Cenozoic intracontinental dextral motion in the ... - Wiley Online Library

2 downloads 0 Views 928KB Size Report
CENOZOIC INTRACONTINENTAL. DEXTRAL. MOTION. IN THE. OKHOTSK-JAPAN. SEA REGION. Laurent Jolivet, Marc Fournier, and Philippe Huchon.
TECTONICS,VOL. 11, NO. 5, PAGES 968-977, OCTOBER 1992 CENOZOIC DEXTRAL

INTRACONTINENTAL MOTION

OKHOTSK-JAPAN

IN THE

SEA REGION

LaurentJolivet,MarcFournier,andPhilippeHuchon D6partement deG6ologie,EcoleNormale Sup6rieure,Paris,France

Eurasia(EUR hereafter).The rotationpole is located in easternSiberia;northof it, extension prevails

alongtheCherskyiranges,andoceanicspreading is activealongtheGakkel-Nansen ridge,whichis the northernmost extension of theMid-Atlanticridge. Savostin et al. [ 1983]insteadproposed dextral motion between the Okhotsk and Amurian blocks

anda kinematic interpretation takingintoaccount the

Vitali S.Rozhdestvenskiy, Konstantin F. Sergeyev,

major structures of northeastAsia suchasthe

Institute of MarineGeologyandGeophysics, Far

Stanovoy ranges(seealsoSavostinandKarasik [1981], andCooket al. [1986]).

and Leonid S. Oscorbin

East ScienceCenter,Yuzhno-Sakhalinsk, USSR

Abstract. A right-lateral shearzonetrending northerly alongmorethan2000kmisrecognized fromcentralJapanto northernSakhalin.It wasactive mainlyduringtheNeogeneandhasaccommodated several hundreds of kilometers of displacement. The

whole structureof Sakhalin is built on this shear

zone.En 6chelonsigmoidalfoldsandthrusts,en

6chelon narrow Miocene basins, anda major discontinuity whichisobserved alongmorethan600 km, theTym-Poronaisk fault,characterize the deformation there.In Hokkaido,en {5chelon folds

andthrusts anda ductile shear zonewithhightemperature metamorphism constitute thesouthern extension of thistranspressional shearzone.It continuesto the southas a zone of transtensional

deformation alongtheeastern margin ofJapan Sea, as en 6chelonbasinsand dextral transferfaults

observed asfar southasNotopeninsula andYatsuo basin.Thestyleof theshearzonethusevolvesfrom transpressional in the northfar from the subduction zone, to transtensionalin the south in the back-arc

region.Strike-slip motionalongthisshearzonewas primarily responsible forthedextral pull-apart opening ofJapan Seaduring theearlyandmiddle Miocene.Dextralmotionis still activein thenorth

alongtheTym-Poronaisk faultin Sakhalinaswell as onthecontinental marginof JapanSea(Koreaand

Asiamainland). Active E-Wcompression replaced thedextral motion along theeastern margin ofJapan

Seain lateMiocene time,andincipient subduction began intheearlyQuaternary. INTRODUC•ON

This active zone extends southwardin Hokkaido

andalongtheeastern marginof Japan Sea.Large shallow earthquakes occurfrequently there(Figures 2 and3); theyareall of reverse faulttypewithE-W direction of compression [FukaoandFurumoto, 1975].Nakamura [1983]proposed thatit corresponds to the southwardextensionof the NAM-

EURplateboundary followingChapman and Solomon[ 1976]. Thisactivezonealsocorresponds to a domain

whichhassuffered deformation sinceOligocene time.Kimuraet al. [1983]proposed thatdextral oblique collision alongtheOkhotsk-Amur plate boundary wasresponsible fortheTertiarystructures, suchas en Echelonfolds in Hokkaido and Sakhalin.

JolivetandMiyashita[ 1985],JolivetandHuchon [1989],andJolivetet al. [1990]showedthatdextral shearcanberecognized alongthecentralbeltof Hokkaido(HidakaShearZone)aswell astheeastern marginof JapanSeafor lowerto middleMiocene time.Lallemand andJolivet[1985],Kimuraand

Tamaki[1986],andJolivet[1986]proposed thatthis

shear zonehasbeen responsible forthedextral pullapartopening of Japan Seain Miocene time(Figure 1).Largedextral motions along N-Strending shear zonesareusuallynot takeninto accountwhen

describing thedeformation ofAsiaexcept byKimura andTamaki[1986],Jolivet[1986],Chenand Nabelek[1988],or Jolivetet al. [ 1990]. In thispaper,wepresent a synthesis of our studies based uponfieldsurveys alongthisactive zonefromcentralJapanto Sakhalin, Landsat

imagery, andfocalmechanism ofearthquakes. Detailed workwillbepublished separately. A new

tectonicmapof theentirefault zoneis described. We

A diffusezoneof activedeformationwith crustal

show thatinMiocene time,structures located along

this2000-kin-long shear zonearecompatible witha

seis. micity runsalong Sakhalin, between theAmur

localizeddextralshearzonewhichevolvesfrom transpressional in the noah to transtensionalin the

various interpretations, theyarediscussed byJolivet

southin theback-arcregion.We discuss itsrelation to theopeningof theJapanSeaback-arcbasin.We alsobrieflydiscuss thesignificance of thedextral

mechanisms,concludedthat a zoneof active compression wasperpendicular to thetrendof

motionsin the overall deformationof easternAsia.

