Cross talk between two antioxidant systems ...

22 downloads 0 Views 528KB Size Report
Jan 2, 2014 - suggests that p53 activity is inhibited by Topors-mediated sumoylation of p53. Using co-immunoprecipitation. Figure 3: Role of thioredoxin in ...
Oncoscience  2014,  Vol.1,  No.1

www.impactjournals.com/oncoscience/  

Cross  talk  between  two  antioxidant  systems,  Thioredoxin  and   DJ-­1:  consequences  for  cancer Prahlad  V.  Raninga1,2,  Giovanna  Di  Trapani1,  Kathryn  F.  Tonissen1,2 1

6FKRRORI%LRPROHFXODUDQG3K\VLFDO6FLHQFHV*ULϒWK8QLYHUVLW\1DWKDQ4OG$XVWUDOLD

2

(VNLWLV,QVWLWXWHIRU'UXJ'LVFRYHU\*ULϒWK8QLYHUVLW\1DWKDQ4OG$XVWUDOLD

Correspondence to: Kathryn F. Tonissen, email.7RQLVVHQ#JULIÀWKHGXDX Keywords: Thioredoxin, DJ-­1, redox signalling, oxidative stress, antioxidants, cancer Received: December 4, 2013

Accepted: December 31, 2013

Published-DQXDU\

This  is  an  open-­access  article  distributed  under  the  terms  of  the  Creative  Commons  Attribution  License,  which  permits  unrestricted  use,   distribution,  and  reproduction  in  any  medium,  provided  the  original  author  and  source  are  credited.  

ABSTRACT: Oxidative  stress,  which  is  associated  with  an  increased  concentration  of  reactive   oxygen  species  (ROS),  is  involved  in  the  pathogenesis  of  numerous  diseases  including   cancer.  In  response  to  increased  ROS  levels,  cellular  antioxidant  molecules  such   as   thioredoxin,   peroxiredoxins,   glutaredoxins,   DJ-­1,   and   superoxide   dismutases   DUHXSUHJXODWHGWRFRXQWHUDFWWKHGHWULPHQWDOHϑHFWRI526+RZHYHUFDQFHUFHOOV take  advantage  of  upregulated  antioxidant  molecules  for  protection  against  ROS-­ induced  cell  damage.  This  review  focuses  on  two  antioxidant  systems,  Thioredoxin   and   DJ-­1,   which   are   upregulated   in   many   human   cancer   types,   correlating   with   tumour  proliferation,  survival,  and  chemo-­resistance.  Thus,  both  of  these  antioxidant   PROHFXOHVVHUYHDVSRWHQWLDOPROHFXODUWDUJHWVWRWUHDWFDQFHU+RZHYHUWDUJHWLQJRQH RIWKHVHDQWLR[LGDQWVDORQHPD\QRWEHDQHϑHFWLYHDQWLFDQFHUWKHUDS\%RWKRIWKHVH antioxidant  molecules  are  interlinked  and  act  on  similar  downstream  targets  such  as   1)Ȓǃ37(1DQG1UIWRH[HUWF\WRSURWHFWLRQ,QKLELWLQJHLWKHUWKLRUHGR[LQRU'- alone  may  allow  the  other  antioxidant  to  activate  downstream  signalling  cascades   leading  to  tumour  cell  survival  and  proliferation.  Targeting  both  thioredoxin  and  DJ-­1   in  conjunction  may  completely  shut  down  the  antioxidant  defence  system  regulated   by  these  molecules.  This  review  focuses  on  the  cross-­talk  between  thioredoxin  and   DJ-­1  and  highlights  the  importance  and  consequences  of  targeting  thioredoxin  and   '-WRJHWKHUWRGHYHORSDQHϑHFWLYHDQWLFDQFHUWKHUDSHXWLFVWUDWHJ\

INTRODUCTION

cellular  ROS  results  in  oxidative  stress,  which  induces  cell   death   by   caspase   activation,   activation   of   Bcl-­2   family   proteins,   and   modulation   of   protein   kinases   [8].   ROS-­ induced  oxidative  stress  is  involved  in  the  pathogenesis   of  a  wide-­variety  of  diseases  including  neurodegenerative   GLVHDVHVLQÀDPPDWLRQFDUGLDFGLVHDVHDQGFDQFHU6LQFH an  excess  of  ROS  is  detrimental  to  the  cells  or  tissues,   WKHLUGHWR[L¿FDWLRQLVHVVHQWLDO:LWKLQWKHFHOOVWKHUHLV a  gambit  of  antioxidant  molecules  including  thioredoxins   [9,  10],  glutaredoxins  [11],  peroxiredoxins  [12]  and  other   enzymes  such  as  superoxide  dismutase  that  detoxify  ROS   and   maintain   the   balance   between   the   generation   and   removal  of  oxidative  species.  During  the  past  decade,  DJ-­1   has   also   emerged   as   an   antioxidant   molecule   playing   a   crucial  role  in  regulating  cellular  redox  signalling  cascades   and   inducing   other   antioxidants   under   oxidative   stress   FRQGLWLRQV > @ 6XFK DQWLR[LGDQW PROHFXOHV VHQVH

Cancer  is  currently  one  of  the  most  deadly  diseases   worldwide.  Amongst  the  many  factors  that  cause  cancer,   oxidative   stress   is   one   of   the   most   important   and   well-­ studied   factors   that   give   rise   to   the   conditions   leading   to   tumour   development   and   progression   [1].   Oxidative   stress   is   associated   with   an   increased   concentration   of   reactive  oxygen  species  (ROS).  Depending  on  the  cellular   context,  amount  and  exposure  time,  ROS  can  be  either   detrimental  to  the  cells  or  important  players  in  regulating   various   cellular   responses   including   cell   proliferation,   differentiation,   and   apoptosis   [2,   3].   It   has   been   shown   that   low   levels   of   ROS   promote   cell   proliferation   and   differentiation  by  activating  transcription  factors,  such  as   QXFOHDU IDFWRUɤȕ 1)ɤȕ  >@ DQG DFWLYDWRU SURWHLQ (AP-­1)  [5-­7].  On  the  other  hand,  excessive  generation  of   www.impactjournals.com/oncoscience

95

Oncoscience

SK\VLRORJLFDOÀXFWXDWLRQVDQGLPEDODQFHRILQWUDFHOOXODU redox  state  and  respond  to  such  imbalance  by  activating   appropriate  signalling  cascades. Despite   the   presence   of   such   antioxidant   defence   systems   within   the   cells,   ROS   generation   often   exceeds   the   antioxidant   capacity   of   the   cells   leading   to   oxidative   stress   and     ROS-­induced   cell   death.   In   response   to   increased   ROS   levels,  cells  have  evolved  a  number  of  survival  pathways   to   counteract   the   toxic   effect   of   ROS,   which   includes   upregulation  of  antioxidant  molecules  and  stress-­response   proteins.  Upregulation  of  antioxidant  molecules  offer  an   advantage  to  the  cells  to  eliminate  the  detrimental  effects   of   ROS.   However,   cancer   cells   exploit   this   advantage   and  use  it  for  their  own  protection  against  increased  ROS   levels.   Antioxidant   molecules   have   been   shown   to   be   upregulated  in  many  human  cancer  types,  correlating  with   tumour   proliferation,   survival,   and   drug   resistance   [15-­ 19].   Inhibition   of   elevated   antioxidants   inhibits   tumour   growth  and  metastasis,  promotes  tumour  apoptosis,  and   reverses   tumour   resistance   to   chemotherapy,   further   implicating   the   functionality   of   antioxidant   systems   in   cancer  development  and  progression  [20-­23].  Thus,  such   deregulated  antioxidants  may  serve  as  potential  molecular   targets  to  develop  new  single  or  combinatory  anti-­cancer   therapy. In   this   review,   we   describe   the   role   of   DJ-­1   and   thioredoxin  in  cellular  redox  signalling  and  discuss  the   cross-­talk   between   these   two   antioxidant   systems   to   balance  the  cellular  redox  state.  An  understanding  of  the   FURVVWDONEHWZHHQ'-DQG7U[PD\KHOSXVLQ¿QGLQJ novel  therapeutic  targets  for  the  treatment  of  many  types   of  human  cancers,  where  antioxidants  are  upregulated.

