Chapter 4 (Laplace transforms): Solutions

192 downloads 9214 Views 40KB Size Report
Solution 4.2(a). Use partial fractions, i.e. set s s 3 s 5. A s 3. B s 5 s. A s. 5. B s. 3. Using the cover−up method for example we see that. A. 3. 2. , B. 5. 2 . Hence.
Chapter 4 (Laplace transforms): Solutions (The table of Laplace transforms is used throughout.)

Ÿ Solution 4.1(a) 1 y j À Hsin H4 tL cos H2 tLL = À i z j €€€€ sin H4 tLz { k2 1 = €€€€ À H sin H4 tLL 2 1 4 = €€€€ €€€€€€€€€€€€€€€€€€ 2 2 s + 16 2 = €€€€€€€€€€€€€€€€€€ . 2 s + 16

Ÿ Solution 4.1(b) 2 y ii1 z t -t y z j z j À H cosh 2 HtL L = À j €€€€ H ã ã L z j z j z j 2 { { kk

1 ã-2 t y i ã2 t j z =Àj j €€€€€€€€€€ + €€€€ + €€€€€€€€€€€€ z z 2 4 { k 4

1 1 1 1 1 1 = €€€€ × €€€€€€€€€€€€€€€ + €€€€ × €€€€ + €€€€ × €€€€€€€€€€€€€€€ 4 s - 2 2 s 4 s + 2 s2 - 2 = €€€€€€€€€€€€€€€€ €€€€€€€€€ . s Hs2 - 4L

Ÿ Solution 4.1(c) 1 y j À Hcos Ha tL sinh Ha tLL = À i z j €€€€ Hãa t - ã-a t L cos Ha tLz { k2 1 = €€€€ À Hãa t cos Ha tL - ã-a t cos Ha tL L 2 1 i s-a s+a j €€€€€€€€€€€€€€€€ = €€€€ j €€€€€€€€€€€€€€€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€ €€€€€ 2 2 2 j Hs aL + a Hs + aL2 + a2 k a s2 - 2 a3 = €€€€€€€€€€€€€€€€ €€€€€€€€€€ . s4 + 4 a4

Ÿ Solution 4.1(d) 2 À Ht2 ã-3 t L = À Hã-3 t t2 L = €€€€€€€€€€€€€€€€ €€€€€ . Hs + 3L3

y z z z {

Ÿ Solution 4.2(a) Use partial fractions, i.e. set s A B €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€€€€€ = €€€€€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€€€ Hs + 3L Hs + 5L Hs + 3L Hs + 5L

–

s = A Hs + 5L + B Hs + 3L

Using the cover−up method for example we see that 3 5 A = - €€€€ , B = €€€€ . 2 2

Hence s 3 1 5 1 €€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€€ €€€€€€€€€ = - €€€€ × €€€€€€€€€€€€€€€€€€ + €€€€ × €€€€€€€€€€€€€€€€€€ Hs + 3L Hs + 5L 2 Hs + 3L 2 Hs + 5L

5 3 y+Ài y. j j =Ài z j €€€€ ã-5 t z j - €€€€ ã-3 t z z { k 2 k 2 {

And so the inverse Laplace transform s i À-1 j €€€€€€€€€€€€€€€€€€€€ j €€€€€€€€€€€€€€€€ k Hs + 3L Hs + 5L

3 5 y z z = - €€€€ ã-3 t + €€€€ ã-5 t . 2 2 {

Ÿ Solution 4.2(b) Use partial fractions, set 1 A Bs+C €€€€€€€€€€€€€€€€ €€€€€€€€€€€€ = €€€€ + €€€€€€€€€€€€€€€€€€ 2 2 s Hs + k L s s2 + k2

–

1 = A Hs2 + k2 L + HB s + CL s

–

1 = A s2 + A k2 + B s2 + C s

–

1 = HA + BL s2 + C s + A k2

Equating coefficients of s2 : ”

A+B=0

s1 :

” C=0

s0 :