Sakhalin. Theyassigned thisdeformation tothe motionof NorthAmerica (NAM hereafter) relativeto

GENERAL TECTONIC

regionandOkhostkSea(Figure1). It hasledto

etal. [1990].Chapman andSolomon [1976],onthe basis of a study of several largeearthquakes focal

Copyright 1992by theAmerican Geophysical Union Papernumber92TC00337 0278-7407/92/92TC-00337

$10.00

CONTEXT

In theback-arc regionof thePacificsubduction

zone,behind theKuriltrench, Sakhalin isa long islandextending alongsome1000kmbetween the Okhotsk SeaandtheTartarstrait(Figures 1-3).It

doesnotexceed200 km in width andis asnarrowas 30 km at 48øN.It is the northernextensionof the

Jolivetet al.' Motionin theOkhotsk-Japan Searegion

969

EARLY MIOCENE 2O

PRESENT

YBK

PAC

320

•,• PHS• /

1360

/140

1360 I

140OE

Fig.1.(a)Present-day geodynamic context of Sakhalin andJapan Searegion. Shaded

arearepresent theoceanic crusts of theJapanSeaandKurilBasin.Dottedareais thezone

of active compression of theeastern Japan Sea.(b)Same region 20m.y.ago. Reconstruction parameters areafterJolivet etal.[1991]andJolivetandTamaki[1992]. Abbreviations areTPF,Tym-Poronaisk fault;HSZ,HidakaShearZone;MTL, Median Tectonic Line;YBK,YamatoBank;YB, Yamato basin; YF, Yangsan Fault;TB,

Tsushima basin; TF,Tsushima fault;PAC,Pacific plate; andPHS,Philippine Seaplate.

centralrangeof Hokkaidoin northern Japan.It is separated fromtheAsianmainlandby theshallow waterTartarStrait,whichis thenorthernmost partof the JapanSea.To theeast,the OkhostkSeahasa

continental basement cutbynumerous faultsmaking submarine ridgesandtroughs[Marguliset al., 1979; Gnibidenko, 1985].In thesouthern partof the OkhotskSeais theKuril basin,whichis flooredwith

thickCenozoic sediments andoceanic crustpossibly

of Mioceneage[KimuraandTamaki,1985].To the west the Tartar strait is floored with thinned

continental crustcutby N-S trending faultsand blanketed bya thicksedimentary coverupto8 km [Antipovet al., 1980;H. S. Gnibidenko et al., manuscript in preparation, 1992].Furthersouth,the JapanSeaisdividedintothreemajorbasins floored withoceanic crust(Japan basin,deeper than3 km)or highlyintruded thinned continental crust(Yamato

andTsushima basins,deeperthan2 km) [Tamaki, 1985, 1988;Tamakiet al., 1990]. The Kuril trench continues to the south as the

JapantrenchuntilitsjunctionwiththeBonintrench southof thetrench-trench-trench triplejunction between thePhilippine Sea(PHShereafter), Pacific (PAChereafter), andEUR plates[Huchonand Labaume,1989].ThePacificplatesubducts westward at a velocityof about10cm/year[Seno, 1985].ThePhilippine Seaplatesubducts below southwest Japanat slowerrate(4 crn/year)[Ranken et al., 1984;Huchon, 1986].

Activedeformation isrecorded alongtheeastern marginof JapanSea,HokkaidoandSakhalinasa

diffuseseismic zone[FukaoandFurumoto,1975; Tamaki, 1988].Deformationis alsorecordedin the

Tsushima strait[Jun,1990],between Kyushu and Korea,aswellasonthecontinental sideof Japan

970

Jolivetet al.: Motionin the Okhotsk-Japan Searegion 140

145

!

Seain theBohaigulfregionalongmajorstrike-slip dexu'alfaults[ChenandNabelek, 1988].

TheJapanSeaopenedduringtheearlyandmiddle Mioceneaswasrecentlyshownby theresultsof OceanDrillingProgram legs127and128,which encountered oceaniccrustabout20 m.y. old [Tamaki,1990;Suyehiroet al., 1990].Figures2 and 3 showthepositionof sites794, 795 and797 where oceanicbasalticsills were recoveredand dated,with

thecorresponding agesafterKaneokaet al. [ 1992]. In theregionof theu'ench-trench-trench triple junction,theBoninarccollideswith cemxalJapan northof theIzu peninsula, andactiveintraoceanic thrustingoccurssouthof theNankaitrenchalongthe Zenisuridge[Le Pichonet al., 1987;Chamot-Rooke and Le Pichon, 1989; Lallemant et al., 1989; Taira et

al., 1989].Betweenthecollisionzoneandthetriple junction,fight-lateralmotionis activealongthe Sagamitrough.Therelativemotionof PHSrelative to Japanhaschangeddrasticallysince2 Ma [Huchon, 1985; Jolivetet al., 1989]. The direction

of thePHS-EURmotionvectorwasmorenortherly duringNeogeneandthenturnedto NW. We nowdescribethestructures observedalong the entire deformed domain from south to north. We

It.oi:ii L

distinguishtwo zonesof deformation.Oneis the easternmarginof JapanSeasensustricto(northeast Honshu,west Hokkaido, and offshore until Moneronislandwestof Sakhalin);the otheroneis the Central belt of Hokkaido and Sakhalin. EAST JAPAN SEA Late Miocene to Present

E-W compression is activealongtheeastern marginof JapanSea.The mostspectacular evidence is givenby frequentlargeearthquakes andactive

jA PAN % BA S I/v

faults recorded offshore Honshu, Hokkaido, and Sakhalin[Fukao andFurumoto, 1975; Tamaki,

1988].Figures2 and3 showthatthiszoneextends fromtheJapanSeacoastof centralJapanto thewest of Sakhalin.Faultplanesolutions indicateE-W compression andpurereversefaultmechanisms. Theseearthquakes areassociated with N-S trending active reverse faults. These are associated with the

Fig. 2. Tectonicmapof theentireshearzone:1, oceaniccrust;2, en 6chelonextensionalbasinsof

Mioceneage;3, directionof Miocenemaximum compression deducedfrom fault setanalysis;4, sameasfor 3 butintermediate compression; 6, strikeslipfaults;7, thrustfaults;and 8, normalfaults. Abbreviationsare esm, East Sakhalin Moutains; OP,

Oshimapeninsula;O, Ogapeninsula; N, Noto peninsula; IZU, Izu peninsula,TPF, Tym-Poronaisk Fault; MTL, Median Tectonic Line; TI•,

Tanakura

TectonicLine; ISTL, Itoigawa-Shizuoka Tectonic Line; HSZ, Hidaka Shear Zone, and TIT: u'ench• 145

_

u'ench-trench triplejunctionof CentralJapan.