H[DPSOH/3LVUHVSRQVLEOHIRUVHYHUHGHVWDELOLVDWLRQ RIWKH'-SURWHLQ>@ Structure,  Expression  and  Function  of  DJ-­1 DJ-­1  is  a  189  amino  acid  protein  dimer  consisting  of   QLQHĮKHOLFVDQGVHYHQȕVWUDQGV>@7KHVWUXFWXUHRI the  DJ-­1  protein  is  similar  to  the  monomer  subunit  of  the   intracellular  cysteine  protease  from  Pyrococcushorikoshii,   SURWHDVH>@EXW'-FRQWDLQVDQH[WUDĮKHOL[DW the  C-­terminal  region  blocking  the  putative  catalytic  site   RI'-XQGHUQRUPDOFRQGLWLRQV7KLVDGGLWLRQDOĮKHOL[ may   undergo   conformational   changes   under   oxidative   stress  leading  to  the  activation  of  DJ-­1  catalytic  site  [35,   37].   DJ-­1  is  abundantly  present  in  the  majority  of  cells   DQGWLVVXHVLQWKHERG\>@WKHUHIRUHWKHUHDUHQRFOXHV IRU FHOO RU WLVVXH VSHFL¿F IXQFWLRQV RI '- '- LV located  in  the  cytosol,  nucleus  and  mitochondria  of  the   cells  and  it  has  also  been  reported  to  be  secreted  from  the   cells  or  tissues  in  cancer  and  Parkinson’s  disease  patient’s   VHUXPDQGIURPDVWURF\WHV>@8SRQH[SRVXUH to   growth   factors   and   oxidative   stress   stimuli,   DJ-­1   translocates  to  the  nucleus  when  cells  are  in  the  S  phase  of   WKHFHOOF\FOH>@ DJ-­1   has   been   implicated   in   many   biological   IXQFWLRQVLQFOXGLQJWUDQVFULSWLRQDOUHJXODWLRQ>@ FKDSHURQHDFWLYLW\UHJXODWLRQ>@SURWHDVHIXQFWLRQ UHJXODWLRQ >@ DQG PLWRFKRQGULDO UHJXODWLRQ > @ 2IPRVWVLJQL¿FDQFHFRQVLVWHQW¿QGLQJVGHPRQVWUDWHDQ antioxidant  activity  as  well  as  a  cytoprotective  function   against  oxidative  stress  [52,  53]  and  a  role  in  increasing   cell   survival   under   pro-­apoptotic   stimuli   challenge   >@ (YLGHQFH IRU DQ DQWLR[LGDQW IXQFWLRQ RI '- LQ neuronal   cells   comes   from   various   studies.   Rotenone   DQG K\GUR[\GRSDPLQHLQGXFHG R[LGDWLYH VWUHVV LQ neuroblastoma  cells  have  upregulated  endogenous  DJ-­1   SURWHLQ DQG P51$ OHYHOV DQG LQGXFHG WUDQVORFDWLRQ of   DJ-­1   from   the   cytoplasm   to   the   mitochondria   to   H[HUW QHXURSURWHFWLRQ IXQFWLRQ >@ 2YHUH[SUHVVLRQ of   wild-­type   DJ-­1,   but   not   the   mutant   forms   including   /3 &6 0, DQG 54 SURWHFWV QHXURQV against   ROS   producing   stress   insult   [55].   Several   reports   describe   different   mechanisms   by   which   DJ-­1   exerts  its  neuroprotective  effects.  DJ-­1  protects  primary   dopaminergic  neurons  against  hydrogen  peroxide  (H2O2)  

DJ-­1 '- ZDV LGHQWL¿HG  \HDUV DJR DV D SXWDWLYH RQFRJHQHWUDQVIRUPLQJPRXVH1,+7FHOOVZHDNO\RQ LWV RZQ DQG VWURQJO\ LQ FRPELQDWLRQ ZLWK +5DV >@ Several  studies  have  shown  that  the  expression  of  DJ-­1   is  increased  in  several  cancer  types  as  compared  to  non-­ cancerous  cells.  High  DJ-­1  expression  has  been  observed   LQSULPDU\OXQJDQGSURVWDWHFDQFHUELRSVLHV>@LQ non-­small  cell  lung  carcinoma  patients  [27]  as  well  as  in   endometrial  cancer  patients  [28].  Proteomic  studies  have   LGHQWL¿HG '- DV D VHFUHWHG WXPRXU DQWLJHQ LQ EUHDVW cancer  patients  [29]  and  as  a  potential  biomarker  secreted   in  uveal  malignant  melanoma  patients  [30]. '- ZDV ¿UVW DVVRFLDWHG ZLWK QHXURGHJHQHUDWLRQ when  a  large  deletion  and  missense  mutation  in  the  DJ-­1   gene  in  Italian  and  Dutch  Parkinson’s  disease  patients  was   IRXQGOHDGLQJWRLGHQWL¿FDWLRQRIWKH'-JHQHDVVRFLDWHG with  autosomal  recessive  early-­onset  Parkinson’s  disease   [31].  Apart   from   the   large   genomic   deletion   within   the   DJ-­1  coding  region,  there  are  other  point  mutations  also   responsible   for   the   Parkinson’s   disease   condition   for   www.impactjournals.com/oncoscience

Cell  survival  &  proliferation  

Cell  proliferation  

ERK1/2  

DJ-­‐1  

ASK1  

Cell  proliferation  

Nrf2  

PTEN  

Antioxidant  defence,   Cytoprotection  

p53  

NF-­‐kB  

Gene  transcription  

Cell  survival  &   proliferation  

Figure   1:   Summary   of   DJ-­1   functions   by   regulating   redox   sensitive   transcription   factors   and   signalling   pathways. 96

Oncoscience

DQG K\GUR[\GRSDPLQHLQGXFHG R[LGDWLYH VWUHVV E\ upregulating   intracellular   glutathione   synthesis   via   LQFUHDVLQJJOXWDPDWHF\VWHLQHOLJDVHHQ]\PH>@'- also  protects  dopaminergic  neurons  from  the  toxic  effects   RI PXWDQW KXPDQ ĮV\QXFOHLQ E\ LQFUHDVLQJ KHDW VKRFN SURWHLQH[SUHVVLRQZLWKLQWKHFHOOV>@7DNHQWRJHWKHU these   results   suggest   DJ-­1   may   exert   neuroprotective   action  by  different  mechanisms,  which  may  depend  on  the   type  of  stress  stimuli.  In  contrast  to  DJ-­1  overexpression,   VL51$PHGLDWHGGRZQUHJXODWLRQRI'-UHQGHUVFHOOV VXVFHSWLEOHWRXQGHUJRGHDWKXQGHUR[LGDWLYHVWUHVV(5 VWUHVVDQGSURWHDVRPHLQKLELWLRQ>@FRQ¿UPLQJWKHUROH of  DJ-­1  in  protecting  cells  against  oxidative  stress. The  crystal  structure  of  DJ-­1  reveals  the  presence   RIWKUHHUHGR[VHQVLWLYHF\VWHLQHUHVLGXHV&\V&\V DQG &\V $PRQJVW WKHVH WKUHH F\VWHLQH UHVLGXHV &\V LV WKH PRVW VXVFHSWLEOH WR R[LGDWLYH VWUHVV DQG can  be  oxidized  to  SOH,  SO2H,  and  then  SO3H  [50,  57].   0DQ\VWXGLHVKDYHFRQ¿UPHGWKDW'-UHTXLUHV&\V to   exert   its   cytoprotection   against   oxidative   stress   [50,   @ZKHUHDVRQO\RQHVWXG\LGHQWL¿HV&\VDVWKH IXQFWLRQDOO\DFWLYHDQGHVVHQWLDOUHVLGXH>@0XWDWLRQ RI &\V DEROLVKHV DOO IXQFWLRQV RI '- > @ 0LOG R[LGDWLRQ RI &\V WR 622H   is   critical   for   the   F\WRSURWHFWLYH IXQFWLRQ RI '- > @ 2[LGDWLRQ RI &\VWR622H  increases  the  mitochondrial  localization   of  DJ-­1  and  allows  the  direct  binding  of  DJ-­1  to  apoptosis   signal-­regulating  kinase  1  (ASK1)  to  inhibit  the  activation   RI$6.PHGLDWHGDSRSWRVLV>@)XUWKHUR[LGDWLRQRI &\VIURP622H  to  SO3H  results  in  the  aggregation  of   '-ZKLFKOHDYHV'-LQLWVLQDFWLYHIRUP>@$QDO\VLV of  the  oxidation  state  of  DJ-­1  in  post-­mortem  brain  tissue  

of   Parkinson’s   and   Alzheimer’s   patients   as   well   as   in   healthy  individuals  has  revealed  that  DJ-­1  from  diseased   tissue  was  extensively  oxidized  as  compared  to  healthy   FHOOV>@,QFRQFOXVLRQWKHPLOGR[LGL]HGIRUPRI'-LV associated  with  its  cytoprotective  action  by  binding  to  its   target  molecules  and  regulating  their  activity,  whereas  the   highly  oxidized  form  of  DJ-­1  is  associated  with  diseased   conditions.     Role  of  DJ-­1  in  regulating  transcription  factors  under   oxidative  stress DJ-­1   functions   as   an   antioxidant   when   cells   experience   oxidative   stress   and   acts   to   induce   the   H[SUHVVLRQRIVHYHUDODQWLR[LGDQWHQ]\PHV>@)RU example,   DJ-­1   increases   the   expression   of   glutamate   cysteine   ligase,   which   is   a   rate-­limiting   enzyme   for   LQWUDFHOOXODU JOXWDWKLRQH ELRV\QWKHVLV >@ ZKLOH GRZQ regulation  of  DJ-­1  results  in  a  decrease  in  expression  of   H[WUDFHOOXODUVXSHUR[LGHGLVPXWDVH 62' >@8QGHU oxidative   stress   conditions,   DJ-­1   has   been   shown   by   many  studies  to  regulate  various  transcription  factors  and   transmit  downstream  signals  to  respond  to  oxidative  stress.   )RUH[DPSOH'-KDVEHHQVKRZQWRUHJXODWHWKHVWHURO UHJXODWRU\ ELQGLQJ SURWHLQ  65(%3  D WUDQVFULSWLRQ IDFWRUWKDWUHJXODWHVFKROHVWHUROV\QWKHVLV>@5HSRUWHU gene  assays  were  used  to  show  that  over  expression  of   DJ-­1  increased  the  promoter  activity  of  the  low-­density   lipoprotein  receptor  (LDLR)  gene  and  this  activity  was   IXUWKHU HQKDQFHG E\ R[LGDWLYH VWUHVV >@ %\ XVLQJ chromatin  immunoprecipitation  (ChIP),  gel-­mobility  shift   and  co-­immunoprecipitation,  it  has  been  shown  that  DJ-­1   IRUPVDFRPSOH[ZLWK65(%3ZKLFKELQGVWRWKHVWHURO

