chromium (iii) adsorption from aqueous solutions by

0 downloads 0 Views 522KB Size Report
Loris Pietrelli1, Iolanda Francolini2 and Antonella Piozzi2. 1. ENEA, CR Casaccia, Via anguillarese,301 00123 Rome Italy. 2. Department of Chemistry ...
CHROMIUM  (III)  ADSORPTION  FROM  AQUEOUS  SOLUTIONS  BY  CHITOSAN     Loris  Pietrelli1,  Iolanda  Francolini2  and  Antonella  Piozzi2     1.  ENEA,  CR  Casaccia,  Via  anguillarese,301  00123  Rome  Italy   2.  Department  of  Chemistry,  Sapienza  University  of  Rome,  P.le  A.  Moro  5,  00185  Rome  Italy   [email protected]     Introduc>on   The  removal  of  heavy  metal  ions  from  aqueous  soluAons,  either  for  polluAon  control  or  for  raw  material  recovery,  have  been  taking  on  increasing  importance  in  recent  years.   A   number   of   separaAon   techniques   (ion   exchange,   selecAve   precipitaAon,   nanofiltraAon,   adsorpAon,   etc.)   and   processes   have   been   developed   to   remove   heavy   metals.   AdsorpAon-­‐based   technologies   have   proven   to   be   more   viable   alternaAves   proposed   for   the   treatment   of   industrial   wastewater   containing   heavy   metals   as   a   result   of   the   low   cost   of   processing   and   instrumentaAon,   simple   operaAon,   and   the   availability   of   different   types   of   low-­‐cost   and   environmentally   friendly   adsorbents   (Fu   &   Wang,   2011).   A   wide   range   of   materials   including   acAvated   carbon   (El-­‐Shafey   et   al,   2002),   metal   oxides,   carbon   nanotubes,   polymers,   agricultural   residues   (   Garcia   Reyes   and   Mendez,   2010),   and   natural   and   modified   clays   (Chen   et   al   2011)   have   been   successfully   used   to   adsorb   heavy   metals   from   water  soluAons.   A  very  promising  and  cheap  material  is  chitosan  (poly-­‐β  -­‐(1→  4)-­‐2-­‐amino-­‐2-­‐deoxy-­‐  D  -­‐glucose),  a  nitrogenous  polysaccharide  prepared  from  chiAn  by  parAally  deacetylaAng  its  acetoamine  groups  using  strong  alkaline  soluAons  at  about  70°C.    Chitosan  has  high  potenAal   in  the  metal  ions  adsorpAon  since  it  has  both  amine  and  hydroxyl  groups  that  can  serve  as  chelaAng  sites  for  metal  ions.    One  of  the  most  interesAng  advantages  of  chitosan  is  its  versaAlity:  the  material  can  be  readily  modified  preparing  different  polymer  form  such  as   beads  (Chiou  &  Li,  2003),  membrane  (Pietrelli  &  Xingrong,  2004),  sponge  (Ko  et  al.,  2010)  for  many  applicaAons.  CriAcal  reviews  of  published  data  about  chitosan  applicaAons  appeared  in  2000  (MajeA  and  Kumar),  2003  (Babel  &  Kurniawan)  and  in  2004  (Guibal).     PolluAon  by  chromium  is  of  considerable  concern  as  the  metal  has  found  widespread  use  in  electroplaAng,  leather  tanning,  nuclear  power  plant,  texAle  industries  (Rengaraj  et  al  2001).  Chromium  is  found  in  either  III  and  VI  oxidaAon  states,  as  all  other  oxidaAon  states   are  not  stable  in  aerated  aqueous  media  (Fendorf    1995).  The  trivalent  state  is  the  most  stable  form  under  reduced  condiAons  and  is  present  as  a  caAonic  species  with  the  first  or  second  hydrolysis  products  dominaAng  at  pH  values  from  4  to  8.  The  low  solubility  of   Cr(OH)3   (log   k=-­‐16.19)   greatly   limits   aqueous   Cr3+   concentraAons   at   pH   values   greater   than   approximately   5.   Considering   that   the   equilibrium   analysis   is   the   most   important   fundamental   study   required   for   evaluaAng   the   affinity   of   a   sorbent,   therefore   in   this   study   the   ability  of  chitosan  to  remove  chromium  III  by  adsorpAon  was  studied  to  assess  its  suitability  for  applicaAon  in  the  field  of  texAle  wastewater  treatment.    

