprimée en rapports molaires, est la suivante :

28

EP 1 063 013 B1

5

OH-libre/SiO2 : 0,07 - 1,0 (C3H7)4N+/SiO2 : 0,01 - 1 H2O/OH-libre : 10 - 300 SiO2/Al2O3 : > 5 Na+/SiO2 : 0,6 - 5 29. Composition catalytique conforme à la revendication 28, pour laquelle la composition du mélange de synthèse est la suivante :

10

15

OH-libre/SiO2 : 0,1 - 0,3 (C3H7)4N+/SiO2 : 0,05 - 0,25 H2O/OH-libre : 20 - 60 SiO2/Al2O3 : 50 - 120 Na+/SiO2 : 1 - 4 30. Composition conforme à la revendication 28, pour laquelle on opère la cristallisation à une température de 90 à 130 °C, en agitant le mélange pendant un laps de temps de 3 heures à 15 jours, cette opération pouvant, le cas échéant, comprendre une deuxième étape qui peut durer jusqu'à 5 jours et au cours de laquelle on élève la température jusqu'à une valeur de 110 à 160 °C.

20

31. Composition conforme à la revendication 28, pour laquelle la source d'ion tétrapropylammonium est choisie parmi l'hydroxyde et le bromure correspondants et un mélange de tri-n-propylamine et de bromure de n-propyle.

25

32. Composition conforme à la revendication 28, pour laquelle la source d'oxyde de silicium est choisie parmi un silicate de sodium, un hydrosol de silice, un gel de silice et un acide silicique. 33. Composition conforme à la revendication 28, pour laquelle la source d'oxyde d'aluminium est choisie parmi l'aluminate de sodium, l'alumine, le sulfate d'aluminium et le nitrate d'aluminium.

30

35

34. Composition conforme à la revendication 28, pour laquelle la source de sodium est choisie parmi les hydroxyde, sulfate et halogénures correspondants et/ou parmi les sources d'aluminium et/ou de silicium qui en contiennent. 35. Procédé de préparation d'une composition catalytique conforme à la revendication 1, lequel procédé comporte le fait de traiter la zéolithe avec un composé du gallium et avec un composé de lanthanide, dans n'importe quel ordre, ou avec un mélange contenant un composé du gallium et un composé de lanthanide, et des opérations de séchage et de calcination. 36. Procédé conforme à la revendication 35, dans lequel la zéolithe se trouve sous forme acide.

40

37. Procédé conforme à la revendication 35 ou 36, dans lequel les traitements effectués avec un composé du gallium et avec un composé de lanthanide sont choisis parmi des opérations d'échange d'ions et d'imprégnation. 38. Procédé conforme à la revendication 37, dans lequel les opérations d'échange d'ions et d'imprégnation sont effectuées au moyen d'une solution aqueuse d'un sel de gallium et d'une solution aqueuse d'un sel de lanthanide.

45

39. Procédé conforme à la revendication 37 ou 38, dans lequel le traitement effectué avec un composé du gallium consiste en une opération d'échange d'ions ou d'imprégnation, effectuée au moyen d'une solution aqueuse d'un sel de gallium, et le traitement effectué avec un composé de lanthanide consiste en une opération d'imprégnation effectuée au moyen d'une solution aqueuse d'un sel de lanthanide. 50

40. Procédé conforme à la revendication 38, dans lequel le sel de gallium et le sel de lanthanide sont choisis parmi les nitrates, chlorures et sulfates correspondants.

55

41. Procédé conforme à la revendication 35 ou 39, qui comporte le fait de traiter la zéolithe, par échange d'ions ou imprégnation, avec une solution aqueuse d'un sel de gallium, le fait de faire sécher le produit résultant et, le cas échéant, le fait de le calciner, puis le fait de traiter ce produit par imprégnation avec une solution aqueuse d'un sel de lanthanide et le fait de faire sécher et de calciner le produit obtenu.

29

EP 1 063 013 B1 42. Procédé de préparation d'une composition catalytique, conforme à la revendication 35, lequel procédé comporte le fait de traiter la zéolithe avec un composé du gallium, avec un composé de lanthanide et avec un composé du rhénium, dans n'importe quel ordre, et des opérations de séchage et de calcination. 5

10

15

43. Procédé conforme à la revendication 42, qui comporte : a) le fait de traiter la zéolithe, par échange d'ions ou imprégnation, avec une solution aqueuse d'un sel de gallium, le fait de faire sécher le produit résultant et, le cas échéant, le fait de le calciner ; b) le fait de traiter ce produit par imprégnation avec une solution aqueuse d'un sel de lanthanide, le fait de faire sécher le produit résultant et, le cas échéant, le fait de le calciner ; c) et le fait de traiter ce produit par imprégnation avec une solution aqueuse d'un sel de rhénium, et le fait de faire sécher et de calciner le produit obtenu. 44. Procédé de production de composés hydrocarbonés aromatiques, qui comporte le fait de mettre un ou plusieurs hydrocarbures aliphatiques, comportant de 3 à 6 atomes de carbone, en contact avec une composition catalytique comprenant du gallium, au moins un élément choisi dans l'ensemble des lanthanides, et une zéolithe de type MFI dont le réseau cristallin est constitué d'oxyde de silicium et d'au moins un oxyde métallique choisi parmi de l'oxyde d'aluminium, de l'oxyde de bore et de l'oxyde de gallium, laquelle zéolithe est caractérisée en ce qu'au moins 90 % de ses cristallites ont moins de 500 Å de diamètre.

