Crystal and molecular structure of (2Z,5Z) - IUCr Journals

2 downloads 0 Views 693KB Size Report
Feb 27, 2017 - The molecular structure of the title compound with the atomic ..... structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for.
research communications

ISSN 2056-9890

Crystal and molecular structure of (2Z,5Z)-3-(2methoxyphenyl)-2-[(2-methoxyphenyl)imino]-5-(4nitrobenzylidene)thiazolidin-4-one Ahmed Djafri,a,b Abdelkader Chouaih,a* Jean-Claude Daran,c Ayada Djafrid and Fodil Hamzaouia

Received 23 February 2017 Accepted 27 February 2017

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China Keywords: crystal structure; thiazolidin-4-one; DFT calculations; hydrogen bonding; – interactions. CCDC reference: 1534261 Supporting information: this article has supporting information at journals.iucr.org/e

a

Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria, bCentre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria, cLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse Cedex, France, and dLaboratory of Organic Applied Synthesis (LSOA), Department of Chemistry, Faculty of Sciences, University of Oran 1, Ahmed Ben Bella, 31000 Oran, Algeria. *Correspondence e-mail: [email protected]

In the title compound, C24H19N3O5S, the thiazole ring (r.m.s. deviation = ˚ ) displays a planar geometry and is surrounded by three fragments, two 0.012 A methoxyphenyl and one nitrophenyl. The thiazole ring is almost in the same plane as the nitrophenyl ring, making a dihedral angle of 20.92 (6) . The two methoxyphenyl groups are perpendicular to the thiazole ring [dihedral angles of 79.29 (6) and 71.31 (7) and make a dihedral angle of 68.59 (7) . The molecule exists in an Z,Z conformation with respect to the C N imine bond. In the crystal, a series of C—H  N, C—H  O and C—H  S hydrogen bonds, augmented by several –(ring) interactions, produce a three-dimensional architecture of molecules stacked along the b-axis direction. The experimentally derived structure is compered with that calculated theoretically using DFT(B3YLP) methods.

1. Chemical context There are numerous studies of simple thiazoles reporting their biological activity (Saeed et al., 2010; Shokol et al., 2013; Akhtar et al., 2007). As a result of their properties, thiazole derivatives are interesting candidates for obtaining new materials. Thiazole compounds have been also studied for their non-linear optical properties (Smokal et al., 2009). Recently, numerous studies have reported the theoretical and experimental structures of this kind of compound (Boulakoud et al., 2015; Khelloul et al., 2016). Prompted by these investigations and in a continuation of our research on the development of organic heterocyclic compounds (Toubal et al., 2012; Rahmani et al., 2016; Bahoussi et al., 2017), we report in this paper the synthesis and crystal structure of the compound (2Z,5Z)-5-(4-nitrobenzylidene)-3-(2-methoxyphenyl)-2-[(2methoxyphenyl)imino]thiazolidin-4-one. The experimental geometric parameters are compared with those optimized by density functional theory (DFT).

2. Structural commentary The molecular structure of the title compound with the atomic numbering scheme is shown in Fig. 1. All of the bond lengths are within normal ranges. Bond lengths and angles for the 5-(4-nitrobenzylidene)-3-(2-methoxyphenyl) moiety are consistent with those in related structures (Benhalima et al., Acta Cryst. (2017). E73, 511–514

https://doi.org/10.1107/S2056989017003218

511

research communications Table 1 ˚ ,  ). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

C3—H3  S1 C3—H3  O1i C5—H5  O3ii C7—H7  O3ii C21—H21  N3iii C23—H23C  O1iv

0.95 0.95 0.95 0.95 0.95 0.98

2.58 2.57 2.58 2.40 2.52 2.55

3.2594 (14) 3.3320 (18) 3.3938 (17) 3.1982 (15) 3.4576 (19) 3.238 (2)

128 138 145 142 170 127

Symmetry codes: (i) x; y þ 12; z þ 12; (ii) x; y þ 1; z; (iii) x þ 1; y  12; z þ 12; (iv) x; y þ 32; z þ 12.