9.43

0.9747

Intrap. Diff. model ki R2 (g/mg min) 0.5928 0.9002

Effect  of  pH   Figure  2  shows  the  effect  of  pH  on  adsorpAon  of  Cr3+  onto  chitosan  flakes.  It  can  be  noted  that  pH  of  the  soluAon  strongly  affects  the  metal  ions  uptake,  the   adsorpAon  increased  with  increasing  pH  of  the  soluAon.  In  acidic  condiAons  probably  more  protons  will  be  available  to  protonate  amine  groups  (R-­‐NH3+)  to   form  a  sort  of  polycaAon  and  then  reducing  the  number  of  binding  sites  for  adsorpAon  of  Cr3+.  On  the  contrary,  since  the  free  electron  doublet  of  nitrogen  is   responsible   for   the   caAon   adsorpAon,   high   pH   will   favour   the   adsorpAon   of   caAons.   Considering   that   kps=   [Cr3+]x[OH]3=6.7x10-­‐31   the   chromium   hydroxide,   Cr(OH)3,  begins  to  precipitate  at  pH≅6.5  therefore  for  pH  higher  than  3.8  a  significant  reducAon  of  Cr3+  fracAon  in  favour  of  Cr(OH)2+  and  Cr(OH)2+  hydrolysed   complex  occurs  (Fendorf  1995)  as  shown  in  the  Figure  3.  The  result  is  an  increase  of  adsorpAon  of  chromium  due  mainly  to  the  hydrolysed  forms.  Therefore,  the   metal  ions  adsorpAon  is  due  mainly  to  electrostaAc  interacAons  between  two  counter  ions.             AdsorpJon  isotherms   To   determine   the   maximum   adsorpAon   capacity   of   Cr3+   onto   chitosan,   a   study   of   adsorpAon   isotherm   was   achieved   comparing   the   commonest   models,   therefore  data  were  analyzed  using  the  Langmuir  and  the  Freundlich  equaAons:       qe=Q°bCeq/(  l+bCeq)                or,  linearized            1/qe  =    (1/Q°kL)  (1/Ceq)  +  1/Q°                        (1)   qe=kFCeq  1  /n                or,  linearized              log  qe  =  log  kF  +  1/n  log  Ceq    (2)       where  "qe"  (mg/g)  is  the  amount  of  element  on  the  solid  phase  at  equilibrium,  Ceq  (mg/L)  is  the  equilibrium  concentraAon  of  the  element  in  the  aqueous  phase.   According   to   Langmuir   expression,   Q°   (mg/g)   and   kL   correspond,   respecAvely,   to   complete   coverage   available   sites   or   limiAng   adsorpAon   capacity   when   the   surface  is  fully  covered  with  dye  molecules  and  to  an  empirical  coefficient  related  to  the  affinity  of  the  binding  sites.  While  according  to  the  Freundlich  equaAon,   kF   and   l/n   are   empirical   constants   determined,   respecAvely,   by   intercept   and   slope   of   the   Freundlich   equaAon   on   a   logarithmic   plot   and   represenAng   the   sorpAon  capacity  and  adsorpAon  intensity  respecAvely.   The  essenAal  characterisAcs  of  the  Langmuir  equaAon  can  be  expressed  in  terms  of  a  dimensionless  separaAon  factor  RL  which  is  defined  by  McKay  (1982)  as:     RL=1/[1+(kLCo)]   where  Co  is  the  highest  iniAal  Cr3+  ion  concentraAon  (mg/ml).  RL  indicates  the  shape  of  the  isotherm  and  the  adsorpAon  is  unfavourable  if  RL>1,  favourable  if   0