development of a reaction model for a hdt reactor with

1 downloads 0 Views 2MB Size Report
DOMAIN - HDT. Buoyancy Model. Buoyant. Buoyancy Reference Density. 2.6 [kg/m³]. Gravity X Component. 0.0 [m/s²]. Gravity Y Component. 0.0 [m/s²]. Gravity Z ...
DEVELOPMENT OF A REACTION MODEL FOR A HDT REACTOR WITH THE USE OF CFD A. O. Silva, A. S. Ferreira, V. P. de Souza, C. A. A. Monteiro and J. R. Nunhez University of Campinas – UNICAMP – Brazil School of Chemical Engineering Laboratory of Computational Fluid Dynamics

PRESENTATION TOPICS

• L-CFD Overview; • Problem Description; • Methodology; • Goals;

• Conclusion and next steps.

LABORATORY OVERVIEW

Laboratory of Computational Fluid Dynamics. State University of Campinas, Campinas, Brazil. Prof. José Roberto Nunhez Main Topics Research • Hydrotreating Reactors; • Experimental and CFD applied to Stirred Tanks; • Static Mixers; • Petrochemical Fired Heaters; • Effluent dispersion in river sections; • Environmental studies in animal farms.

HYDROTREATING Applied to Petroleum Fractions

Achieve low Sulfur content Achieve low Nitrogen content Achieve higher Quality

TRICKLE BED REACTORS

Inlet distributor tray Quench Catalyst

Cerâmica balls Catalyst support

Figure. Hydrotreating reactor Source:Ancheyta, 2011

TRICKLE BED REACTORS

• It is used in many processes: – Petrochemical; – Fine chemical; – Biochemical.

Figure. Hydrotreating Reactor

METHODOLOGY

Domain Identification

Studied Case

Problem definition

Objetives

   

Pre-processing Geometry Mesh Setup Convergence Criterion

Solver Computational Solution  

Real Representation Experimental results Literature Post-Processing Analysis results

Figure. CFD solving methodology

METHODOLOGY Industrial Scale

Laboratory Scale

• Pressure Drop • Conversion • Holdup

Domain

Figure. Computational Domain

Source:Modified from Ancheyta, 2011

METHODOLOGY REACTOR CARACTERISTICS (CHOWDHURY, 2002) Diameter

0,019m

Height

0,5m

Reactive zone

0,25m

Bed porosity, 𝜀

0,5

Catalyst volume fraction inside the reactor Bulk Density, 𝜖𝑏

0,44

820 kg/m³

Inert particles 0,15m

Catalyst particles 0,25m

Liquid Gas

Inert particles 0,10m

METHODOLOGY PRE-PROCESSING – GEOMETRY, MESH AND BOUNDARY CONDITIONS

Figura–Hexahedral mesh (600.000 elements)

METHODOLOGY MODELING

Reaction and Kinect – Chowdhury, 2002 • Desulfurization 𝑆𝑢𝑙𝑓𝑢𝑟 + 2𝐻2 ⇒ 𝐻2 𝑆 + 𝐴𝑟𝑜𝑚𝑎𝑡𝑖𝑐 • Dearomatization 𝑃𝑜𝑙𝑦𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 + 𝐻2 ⇒ 𝐷𝑖𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝐷𝑖𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 + 2𝐻2 ⇒ 𝑀𝑜𝑛𝑜𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝑀𝑜𝑛𝑜𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 + 3𝐻2 ⇒ 𝑁𝑎𝑝ℎ𝑡𝑒𝑛

METHODOLOGY MODELING

Interphase Interaction - Attou and Ferschneider(1999) • Gas–Liquid • 𝐹𝐺𝐿 = 𝜀𝐺

𝐸1 𝜇𝐺 1−𝜀𝐺 2 2 𝑑2 𝜀𝐺 𝑝

0.667 𝜀𝑆 1−𝜀𝐺

+

0.333 𝐸2 𝜌𝐺 (𝑈𝐺 −𝑈𝐿 )(1−𝜀𝐺 ) 𝜀𝑆 𝜀𝐺 𝑑𝑝 (1−𝜀𝐺 )

• Gas-Solid • 𝐹𝐺𝑆 = 𝜀𝐺

0.667 𝐸1 𝜇𝐺 (1−𝜀𝐺 )2 𝜀𝑆 2 𝑑2 𝜀𝐺 (1−𝜀𝐺 ) 𝑝

• Liquid-Solid • 𝐹𝐿𝑆 =

𝐸1 𝜇𝐿 𝜀𝑆 2 𝜀𝐿 2 𝜀𝐿2 𝑑𝑝

+

𝐸2 𝜌𝐿 𝑈𝐿 𝜀𝑆 𝜀𝐿 𝑑𝑝

0.333 𝐸2 𝜌𝐺 𝑈𝐺 (1−𝜀𝐺 ) 𝜀𝑆 + 𝜀𝐺 𝑑𝑝 (1−𝜀𝐺 )

METHODOLOGY MODELING

Porosity Distribution - (BAZMI, HASHEMABADI e BAYANT, 2011) 𝐶. 𝑟 𝑒𝑥𝑝 𝑑𝑝

𝜖 = 𝜖𝑏 − 𝐷 + 1 − 𝜖𝑏 − 𝐷

i 1

D

C

0,045 -0,1252

2

-

-

3

-

-

𝑟 𝑎𝑖 𝑑𝑝

3

2

+ 𝑖=1

b

a

0,0479

-1,803

0,3566

1,185

0,001925 0,02649

𝑟 𝑑𝑝

3+2 𝑖−1

2

+ 𝑏𝑖

METHODOLOGY MODELING

Voidage

Porosity Distribution - (BAZMI, HASHEMABADI e BAYANT, 2011)