2011). As always, the thiazole ring is close to planar (r.m.s. ˚ ) and is surrounded by three fragments, deviation = 0.012 A two methoxyphenyl and nitrophenyl. The central thiazole ring is twisted by 2.9 (2) (C4—C7—C8—S1) to the nitrophenyl ring, by 71.58 (18) (C10—N3—C17—C18) to the first methoxyphenyl group and by 80.62 (15) (C10—N2—C11— C16) to the second methoxyphenyl group. The dihedral angles between the thiazole ring and these three phenyl rings are 20.92 (6), 79.29 (6) and 71.31 (7) , respectively. The molecule exists in an Z,Z conformation with respect to the C10 N3 imine bond. Some bond angles of the aromatic rings are slightly out of normal range due to the presence of the methoxy and nitro substituents, viz. C4—C5 = 1.4040 (17), ˚ ; C2— C12—C11 = 1.3724 (19), C22—C17 = 1.4046 (19) A C1—C6 = 122.26 (12), C3—C4—C5 = 118.42 (12), C12— C13—C14 = 118.78 (14), C13—C14—C15 = 121.52 (14), C19— C20—C21 = 121.28 (14) .

Figure 1 Crystal structure of the title compound, with the atom-numbering scheme (displacement ellipsoids are drawn at the 50% probability level). H atoms are shown as small spheres of arbitrary radii.

˚; rings is also observed [Cg  Cg(x, y, z) = 3.7664 (8) A Cg is the centroid of the C1–C6 ring].

4. Quantum-chemical calculations Geometry optimization has been performed using DFT(B3YLP) methods with the 6-31G(d,p) basis set (Becke, 1997; Rauhut & Pulay, 1995). All calculations were carried out by using Gaussian package (Frisch et al., 2004) and the obtained data visualized by means of GaussView 4.1 (Dennington et al., 2007). The optimized structure is shown in Fig. 3. The calculated geometrical parameters such as bond lengths, bond angles and torsion angles (given in the Supporting information) are in good agreement with experimental values on basis of the diffraction study. The torsion angle between the first methoxyphenyl ring and the thiazole ring is 67.40 [experimental: 71.58 (18) ] and between the

3. Supramolecular features In the extended structure of the title compound, weak C— H  N, C—H  O and C—H  S hydrogen bonds (Table 1, Fig. 2) connect the molecules into a three-dimensional supramolecular network. – stacking involving the benzene

512

Djafri et al.



C24H19N3O5S

Figure 2 The crystal packing viewed along the c axis. Acta Cryst. (2017). E73, 511–514

research communications Table 2 Experimental details. Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm)

Figure 3 Optimized structure of the title compound, calculated at the B3LYP/6– 31 G(d,p) level.

second methoxyphenyl ring and the thiazole ring is 84.61 [experimental: 80.62 (15) ].

5. Synthesis and crystallization The synthesis of the title compound was performed according to the scheme in Fig. 4. To a solution of o-anisidine (0.02 mol) in ethanol (10 mL) was added carbon disulfide (0.01 mol) and the resulting solution was refluxed for 6 h to gave N,N0 diaryl thiouria. (0.01 mol) of the compound and (0.01 mol) of ethyl bromoacetate were refluxed in 40 mL of absolute ethanol in the presence of (0.04 mol) of anhydrous CH3COONa for 2 h. The precipitate thus obtained was filtered, dried and recrystallized from ethanol to formed 3-N-(2-methoxyphenyl)-2-N0 (2-methoxyphenylimino)-thiazolidin-4-one. 4-Nitrobenzaldehyde (0.01 mol) was added to a solution of the latter compound in 10 mL of acetic acid containing three equivalents of anhydrous sodium acetate. The reaction mixture was refluxed for 4 h and monitored by TLC on silica gel using dichloromethane:ethyl acetate (9:1) as a solvent system. The separated solid was filtered, washed with cold water and dried

Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin / )max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment ˚ 3)  max,  min (e A