B  

A   Inactive  ASK1  

Inactive  ASK1  

SH  

Trx1   SH  

Stress  Stimuli  

SH   SH  

Stress  Stimuli  

DJ-­‐1   ROS  

ROS   S  

Active   ASK1  

S   S  

Inactive   ASK1   SH   SH  

S  

JNK  Activation  

JNK  Activation  

Cell  Death  

Cell  Death  

Figure  2:  Regulation  of  ASK1/Trx1  by  DJ-­1  under  oxidative  stress.  A.  In  the  absence  of  DJ-­1,  ASK1  is  dissociated  from  Trx1   XQGHUR[LGDWLYHVWUHVVFRQGLWLRQVDQGJHWVDFWLYDWHG$FWLYDWHG$6.DFWLYDWHV-1.DQGUHVXOWVLQFHOOGHDWK%2YHUH[SUHVVLRQRI'- inhibits  dissociation  of  ASK1  from  Trx1  under  oxidative  stress  and  thus,  inhibits  ASK1  activation  and  exerts  cytoprotection.   www.impactjournals.com/oncoscience

97

Oncoscience

UHJXODWRU\ HOHPHQW 65(  LQ WKH /'/5 JHQH SURPRWHU >@ 6HYHUDOVWXGLHVKDYHLGHQWL¿HG'-DVDSRVLWLYH regulator   of   another   transcription   factor,   the   androgen   UHFHSWRU $5 HLWKHULQGLUHFWO\>@RUGLUHFWO\>@ PIAS-­alpha,   a   protein   inhibiting   androgen   receptor   WUDQVFULSWLRQDFWLYLW\KDVEHHQLGHQWL¿HGDVD'-ELQGLQJ SURWHLQE\D\HDVWWZRK\EULGVFUHHQ>@'-KDVEHHQ shown  to  bind  to  the  AR-­binding  region  of  PIAS-­alpha   in  vitro  by  co-­immunoprecipitation  and  in  vivo  in  human   293T  cells  resulting  in  the  inhibition  of  PIAS-­alpha  and   therefore,   activation   of   androgen   receptor   transcription   DFWLYLW\ >@ $QRWKHU VWXG\ XVLQJ D \HDVW WZRK\EULG screen  has  shown  that  DJ-­1  can  also  directly  bind  to  the   DQGURJHQUHFHSWRU>@ 1XFOHDUIDFWRU HU\WKURLGGHULYHG OLNH 1UI  is  a  redox-­sensitive  transcription  factor,  which  serves  as   a  master  regulator  of  antioxidant  and  detoxifying  genes   under   oxidative   stress   via   the   antioxidant   response   HOHPHQW $5(  >@ 8QGHU QRUPDO FRQGLWLRQV 1UI LV localized   in   the   cytoplasm   and   forms   a   complex   with   Kelch-­like  erythroid  cell-­derived  protein-­1  (Keap1)  [71].   .HDSLVDQHJDWLYHUHJXODWRURI1UIDVLWWDUJHWV1UI IRUGHJUDGDWLRQE\WKHXELTXLWLQSURWHRVRPHV\VWHP>@ 7KUHH F\VWHLQH UHVLGXHV KDYH EHHQ LGHQWL¿HG LQ .HDS WKDWDUHLQYROYHGLQWKHUHJXODWLRQRI1UI>@7ZRRI WKHVH F\VWHLQH UHVLGXHV DUH UHTXLUHG IRU XELTXLWLQDWLRQ DQG GHJUDGDWLRQ RI 1UI LQ WKH F\WRSODVP ZKHUHDV WKH third  cysteine  residue  acts  as  a  redox  sensor,  leading  to   conformational  changes  of  Keap1  under  oxidative  stress   [72].  These   changes   result   in   the   prevention   of   Keap1-­ GHSHQGHQWLQKLELWLRQRI1UI>@'-KDVEHHQVKRZQ WRVWDELOL]HWKH1UISURWHLQE\SUHYHQWLQJLWVDVVRFLDWLRQ with   Keap1.   Co-­immunoprecipitation   experiments  

showed  that  DJ-­1  overexpression  eliminated  the  presence   RI 1UI.HDS FRPSOH[HV UHVXOWLQJ LQ ORZHU OHYHOV RI 1UIXELTXLWLQDWLRQ>@0RUHRYHULWKDVEHHQUHSRUWHG WKDW'-LVUHTXLUHGIRU1UIUHJXODWHGWUDQVFULSWLRQRI LWVWDUJHWJHQHVVLQFHVL51$LQGXFHGLQKLELWLRQRI'- UHVXOWHGLQWKHUHGXFWLRQRI142$5(OXFLIHUDVHDFWLYLW\ HYHQZKHQFHOOVDUHWUHDWHGZLWKWKHFODVVLFDO1UILQGXFHU WHUWEXW\OK\GURTXLQRQH W%+4  >@ &K,3 H[SHULPHQWV failed  to  detect  DJ-­1  on  the  promoter,  indicating  it  does   QRW ELQG ZLWK WKH 1UI FRPSOH[ WR $5(V $OWKRXJK experimental  data  suggests  the  role  of  DJ-­1  in  stabilizing   1UILVE\LQKLELWLQJ1UI.HDSFRPSOH[IRUPDWLRQWKHUH is  no  experimental  evidence  showing  direct  interaction  of   '-ZLWKHLWKHU1UIRU.HDSDQGWKHUHIRUHWKHH[DFW mechanism  remains  elusive  [13].  In  contrast,  another  study   KDVUHSRUWHGWKDWDFWLYDWLRQRIWKH1UI$5(SDWKZD\LV LQGHSHQGHQWRI'->@,WZDVVKRZQWKDWW%+4FDQ VWLOODFWLYDWHWKH1UI$5(SDWKZD\DQGSURWHFWSULPDU\ cortical   neurons   derived   from   DJ-­1-­knockout   as   well   as  DJ-­1  wild-­type  mice.  This  indicates  that  DJ-­1  is  not   UHTXLUHGIRU1UIUHJXODWHGWUDQVFULSWLRQRILWVWDUJHWJHQH DQGDFWLYDWLRQRIWKH1UI$5(SDWKZD\>@+HQFHWKH TXHVWLRQRIWKHIXQFWLRQDOHIIHFWRI'-RQ1UIDFWLYLW\ still   remains   open   with   the   possibility   of   redundant   activation  pathways. Another   redox   sensitive   transcription   factor   regulated   by   DJ-­1   is   p53.   p53   exerts   many   cellular   functions  including  induction  of  senescence,  apoptosis  and   regulating   mitochondrial   homeostasis   against   oxidative   stress.   Using   luciferase   assays,   it   has   been   shown   that   Topors  represses  the  transcriptional  activity  of  p53  and   WKDWLWVDFWLYLW\LVVWLPXODWHGE\6802>@7KLVUHVXOW suggests  that  p53  activity  is  inhibited  by  Topors-­mediated   sumoylation   of   p53.   Using   co-­immunoprecipitation  

SH  

Trx  

PTEN  

Proliferation  

SH  

ROS  

I̡ɴ   S  

NF-­‐̡ɴ  

Ref -­‐1  

SH   SH  

S  

Trx  

SH   S  

S  

Trx  

ASK1  

S  

S  

Ref -­‐1  

Trx  

NF-­‐̡ɴ  

I̡ɴ  

NF-­‐̡ɴ   S  

ASK1   S  

SH   SH  

SH  

NF-­‐̡ɴ  

HIF-­‐ 1ɲ  

AP 1  

p53  

S  

S  

Gene   Apoptosis  

Degraded  

Transcription   Nucleus  

Cytosol  

Figure  3:  Role  of  thioredoxin  in  regulating  redox  sensitive  transcription  factors  and  signalling  pathways.  )LJXUHDGDSWHG and  used  with  permission  from  the  authors  [135]. www.impactjournals.com/oncoscience