Jolivetetal.' Motionin theOkhotsk-Japan Searegion

971

55

5O

.

4O

55

5O

105

!0

115

12_0

12_5

150

155

140

145

Fig.3.Compilation ofcrustal earthquakes focal mechanisms (compressional quadrant in black).After$avostin etal. [1981],Dziewonski etal.[1983],L. S.Oscorbin

[unpublished data, 1977], Chen andNabelek [1988], Jun[1990]. Shaded area represents

thezoneofE-Wcompression in theeastern Japan Sea. reactivation of Neogene en6chelon basins [Jolivet et

al.,1991].Activethrust faultsupliftnarrow ridges ofoceanic crestsuchastheOkushiri ridge[Tamaki, 1988]. Deepdrilling ontheridgeduring ODPleg 127revealed thatthecoarse-grained detrital supply stops ontheridgeat 1.8Ma because theridgewas upliftedabovethe bottomof thebasinat thistime

[Tamaki etal., 1990].Thisageisinterpreted asthe

inception ofsubduction ofJapan Sealithosphere. Active deformationis observedalsoonlandwhere

Neogene deposits arefoldedwithN-Strending fold axesandthrusts[AmanoandSato,1989;Sato,

1989].Earlystudies of verticalmovements of the northeast Honshu arcreveala periodof upheaval

from5 Matothepresent [Sugietal.,19•3].The paleostress field inferredfrom dike orientation

changes toE-W compression at7 Ma [Nakamura and Uyeda,1980;Takeuchi,1985].Neogene subsidence curveson themarginsof JapanSeaandat oceanic

sitesshow upliftfrom10Matothepresent [Ingle, 1992].Observation offaultsets intheNeogene depositsof westernHokkaidoandnortheastHonshu

indicates a change of maximumhorizontal compression from NE-SW to E-W betweenthe

middleandlateMiocene[Jolivet andHuchon,1989; Yamagishi andWatanabe, 1986;Otsuki,1989].The ageof beginning of E-W compression canthusbe

determinedto have occurredaround9 Ma.

Jolivetet al.' Motionin theOkhotsk-Japan Searegion

972

EarlyandMiddleMioceneDeformation This active deformation reworks a zone of

Miocenetranstension. The en &helongeometryof

Quaternary compressional basins isnotcompatible withthepresent stress field.Because a Miocene grabencropsoutonSadoislandwhichis parallelto theen &helonbasins,it is likely thattheyall

correspond toMiocene extensional basins. Theiren •chelonposition isthencompatible witha dextral obliqueextension [Jolivetet al., 1991].A similar geometry isobserved onlandin theUetsudistrict, wherefastriftingisobserved tohaveoccurred in the earlyMiocene[Yamaji,1989;1990].In general the ageof riftingontheeastern marginof JapanSeais considered tobeearlytomiddleMiocene[Suzuki, 1989;AmanoandSato,1989].The ageof formation of the oceanic basin offshore NE Honshu has been

recently revealed byODPleg 127:atsite794and 797earlyMiocene(20Ma to 16Ma) basalts were recoveredassillsinterbeddedwith deepwater

far south as Honshu. Recent evolution is

characterized byE-W compression andfastupliftof themetamorphic coreof thebelt,theHidaka mountains [Kimuraet al., 1983].SteepN-S trending thrusts separate it fromtheforelandto thewest, whereactivethrusting affectsPlioceneandrecent sediments of theSapporo-Tomakomai depression [Mitani,1978;YamagishiandWatanabe, 1986]. Oligocene toMiddleMiocenedeformation

An olderstageof deformation priorto theE-W compression is recognized onlyin sediments older thanlateMiocene;reverseandstrike-slipfaultsare associated with thisstage[JolivetandHuchon, 1989].The maximumhorizontalcompression trends

NE consistently fromsouthto north.Thisstageis characterized by theformation of NW trending en &helon foldsandthrustsin thenonmetamorphic zones[Kimuraet al., 1983] anda ductileshearzone (HidakaShearZone)in themetamorphic zone.

sediments.Intense basaltic intrusive and extmsive

JolivetandMiyashita [1985]interpreted thisductile

activity,around15Ma, is recognized in theAosawa regiononlandNE Honshu[Tsuchiya,1989,1990]. Faultsetanalysis indicates thatNW-SEextension prevailed withassociation of normalandstrike-slip

deformationasthe resultof dextralshearin a deep crustalenvironment.Jolivet and Huchon [1989]

faults until the end of the middle Miocene in NE

Honshuand Sadoisland [Jolivetet al., 1991].

Additionalobservations confirmthisgeometryin the Notopeninsula andYatsuobasinfurthersouth (Figure3). All faultsetdatafromSakhalinto Yatsuo basinwill bepublished separately [Fournier et al., papersubmitted to Journal of Geophysical Research, 1992].Right-lateral shearis notrestricted tothe JapanSeacoastal area,sinceCretaceous left-lateral shear zones such as the Tanakura Tectonic Line were reactivated in Miocene time as dextral faults

[Koshiya,1986]. The direction of horizontal maximum

compression of Miocene ageremains constant from Yatsuoto Rebunisland,but it corresponds to c2

(intermediate principal stress) in thesouth ando• in

the north. In Rebun island and Hokkaido, NE

trending compression prevails withstrike-slip and

reversefaults [JolivetandHuchon,1989]. To summarize, theeasternmarginof JapanSea wasthesiteof dextralobliqueextension in earlyand middleMiocenetime.Meanwhile,oceanicspreading wasoccurring in YamatoandJapanbasins. By the endof themiddleMiocenea sharpchangein stress fieldoccurred. E-W compression tookplaceonthe samezone.By theearlyQuaternary, subduction began,andthrustfaultsaffectedtheoceanic back-arc region. HOKKAIDO