C24H19N3O5S 461.48 Monoclinic, P21/c 173 15.6096 (4), 8.8817 (2), 15.8973 (4) 98.601 (2) 2179.21 (9) 4 Mo K 0.19 0.58  0.21  0.20

Nonius Kappa CCD scan (North et al., 1968) 0.856, 0.919 29723, 6435, 5119 0.031 0.727

0.041, 0.107, 1.03 6435 300 H-atom parameters constrained 0.43, 0.29

Computer programs: KappaCCD (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

to give the title compound. Single crystals suitable for X-ray diffraction were obtained from ethanol solution. Spectroscopic data (FT–IR, 1H NMR and 13C NMR). IR (KBr, cm1): 2941 (C—H), 1723 (C O), 1516 (C N), 1023 (C—N), 751 (C—S). 1H NMR, (CDCl3, 300 MHz)  (ppm) J (Hz): 3.72 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 6.83 (m, 3H, ArH), 7.06 (m, 3H, Ar-H), 7.36–7.06 (m, 3H, Ar-H), 7.54 (d, 2H, J = 8.81 Hz, Ar-H), 7.73 (s, 1H, C CH), 8.18 (d, 2H, J = 8.81 Hz, Ar-H). 13C NMR, (CDCl3, 300 MHz)  (ppm): 55.90 (OCH3), 55.98 (OCH3), 112.24, 112.59, 120.99, 121.21, 121.85, 123.15, 124.17, 126.07, 126.93, 127.44, 129.85, 130.38, 131.12, 137.33, 140.12, 147.46, 150.09, 150.65, 155.02, 165.69 (C O).

Figure 4 Chemical pathways showing the formation of the title compound. Reagents and conditions: (a) CS2, EtOH, 346 K; (b) BrAcOEt, EtOH, CH3COONa 348 K; (c) NO2C6H4CHO; CH3COOH; CH3COONa, 365 K. Acta Cryst. (2017). E73, 511–514

Djafri et al.



C24H19N3O5S

513

research communications 6. Refinement Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated ˚ ) and refined using a riding positions (C—H = 0.96–1.08 A mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Funding information Funding for this research was provided by: Ministe`re de l’Enseignement Supe´rieur et de la Recherche Scientifique, CNEPRU project.

References Akhtar, J., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322. Bahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173–176. Becke, A. D. (1997). J. Chem. Phys. 107, 8554–8560. Benhalima, N., Toubal, K., Chouaih, A., Chita, G., Maggi, S., Djafri, A. & Hamzaoui, F. (2011). J. Chem. Crystallogr. 41, 1729–1736. Boulakoud, M., Toubal, K., Yahiaoui, S., Chouaih, A., Chita, G., Djafri, A. & Hamzaoui, F. (2015). J. Struct. Chem. 56, 1373–1378. Dennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.

514

Djafri et al.



C24H19N3O5S

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Khelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619–626. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Nonius (1998). KappaCCD. Nonius BV, Delft. The Netherlands. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Rahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155–157. Rauhut, G. & Pulay, P. (1995). J. Phys. Chem. 99, 3093–3100. Saeed, S., Rachid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550–558. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Shokol, T. V., Gorbulenko, N. V., Turov, A. V. & Khilya, V. P. (2013). Chem. Heterocycl. Compd, 49, 325–330. Smokal, V., Derkowska, B., Czaplicki, R., Krupka, O., Kolendo, A. & Sahraoui, B. (2009). Opt. Mater. 31, 554–557. Toubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501–3509.