98

Oncoscience

pathway.   Over-­expression   of   DJ-­1   leads   to   increased   phosphorylation  of  P13K  targets,  leading  to  increased  cell   survival  [27].  H2O2-­induced  oxidative  stress  inactivates   37(1 OHDGLQJ WR WKH DFWLYDWLRQ RI GRZQVWUHDP FHOO JURZWKVLJQDOOLQJPROHFXOHVLQFOXGLQJ$NWSURWHLQNLQDVH B   [78].   Using   co-­immunoprecipitation   and   pull-­down   DVVD\VZLOGW\SHDQG&6PXWDQW'-ZHUHVKRZQWR LQWHUDFWGLUHFWO\ZLWK37(1LQPRXVH1,17FHOOV>@ Under   oxidative   stress,   oxidized   DJ-­1   directly   binds   to   37(1GHFUHDVHVLWVSKRVSKDWDVHDFWLYLW\DQGLQFUHDVHV phosphorylation   of   AKT,   resulting   in   the   transmission   RIFHOOVXUYLYDOVLJQDOVLQ1,+7FHOOV>@7KXV'- activates  a  cell  growth  signalling  cascade  by  inhibiting   37(1DQGUHVXOWLQJLQDFWLYDWLRQRIWKH3,.VLJQDOOLQJ pathway.  It  can  be  hypothesized  that  inhibition  of  DJ-­1   may  prevent  PI3K-­regulated  cell  proliferation  signalling   pathways.  This  may  result  in  a  new  therapeutic  regime   for  the  treatment  of  cancers  where  DJ-­1  is  over-­expressed   DQGOHDGVWRWKHDFWLYDWLRQRIWKH3,.$NW3.%VLJQDOOLQJ axis. DJ-­1  exerts  cytoprotective  action  against  ultraviolet   (UV)-­induced  oxidative  stress  by  directly  interacting  with   PLWRJHQDFWLYDWHG SURWHLQ NLQDVHH[WUDFHOOXODU VLJQDO UHJXODWHGNLQDVHNLQDVHNLQDVH 0(.. VXSSUHVVLQJ 0(.. DFWLYLW\ DQG DFWLQJ DV D QHJDWLYH UHJXODWRU RI WKH-1.VLJQDOOLQJFDVFDGHWRVXSSUHVVFHOOGHDWK>@ 7KH H[WUDFHOOXODU VLJQDOUHJXODWHG NLQDVH (5.  LV WKH main  pathway  leading  to  cell-­migration  and  is  essential   IRUQHXURSURWHFWLRQ7KH(5.VLJQDOOLQJFDVFDGHVFDQ EHPRGL¿HGZKHQWKHUHGR[VWDWHRIWKHFHOOVFKDQJHVLQ Parkinson’s  disease.  It  was  reported  that  over-­expression   of   wild-­type   DJ-­1   enhanced   the   phosphorylation   of   (5.DQGXSVWUHDPNLQDVH0(.>@'-LQGXFHG DFWLYDWLRQ RI WKH (5. VLJQDOOLQJ SDWKZD\ UHVXOWHG LQ increased  cell  viability  and  cytoprotection  against  H2O2   [80].   Conversely,   another   study   has   reported   that   DJ-­1   LV XSUHJXODWHG E\ WKH DFWLYDWLRQ RI WKH 0$3 NLQDVH SDWKZD\YLDLQFUHDVHG(5.SKRVSKRU\ODWLRQLQKXPDQ neuroblastoma   cells   exposed   to   dopamine   [52].   This   FRQFOXVLRQ ZDV PDGH XVLQJ 0$3.. LQKLELWRUV ZKLFK prevented   the   dopamine   induced   DJ-­1   up-­regulation.   However,  a  more  recent  study  showed  DJ-­1  could  protect   dopaminergic  neurons  against  rotenone-­induced  apoptosis   E\LQFUHDVLQJSKRVSKRU\ODWLRQRI(5.DQGWKXVLQGXFLQJ mitophagy  [81].  Thus,  mounting  evidence  suggests  that   DJ-­1   may   exert   its   cytoprotective   function   through   the   (5.VLJQDOOLQJSDWKZD\WRSURPRWHFHOOVXUYLYDOXQGHU oxidative  stress.   Stable  overexpression  of  DJ-­1  protects  cardiac  cells   against  oxidative  stress  generated  by  increased  ROS  levels   under  hypoxic  conditions  [82].  The  authors  showed  that   RYHUH[SUHVVLRQRI'-LQFDUGLDFFHOOVUHGXFHVLVFKHPLD UHSHUIXVLRQ V,5 LQGXFHG526JHQHUDWLRQXSUHJXODWHV WKHH[SUHVVLRQRIDQWLR[LGDQWHQ]\PHVDQGSUHYHQWVV, R-­induced  oxidative  stress  [82].  The  results  from  these   cardiac  cell  studies  suggest  that  DJ-­1  has  a  potential  role  

assays,  DJ-­1  was  shown  to  bind  to  p53  in  vivo  as  well  as  in   vitro.  Using  luciferase  assays  and  co-­immunoprecipitation   experiments,  DJ-­1  was  shown  to  restore  the  transcriptional   DFWLYLW\RISWKURXJK6802FRQMXJDWLRQVXJJHVWLQJ WKDW '- PD\ DFW DV D SRVLWLYH UHJXODWRU RI S >@ Conversely,  other  studies  have  shown  that  DJ-­1  inhibits  the   transcriptional  activity  of  p53.  Co-­immunoprecipitation   studies   have   shown   that   DJ-­1   physically   interacts   with   p53  in  vitro  as  well  as  in  vivo  resulting  in  the  inhibition  of   SWUDQVFULSWLRQDFWLYLW\>@'-PHGLDWHGUHSUHVVLRQ of  p53  transcription  activity  leads  to  the  down-­regulation   RI%D[DQGVXSSUHVVLRQRIFDVSDVHFOHDYDJH>@$QRWKHU study  has  reported  that  the  oxidized  form  of  DJ-­1  binds   WR WKH '1$ELQGLQJ UHJLRQ RI S DQG LQKLELWV S WUDQVFULSWLRQDFWLYLW\ZKHQ'1$ELQGLQJDI¿QLW\RIS LVORZ>@:KHWKHU'-DFWVDVDSRVLWLYHRUQHJDWLYH regulator  of  p53  transcriptional  activity  may  depend  on  the   extent  of  oxidation  of  DJ-­1. Another   important   transcription   factor   regulated   E\ '- LV QXFOHDU IDFWRUɤȕ 1)ɤ%  '- GLUHFWO\ interacts  with  one  of  its  binding  partners,  Cezanne,  which   is  a  physiological  inhibitor  of  the  transcription  activity  of   1)ɤȕ>@7KHLQWHUDFWLRQRI'-ZLWK&H]DQQHZDV shown  by  mass  spectrometry  and  co-­immunoprecipitation.   7KLVLQWHUDFWLRQLQKLELWVWKHGHXELTXLWLQDWLRQDFWLYLW\RI &H]DQQHDOORZLQJWKHDFWLYDWLRQRI1)ɤȕWUDQVFULSWLRQ activity.   Thus,   DJ-­1   has   been   reported   to   be   a   positive   UHJXODWRU RI 1)ɤȕ ZKLFK KLJKOLJKWV DQRWKHU SRWHQWLDO mechanism  by  which  DJ-­1  promotes  cell  survival  in  cancer   >@$VXPPDU\RIWKHWUDQVFULSWLRQIDFWRUVUHJXODWHGE\ '-DQGLWVGRZQVWUHDPIXQFWLRQVDUHGHVFULEHGLQ)LJXUH 7DNHQ DOO WRJHWKHU WKHVH ¿QGLQJV VXSSRUW WKH suggestion  that  DJ-­1  might  be  a  master  upstream  regulator   of  various  transcription  factors  and  pathways  regulating   various   cellular   responses   including   cell   proliferation   and  apoptosis.  Therefore,  DJ-­1  can  serve  as  a  potential   therapeutic  target  for  different  cancer  types  where  such   transcription  factors  are  deregulated.   DJ-­1-­Induced   Signal   Transduction   under   Oxidative   Stress In  addition  to  the  roles  of  DJ-­1  in  the  regulation  of   various  transcription  factors,  many  studies  have  reported   an  involvement  of  DJ-­1  in  various  signalling  pathways  and   interactions  with  different  signalling  molecules.  Several   studies  have  reported  the  role  of  DJ-­1  in  regulating  the   tumour   suppressor   protein,   phosphatase   and   tensin   KRPRORJ 37(1 >@8VLQJDJHQHWLFVFUHHQRI Drosophila  gain-­of-­function  mutants,  DJ-­1  was  shown  to   EHDQHJDWLYHUHJXODWRURI37(1IXQFWLRQVUHVXOWLQJLQWKH XSUHJXODWLRQRIWKHSKRSKRLQRVLWLGHNLQDVH 3,. $NW VLJQDOOLQJSDWKZD\>@7KH3,.$NWSDWKZD\LVDUHGR[ sensitive  growth  signalling  pathway  [78].  Once  activated,   3,. FDXVHV SKRVSKRU\ODWLRQ RI $NWSURWHLQ NLQDVH % 3.%  ZKLFK VWLPXODWHV FHOO JURZWK 37(1 LQKLELWV 3,. DQG QHJDWLYHO\ UHJXODWHV WKH 3,.$NW VLJQDOOLQJ