20

45. Procédé conforme à la revendication 44, dans lequel la zéolithe est de la zéolithe ZSM-5. 46. Procédé conforme à la revendication 44, dans lequel le rapport molaire entre l'oxyde de silicium et l'oxyde métallique est supérieur à 20. 25

47. Procédé conforme à la revendication 46, dans lequel le rapport molaire entre l'oxyde de silicium et l'oxyde métallique est supérieur à 20 et inférieur à 500.

30

48. Procédé conforme à la revendication 47, dans lequel le rapport molaire entre l'oxyde de silicium et l'oxyde métallique est supérieur à 20 et inférieur ou égal à 70. 49. Procédé conforme à la revendication 48, dans lequel le rapport molaire entre l'oxyde de silicium et l'oxyde métallique est supérieur à 20 et inférieur à 60.

35

50. Procédé conforme à la revendication 44, dans lequel la zéolithe de type MFI est constituée de cristallites de moins de 500 Å de diamètre. 51. Procédé conforme à la revendication 44, dans lequel les cristallites de la zéolithe de type MFI se présentent sous la forme d'agrégats de taille submicronique à l'aspect de mûres, dotés de méso-macropores extra-zéolithiques.

40

52. Procédé conforme à la revendication 51, dans lequel une fraction d'au moins 30 % du volume total desdits pores extra-zéolithiques est constituée de pores de moins de 500 Å de diamètre.

45

53. Procédé conforme à la revendication 44, dans lequel le réseau cristallin de la zéolithe de type MFI est constitué d'oxyde de silicium et d'oxyde d'aluminium. 54. Procédé conforme à la revendication 53, dans lequel le rapport molaire entre l'oxyde de silicium et l'oxyde d'aluminium est supérieur à 20.

50

55. Procédé conforme à la revendication 54, dans lequel le rapport molaire entre l'oxyde de silicium et l'oxyde d'aluminium est supérieur à 20 et inférieur à 500. 56. Procédé conforme à la revendication 55, dans lequel le rapport molaire entre l'oxyde de silicium et l'oxyde d'aluminium est supérieur à 20 et inférieur ou égal à 100.

55

57. Procédé conforme à la revendication 44, dans lequel la zéolithe se trouve en partie sous forme acide. 58. Procédé conforme à la revendication 44, dans lequel la composition catalytique contient en outre du rhénium.

30

EP 1 063 013 B1 59. Procédé conforme à la revendication 44 ou 58, dans lequel le lanthanide est choisi parmi du néodyme et du lanthane, seuls ou mélangés avec du cérium et/ou du praséodyme, et des mélanges de néodyme et de lanthane, contenant aussi, le cas échéant, du cérium et/ou du praséodyme. 5

60. Procédé conforme à la revendication 44 ou 58, dans lequel le ou les hydrocarbures aliphatiques sont choisis parmi les oléfines, les cyclo-oléfines, les paraffines et les cycloparaffines. 61. Procédé conforme à la revendication 44 ou 58, dans lequel le ou les hydrocarbures aliphatiques comportent de 4 à 5 atomes de carbone.

10

62. Procédé conforme à la revendication 60 ou 61, dans lequel l'hydrocarbure aliphatique est choisi parmi le n-pentane, les n-pentènes, le n-butane, les n-butènes, l'isobutane, l'isobutène, les méthyl-butènes, les cyclopentènes, l'isopentane et le cyclopentane, ainsi que leurs mélanges. 15

63. Procédé conforme à la revendication 44 ou 58, dans lequel on emploie des mélanges d'hydrocarbures aliphatiques qui contiennent de 20 à 90 % en poids d'oléfines. 64. Procédé conforme à la revendication 63, dans lequel on emploie des mélanges d'hydrocarbures aliphatiques qui contiennent de 40 à 70 % en poids d'oléfines.

20

65. Procédé conforme à la revendication 44 ou 58, conduit à une température de 300 à 800 °C et sous une pression manométrique de 0 à 20 bars.

25

66. Procédé conforme à la revendication 65, conduit à une température de 400 à 650 °C et sous une pression manométrique de 1 à 10 bars. 67. Procédé conforme à la revendication 65, conduit à une vitesse spatiale horaire PPH de 0,1 à 30 h-1.

30

35

40

45

50

55

31

EP 1 063 013 B1

32

EP 1 063 013 B1

33

EP 1 063 013 B1

34