Acta Cryst. (2017). E73, 511–514

supporting information

supporting information Acta Cryst. (2017). E73, 511-514

[https://doi.org/10.1107/S2056989017003218]

Crystal and molecular structure of (2Z,5Z)-3-(2-methoxyphenyl)-2-[(2-methoxyphenyl)imino]-5-(4-nitrobenzylidene)thiazolidin-4-one Ahmed Djafri, Abdelkader Chouaih, Jean-Claude Daran, Ayada Djafri and Fodil Hamzaoui Computing details Data collection: KappaCCD (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006). (2Z,5Z)-3-(2-Methoxyphenyl)-2-[(2-methoxyphenyl)imino]-5-(4-nitrobenzylidene)thiazolidin-4-one Crystal data C24H19N3O5S Mr = 461.48 Monoclinic, P21/c a = 15.6096 (4) Å b = 8.8817 (2) Å c = 15.8973 (4) Å β = 98.601 (2)° V = 2179.21 (9) Å3 Z=4

F(000) = 960 Dx = 1.407 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 100 reflections θ = 2–29° µ = 0.19 mm−1 T = 173 K Prism, colourless 0.58 × 0.21 × 0.20 mm

Data collection Nonius Kappa CCD diffractometer θ/2θ scans Absorption correction: ψ scan (North et al., 1968) Tmin = 0.856, Tmax = 0.919 29723 measured reflections

6435 independent reflections 5119 reflections with I > 2σ(I) Rint = 0.031 θmax = 31.1°, θmin = 3.0° h = −22→22 k = −12→11 l = −21→22

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.041 wR(F2) = 0.107 S = 1.03 6435 reflections 300 parameters 0 restraints

Acta Cryst. (2017). E73, 511-514

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9373P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.43 e Å−3 Δρmin = −0.29 e Å−3

sup-1

supporting information Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

S1 O1 N1 C1 C2 H2 O2 N2 C3 H3 O3 N3 C4 O4 C5 H5 O5 C6 H6 C7 H7 C8 C10 C24 H24A H24B H24C C22 C21 H21 C20 H20 C19 H19 C17 C9 C16 C23 H23A

x

y

z

Uiso*/Ueq

0.18342 (2) −0.09228 (8) −0.12541 (8) −0.08817 (8) −0.01765 (9) 0.0060 −0.18878 (8) 0.21145 (7) 0.01769 (9) 0.0656 0.08023 (6) 0.33242 (7) −0.01599 (8) 0.23121 (8) −0.08835 (8) −0.1128 0.45456 (6) −0.12451 (9) −0.1733 0.02086 (8) −0.0160 0.09867 (8) 0.25405 (8) 0.52583 (11) 0.5792 0.5313 0.5159 0.44054 (8) 0.48700 (9) 0.5336 0.46488 (11) 0.4965 0.39771 (11) 0.3829 0.37238 (8) 0.12547 (8) 0.26397 (9) 0.23024 (13) 0.2899

0.24406 (4) −0.40177 (12) −0.30589 (14) −0.15360 (15) −0.12471 (16) −0.2015 −0.32885 (13) 0.51326 (12) 0.01841 (16) 0.0402 0.58248 (11) 0.41049 (12) 0.13165 (14) 0.72664 (12) 0.09794 (15) 0.1742 0.24066 (12) −0.04434 (16) −0.0666 0.28231 (14) 0.3543 0.33479 (14) 0.39911 (13) 0.1648 (2) 0.1890 0.1974 0.0559 0.21301 (15) 0.11030 (17) 0.0556 0.0882 (2) 0.0174 0.1670 (2) 0.1502 0.29463 (15) 0.48965 (14) 0.76094 (15) 0.8433 (2) 0.8730

0.20047 (2) 0.13728 (8) 0.08755 (8) 0.09366 (8) 0.15533 (9) 0.1935 0.03293 (8) 0.14588 (7) 0.16020 (9) 0.2027 0.07287 (7) 0.22794 (7) 0.10343 (8) 0.26528 (7) 0.04270 (9) 0.0046 0.17337 (7) 0.03746 (9) −0.0039 0.10052 (8) 0.0692 0.13522 (8) 0.19484 (8) 0.14553 (11) 0.1839 0.0877 0.1459 0.25472 (9) 0.30961 (10) 0.2922 0.38997 (11) 0.4272 0.41689 (11) 0.4720 0.28143 (9) 0.11388 (8) 0.19277 (9) 0.32592 (11) 0.3479