CENTRAL

BELT

related the en •chelon folds and thrusts and the ductile shear zone to a crustal-scale half flower

structure builtalonga transpressional dextralstrikeslipcrustal faultof Oligocene tomiddleMiocene age. Thisinterpretation is roughlyconsistent withthatof Kimuraet al. [ 1983] in termsof kinematics(dextral obliquecollision). Recentpaleomagnetic

investigations in Hokkaidoconf'mu thisinterpretation [Kodamaet al., 1990].The dextraltranspression is observed till RebunislandontheJapanSeamargin offshore northernmost Hokkaido. East of the

Hokkaidocentralbelt,N-S trendingdextralfaultsare relatedto theformationof smallpull-apartbasinsin Miocenetime[WatanabeandIwata, 1985;Watanabe, 1988]. SAKHALIN

The Hokkaido central belt extends northward

through Sakhalin island.EastSakhalin Mountains is a tectonic mapof Sakhalinderivedfromtheexisting geological mapat 1/1000000scale,Rozhdestvenskiy [1983, 1986],K. F. Sergeyev(unpublished data, 1990) andour own field observations andLandsat imagesanalysis. The mostprominentstructure is the Tym-Poronaisk fault,whichrunsN-S for morethan 600 km. OtherN-S trendingfaultsarerecognized

eastof theTym-Poronaisk fault,buttheyare probablylessactive.FollowingRozhdestvenskiy [1982] andKimura et al. [ 1983] we recognizein Sakhalinthesamedextralstrike-slipdeformation

alreadydescribed in HonshuandHokkaido,butthe recentE-W compression doesnotshowobviouslyin

Late Mioceneto PresentDeformation

the structures.

TheN-S trendingHokkaidocentralbeltwasbuilt throughpolyphase evolutionfromtheMesozoicto thepresent.A drasticchangein thedeformation regimeoccurredat theendof themiddleMioceneas

NeogeneDeformation

Figure4 summarizes theCenozoic structures of Sakhalin,andFigure5 showsthefeaturesseenon

Jolivetet al.: Motionin theOkhotsk-Japan Searegion

973

the Landsat mosaic as well as focal mechanisms of

SCHMID•

shallowearthquakes. The Tym-Poronaisk fault dividesSakhalinin twoparts:WestSakhalin Mountains and East Sakhalin Mountains.

The Cenozoicsequence is roughlysimilaron both sidesof thefault.It beginsin theupperOligocene withcoarseconglomerate andfinesupwardinto lower Miocene sandstone and middle Miocene

siltstone andsiliceous claystone[Melnikov,1987]. The wholesequence is intrudedby basicdykesand sills, and basalticlavas and brecciaconstitutethe end of the middle Miocene. The late Miocene and Pliocene are made of mffaceous siltstone and sandstone.

..

The WestSakhalinMountainsrepresentthe northernextensionof the central belt of Hokkaido; in

generalfaciesaresimilarto thoseof the CentralBelt thoughlessdeepin general[Melnikov,1987].The

Cretaceous isrepresented by forearcdeposits with abundant terrestrial and volcanic detritus. In the East

SakhalinMountains, Cenozoic deposits areundedain by a complexsystem of thrusts slicescomposed of oceanicmaterialof Late Jurassicto Cretaceousage, partlymetamorphosed underhigh-pressure lowtemperature conditions [Rozhdestvenskiy, 1986].G. Kimuraet al. (manuscript in preparation, 1992) describethissystemasa Cretaceous accretionary complex.It is thenorthernextensionof the

_ 500

Kamuikotan

zone of Hokkaido.

Westof thefault andimmediatelyeastof it, Cretaceousand Cenozoic sedimentsare folded; the

NW trendingaxesof the foldsdistributedwith a dextralen6chelonpattern[Rozhdestvenskiy, 1982; Melnikov, 1987]. The folds axes are curvedcloseto

_48

o

o

•'

thefault,thusgivinga sigrnoidalshapecompatible with dextraldisplacement. The faultis a verysharp featureclearlyseenon Landsatimages.The fault planeitselfoccursbetweenCretaceous sediments or lavasandMiocenesandstones. It is usuallya N-S trendingverticalplanewithhorizontalstriationand evidence of dextral motion. In the East Sakhalin

"::i::'t .....-•1

;:•x '"•"

TONINO-

•],.I •-ANIWA PEN.

460 C. KRILION

1420

1440

I

Fig. 4. Tectonicmapof Sakhalinafterthegeological mapof Sakhalin,Rozhdestvenskiy [1982], analysis of Landsatimages(M. Fournieret al., paper submitted to Journalof Geophysical research, 1992) andK. F. Sergeyev(unpublished data,1990). Dashed lines are Cenozoic folds axes seen in the

Cretaceousto Miocene sediments;dottedlines are

axesof postfoliation openfoldsseenin theMesozoic metamorphic complexof theEasternSakhalin Mountains.

Mountains,N-S trendingsteepfaults(Central, Pribrezhnaya, andLimanfaults)cut throughthe Mesozoicaccretionary complex.They areassociated with narrowMiocenesedimentary basinswhichare arrangeden 6chelon.A smalldextralpull-apartbasin is seenon LandsatimagesalongtheNorth-Sakhalin fault.Rozhdestvenskiy [ 1982]showsthatthecontact betweena metamorphic complexand nonmetamorphosed sediments is offsetdextrallyby 25 km. DextraloffsetalongN-S trendingfaultsis alsoobservedin Schmidtpeninsulain thevery north of Sakhalin.

We performedfaultsetanalysisalongandaround theTym-Poronaisk fault.All dataarecompatible with NE trendinghorizontalcompression (Figures2 and5). Faultsetanalysis[Fournieret al., paper submitted to Journalof Geophysical Research,and Figure5] showsanE-W trendingcompression at severalsitesalongthefault,it is howeveralways associated with curved fold axes with the dextral en

6chelonpattern.Thedirectionof compression is

974 1440

elsewhere NE-trending andalwaysperpendicular to foldaxes. E-Wcompression therefore corresponds torotatedsitesandtheoriginaldirection of

compression (Figure 2) wasthusNE.Thisisin goodagreement withthetrendoffoldaxesand SCHMIDT

strike-slipfaults.