1 ” A = €€€€€€€€ k2

1 Using the first equation we see that B = - €€€€€€ k2 , and hence

1 1 1 1 s €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€ = €€€€€€€ × €€€€ - €€€€€€€ × €€€€€€€€€€€€€€€€ €€€€€€€€ 2 2 2 2 2 s Hs + k L k s k Hs + k2 L s 1 i1 y €€€€€€€€ z = €€€€€€€€ j j €€€€ - €€€€€€€€€€€€€€€€ z 2 2 Hs + k2 L { k ks

1 = €€€€€€€€ À H1 - cos Hk tLL. k2

And so the inverse Laplace transform 1 1 i y €€€€€€€€€€€€€ z H1 - cos Hk tLL. À-1 j j €€€€€€€€€€€€€€€€ z = €€€€€€€€ 2 2 k2 k s Hs + k L {

Ÿ Solution 4.2(c) 1 €€€€€€€€ , note that from the table of To find the inverse Laplace transform of €€€€€€€€ Hs + 3L2 1 Laplace transforms, the Laplace transform of t is €€€€€€ s 2 , and so if we apply the 1 -3 t €€€€€€€€ . Hence shift theorem, the Laplace transform of ã t must be €€€€€€€€ Hs + 3L2

1 i y -3 t j z €€€€€€€ z . À-1 j j €€€€€€€€€€€€€€€€ z=tã 2 k Hs + 3L {

Ÿ Solution 4.3 To solve the initial value problem y ’’ + y = t, y H0L = 0, y ’ H0L = 2;

we take the Laplace transform of both sides of the differential equation ” À Hy ’’ HtL + y HtLL = À HtL –

À Hy ’’ HtLL + À Hy HtLL = À HtL

1 – s2  y HsL - s y H0L - y ’ H0L +  y HsL = €€€€€€€ s2 1 – s2  y HsL - 2 +  y HsL = €€€€€€€ s2 1 – s2  y HsL +  y HsL = €€€€€€€ + 2 s2 1 – Hs2 + 1L  y HsL = €€€€€€€ + 2 s2 1 2 –  y HsL = €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€ . s2 H s2 + 1L H s2 + 1L

Using partial fractions, we set 1 A B €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€ = €€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€ 2 2 2 2 s H s + 1L s H s + 1L

Using the cover−up method (first set s=0 and then s2 =−1) we find that A = 1, B = -1. Hence 1 1 2  y HsL = €€€€€€€ - €€€€€€€€€€€€€€€€ €€€€€ + €€€€€€€€€€€€€€€€ €€€€€ s2 Hs2 + 1L Hs2 + 1L – –

1 1  y HsL = €€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€ 2 2 s Hs + 1L y HtL = t + sin HtL.

Ÿ Solution 4.4 To solve the initial value problem y ’’ + 2 y ’ + y = 3 t e- t , y H0L = 4, y ’ H0L = 2;

we take the Laplace transform of both sides of the differential equation ” À Hy ’’ HtL + 2 y ’ HtL + y HtLL = À H3 t e- t L

– À Hy ’’ HtLL + 2 À Hy ’ HtLL + À Hy HtLL = 3 À Ht e- t L 1 – s2  y HsL - s y H0L - y ’ H0L + 2 Hs  y HsL - y H0LL +  y HsL = 3 €€€€€€€€€€€€€€€€ €€€€€ Hs + 1L2 1 – s2  y HsL - 4 s - 2 + 2 Hs  y HsL - 4L +  y HsL = 3 €€€€€€€€€€€€€€€€ €€€€€ Hs + 1L2 1 – s2  y HsL + 2 s  y HsL +  y HsL = 3 €€€€€€€€€€€€€€€€ €€€€€ + 10 + 4 s Hs + 1L2 1 – Hs2 + 2 s + 1L  y HsL = 3 €€€€€€€€€€€€€€€€ €€€€€ + 10 + 4 s Hs + 1L2 1 – Hs + 1L2  y HsL = 3 €€€€€€€€€€€€€€€€ €€€€€ + 10 + 4 s Hs + 1L2 1 10 + 4 s –  y HsL = 3 €€€€€€€€€€€€€€€€ €€€€€ + €€€€€€€€€€€€€€€€ €€€€€ . 4 Hs + 1L Hs + 1L2