0.02336 (9) 0.0385 (3) 0.0284 (3) 0.0233 (3) 0.0281 (3) 0.034* 0.0398 (3) 0.0197 (2) 0.0281 (3) 0.034* 0.0285 (2) 0.0243 (2) 0.0208 (2) 0.0359 (3) 0.0240 (3) 0.029* 0.0299 (2) 0.0263 (3) 0.032* 0.0215 (2) 0.026* 0.0196 (2) 0.0186 (2) 0.0417 (4) 0.063* 0.063* 0.063* 0.0248 (3) 0.0320 (3) 0.038* 0.0401 (4) 0.048* 0.0400 (4) 0.048* 0.0240 (3) 0.0197 (2) 0.0252 (3) 0.0458 (4) 0.069*

Acta Cryst. (2017). E73, 511-514

sup-2

supporting information H23B H23C C15 H15 C14 H14 C13 H13 C12 H12 C11 C18 H18

0.2016 0.1986 0.30410 (9) 0.3118 0.33285 (10) 0.3593 0.32383 (10) 0.3438 0.28481 (9) 0.2790 0.25487 (8) 0.35185 (9) 0.3061

0.8074 0.9302 0.89616 (16) 0.9722 0.91874 (18) 1.0118 0.80902 (19) 0.8260 0.67286 (16) 0.5954 0.65060 (14) 0.27144 (18) 0.3272

0.3729 0.2989 0.17808 (10) 0.2206 0.10035 (12) 0.0898 0.03814 (11) −0.0146 0.05420 (9) 0.0125 0.13014 (8) 0.36216 (10) 0.3805

0.069* 0.069* 0.0316 (3) 0.038* 0.0383 (4) 0.046* 0.0374 (3) 0.045* 0.0278 (3) 0.033* 0.0206 (2) 0.0324 (3) 0.039*

Atomic displacement parameters (Å2)

S1 O1 N1 C1 C2 O2 N2 C3 O3 N3 C4 O4 C5 O5 C6 C7 C8 C10 C24 C22 C21 C20 C19 C17 C9 C16 C23 C15 C14 C13 C12

U11

U22

U33

U12

U13

U23

0.02100 (15) 0.0485 (7) 0.0334 (6) 0.0274 (6) 0.0321 (7) 0.0416 (6) 0.0196 (5) 0.0294 (7) 0.0240 (4) 0.0198 (5) 0.0205 (5) 0.0530 (7) 0.0210 (6) 0.0278 (5) 0.0230 (6) 0.0220 (6) 0.0211 (5) 0.0199 (5) 0.0321 (8) 0.0201 (6) 0.0251 (6) 0.0360 (8) 0.0365 (8) 0.0179 (5) 0.0197 (5) 0.0245 (6) 0.0633 (11) 0.0308 (7) 0.0310 (7) 0.0379 (8) 0.0289 (6)

0.01858 (15) 0.0222 (5) 0.0233 (6) 0.0189 (6) 0.0236 (7) 0.0358 (6) 0.0146 (5) 0.0260 (7) 0.0207 (5) 0.0196 (5) 0.0201 (6) 0.0298 (6) 0.0232 (6) 0.0295 (5) 0.0275 (7) 0.0193 (6) 0.0171 (6) 0.0154 (5) 0.0496 (10) 0.0221 (6) 0.0283 (7) 0.0399 (9) 0.0484 (10) 0.0201 (6) 0.0181 (6) 0.0209 (6) 0.0397 (9) 0.0183 (6) 0.0261 (7) 0.0373 (9) 0.0266 (7)

0.02879 (17) 0.0483 (7) 0.0326 (6) 0.0256 (6) 0.0280 (7) 0.0428 (6) 0.0239 (5) 0.0262 (6) 0.0372 (5) 0.0324 (6) 0.0218 (6) 0.0261 (5) 0.0268 (6) 0.0319 (5) 0.0276 (6) 0.0224 (6) 0.0200 (5) 0.0206 (6) 0.0443 (9) 0.0302 (7) 0.0399 (8) 0.0407 (9) 0.0342 (8) 0.0322 (7) 0.0204 (6) 0.0287 (6) 0.0350 (9) 0.0430 (8) 0.0564 (10) 0.0390 (8) 0.0291 (7)