www.impactjournals.com/oncoscience

99

Oncoscience

in  inhibiting  hypoxia-­induced  cell  death  and  thus,  emerges   as  a  possible  novel  therapeutic  target  for  the  treatment  of   hypoxic  tumour  cells. Another   important   signalling   pathway   that   gets   activated  under  oxidative  stress  is  the  Apoptosis  Signal-­ regulating   Kinase   1   (ASK1)   pathway.   ASK1   is   an   important  component  in  activating  the  apoptosis  signalling   machinery   induced   by   ROS   generating   cytotoxic   stress   > @ 2[LGDWLYH VWUHVV LQGXFHG E\ +2O2   causes   dimerization   of  ASK1   and   leads   to   its   activation   [85].   There   are   many   studies   showing   the   involvement   of   DJ-­1   with   ASK1   signalling   cascades   under   oxidative   VWUHVV>@8QGHUR[LGDWLYHVWUHVVFRQGLWLRQV 'HDWKDVVRFLDWHGSURWHLQ 'D[[ WUDQVORFDWHVIURPWKH nucleus  to  the  cytoplasm  and  interacts  directly  with  ASK1,   resulting   in   activation   of   the  ASK1-­mediated   apoptotic   VLJQDOOLQJ SDWKZD\ >@ 2WKHU VWXGLHV KDYH VKRZQ that   wild-­type   DJ-­1   exerts   a   cytoprotective   action   by   VHTXHVWHULQJ'D[[LQWKHQXFOHXVLQ+2O2-­treated  cultured   PDPPDOLDQFHOOVDVZHOODVLQ0373WUHDWHG3DUNLQVRQ¶V GLVHDVHPRGHOPLFH>@6HTXHVWUDWLRQRI'D[[E\ DJ-­1  impedes  its  translocation  into  the  cytoplasm,  resulting   LQ WKH SUHYHQWLRQ RI $6.'D[[ FRPSOH[ IRUPDWLRQ such   that   activation   of   apoptotic   signal   transmission   does  not  occur.  DJ-­1  also  binds  directly  to  ASK1  under   oxidative  stress  and  inhibits  its  kinase  activity,  resulting   in  the  inhibition  of  p38  mitogen-­activated  protein  kinase   0$3.  VLJQDOOLQJ FDVFDGH DQG SUHYHQWLQJ FHOO GHDWK VLJQDOV >@ 8QGHU EDVDO FRQGLWLRQV$6. LV ERXQG WR and  inhibited  by  a  physiological  inhibitor,  Thioredoxin1   (Trx1).  Upon  oxidative  stress,  Trx1  dissociates  from  ASK1   and  thus  ASK1  is  activated,  resulting  in  the  transmission   of  apoptosis-­inducing  signals  through  its  kinase  activity   >@'-KDVEHHQVKRZQWREHDUHJXODWRURIWKH$6.

7U[ LQWHUDFWLRQ :LOGW\SH '- KDV EHHQ UHSRUWHG WR prevent  the  dissociation  of  ASK1  from  Trx1  under  H2O2-­ induced   oxidative   stress   in   a   cultured   mammalian   cell   line  as  well  as  in  mice  whole  brain  homogenates  using   co-­immunoprecipitation   experiments   [58].   DJ-­1,   by   KLQGHULQJ $6.7U[ GLVVRFLDWLRQ KDV EHHQ VKRZQ WR VXSUHVVHV-1.DFWLYDWLRQDQGWKXVSUHYHQWV+2O2-­induced   cell  death  [58].  Thus,  it  is  interesting  to  note  that  DJ-­1  and   thioredoxin,  known  for  antioxidant  functions,  are  linked   together  and  play  a  role  in  cytoprotection.  A  schematic   representation  of  the  interaction  of  ASK-­1  and  Trx  and  the   regulation  of  this  complex  by  DJ-­1  under  oxidative  stress   LVLOOXVWUDWHGLQ)LJXUH Thus,  DJ-­1  is  involved  in  multiple  redox  signalling   SDWKZD\V LQFOXGLQJ WKH '-$6.7U[ D[LV ZKLFK transmit   cell   proliferation   signals.   This   indicates   that   targeted  inhibition  of  DJ-­1  may  help  in  deactivating  redox-­ responsive   signalling   events,   altering   the   antioxidant   activity   of   Trx1   and   other   antioxidant   molecules   to   VWLPXODWHFHOOGHDWKLQFDQFHUDQGRWKHUGLVHDVHV)LJXUH 1   summarises   the   action   of   DJ-­1   on   various   signalling   molecules  and  its  function.

The  Thioredoxin  System The  thioredoxin  system  is  one  of  the  most  important   antioxidant   system   present   in   all   species   [9,   10].   The   thioredoxin  system  is  comprised  of  thioredoxin  reductase   7U[5 HQ]\PH1$'3+DQGWKLRUHGR[LQ 7U[ 7U[KDV a  conserved  Cys-­Gly-­Pro-­Cys  redox  catalytic  site,  which   reduces  the  target  proteins  [9].  TrxR  transfers  reducing   HTXLYDOHQWVIURP1$'3+WR7U[DQGUHGXFHVWKHDFWLYH VLWHGLVXO¿GHRIR[LGL]HG7U[ 7U[62)  to  a  dithiol  (Trx-­

Basal  condition  

Oxidative  Stress   Keap1   Keap1  

DJ-­‐1  

Nrf2   Ubiquitination  

Cytosol   maf  

Degraded  Nrf2  

Nucleus   Trx1  gene   ARE   Transcription  

Figure  4:  Induction  of  Trx1  expression  by  DJ-­1  via  the  Nrf2  pathway.   Under  oxidative  stress,  DJ-­1  inhibits  the  interaction   EHWZHHQ1UIDQGLWVLQKLELWRU.HDSUHVXOWLQJLQDFWLYDWLRQRI1UI$FWLYDWHG1UIWUDQVORFDWHVWRWKHQXFOHXVDQGELQGVWKH$5(HOHPHQW LQWKH7U[SURPRWHUDQGLQGXFHV7U[H[SUHVVLRQ)LJXUHDGDSWHGDQGXVHGZLWKSHUPLVVLRQIURPWKHDXWKRUV>@ www.impactjournals.com/oncoscience

100

Oncoscience

(SH)2  7KH PDPPDOLDQ WKLRUHGR[LQ V\VWHP LV TXLWH complex  and  both  Trx  and  TrxR  are  expressed  as  different   isoforms;;  Trx  as  Trx1  and  Trx2,  and  TrxR  as  TrxR1  and   TrxR2.  Trx1  and  TrxR1  are  predominantly  expressed  in   the   cytosol,   whereas   Trx2   and   TrxR2   are   expressed   in   the   mitochondria.  All   four   of   these   genes   are   essential,   since  knockout  mice  lacking  any  of  these  four  genes  die   early,  during  embryogenesis  [90-­93].  Another  mammalian   7U[5KDVDOVREHHQLGHQWL¿HGSUHGRPLQDQWO\H[SUHVVHGLQ testis,  which  has  the  potential  to  reduce  not  only  Trx  but   DOVRJOXWDWKLRQHGLVXO¿GH7KHUHIRUHWKLV7U[5LVRIRUPLV WHUPHGWKHWKLRUHGR[LQJOXWDWKLRQHUHGXFWDVH 7*5 >@ Amongst  all  the  members  of  thioredoxin  system,  Trx1  and   TrxR1  have  emerged  as  critical  redox  regulators  and  as   potential  therapeutic  targets  for  many  human  cancer  types   [17,  20,  95].

