concurrent validity of a new model for estimating peak ...

4 downloads 0 Views 2MB Size Report
a respiratory snorkel. HR was measured from RR intervals (CardioSwim, Freelap). Data were time aligned and 1-‐s interpolated. Exercise VO2 was the average ...
 

Schuller  T.,  Hoffmann  U.,  Iglesias  X.,  Chaverri  D.,  Rodríguez  F.A. Concurrent  validity  of  a  new  model  for  estimating  peak  oxygen  uptake  based  on   post-­‐exercise  measurements  and  heart  rate  kinetics  in  swimming.  In  Mason  B.  (editor),  Proceedings  of  the  XIIth  International  Symposium  for   Biomechanics  and  Medicine  in  Swimming.  Canberra:  Australian  Institute  of  Sport,  2014.  pp.  506-­‐511.  

    CONCURRENT  VALIDITY  OF  A  NEW  MODEL  FOR  ESTIMATING  PEAK  OXYGEN  UPTAKE  BASED  ON  POST-­‐EXERCISE   MEASUREMENTS  AND  HEART  RATE  KINETICS  IN  SWIMMING     Schuller  T.1,  Hoffmann  U.1,  Iglesias  X.2,  Chaverri  D.2,  Rodríguez  F.  A.2     1  

Institut  für  Physiologie  und  Anatomie,  Deutsche  Sporthochschule  Köln,  Germany   INEFC-­‐Barcelona  Sport  Sciences  Research  Group,  Institut  Nacional  d’Educació  Física  de  Catalunya,  Universitat  de   Barcelona,  Spain     ABSTRACT   Introduction.  We  aimed  to  assess  the  validity  of  a  mathematical  model  based  on  heart  rate  (HR)  and  post-­‐exercise  VO2   measurements  for  estimating  peak  VO2  at  the  end  of  a  swimming  exercise.  Its  physiological  rationale  relies  on  the   assumption  that  during  the  immediate  recovery  the  systolic  volume  and  the  arterio-­‐venous  O2  difference  remain   practically  constant  for  a  certain  period.  According  to  Fick’s  principle,  this  leaves  HR  as  the  main  parameter  for  changes   in  VO2 .  Method.  34  elite  swimmers  performed  3x200  m  at  increasing  sub-­‐maximal  speeds,  followed  by  a  maximal  200  m   swim.  VO2  was  measured  breath-­‐by-­‐breath  using  a  portable  gas  analyser  (K4  b2,  Cosmed)  connected  to  the  swimmer  by   a  respiratory  snorkel.  HR  was  measured  from  RR  intervals  (CardioSwim,  Freelap).  Data  were  time  aligned  and  1-­‐s   interpolated.  Exercise  VO2  was  the  average  of  the  last  20  s  during  the  swim  [VO2 (end)],  and  recovery  VO2  was  the  post-­‐ exercise  first  20  s  average  [VO2 (0-­‐20)].  The  model  calculates  a  virtual  VO2  at  time  (t)  of  recovery  [vVO2 (t)],  using  the   quotient  between  the  peak  HR  during  the  last  10  s  of  the  swim  [HR(0)]  and  the  1-­‐s  interpolated  value  at  (t)  [(HR(t)],   multiplied  by  the  1-­‐s  interpolated  VO2  value  at  (t)  [VO2 (t)],  resulting  in:  vVO2 (t)  =  HR(0)  /  HR(t)  ·∙  VO2 (t).  Average   vVO2 values  were  calculated  for  different  time  intervals  and  compared  to  measured  exercise  VO2  values  (RM-­‐ANOVA,   post-­‐hoc  Tukey,  *p<  0.05).  Mean  differences  (mean  ∆)  and  Pearson’s  coefficient  of  determination  (R2)  were  also   calculated.  Results.  Peak  VO2  at  the  last  20  s  during  exercise  (3547±  SD  692  ml·∙min-­‐1)  was  different  from  VO2  (0-­‐20)   (3431  ±  685)  (mean  diff.  -­‐116,  3.3%,  p=  0.001).  All  virtual  VO2  values  were  highly  correlated  with  (R2  =  0.86  to  0.96,   p