Our observations of the deformationin the

accretionary complex below theCenozoic deposits of theEastSakhalinMountainsreveala fu:ststagewith

Fault

Suspected fault

Bedding strike -•

Bedding dip

............. Miocene



volcanlcs

Principal stress directions

layer-parallel shear ofprobable Mesozoic age [Kimura etal.,in prep.]followed bya second stage of upright foling.ThesefoldstrendNW andare compatible withthesame NEtrending compression whichgavetheen6chelon foldsofWestSakhalin. We thusattributethesefolds alsoto the Cenozoic

stageandthestrike-slip motion. A recentcompilation of seismic dataallowed H. S. Gnibidenkoet al. (manuscript in preparation,

1992]todrawa precise isopach mapof Cenozoic

•"

+

520

sediments in theTartarStrait.Oneprominent feature

isa deeprhombohedral basin (Figure 2) bounded by NS-trending vertical compressional faultsandNE trending normal faultsandfilledwithmorethan8 km of Cenozoic deposits. Theoverallshape of thebasin and the natureof the faultslead us to the conclusion

thatit corresponds toa dextral pull-apart. Thisshows thatalargepartofthedextral motion waslocalized in the Tartar Strait.

ActiveDeformation

Faultplanesolutions of earthquakes in Sakhalin (L. S. Oscorbin, unpublished data)showtwokinds of mechanisms (Figures3 and5), bothbeing

Fig.5. Mapof Sakhalin showing thefeatures seen

on theLandsatmozaicafterM. Foumieret al. (paper

submitted to Journalof Geophysical Research, 1992).Paleo-stress-field horizontal directions deduced fromfaultsetanalysis areplotted.Fault

planesolutions ofsuperficial earthquakes (depth

lowerthan30 km)determined byL. S. Oscorbin (T-

quadrants inblack), andFukaoandFummoto [1975] (T-quadrants vertically ruled)andcentroid moment tensors determined byDziewonski et al. [ 1985, 1987](T-quadrants horizontally ruled)areshown. Radii of focal mechanismsare a function of the

magnitude (surface waves) ofearthquakes except for

Dziewonskiet al. [ 1985, 1987]. Concerning

Oscorbin data,wekeptthemaineventonlywhen

two focal mechanismswere determinedfor the same

earthquake. Thetwocentroid momenttensors determined byDziewonski et al. [1985,1987] correspond totwoearthquakes whichfaultplane solutions haveindependantly beendetermined by Oscorbin (in orderto simplifyweindicate only Oscorbin's epicenter locations). P axesarealmost similarin eachcase,andT axesof Diewonskiet al.s focalmechanisms aresteeper sothattheyindicate compressional motionwhenOscorbin's indicate strike-slipmotion.

Jolivetet al.' Motion in the Okhotsk-Japan Searegion

compressional: strike-slipandreversefaults.Several mechanisms located close to the main fault trace are

compatiblewith dextralmotionalongthe fault. Rozhdestvenskiy [1986]describes a changein the stresspatternin Pliocenetime from dextralwrench alongtheTym-Poronaisk fault to E-W compression. As describedabove,thefault setanalysisdoesnot revealE-W compression exceptperhapsin thesouth, andall structures observedat largescaleare compatiblewith dextralmotion.The existenceof dextralfaultplanesolutions leadusto thinkthat dextralwrenchis stillactivein Sakhalin,asalready statedby Savostinet al. [1983].

975

Therefore,if the dextral motion is correlatedwith

theJapanSeaopening,severalhundredkilometersof dextraldisplacement areexpected.Reconstructions of thepre-opening situation[JolivetandTamaki, 1992] showa totaloffsetsince25 Ma of about400 km. Thereis no directevidenceconcerningthe total

dextraloffset.OnlyRozhdestvenskiy [1982] describes a 25-km offsetalongonefault in theEast Sakhalin Mountains. As the deformation is

distributed on severalmajorfaultsthetotal displacement is mostlikelymuchlarger.The TymPoronaisk, beingthemajoronshorefault,probably accommodated thelargestdisplacement butcertainly not more than a few tens of kilometers. So, the

DISCUSSION

FromcentralJapanto thenorthof Sakhalin, along morethan2000 km, we recognizea narrowdomain of strain localization with evidence of dextral motion

in Miocenetime.It is thusa majorfeatureof the deformationof easternAsia, and it is worth

discussing its evolutionwith time. Present-DayActivity

AlthoughE-W compression is obviousin the south,in theback-arcregion,with numerouslarge compressional earthquakes andothercompressional features,it is not as clear in the north. Dextral

motionisprobablystillactivein Sakhalin,exceptin theverysouth(theMoneronearthquake is similarto thoseoff HokkaidoandHonshuandcorresponds to thenorthernmost extensionof theEastJapanSea nascentsubductionzone).