Several   studies   have   reported   the   involvement   of   Trx1  in  regulating  the  activity  of  p53  [105-­108].  By  using   electrophoretic  mobility  shift  assays,  it  was  shown  that  Trx   HQKDQFHGWKHVHTXHQFHVSHFL¿F'1$ELQGLQJDFWLYLW\RI p53  in  a  Ref-­1  dependent  as  well  as  independent  manner   [105].  Using  luciferase  assays,  Trx  was  shown  to  stimulate   the  Ref-­1  mediated  transactivation  of  p53,  which  suggests   an   importance   of   functional   coupling   between   Trx   and   Ref-­1   in   activating   the   p53   signalling   cascade   [105].   )XUWKHUPRUH7U[ KDV DOVR EHHQ VKRZQ WR EH SRVLWLYHO\ DVVRFLDWHGZLWKSLQGXFHG'1$UHSDLULQEUHDVWFDQFHU FHOOV>@ Trx1  has  been  implicated  in  the  regulation  of  the   WXPRXUVXSSUHVVRUDFWLYLW\RI37(1>@EXWWKHUH LVDGLVFUHSDQF\LQWKHGDWD37(1LVDUHGR[VHQVLWLYH tumour  suppressor,  which  is  inactivated  by  H2O2-­induced   526JHQHUDWLRQ37(1H[SRVXUHWR526UHVXOWVLQWKH formation  of  an  intramolecular  disulphide  bond  involving   D UHGR[ VHQVLWLYH F\VWHLQH UHVLGXH &\V  SUHVHQW LQ WKH DFWLYH VLWH RI 37(1 ZKLFK LQKLELWV 37(1 WXPRXU suppressor  activity  [109].  As  described  earlier,  inhibition   RI37(1UHVXOWVLQWKHDFWLYDWLRQRI$NWSURWHLQNLQDVH% and  promotes  cell  survival.  Using  co-­immunoprecipitation   assays,   Trx   was   shown   to   bind   to   an   inactive   oxidized   IRUPRI37(1DQGWRUHGXFHLWUHVXOWLQJLQWKHDFWLYDWLRQ RI 37(1 DFWLYLW\ >@$QRWKHU VWXG\ XVHG PROHFXODU docking  studies  and  site-­directed  mutagenesis  to  also  show   that   the   reduced   form   of  Trx1   directly   binds   to   the   C2   GRPDLQRI37(1E\IRUPLQJDGLVXOSKLGHERQGEHWZHHQ WKH&\VRI7U[DQG&\VRI37(1>@,QFRQWUDVW WRWKHSUHYLRXVVWXG\WKLVELQGLQJRI7U[WR37(1UHVXOWV in  the  inactivation  of  the  lipid  phosphatase  activity  and   PHPEUDQHELQGLQJRI37(1 )LJXUH >@+HQFH7U[ KDVEHHQUHSRUWHGWRLPSHGH37(1DFWLYLW\DVZHOODVWR VWLPXODWH37(1IXQFWLRQV:KLOHWKHH[DFWUROHRI7U[ LQUHJXODWLQJ37(1DFWLYLW\UHPDLQVDWRSLFRIGHEDWHD UHFHQWVWXG\KDVVKRZQWKDW7U[LQKLELWV37(1DFWLYLW\LQ QHXUREODVWRPDFHOOV>@7KXV7U[E\LQKLELWLQJ37(1 activity,  may  result  in  tumour  cell  proliferation.  Taken  all   WRJHWKHU WKH7U[37(1 D[LV PD\ EH FRQVLGHUHG DV DQ effective  molecular  target  for  the  treatment  of  cancers  with   KLJKHU7U[OHYHOVDQGORZHUHG37(1DFWLYLW\ Another  target  of  Trx  is  ASK1  [89].  In  the  cytoplasm   Trx1  has  been  shown  to  directly  bind  to  Cys-­250  in  the   1WHUPLQDO UHJLRQ RI $6. FDXVLQJ LQKLELWLRQ RI LWV kinase  activity  [112].  In  the  mitochondria  Trx2  has  been   VKRZQWRGLUHFWO\ELQGWR&\VLQWKH1WHUPLQDOUHJLRQ of   ASK1,   resulting   in   the   inhibition   of   ASK1   activity   [112].   Thus,   ASK1   is   regulated   by   both   cytosolic   and   mitochondrial   thioredoxin   in   an   independent   manner.   ASK1  is  activated  by  a  variety  of  external  stress  stimuli   including  ROS.  Under  normal  conditions  the  reduced  form   of  Trx1  [Trx1-­(SH)2]  binds  to  ASK1,  but  under  oxidative   stress  conditions  the  reduced  form  of  Trx1  is  converted  to   its  oxidized  form  (Trx1-­S2)  and  results  in  the  dissociation   of   Trx1   from   ASK1   [89,   112,   113].   This   dissociation  

Regulation  of  thioredoxin  system  under  oxidative  stress Under  oxidative  stress  conditions,  the  induction  of   WKLRUHGR[LQ H[SUHVVLRQ LV UHJXODWHG E\ DQ$5( SUHVHQW in  the  promoter  region  of  the  Trx1  gene,  which  is  bound   E\1UI>@8SRQDFWLYDWLRQ1UILVWUDQVORFDWHGWRWKH nucleus  where  it  forms  a  heterodimer  with  maf  proteins.   6HYHUDOVWXGLHVKDYHUHSRUWHGWKDWWKH1UI0DIFRPSOH[ WKHQELQGVWRWKH$5(HOHPHQWLQWKHSURPRWHUUHJLRQRI the   target   antioxidant   genes   [97]   including   thioredoxin   >@DQGWKLRUHGR[LQUHGXFWDVH>@DQGLQFUHDVHVWKHLU expression. Role  of  Trx  in  intracellular  redox  signalling  pathways Being   critical   redox   regulators,  Trx   and  TrxR   are   involved   in   a   number   of   intracellular   redox   signalling   pathways   by   activating   a   number   of   redox-­sensitive   WUDQVFULSWLRQ IDFWRUV UHTXLUHG IRU YDULRXV FHOOXODU processes.   Trx  is  usually  present  in  the  cytoplasm,  but  under   certain  circumstances  it  is  translocated  to  the  nucleus.  In   the  nucleus,  Trx  has  been  shown  to  activate  redox  sensitive   WUDQVFULSWLRQIDFWRUVLQFOXGLQJ1)ɤȕ>@8QGHUQRUPDO FRQGLWLRQV1)ɤȕLVSUHVHQWLQWKHF\WRSODVPZKHUHLWLV LQKLELWHGDQGVHTXHVWHUHGE\LWVSK\VLRORJLFDOLQKLELWRU LQKLELWRURIɤȕ ,ɤȕ 8QGHUR[LGDWLYHVWUHVV526UHOHDVHV ,ɤȕ VXEXQLW IURP 1)ɤȕ ZKLFK LV WKHQ WUDQVORFDWHG WR WKHQXFOHXV>@,QWKHQXFOHXV7U[UHGXFHV&\VLQ WKH 1)ɤȕ VXEXQLW S DOORZLQJ 1)ɤȕ WR ELQG WR WKH recognition  site  present  on  the  promoter  region  of  its  target   genes,  which  are  involved  in  cellular  processes  including,   FHOOJURZWKDQGVXUYLYDO )LJXUH >@7U[DOVR regulates  the  activity  of  other  transcription  factors  such   as  Activator  protein-­1  (AP-­1),  via  Redox  factor-­1  (Ref-­1).   Trx  reduces  Ref-­1  in  the  nucleus,  which  in  turn  reduces   F\VWHLQH UHVLGXHV SUHVHQW LQ WKH '1$ELQGLQJ GRPDLQV RI)RVDQG-XQDQGWKXVDFWLYDWHV$3 )LJXUH >@ Using  in  vitro  diamide-­induced  cross-­linking  study  and  in   vivo  mammalian  two-­hybrid  assays,  Trx1  was  shown  to   directly  bind  to  Ref-­1  in  the  nucleus  and  to  activate  the   WUDQVFULSWLRQDODFWLYLW\RI$3>@ www.impactjournals.com/oncoscience

101

Oncoscience

results  in  the  activation  of  ASK1  kinase  activity,  which   stimulates   the   apoptotic   signalling   cascade   in   the   cells   )LJXUH$  7KH(5.SDWKZD\LVDOVRUHGR[UHJXODWHGE\7U[ Recent  evidence  suggests  that  the  loss  of  Trx1  or  TrxR1   VHQVLWLVHGDPRXVHPDPPDU\FDUFLQRPDFHOOOLQH (07  WRWXPRXUQHFURVLVIDFWRU±Į 71)Į LQGXFHGDSRSWRVLV E\ LQFUHDVLQJ QXFOHDU ORFDOL]DWLRQ RI S(5. LQ D 3,. GHSHQGHQW PDQQHU >@ 7KLV PD\ VXJJHVW WKDW increased  Trx1  or  TrxR1  levels  in  cancer  cells  prevents   QXFOHDUWUDQVORFDWLRQRIS(5.DQGWKHUHIRUHSURWHFWV FHOOV DJDLQVW 71)ĮPHGLDWHG DSRSWRVLV ,QWHUHVWLQJO\ F\WRSODVPLFDQGPLWRFKRQGULDOORFDOL]DWLRQRIS(5. LQ7U[RU7U[5GH¿FLHQW(07FHOOVKDYHQRWVHQVLWLVHG FHOOVWR71)ĮLQGXFHGDSRSWRVLV7KHVHUHVXOWVLQGLFDWH WKDWWKHVXEFHOOXODUORFDOL]DWLRQRIS(5.LVDFULWLFDO determinant   of   whether   cancer   cells   with   compromised   Trx  levels  or  activity  will  undergo  stress  stimuli-­induced   DSRSWRVLV>@ Thus,  Trx1  is  involved  in  multiple  redox-­regulated   signalling   pathways   in   cancer   by   regulating   redox-­ sensitive   transcription   factors   and   signalling   molecules   )LJXUH 7DNHQWRJHWKHUPRGXODWLRQRI7U[H[SUHVVLRQ and  activity  in  diseased  cells  leads  to  the  modulation  of   the  signal  transmission  regulated  by  various  transcription   factors   and   may   emerge   as   an   effective   therapeutic  

approach  to  overcome  cancer.    