Now notice that 10 + 4 s 4s+4+6 4 Hs + 1L + 6 4 6 €€€€€€€€€€€€€€€€ €€€€€ = €€€€€€€€€€€€€€€€ €€€€€€€€ = €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€ = €€€€€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€ 2 2 2 Hs + 1L Hs + 1L Hs + 1L Hs + 1L Hs + 1L2

Hence ”

1 1 1  y HsL = 3 €€€€€€€€€€€€€€€€ €€€€€ + 4 €€€€€€€€€€€€€€€€€€ + 6 €€€€€€€€€€€€€€€€ €€€€€ 4 Hs + 1L Hs + 1L Hs + 1L2

–

1 y HtL = €€€€ ã-t t3 + 4 ã- t + 6 ã- t t. 2

Ÿ Solution 4.5 To solve the initial value problem y ’’ + 16 y = 32 t,

y H0L = 3, y ’ H0L = -2;

we take the Laplace transform of both sides of the differential equation ” –

À Hy ’’ HtL + y HtLL = À H32 tL

À Hy ’’ HtLL + À Hy HtLL = 32 À HtL

1 – s2  y HsL - s y H0L - y ’ H0L + 16  y HsL = 32 €€€€€€€ s2 1 – s2  y HsL - 3 s + 2 + 16  y HsL = 32 €€€€€€€ s2 32 – Hs2 + 16L  y HsL = €€€€€€€ - 2 + 3 s s2 32 2 3s –  y HsL = €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€ s2 Hs2 + 16L Hs2 + 16L Hs2 + 16 L 2 2 2 3s –  y HsL = €€€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€ 2 2 2 2 s Hs + 16 L Hs + 16L Hs + 16 L 2 4 3s –  y HsL = €€€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€ 2 2 2 s Hs + 16L Hs + 16 L – y HtL = 2 t - sin H4 tL + 3 cos H4 tL.

32 €€€€ . Note that we used partial fractions to split the term €€€€€€€€€€€€€€€€ s2 Hs2 +16L

Ÿ Solution 4.6 To solve the initial value problem y ’’ - 3 y ’ + 2 y = 4,

y H0L = 1, y ’ H0L = 0;

we take the Laplace transform of both sides of the differential equation ” –

À Hy ’’ - 3 y ’ + 2 yL = À H4L

À Hy ’’ HtLL - 3 À Hy ’ HtLL + 2 À Hy HtLL = À H4L

4 – s2  y HsL - s y H0L - y ’ H0L - 3 Hs  y HsL - y H0LL + 2  y HsL = €€€€ s 4 – s2  y HsL - s - 0 - 3 Hs  y HsL - 1L + 2  y HsL = €€€€ s 4 – Hs2 - 3 s + 2L  y HsL = €€€€ + s - 3 s 4 – Hs - 1L Hs - 2L  y HsL = €€€€ + s - 3 s –

4 s-3  y HsL = €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€ €€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€€€€€ . s Hs - 1L Hs - 2L Hs - 1L Hs - 2L

Using partial fractions, set 4 A B C €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€ €€€€€€€€ = €€€€ + €€€€€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€€€ s Hs - 1L Hs - 2L s Hs - 1L Hs - 2L

– 4 = A Hs - 1L Hs - 2L + B s Hs - 2L + C s Hs - 1L.

Using the cover−up method we soon see that A = 2, B = -4, C = 2.

Also using partial fractions, set s-3 D E €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€€€€€€€ = €€€€€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€€€ Hs - 1L Hs - 2L Hs - 1L Hs - 2L

– s - 3 = D Hs - 2L + E Hs - 1L.

Using the cover−up method we soon see that D = 2, E = -1.

Hence 2 4 2 2 1  y HsL = €€€€ - €€€€€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€€€ - €€€€€€€€€€€€€€€€€€ s Hs - 1L Hs - 2L Hs - 1L Hs - 2L –

2 2 1  y HsL = €€€€ - €€€€€€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€€€ s Hs - 1L Hs - 2L

– y HtL = 2 - 2 ãt + ã2 t .