1,2 1 0,8 0,6 0,4 0,2 0

Top

0

2

4

6

8

10

Distance from center, x/dp Figure – Porosity distribution

Bottom

METHODOLOGY MODELING – DOMAIN DOMAIN - HDT

DOMAIN - HDT Liquid Morphology Gas Morphology

Continuous Fluid Continuous Fluid

Buoyancy Model

Buoyant

Buoyancy Reference Density

2.6 [kg/m³]

Gravity X Component

0.0 [m/s²]

Gravity Y Component

0.0 [m/s²]

Gravity Z Component

-9.81 [m/s²]

Buoyancy Reference Location

Automatic

Domain Motion

Stationary

Reference Pressure

4.00 [MPa]

Heat Transfer Model

Isothermal

Fluid Temperature

340.00 [C]

Homogeneous Model

False

Turbulence Model Homogeneous Model

Fluid Dependent False

METHODOLOGY MODELING – BOUNDARY CONDITIONS TOP - INLET

BOTTOM - OUTLET

Flow regime:

Subsonic

Flow regime:

Subsonic

Turbulence:

Fluid Dependent

Turbulence:

Fluid Dependent

Mass and Momentum:

Fluid Velocity

Mass and Momentum:

Static Pressure

WALL - WALL Mass and Momentum:

No Slip Wall

Wall Roughness:

Smooth Wall

METHODOLOGY MODELING – SOLVER INFORMATION

Numerical Schemes Turbulence

High Resolution

Gas - k- ε

Liquid - Laminar

Advection scheme

Upwind

Numerical Method

Finite Volume

Convergence Criteria

< RMS = 1 x 10-4

METHODOLOGY MODELING

• Density, dynamic viscosity and mass transfer models are in accordance with the model described by Korsten and Hoffmann, 1996. This model is the most used by the reseachers nowadays. • The Kinect model is the one presented by Chowdhury, 2002.

GOALS

• Validate the simulation results by comparing them with the model by Chowdhury, 2002; • Study the influence of the fluid dynamics in the reactor performance (reactor pressure drop, conversion, liquid holdup and others); • Simulate a real industrial size hydrotreating reactor (or a reactor section); • Study new reactor prototypes.

GOALS MODEL VALIDATION - HYDRODESULFURIZATION

Conversion (%)

1

0,75

0,5

0,25 573

593

613

633

Temperature (K) Simulation

Experimental

Figure – Conversion of sulfur

653

GOALS MODEL VALIDATION - HYDRODESULFURIZATION

Top

Bottom

Figure – Molar concentration of sulfur along the reactor

GOALS MODEL VALIDATION - AROMATICS 1

1

0,5

0 573

593

613

633

653

Mono

Di

Di-Exp

0,6 0,4 0,2 0 -0,2

Temperature (K) -0,5

Conversion (%)

Conversion (%)

0,8

Mono-Exp

Figure – Conversion of Mono and Di aromatics

-0,4

573

593

613

633

653

Temperature (K) Poly

Poly-Exp

Figure – Conversion of Polyaromatics

GOALS MODEL VALIDATION – VOLUME FRACTION PROFILES

Top

Figure – Liquid volume fraction

Bottom

Top

Figure – Gas volume fraction

Bottom

GOALS FLUID DYNAMICS ANALYSIS 0,162 0,16

65

0,158 64

63 Full

62

Just HDS

61

Holdup

Pressure drop (Pa/m)

66

0,156

0,154 Full

0,152

Just HDS

0,15 0,148

60

0,146 300

320

340

360

380

Temperature (K) Figure – Pressure drop inside the reactor

300

350

Temperature (K) Figure – Holdup inside the reactor

CONCLUSIONS • Despite the implementation of many models, our case was able to achieve optimal convergence and reproduce real phenomena with great similarity. • The results obtained show that modeling is according to the real system. •

The observed deviations may indicate the representation of tracks that models are not representative.

NEXT STEPS

CONFIGURATIONS

Option 1

Option 2

Reactor top

Reactor top

Gas outlet

Liquid outlet

Reactor bottom

Reactor bottom

Liquid outlet

Gas inlet Figure 5 –Reactor isometric view Figure 6 –Two option of reactor configurations

NEXT STEPS

• Simulate a real HDT reactor or a section of it; • Others geometries to improve hydrotreating;

• If possible, develop equipment patents.

THANK YOU! OPEN FOR QUESTIONS

APPENDIX MODEL PARAMETERS – SOURCE: ANCHEYTA, 2011

APPENDIX MODEL PARAMETERS – SOURCE: CHOWDHURRY, 2002.

HDS

• 𝑟𝐻𝐷𝑆 =

𝑚1 𝑚2 𝐾𝐻𝐷𝑆 𝐶𝐴𝑟_𝑆 𝐶𝐻2 𝑘𝑚𝑜𝑙 − (1+𝑘𝑎𝑑 𝐶𝐻²𝑆 ) 𝐾𝑔𝑠 .𝑠

HDA ∗ 𝐿 ∗ 𝐿 • 𝑟𝑖 = 𝑘𝐻𝐷𝐴 𝐶 − 𝑘 𝐶 𝐻𝐷𝐴 𝑝− 𝑝 𝑖 𝑖

APPENDIX

0,1555 0,155 0,1545 0,154 0,1535 0,153 0,1525 0,152 0

500

1000

1500

Number of elements

0

500

1000

1500

Number of elements

Figure. Mesh independence

Pressure Drop (Pa/m)

86,1 86,05 86 85,95 85,9 85,85 85,8 85,75 85,7 85,65

Holdup

Conversão (%)

MESH INDEPENDENCE 62 61 60 59

58 57 56 0

500

1000

1500

Number of elements