MioceneDeformation

In thenorththestrike-slipdeformation is transpressional andlocalizedalonga very narrow zone,characterized by en 6chelonfoldsandthrusts andonemajordiscontinuity, theTym-Poronaisk

fault.Furthersouthit becomes moretranspressional in the Hidaka mountains where the shear zone curves

towarda morewesterlytrend.Ductilepartsof the shearzonewerethereupliftedduringthedextral shear.Thistranspressional zonecontinues in the southwest asa transtensional onealongtheeastern marginof JapanSea.It is characterized by en 6chelongrabenanddextraltransferfaultswhichwere laterreactivated ascompressional structures. The dextralshearin HokkaidoandJapanSeamargin endedabout10 m.y. agoandis contemporaneous withthedeposition of earlyto middleMiocene sediments. It is thusexactlycontemporaneous with theopening of JapanSea.Figurelb showsa reconstruction of thestrike-slip shearzonein early

Miocene t/meduringanearlystageof JapanSea opening[afterJolivetet al., 1991;Jolivetand Tamaki,1992].It is contemporaneous with the

rotation of SWJapan deduced frompaleomagnetic data[Otofujiet al., 1985].The dextralshearzone extends to the south as a dextral fault between SW

JapanandKorea [Sillitoe, 1977].

largestpartof thedextralmotionmustbe takenup alongtheTartar Straitwherethecrustis thinner. It is noticeable that the dextral shear zone is

nowherecompatible with thePAC-EURrelative motion.Furthermore,it extendsnorthwardvery far from the subduction zoneandtrendsat a largeangle to thetrenchsystem.It is thusunlikelythatit represents a back-arcstrike-slipfault suchasthe Philippineor Sumatrafaultswhichaccommodate the obliquityof themotionvector[HuchonandLe Pichon,1984].Suchobliquityis observedin the Kuril trenchat presentandis accommodated by a ENE-WSW dextralfaultparallelto theKuril arc, whichcutsthrougheasternHokkaido[Kimura, 1986].It is almostperpendicular to thetrendof the majordextralshearzone. The dextral shear zone was turned into a

compressional zonein theback-arcregionabout10 m.y. ago.This datecorresponds to the end of the JapanSeaopeningandis slightlyyoungerthanthe arrivalof thetriplejunctionin itspresentposition [Jolivetet al., 1989].The compression is restricted to theback-arcregionnorthto thecentralJapantriple junction.Far off thetriplejunction,eitherin Sakhalin or in Korea,andalsoon thecontinental sideof Japan Sea,thedeformation is stilldextral(Figure3) [Chen andNabelek,1988;Jun,1990].Southof thetriple junction,extensionis activein theBoninarc.This suggests thatcompression is dueto thelocalplate configuration in thetriplejunctionregionand/orthe degreeof platecouplingalongthesubduction zone andis notcharacteristic of themoregeneraltectonic contextof easternAsia.FollowingKimuraand Tamaki[1986]andJolivetet al. [1990],we suggest thattheSakhalin-East JapanSeais oneof themajor dextralfaultscreated in theAsiancontinent during theIndia-Asiacollision.Figure3 showsthatother dextralfaults whichare still active,existwestof it. ChenandNabelek[1988] showedthatdextral motionhasbeenactivein theBohaigulfregionalong NNE trendingfaults.Jun[1990] describes focal mechanisms alongtheTsushima faultwhichare compatiblewith dextralshear.This shearzone reactivated in Miocene time the Mesozoic suture that

runsalongHokkaidoandSakhalin.Far fromthe subduction zoneit was,andstillis, a transpressional wrench fault, and it turned to a transtensionalone in

theback-arc regionbecause extensional tectonics was prevailingthere.At thattimeall majorback-arc

976

Jolivetet al.' Motionin theOkhotsk-Japan Searegion

basinswereopening(JapanSea,Shikokubasin, SouthChinaSea,andpossiblyKuril basin),which

Aknowledgements: Specialthanksaredueto Helios Gnibidenko,RimmaKovalenko,andOleg

indicates that extensional conditions were active all

Melhnikov

alongthewesternPacificmarginbehindthe subruction zone.The formationof thisstrike-slip shearzonedisturbedtheback-arcextension,giving riseto thepull-apangeometrywe nowobserve. Extensionin theback-arcregionwaslinkedwith the mechanics of stress couplingalongthesubruction zone,andstrike-slipwith internaldeformation of

Sakhalinsk, andfor field guidanceanduseful comments.We alsowishto expressour thanksto GakuKimuraandKoji Okumura,who wereour pannersduringthe field surveyin Sakhalin.This studywasfundedby CentreNationalde la Recherche Scientifique-Institut NationaldesSciences del'Univers(programme Dynamiqueet Bilande la Terre,DBT). Thispaperis DBT contribution 417.

Asia due to collision with India.

for their warm welcome in Yuzhno-

REFERENCES Amano,K. andH. Sato,Neogene tectonics of the centralpartof northeast Honshuarc,Mem. Geol. Soc.Jpn.,32, 81-96, 1989.

Tamaki,K., Suyehiro,K., Allan,J. et al., 1992, Proc.ODP,Sci.Results, 127-128,in press, 1992.

Kodama,K., T. Takeuchiand T. Ozawa,

Palcomagnetism of EarlyCretaceous to Neogene deposits in CentralHokkaido,Japan:block Antipov, M.P.,V.M. Kovylin,and V.P.Filat'yev,Jolivet, L., America-Eurasia plateboundary in rotationcaused by strike-slip faultmovement (abstract), EosTrans.AGU, 71 (28), 865, 1990. Sedimentary coverof thedeepwaterbasins of eastern Asiaandthe opening of marginal Koshiya,S., TanakuraShearZone,the deformation Tatarstrait andthenorthern partof theseaof basins. EarthPlanet.Sci.Lett.,81,282-288, Japan,lnt. Geol.Rev.,22, 1327-1334,1980. 1986. process of faultrocksandits kinematics, J. Chamot-Rooke, N., andX. Le Pichon, Zenisu Jolivet,L., and P. Huchon, Crustal scalestrikeGeol. Soc.Jpn.,92, 15-29, 1986. ridge:mechanical modelof formation, slipshearzonein Hokkaido, Northeast Japan, Lallemand,S., andL. Jolivet,JapanSea,a pull

Tectonophysics, 160, 175-194,1989. Chapman M. C.,andS. C. Solomon, North

J. Struct. Geol.,11,509-522,1989. apartbasin, EarthPlanet.Sci.Lett.,76, 375Jolivet, L., andS.Miyashita, TheHidaka Shear 389, 1985. American-Eurasian plateboundaryin northeast Zone0tokkaido, Japan), genesis during a right- Lallemant, S.,N. Chamot-Rooke, X. LePichon,

Asia,J. Geophys.Res.,81,921-930, 1976. Chen,W. P. and J. Nabelek,Seismogenic strikeslipfaultingandthedevelopment of theNorth China basin,Tectonics,7, 975-989, 1988. Cook, D.B., K. Fujita, andC. A. Mac Mullen,

Presentdayplate interactions in northeast Asia: North America, Eurasianand Okhotsk

plates.J. Geodyn.,6, 33-51, 1986. Dziewonski,A.M., A. Friedman,D. Giardini,and

J.H. Woodhouse, Globalseismicityof 1982: centroid moment tensor solutions for 308

earthquakes, Phys.Earth Planet.lnt., 45, 1136, 1983.