−0.00265 (11) −0.0063 (5) −0.0093 (5) −0.0076 (5) −0.0056 (5) −0.0193 (5) −0.0008 (4) −0.0074 (5) −0.0010 (4) 0.0004 (4) −0.0033 (4) 0.0006 (5) −0.0017 (5) 0.0047 (4) −0.0062 (5) −0.0016 (4) 0.0000 (4) −0.0003 (4) 0.0073 (7) −0.0014 (5) 0.0060 (5) 0.0069 (7) 0.0019 (7) −0.0014 (4) −0.0013 (4) 0.0022 (5) 0.0094 (8) −0.0021 (5) −0.0091 (6) −0.0073 (7) −0.0011 (5)

−0.00189 (11) 0.0185 (5) 0.0178 (5) 0.0106 (5) 0.0027 (5) 0.0092 (5) −0.0003 (4) −0.0044 (5) −0.0066 (4) 0.0005 (4) 0.0031 (4) 0.0101 (5) 0.0002 (5) 0.0031 (4) 0.0014 (5) 0.0008 (4) 0.0008 (4) 0.0030 (4) 0.0087 (7) −0.0026 (5) −0.0038 (6) −0.0065 (6) 0.0019 (6) −0.0028 (5) 0.0002 (4) −0.0003 (5) 0.0090 (8) −0.0029 (6) 0.0025 (7) 0.0125 (6) 0.0076 (5)

0.00798 (12) 0.0037 (5) −0.0068 (5) −0.0033 (5) 0.0064 (5) −0.0119 (5) 0.0028 (4) 0.0061 (5) 0.0082 (4) 0.0051 (4) 0.0011 (5) −0.0058 (4) 0.0019 (5) 0.0023 (4) −0.0028 (5) 0.0027 (5) 0.0024 (4) 0.0011 (4) −0.0022 (8) 0.0013 (5) 0.0039 (6) 0.0145 (7) 0.0147 (7) 0.0049 (5) 0.0005 (4) −0.0001 (5) −0.0132 (7) −0.0033 (6) 0.0095 (7) 0.0106 (7) 0.0032 (5)

Acta Cryst. (2017). E73, 511-514

sup-3

supporting information C11 C18

0.0195 (5) 0.0246 (6)

0.0167 (6) 0.0359 (8)

0.0246 (6) 0.0364 (8)

−0.0006 (4) 0.0016 (6)

0.0003 (4) 0.0037 (5)

0.0020 (5) 0.0068 (6)

Geometric parameters (Å, º) S1—C8 S1—C10 O1—N1 N1—O2 N1—C1 C1—C6 C1—C2 C2—C3 C2—H2 N2—C9 N2—C10 N2—C11 C3—C4 C3—H3 O3—C9 N3—C10 N3—C17 C4—C5 C4—C7 O4—C16 O4—C23 C5—C6 C5—H5 O5—C22 O5—C24 C6—H6 C7—C8 C7—H7

1.7507 (12) 1.7747 (12) 1.2229 (17) 1.2317 (16) 1.4696 (17) 1.3821 (19) 1.3841 (19) 1.3833 (19) 0.9500 1.3783 (15) 1.3860 (15) 1.4355 (16) 1.4001 (18) 0.9500 1.2107 (15) 1.2613 (16) 1.4186 (16) 1.4040 (17) 1.4600 (17) 1.3636 (18) 1.4169 (19) 1.3814 (19) 0.9500 1.3658 (17) 1.4265 (19) 0.9500 1.3404 (17) 0.9500

C8—C9 C24—H24A C24—H24B C24—H24C C22—C21 C22—C17 C21—C20 C21—H21 C20—C19 C20—H20 C19—C18 C19—H19 C17—C18 C16—C11 C16—C15 C23—H23A C23—H23B C23—H23C C15—C14 C15—H15 C14—C13 C14—H14 C13—C12 C13—H13 C12—C11 C12—H12 C18—H18