Ÿ Solution 4.7 To solve the initial value problem y ’’ + 4 y ’ + 4 y = 6 ã-2 t ,

y H0L = -2, y ’ H0L = 8;

we take the Laplace transform of both sides of the differential equation ” –

À Hy ’’ + 4 y ’ + 4 yL = À H6 ã-2 t L

À Hy ’’ HtLL + 4 À Hy ’ HtLL + 4 À Hy HtLL = 6 À Hã-2 t L

6 – s2  y HsL - s y H0L - y ’ H0L + 4 Hs  y HsL - y H0LL + 4  y HsL = €€€€€€€€€€€€ s+2 6 – s2  y HsL + 2 s - 8 + 4 Hs  y HsL + 2L + 4  y HsL = €€€€€€€€€€€€ s+2 6 – Hs2 + 4 s + 4L  y HsL = €€€€€€€€€€€€ - 2 s s+2 6 – Hs + 2L2  y HsL = €€€€€€€€€€€€ - 2 s s+2 –

–

6 2s  y HsL = €€€€€€€€€€€€€€€€ €€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€ 3 Hs + 2L Hs + 2L2

6 2 Hs + 2L - 4  y HsL = €€€€€€€€€€€€€€€€ €€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€€ 3 Hs + 2L Hs + 2L2

–

4 6 i 2 y  j z €€€€€€ - €€€€€€€€€€€€€€€€ €€€€€€ z y HsL = €€€€€€€€€€€€€€€€ €€€€€€ - j z j €€€€€€€€ 2 s + 2 Hs + 2L Hs + 2L3 k {

–

6 2 4  y HsL = €€€€€€€€€€€€€€€€ €€€€€€ - €€€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€ 3 s+2 Hs + 2L Hs + 2L2

– y HtL = ã-2 t × 3 t2 - ã-2 t × 2 + ã-2 t × 4 t

– y HtL = ã-2 t H3 t2 + 4 t - 2L.

Ÿ Solution 4.8 To solve the initial value problem y ’’ + 4 y ’ + 5 y = ∆ Ht - 4 ΠL,

y H0L = 0, y ’ H0L = 3;

we take the Laplace transform of both sides of the differential equation ” À Hy ’’ HtL + 4 y ’ HtL + 5 y HtLL = À H∆ Ht - 4 ΠLL

– À Hy ’’ HtLL + 4 À Hy ’ HtLL + 5 À Hy HtLL = À H∆ Ht - 4 ΠLL – s2  y HsL - s y H0L - y ’ H0L + 4 Hs  y HsL - y H0LL + 5  y HsL = ã-4 Π s – s2  y HsL - 0 - 3 + 4 Hs  y HsL - 0L + 5  y HsL = ã-4 Π s – Hs2 + 4 s + 5L  y HsL = ã-4 Π s + 3

ã-4 Π s 3 –  y HsL = €€€€€€€€€€€€€€€€ €€€€€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€€€ 2 2 s +4s+5 s +4s+5 ã-4 Π s 3 –  y HsL = €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€ + €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€ 2 Hs + 2L + 1 Hs + 2L2 + 1

1 1 i y j z –  y HsL = ã-4 Π s j €€€€€€€€€€€€€ z €€€€€€€€€€€€€ j €€€€€€€€€€€€€€€€ z + 3 × €€€€€€€€€€€€€€€€ 2 Hs + 2L2 + 1 k Hs + 2L + 1 { –  y HsL = ã-4 Π s  g HsL + 3 ×  g HsL

where 1  g HsL = €€€€€€€€€€€€€€€€ €€€€€€€€€€€€€ = À Hã-2 t sin HtLL Hs + 2L2 + 1

and ã-4 Π s  g HsL = À Hã-2 Ht-4 ΠL sin Ht - 4 ΠLL.

Hence y HtL = 9

ã-2 Ht-4 ΠL sin Ht - 4 ΠL + 3 ã-2 t sin HtL, 3 ã-2 t sin HtL,

t > 4 Π, t £ 4 Π.

Plot@UnitStep@t - 4 ΠD Hã-2 Ht-4 ΠL Sin@t - 4 ΠDL + 3 ã-2 t Sin@tD, 8t, 0, 8 Π