Cross-­talk   between   two   antioxidant   molecules:   DJ-­1  and  Thioredoxin Oxidative  stress  is  one  of  the  major  factors  giving   rise   to   diseased   conditions.   As   discussed   above,   DJ-­1   and   Trx   are   two   important   antioxidant   molecules   that   play  crucial  roles  in  maintaining  the  intracellular  redox   state  and  provide  cytoprotection  against  oxidative  stress.   DJ-­1   has   been   shown   to   exert   cytoprotection   against   R[LGDWLYHVWUHVVLQ3DUNLQVRQ¶VGLVHDVH>@'- protein  levels  are  increased  in  a  number  of  human  cancer   types  as  compared  to  normal  cells  or  tissues  and  promote   cell   survival   and   resistance   against   apoptosis   [25-­30].   6LPLODUO\7U[SURWHLQOHYHOVDUHVLJQL¿FDQWO\XSUHJXODWHG in  many  human  cancer  cell  types  including  gastric,  lung,   colon,   liver,   and   pancreatic   cancers   [17,   115-­117]   to   provide  protection  against  ROS-­mediated  cell  death. Both   DJ-­1   and   Trx1   were   considered   as   two   separate   intracellular   antioxidant   systems   until   two   independent   studies   reported   the   interaction   between   DJ-­1  and  Trx1  [58,  118].  DJ-­1  has  been  shown  to  enhance   Trx1  expression  by  activating  the  transcriptional  activity   RI 1UI in   vitro   as   well   as   in   vivo )LJXUH   >@

Cytoprotection  

Other   stimuli  

DJ-­‐1  

Other   stimuli  

Nrf2   NQO 1  

HO-­‐1  

NF-­‐̡B  

Trx1  

PTEN  

Proliferation/Cell   survival  

Cytoprotection  

Tumour  growth  

Figure  5:  Consequences  of  targeting  each  antioxidant,  Trx1  and  DJ-­1,  alone  or  in  combination  in  cancer.   Both  Trx1   DQG'-H[HUWF\WRSURWHFWLRQE\LQGHSHQGHQWPHFKDQLVPVDVZHOODVE\DFWLQJRQFRPPRQWDUJHWVVXFKDV1)ɤ%DQG37(17DUJHWLQJ '-DORQHPD\QRWEHVXI¿FLHQWWRLQGXFHFHOOGHDWKVLQFH1UIFDQDOVREHDFWLYDWHGE\RWKHUVWUHVVVWLPXOLOHDGLQJWR7U[XSUHJXODWLRQ 0RUHRYHU7U[DOVRDFWLYDWHV1)ɤ%DQGLQKLELWVWKHWXPRXUVXSSUHVVRUDFWLYLW\RI37(1OHDGLQJWRFHOOVXUYLYDODQGWXPRXUJURZWK7KXV even  after  inhibition  of  DJ-­1,  all  other  cytoprotective  machineries  are  functional  and  may  promote  tumour  growth.  Similarly,  targeting  Trx1   DORQHPD\QRWLQGXFHFDQFHUFHOOGHDWKVLQFH'-PD\DFWLYDWHRWKHU1UIWDUJHWHGF\WRSURWHFWLYHJHQHVRUDFWLYDWHV1)ɤ%RULQKLELWV WXPRXUVXSSUHVVRUDFWLYLW\RI37(1UHVXOWLQJLQFHOOVXUYLYDODQGWXPRXUJURZWK2QWKHRWKHUKDQGWDUJHWLQJ7U[DQG'-WRJHWKHUPD\ completely  shut  down  all  the  cytoprotective  machineries  regulated  by  these  antioxidants  and  leads  to  cancer  cell  apoptosis.  Hence,  targeting   two  or  more  antioxidants  in  conjunction  may  prove  an  effective  therapy  to  treat  cancer..   www.impactjournals.com/oncoscience

102

Oncoscience

Overexpression  of  wild-­type  DJ-­1  induced  the  expression   of  Trx1  protein  in  HeLa  cells,  suggesting  that  DJ-­1  may   regulate   the   expression   of   Trx1   [118].   This   result   was   IXUWKHU FRQ¿UPHG ZKHQ LQKLELWLRQ RI '- H[SUHVVLRQ in   neuroblastoma   cells   and   DJ-­1   knockout   in   mice   VLJQL¿FDQWO\UHGXFHG7U[SURWHLQDQGP51$OHYHOV>@ 2YHUH[SUHVVLRQRI'-HQKDQFHG1UISURWHLQOHYHOVDQG LQFUHDVHGLWVQXFOHDUWUDQVORFDWLRQZKLFKZDVFRQ¿UPHG by  western  blot  analysis  [118].  Using  promoter  assay  and   chromatin  co-­immunoprecipitation  (ChIP)  assays,  it  was   VKRZQ WKDW '- HQKDQFHG WKH UHFUXLWPHQW RI 1UI RQ WKH$5(UHJLRQRIWKH7U[SURPRWHUDQGLQFUHDVHG7U[ P51$H[SUHVVLRQ>@+RZHYHU'-ZDVQRWERXQG WRWKH$5(7KXV'-PD\H[HUWLWVF\WRSURWHFWLYHHIIHFW against  oxidative  stress  by  inducing  expression  of  Trx1   YLD1UI>@)LJXUHLOOXVWUDWHVWKHDFWLRQRI'-RQ Trx1  expression.  It  was  shown  that  the  treatment  of  cells   ZLWK FKORUR GLQLWUREHQ]HQH D SKDUPDFRORJLFDO LQKLELWRU RI 7U[5 DQG 7U[ VSHFL¿F VL51$ UHVXOWHG LQ the  partial  loss  of  DJ-­1-­mediated  cytoprotection  against   oxidative   stress   [118].   Although   DJ-­1   was   reported   to   VWLPXODWH WKH WUDQVFULSWLRQDO DFWLYLW\ RI 1UI WKH H[DFW mechanism  still  remains  elusive.  DJ-­1  has  been  shown  to   LQFUHDVH1UISURWHLQOHYHOVZLWKRXWDIIHFWLQJ1UIP51$ H[SUHVVLRQ E\ SUHYHQWLQJ WKH LQWHUDFWLRQ EHWZHHQ 1UI and  Keap1  [13,  119].  By  using  co-­immunoprecipitation   H[SHULPHQWVLWZDVVKRZQWKDW.HDSZDVERXQGWR1UI but   the   presence   of   DJ-­1   eliminated   this   association   in   Huh7  cells  [13].  This  data  demonstrates  that  DJ-­1  hinders   WKHDVVRFLDWLRQEHWZHHQ1UIDQG.HDSKRZHYHULWGRHV not   prove   the   physical   interaction   of   DJ-­1   with   either   1UIRU.HDS>@,QFRQWUDVWDQRWKHUVWXG\E\XVLQJ co-­immunoprecipitation   and   chemical   cross-­linking   experiments,   has   shown   that   DJ-­1   neither   physically   LQWHUDFWV ZLWK 1UI RU .HDS QRU LQWHUIHUHV ZLWK WKH LQWHUDFWLRQ EHWZHHQ 1UI DQG .HDS >@ 7KXV D TXHVWLRQRIKRZ'-DFWLYDWHV1UILVVWLOORSHQDQGVHHNV PRUH XQGHUVWDQGLQJ RI WKH PHFKDQLVP 7KHVH ¿QGLQJV suggest   that,   Trx1   and   DJ-­1   are   not   only   independent   antioxidant  molecules  but  DJ-­1  may  serve  as  an  upstream   regulator  of  Trx1,  at  least  for  some  stress  conditions.   $SDUW IURP WKH '-7U[ LQWHUDFWLRQ WKHUH are   no   reports   describing   any   role   for   DJ-­1   in   regulating   expression   and   activity   of   other   members   of   the   thioredoxin   system,   including   Trx2.   Trx2   is   a   mitochondrial   thioredoxin   and   exerts   cytoprotection   against   external   stress   stimuli.  Trx2   has   been   shown   to   bind   mitochondrial   ASK1   and   inhibits   mitochondrial   $6.PHGLDWHGDSRSWRVLVLQD-1.LQGHSHQGHQWIDVKLRQ [112].  Based  on  the  observations  that  DJ-­1  regulates  the   F\WRVROLF$6.7U[FRPSOH[WRLQKLELW$6.PHGLDWHG apoptosis   [58]   and   its   mitochondrial   localization   [50,   51]   to   exert   neuroprotection,   it   would   be   interesting   to   GHWHUPLQHLI'-DOVRUHJXODWHVWKHPLWRFKRQGULDO7U[ $6.FRPSOH[,WLVSRVVLEOHWKDWWKH'-7U[$6. axis  may  serve  as  a  novel  molecular  mechanism  to  protect   www.impactjournals.com/oncoscience

cells  against  mitochondrial  ROS-­induced  apoptosis.  An   understanding   of   these   molecular   signalling   pathways   may  open  new  avenues  for  the  therapeutic  intervention  of   cancers.