Dziewonski,A.M., J. E. Franzen,and J. H.

lateral strike slipmovement, Tectonics, 4,289-

andC.Rangin, Zenisu ridge: a deep intraoceanic

302, 1985.

thrustrelatedto subduction, off Southwest

Jolivet, L.,andK.Tamaki, Neogene kinematics in Japan, Tectonophysics, 160,151-174, 1989. theJapan searegion andvolcanic activity ofthe LePichon, X.,J.T. Iiyama, J.Boul•gue, J. northeast -Japan aro,In Tamaki,K., Suyehiro, K., Allan, J. et al., 1992,Proc. ODP, Sci.

Results,127-128, in press,1992. Jolivet,L., P. Davy, andP. R. Cobbold,Rightlateral shearalongthe northwestPacificmargin and the India-Eurasia collision, Tectonics,9, 1409-1419, 1990.

Jolivet,L., P. Huchon,and C. Rangin,Tectonic settingof westernPacificmarginalbasins, Tectonophysics, 160, 23-48, 1989.

Charvet,M. Faure,K. Kano,S. Lallemant,H. Okada,C. Rangin,A. Taira,T. Urabe, andS. Uyeda,NakaitroughandZenisuridge:a deepsea

submersible survey,EarthPlanet.Sci.Lett.,83, 285-299, 1987.

Margulis,L.S., Mudretsov,V.B., Sapozhnikov, B.G., Fedotov,G.D. & Khvelauk,I.I., 1979, Geologicalstructure of thenorthwestern partof the sea of Okhotsk.lnt. Geol. Rev., 22, 10941102, 1979.

Woodhouse, Centroid-moment tensorsolutions Jolivet,L., P. Huchon,J.P. Bran,N. ChamotMelnikov,O.A., Structureandgeodynamics in Rooke, X. Le Pichon and J.C. Thomas,Arc HokkaidoandSakhalin,in Russian,Nauka, 95 for October-December 1984,Phys.EarthPlanet. deformation and marginalbasinopening;Japan Inter., 39, 147-156, 1985. pp., 1987. Seaasa casestudy,J. Geophys. Res.,96, 4367- Mitani, K., Changingof the Tertiarysedimentary Dziewonski,A.M., G. Ekstrom,J. E. Franzen,and 4384, 1991. basins in the western flank of the axial belt of J. H. Woodhouse, Globalseismicityof 1979: centtold-moment tensor solutions for 524 Jun,M. S., Sourceparameters of shallowintraplate Hokkaido-beatinga significance of the earthquakes in andaroundtheKoreanpeninsula earthquakes, Phys.Earth Planet.Inter., 48, 18Sunagawalowlandto UmaoiHilly belt,Assoc. andtheirtectonicimplication, Acta Univ. Ups., 46, 1987. Geol.Collab.Jpn.Monogr.21, 127-137, Comp.Sum.of UppsalaDiss.Fac. Sci., 285, 16 1978. Fukao,Y., andM. Fummoto,Mechanisms of large earthquakes alongthe eastemmarginof the

pp., 1990.

Japan sea,Tectonophysics, 25, 247-266,1975. Kaneoka, I., Takigami, Y., Takaoka, N., Gnibidenko,H. S., The Sea of Okhotsk-Kuril

islandsridgeandKuril-Kamchatka trench,in The OceanBasinsandMargins,vol. 7A, edited

by A.E.N.Naim et al., pp.377-418,Plenum,

Yamashita,S. and Tamaki, K., 40Ar-39Ar analysesof volcanicrocksdrilled from the

JapanSeafloorby Legs127/128,In Tamaki, K., Suyehiro,K., Allan, J. et al., 1992, Proc.

ODP, Sci.Results,127-128,in press,1992. andcollision; Huchon, P.,Grodynamique dela zonedecollision Kimura,G., Obliquesubruction forearctectonics of the Kuril arc,Geology,14, d'IzuetdupointtripleduJaponCentral,Th•se New York, 1985.

de Doctoral,Univ.Pierreet Marie Curie,Paris, 414 pp.,1985. Huehon,P., Commenton "Kinematicsof the

Philippine seaplate"by B. Ranken,R. K. CardwellandD. E. Karig.Tectonics, 5, 165168, 1986.

Huchon, P.,andP. Labaurae, Central Japan triple junction:a three-dimensional compression model,Tectonophysics, 160, 117-133, 1989. Huchon,P. andX. Le Pichon,Sundastraitand

404-407, 1986. Kimura,G., andK. Tamaki,Tectonicframeworkof the Kuril arc since its initiation,in: Formation

of ActiveOceanMargins,editedby N. Nasuet al., pp. 641-676,Terrapub, Tokyo,641-676, 1985.

Kimura, G., and K. Tamaki, Collision,rotationand

backarc spreading; thecaseof theOkhotskand Japanseas,Tectonics,5, 389-401, 1986. KimuraG., S. Miyashita,andS. Miyasaka,

CentralSumatra Fault, Geology,12, 668-672,

Collisiontectonicsin Hokkaido and Sakhalin,

1984.

in Accretion Tectonics in theCircum-Pacific Regions,editedby M. Hashimoto andS. Uyeda, pp. 117-128,Terrapub,Tokyo, 1983.