1.4914 (17) 0.9800 0.9800 0.9800 1.3893 (18) 1.4046 (19) 1.386 (2) 0.9500 1.381 (3) 0.9500 1.394 (2) 0.9500 1.384 (2) 1.3891 (18) 1.3903 (19) 0.9800 0.9800 0.9800 1.391 (2) 0.9500 1.381 (2) 0.9500 1.395 (2) 0.9500 1.3724 (19) 0.9500 0.9500

C8—S1—C10 O1—N1—O2 O1—N1—C1 O2—N1—C1 C6—C1—C2 C6—C1—N1 C2—C1—N1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C9—N2—C10 C9—N2—C11 C10—N2—C11 C2—C3—C4

91.89 (6) 123.91 (12) 118.25 (12) 117.84 (13) 122.26 (12) 118.91 (12) 118.83 (12) 118.57 (13) 120.7 120.7 117.06 (10) 121.60 (10) 121.34 (10) 121.06 (12)

O5—C22—C17 C21—C22—C17 C20—C21—C22 C20—C21—H21 C22—C21—H21 C19—C20—C21 C19—C20—H20 C21—C20—H20 C20—C19—C18 C20—C19—H19 C18—C19—H19 C18—C17—C22 C18—C17—N3 C22—C17—N3

115.42 (11) 119.79 (13) 119.56 (14) 120.2 120.2 121.28 (14) 119.4 119.4 119.12 (15) 120.4 120.4 119.63 (12) 121.45 (13) 118.57 (12)

Acta Cryst. (2017). E73, 511-514

sup-4

supporting information C2—C3—H3 C4—C3—H3 C10—N3—C17 C3—C4—C5 C3—C4—C7 C5—C4—C7 C16—O4—C23 C6—C5—C4 C6—C5—H5 C4—C5—H5 C22—O5—C24 C5—C6—C1 C5—C6—H6 C1—C6—H6 C8—C7—C4 C8—C7—H7 C4—C7—H7 C7—C8—C9 C7—C8—S1 C9—C8—S1 N3—C10—N2 N3—C10—S1 N2—C10—S1 O5—C24—H24A O5—C24—H24B H24A—C24—H24B O5—C24—H24C H24A—C24—H24C H24B—C24—H24C O5—C22—C21

119.5 119.5 120.27 (11) 118.42 (12) 124.55 (11) 116.99 (11) 117.08 (13) 121.06 (12) 119.5 119.5 116.85 (12) 118.61 (12) 120.7 120.7 130.00 (12) 115.0 115.0 119.66 (11) 129.92 (10) 110.27 (8) 121.98 (11) 127.75 (10) 110.27 (8) 109.5 109.5 109.5 109.5 109.5 109.5 124.77 (13)

O3—C9—N2 O3—C9—C8 N2—C9—C8 O4—C16—C11 O4—C16—C15 C11—C16—C15 O4—C23—H23A O4—C23—H23B H23A—C23—H23B O4—C23—H23C H23A—C23—H23C H23B—C23—H23C C16—C15—C14 C16—C15—H15 C14—C15—H15 C13—C14—C15 C13—C14—H14 C15—C14—H14 C14—C13—C12 C14—C13—H13 C12—C13—H13 C11—C12—C13 C11—C12—H12 C13—C12—H12 C12—C11—C16 C12—C11—N2 C16—C11—N2 C17—C18—C19 C17—C18—H18 C19—C18—H18

123.54 (11) 126.13 (11) 110.31 (10) 115.92 (12) 124.77 (13) 119.31 (13) 109.5 109.5 109.5 109.5 109.5 109.5 119.15 (14) 120.4 120.4 121.52 (14) 119.2 119.2 118.78 (14) 120.6 120.6 120.09 (14) 120.0 120.0 121.13 (12) 120.51 (12) 118.35 (12) 120.61 (14) 119.7 119.7