Therapeutic  perspective The   intracellular   redox   state   regulates   various   cellular   signalling   pathways   under   oxidative   stress   conditions  induced  by  internal  and  external  stimuli.  DJ-­1   and   Trx   play   a   crucial   role   in   maintaining   intracellular   redox   homeostasis   by   involving   and   regulating   various   redox   stress   responsive   signalling   pathways.   Thus,   targeting   either   of   these   antioxidant   molecules   or   both   together,  may  serve  as  a  novel  and  effective  therapeutical   DSSURDFK IRU WKH WUHDWPHQW RI FDQFHUV WKDW DFTXLUH resistance  to  the  anti-­cancer  therapy  acting  by  modulating   ROS  levels.  DJ-­1  and  Trx  play  a  protective  role  against   oxidative  stress  and  inhibit  redox  stress-­induced  cell  death   in  many  diseases.  Genetic  mutations  of  DJ-­1  resulting  in   the   loss   or   reduced   DJ-­1   functions   lead   to   the   onset   of   oxidative   stress-­related   diseases   including   Parkinson’s   disease  [31,  120,  121],  stroke  [122],  chronic  obstructive   pulmonary   disease   (COPD)   [119],   and   type   II   diabetes   >@([SUHVVLRQRI'-KDVEHHQVKRZQWREHLQFUHDVHG in   many   cancer   types   [25-­27,   29,   77].   Therefore,   the   knowledge   about   the   antioxidant   and   cytoprotective   functions  of  DJ-­1  obtained  from  other  disease  models  can   be  readily  translated  into  cancers  where  an  expression  of   DJ-­1   is   upregulated.   Similarly,   Trx   has   been   shown   to   act  as  a  modulator  of  cell  susceptibility  under  oxidative   stress  conditions  and  exerts  protective  effects  on  cancer   FHOOV>@7U[H[SUHVVLRQKDVEHHQUHSRUWHGWRLQFUHDVH LQPDQ\FDQFHUFHOOW\SHV>@ZKHUHLWUHVXOWV in  increased  cell  proliferation  and  resistance  to  cell  death   >@7KHWKLRUHGR[LQV\VWHPKDVHPHUJHGDVDSRWHQWLDO therapeutic   target   for   the   treatment   of   many   human   FDQFHUW\SHVXVLQJFRPSRXQGVWKDWVSHFL¿FDOO\WDUJHWWKH thioredoxin  system  to  induce  cancer  cell  apoptosis  [20,   @,QKLELWLRQRI7U[RU7U[5XVLQJVSHFL¿FLQKLELWRUV inhibits  tumour  cell  proliferation,  induces  apoptosis,  and   increases   the   sensitivity   of   cancer   cells   to   anti-­cancer   therapy  [20,  21]. )LQGLQJV WKDW KDYH LPSOLFDWHG WKH UROH RI '- LQ LQGXFLQJ 7U[ H[SUHVVLRQ E\ LQFUHDVLQJ 1UI DFWLYLW\ have   given   another   mechanism   by   which   DJ-­1   exerts   cytoprotective   function.   Inhibition   of   Trx1   expression   E\7U[VSHFL¿FVL51$KDVGHFUHDVHGWKH'-LQGXFHG cytoprotective   effect   against   oxidative   stress   [118],   but   has   not   completely   eliminated   it.   DJ-­1   may   increase   H[SUHVVLRQDQGDFWLYLW\RIRWKHU1UIUHJXODWHGDQWLR[LGDQW or   detoxifying   enzymes   including   heme   oxygenase   1   +2 DQG1$' 3 +TXLQLQHR[LGRUHGXFWDVH 142  which  may  protect  cells  against  oxidative  stress  rendering   WKHUDSLHVWDUJHWLQJ7U[DORQHOHVVHIIHFWLYH)XUWKHUPRUH WDUJHWLQJ '- DORQH PD\ QRW EH VXI¿FLHQW WR LQFUHDVH 103

Oncoscience

cell  susceptibility  to  ROS-­induced  apoptosis  because  the   1UIUHJXODWHGVLJQDOOLQJFDVFDGHFDQDOVREHDFWLYDWHG by   regulatory   molecules   other   than   DJ-­1   such   as   the   DXWRSKDJ\VXEVWUDWHSSWDUJHWHGSSURWHLQ> @7KHUHIRUHLQKLELWLRQRI'-RU7U[DORQHPD\QRW EHVXI¿FLHQWWRWUHDWFDQFHUVZLWKKLJKDQWLR[LGDQWOHYHOV 7DUJHWLQJ WKH '-1UI7U[ D[LV PD\ EH LPSRUWDQW in   modulating   cellular   response   to   ROS-­induced   cell   GHDWKLQFDQFHU)XUWKHUPRUHHOXFLGDWLRQRIWKHSRVVLEOH interactions  of  DJ-­1  with  the  other  members  of  Trx  system   PD\ DOVR OHDG WR WKH LGHQWL¿FDWLRQ RI QRYHO PROHFXODU therapeutic  targets  that  can  be  used  to  develop  anti-­cancer   therapies. $QRWKHUPROHFXODUD[LVWKDWPD\UDLVHDVLJQL¿FDQW interest  for  the  treatment  of  various  types  of  malignancies   LVWKH7U['-37(1D[LV7XPRXUVXSSUHVVRU37(1LV reported  to  be  lost  or  inhibited  in  many  types  of  human   cancers   [127-­131]   and   is   deregulated   in   many   other   diseased   conditions   including,   rheumatoid   arthritis,   FKURQLF SXOPRQDU\ GLVHDVH DQG SXOPRQDU\ ¿EURVLV >@6LQFHERWK7U[DQG'-WDUJHWWKHWXPRXU VXSSUHVVRUDFWLYLW\RI37(1FRLQKLELWLRQRIERWKRIWKHVH antioxidant  molecules  may  prove  an  effective  approach   for  the  therapeutic  intervention  of  chemotherapy-­resistant   forms  of  cancer.   1)ɤȕLVDUHGR[VHQVLWLYHWUDQVFULSWLRQIDFWRUWKDW LVSRVLWLYHO\UHJXODWHGE\ERWK'-DQG7U[>@ $V GLVFXVVHG HDUOLHU '- DFWLYDWHV 1)ɤȕ E\ ELQGLQJ WRLWVSK\VLRORJLFDOLQKLELWRU&H]DQQH>@ZKHUHDV7U[ ELQGV GLUHFWO\ WR WKH 1)ɤȕ LQ WKH QXFOHXV DQG UHGXFHV D NH\ F\VWHLQH UHVLGXH WR HQKDQFH WKH '1$ ELQGLQJ DFWLYLW\RI1)ɤȕ>@7KHUHIRUHWKHUHDUHWZRGLVWLQFW PHFKDQLVPVWKDWXSUHJXODWHV1)ɤȕDFWLYLW\7KXVWKH '-1)ɤȕ7U[D[LVLVDQRWKHUPROHFXODUD[LVWKDWPD\ be  considered  as  a  potential  target  to  treat  cancer  where   these  antioxidants  are  upregulated. Thus,   tumours   having   elevated   levels   of   antioxidants,   such   as   Trx1   and   DJ-­1,   may   not   respond   well  to  the  therapies  targeting  only  one  of  them.  Inhibiting   either  Trx1  or  DJ-­1  alone  may  allow  the  other  to  activate   downstream  signalling  cascade  leading  to  the  tumour  cell   survival   and   proliferation.   On   the   other   hand,   targeting   both  Trx1  and  DJ-­1  in  conjunction  may  completely  shut   down  the  antioxidant  defence  systems  regulated  by  these   antioxidants  and  render  the  cancer  cells  sensitive  to  ROS-­ LQGXFHGFHOOGHDWK)LJXUHVXPPDULVHVWKHFRQVHTXHQFHV of   targeting   Trx1   and   DJ-­1   alone   or   in   combination   in   cancer  cells.

elucidation   of   DJ-­1   and   Trx-­dependent   regulation   of   redox  signalling  cascades  may  provide  an  effective  and   a   promising   therapeutic   regime   to   treat   cancers   with   KLJK DQWLR[LGDQW OHYHOV )XUWKHUPRUH HOXFLGDWLRQ RI the   cross-­talk   between   DJ-­1   and   other   members   of   the   Trx   superfamily   in   different   tumour   models,   and   the   molecular  mechanism  of  these  interactions  may  lead  to   WKHLGHQWL¿FDWLRQRIPXOWLSOHPROHFXODUWDUJHWV'HWDLOHG XQGHUVWDQGLQJ RI WKH UROH RI '- LQ UHJXODWLQJ 1UI mediated  signalling  pathways  and  its  targeted  genes  may   OHDGWRWKHLGHQWL¿FDWLRQRIQRYHOWDUJHWVIRUWKHUDSHXWLF intervention  of  various  human  cancer  types.

ACKNOWLEDGEMENTS 7KLVUHVHDUFKZDVVXSSRUWHGE\*ULI¿WK8QLYHUVLW\ 3RVWJUDGXDWH 5HVHDUFK 6FKRODUVKLS WR 35  D *ULI¿WK University   International   Postgraduate   Research   Scholarship  (to  P.R.).

REFERENCES 1.   Robbins   D   and   Zhao   Y.   Oxidative   Stress   Induced   by   0Q62'S ,QWHUDFWLRQ 3UR RU $QWL7XPRULJHQLF" - 6LJQDO7UDQVGXFW  )LQNHO72[LGDQWVLJQDOVDQGR[LGDWLYHVWUHVV&XUU2SLQ &HOO%LRO  0DUWLQGDOH -/ DQG +ROEURRN 1- &HOOXODU UHVSRQVH WR R[LGDWLYHVWUHVVVLJQDOLQJIRUVXLFLGHDQGVXUYLYDO-&HOO 3K\VLRO  .DEH