Ingle,J. C., Subsidence of theJapanSea:evidence fromODPsitesandonshore sequences, In

Nakamura,K., Possiblenascenttrenchalongthe

eastern Japanseaas theconvergent boundary betweenEurasiaandNorthAmericanplates(in Japanese with Englishabstract), Bull. Earthquake Research Inst.Univ.Tokyo,58, 721-732.

1983.

Nakamura, K. andS. Uyeda,Stress gradient in backarcregions and platesubduction, J. Geophys.Res.,85, 6419-6428, 1980. Otofuji, Y., T. Matsuda,andS. Nohda, Palcomagnetic evidences for the Miocene counterclockwiserotationof northeast Japan-

riftingprocess of the Japanarc,Earth P!anet.Sci.Lettt., 75, 265-277, 1985. Otsuki,K., Reconstruction of Neogenetectonic stress field of Northeast Honshu arc from

metalliferous veins.Mem. Geol. Soc.Jpn.,32, 281-304, 1989.

Ranken,B., R. K. Cardwell,andD. E. Karig,

Kinematics of the Philippine seaplate. Tectonics, 3, 555-575, 1984.

Rozhdestvenskiy, V. S., Theroleof wrenchfaults in the structure of Sakhalin,Geotectonics, 16, 323-332, 1982.

Jolivetetal.'Motionin theOkhotsk-Japan Searegion Roz.hdestvenskiy, V. S., Evolutionof the Sakhalin Suzuki,K., On the LateCenozoichistoryin the southernpart of northeastHonshuin Japan, fold system,Tectonophysics, 127, 331-339, 1986. Mere. Geol. Soc.Jpn.,32, 97-112, 1989. Sato,H., Degreeof deformation of Late Cenozoic Taira,A., H. Tokuyama,andW. Sob,Accretion stratain the NortheastHonshuare, Mere. Geol. tectonicsandevolutionof Japan,In The Evolutionof thePacificOceanMargin,edited Soc. Jpn.,32, 257-268, 1989. by Z. Ben-Avraharn, pp. 160-123,Oxford Savostin, L.A.,andA.M. Karasik, Recentplate tectonics of the Arctic basin and of UniversityPress,100-123,New York, 1989. Takeuchi,A., On theepisodic vicissitude of northeastern Asia, Tectonophysics, 74, 111145, 1981.

Savostin,L., L. Zonenshain,and B. Baranov, Geologyandplate tectonics of theSeaof

Okhotsk,in: Geodynamics of the Western Pacificand IndonesianRegion,Geodyn.Ser., vol. 11, W.C.T. Hilde andS. Uyeda,pp. 343354, AGU, Washington, D.C., 1983.

Seno,T., Is NorthernHonshua microplate?, Tectonophysics, 115, 177-196,1985. Sillitoe,R. H., Metallogeny of an Andean-type continental marginin SouthKorea, implications for opening of theJapanSea,in IslandArcs,DeepSeaTrenches andBackArc Basins, MauriceEwingSet.,vol. I, editedby

tectonic stress field of the Cenozoic northaest

Watanabe,Y., andK. Iwata,The ageof the MioceneKamishiyubetsu formationin northern Hokkaidoandthe basinsformedby tectonic movements, J. Geol. Soc.Jpn.,91,427-430, 1985.

Yamagishi,H., and Y. Watanabe,Changeof stress field of Late Cenozoic

Southwest

Hokkaido,Japan,- investigation of geologic faults,dykes,ore veinsandactivefaults, Monogr.Geol. Collab.Jpn.,31, 321-332,

Honshuarc,Japan,in Formationof Active OceanMargins,editedby N. Nasuet al., Terrapub,pp. 443-468,Tokyo,, 1985. Tamaki,K., Twomodesof backarcspreading,

Yamaji,A., Geologyof theAtsumiareaandEarly Mioceneriftingin the UetsuDistrict,Northeast Japan,Mere.Geol. Soc.Jpn.,32, 305-320,

Geology,13, 475-478, 1985. Tamaki,K., Geologicalstructure of theJapansea andits tectonicimplications, Bull. Geol. Surv.

Yamaji,A., Rapidintra-arcriftingin Miocene northeast Japan,Tectonics,9, 365-378,1990.

1986.

1989.

Jpn.,39, 269-365, 1988.

Tamaki,K., Proc.OceanDrillingProgramInitial Rep., 127, 1990. Tsuchiya,N., Submarinebasaltvolcanismof Miocene Aozawa formation in the Akita-

M. Talwani and W.C.Pitman 11I,pp.303-310,

Yamagata oil field basin,back-arcregionof Northeast Japan,Mere.Geol.Soc.Jpn.,32,

AGU, Washington, D.C., 1977.

399-408, 1989.

Sugi,N., K. Chinzei, andS. Uyeda,Verticalcrustal Tsuchiya, N., MiddleMiocene back-arc rift movements of northeast JapansinceMiddle magmatism of basaltin theNE Japan arc,Bull. Miocene. in:Geodynamics of theWestern Geol.Sum.Jpn.,41,473-505,1990. Pacificand lndonesian Region, Geodyn. Ser., Watanabe, Y., Deformation structure of the vol.I 1,W.C.T.HildeandS.Uyeda, pp.317Uenshiri horstin theHidaka belt,Central 329,AGU,Washington, D.C., 1983. Hokkaido, J. Geol.Soc.Jpn.,94, 527-533, Suyehiro, K.,etal.,Proc.Ocean DrillingProgram 1988. Initial Rep.,128, 1990.

977

M. Fournier,P. Huchon,and L. Jolivet,

Drpartement de G6ologie,EcoleNormale Suprrieure,24 Rue Lhomond,75231 Pariscedex, France.

L. S. Oscorbin,V. S. Rozdhdestvenskyi, and K.F. Sergeyev, Instituteof MarineGeologyand Geophysics, Far EastScienceCenter,YuzhnoSakhalinsk, USSR.

(ReceivedJanuary23, 1991; revisedDecember18, 1991; acceptedFebruary10, 1992.)