O1—N1—C1—C6 O2—N1—C1—C6 O1—N1—C1—C2 O2—N1—C1—C2 C6—C1—C2—C3 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—C7 C3—C4—C5—C6 C7—C4—C5—C6 C4—C5—C6—C1 C2—C1—C6—C5 N1—C1—C6—C5 C3—C4—C7—C8 C5—C4—C7—C8 C4—C7—C8—C9

179.51 (12) −1.12 (18) −0.23 (18) 179.14 (13) −0.4 (2) 179.33 (13) −0.9 (2) 1.8 (2) −175.75 (13) −1.5 (2) 176.26 (13) 0.3 (2) 0.7 (2) −179.01 (12) 14.9 (2) −162.70 (14) 172.27 (13)

O5—C22—C17—C18 C21—C22—C17—C18 O5—C22—C17—N3 C21—C22—C17—N3 C10—N3—C17—C18 C10—N3—C17—C22 C10—N2—C9—O3 C11—N2—C9—O3 C10—N2—C9—C8 C11—N2—C9—C8 C7—C8—C9—O3 S1—C8—C9—O3 C7—C8—C9—N2 S1—C8—C9—N2 C23—O4—C16—C11 C23—O4—C16—C15 O4—C16—C15—C14

178.38 (12) −0.3 (2) −8.25 (17) 173.07 (12) −71.58 (18) 115.18 (15) 177.23 (12) −2.1 (2) −4.25 (15) 176.45 (11) 7.2 (2) −176.77 (12) −171.26 (12) 4.76 (13) −172.66 (13) 6.8 (2) −178.36 (13)

Acta Cryst. (2017). E73, 511-514

sup-5

supporting information C4—C7—C8—S1 C10—S1—C8—C7 C10—S1—C8—C9 C17—N3—C10—N2 C17—N3—C10—S1 C9—N2—C10—N3 C11—N2—C10—N3 C9—N2—C10—S1 C11—N2—C10—S1 C8—S1—C10—N3 C8—S1—C10—N2 C24—O5—C22—C21 C24—O5—C22—C17 O5—C22—C21—C20 C17—C22—C21—C20 C22—C21—C20—C19 C21—C20—C19—C18

−2.9 (2) 172.24 (13) −3.25 (9) 176.56 (12) −4.5 (2) −179.07 (12) 0.23 (19) 1.80 (14) −178.90 (9) −178.06 (13) 1.01 (9) −4.2 (2) 177.21 (13) −177.81 (14) 0.7 (2) −0.4 (2) −0.5 (3)

C11—C16—C15—C14 C16—C15—C14—C13 C15—C14—C13—C12 C14—C13—C12—C11 C13—C12—C11—C16 C13—C12—C11—N2 O4—C16—C11—C12 C15—C16—C11—C12 O4—C16—C11—N2 C15—C16—C11—N2 C9—N2—C11—C12 C10—N2—C11—C12 C9—N2—C11—C16 C10—N2—C11—C16 C22—C17—C18—C19 N3—C17—C18—C19 C20—C19—C18—C17

1.1 (2) −1.2 (2) 0.1 (2) 1.1 (2) −1.1 (2) 177.44 (13) 179.55 (12) 0.03 (19) 0.94 (17) −178.58 (12) −79.97 (16) 100.76 (15) 98.65 (14) −80.62 (15) −0.5 (2) −173.70 (14) 0.9 (2)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

C3—H3···S1 C3—H3···O1i C5—H5···O3ii C7—H7···O3ii C21—H21···N3iii C23—H23C···O1iv

0.95 0.95 0.95 0.95 0.95 0.98

2.58 2.57 2.58 2.40 2.52 2.55

3.2594 (14) 3.3320 (18) 3.3938 (17) 3.1982 (15) 3.4576 (19) 3.238 (2)

128 138 145 142 170 127

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+3/2, −z+1/2.

Acta Cryst. (2017). E73, 511-514

sup-6