Discontinuous Galerkin Finite Element Methods

4 downloads 222139 Views 368KB Size Report
Ciao. Milano, February 16, 2004. Discontinuous Galerkin Finite Element Methods – p.1/10 ... Survey: [Cockburn & Shu, JSC, 2001]. One-dimensional model ...
Discontinuous Galerkin Finite Element Methods Ilaria Perugia Dipartimento di Matematica Universita` di Pavia http://www-dimat.unipv.it/perugia Ciao Ciao Ciao Milano, February 16, 2004

Discontinuous Galerkin Finite Element Methods – p.1/10

Introduction Th = {K} partition of Ω Pk (Th ) discontinuous finite element spaces Local variational formulation (element-by-element) Interelement continuity conditions: numerical fluxes (integral terms in the formulation, no special boundary d.o.f., no Lagrange multipliers)

Discontinuous Galerkin Finite Element Methods – p.2/10

Features of DG Methods Wide range of PDE’s treated within the same unified framework Flexibility in the mesh design

Ki

Kj

non-matching grids (hanging nodes) non-uniform approximation degrees

Freedom in the choice of basis functions Orthogonal bases can be easily constructed Parallelization Drawback: high number of degrees of freedom

Discontinuous Galerkin Finite Element Methods – p.3/10

The Original DG Method (I) [Reed & Hill, Los Alamos Tech. Rep., 1973] Neutron transport equation: σ u + ∇ · (a u) = f

in Ω

Discontinuous Galerkin Finite Element Methods – p.4/10

The Original DG Method (I) [Reed & Hill, Los Alamos Tech. Rep., 1973] Neutron transport equation: σ u + ∇ · (a u) = f

in Ω

Construct a triangulation Th = {K} of Ω, and define Vh = Pk (Th ) Multiply by a test function v and integrate by parts over any K σ(u, v)K − (u, a · ∇v)K + ha · nK u, vi∂K = (f, v)K Take the approximate solution uh ∈ Vh Substitute a · nK uh in the integral over ∂K by a numerical flux b h

Discontinuous Galerkin Finite Element Methods – p.4/10

The Original DG Method (II) DG method: find uh ∈ Vh s.t., for any K ∈ Th , h, vi∂K = (f, v)K σ(uh , v)K − (uh , a · ∇v)K + hb

with upstream flux

∀v ∈ Pk (K)

b h(x) = a · nK (x) lim uh (x − s a) s↓0

Discontinuous Galerkin Finite Element Methods – p.5/10

The Original DG Method (II) DG method: find uh ∈ Vh s.t., for any K ∈ Th , h, vi∂K = (f, v)K σ(uh , v)K − (uh , a · ∇v)K + hb

with upstream flux

∀v ∈ Pk (K)

b h(x) = a · nK (x) lim uh (x − s a) s↓0

Mathematical analysis: [LeSaint & Raviart, in Math. Aspects of FE in PDE, Acad. Press, 1974] See also [Johnson & Pitkaränta, Math. Comp, 1986] and [Lin & Zhou, Acta Math. Sci. 1993]

Discontinuous Galerkin Finite Element Methods – p.5/10

DG for Conservation Laws: RKDG (I) Survey: [Cockburn & Shu, JSC, 2001] One-dimensional model problem: ut + f (u)x = 0

in (0, 1) × (0, T )

u(x, 0) = u0 (x)

∀x ∈ (0, 1)

with periodic b.c.

Discontinuous Galerkin Finite Element Methods – p.6/10

DG for Conservation Laws: RKDG (I) Survey: [Cockburn & Shu, JSC, 2001] One-dimensional model problem: ut + f (u)x = 0

in (0, 1) × (0, T )

u(x, 0) = u0 (x)

∀x ∈ (0, 1)

with periodic b.c. [Chavent & Salzano, JCP, 1982]: P1 -DG in space, forward Euler in time (unconditionally unstable for constant ∆t/∆x)

Discontinuous Galerkin Finite Element Methods – p.6/10

DG for Conservation Laws: RKDG (I) Survey: [Cockburn & Shu, JSC, 2001] One-dimensional model problem: ut + f (u)x = 0

in (0, 1) × (0, T )

u(x, 0) = u0 (x)

∀x ∈ (0, 1)

with periodic b.c. [Chavent & Salzano, JCP, 1982]: P1 -DG in space, forward Euler in time (unconditionally unstable for constant ∆t/∆x) [Chavent & Cockburn, M2 AN, 1989]: introd. of a slope limiter to get a TVDM and TVB method, under fixed CFL n. f 0 (∆t/∆x) that can be chosen ≤ 1/2 (only first order accurate in time)

Discontinuous Galerkin Finite Element Methods – p.6/10

DG for Conservation Laws: RKDG (I) Survey: [Cockburn & Shu, JSC, 2001] One-dimensional model problem: ut + f (u)x = 0

in (0, 1) × (0, T )

u(x, 0) = u0 (x)

∀x ∈ (0, 1)

with periodic b.c. [Chavent & Salzano, JCP, 1982]: P1 -DG in space, forward Euler in time (unconditionally unstable for constant ∆t/∆x) [Chavent & Cockburn, M2 AN, 1989]: introd. of a slope limiter to get a TVDM and TVB method, under fixed CFL n. f 0 (∆t/∆x) that can be chosen ≤ 1/2 (only first order accurate in time) [Cockburn & Shu, Math. Comp., 1989]: Pk -DG in space, explicit (k + 1)-th order RK in time, generalized slope limiter (high-order RKDG)

Discontinuous Galerkin Finite Element Methods – p.6/10

DG for Conservation Laws: RKDG (II) One-dimensional, linear model problem: ut + (c u)x = 0

in (0, 1) × (0, T )

u(x, 0) = u0 (x)

∀x ∈ (0, 1)

with periodic b.c.

Discontinuous Galerkin Finite Element Methods – p.7/10

DG for Conservation Laws: RKDG (II) One-dimensional, linear model problem: ut + (c u)x = 0

in (0, 1) × (0, T )

u(x, 0) = u0 (x)

∀x ∈ (0, 1)

with periodic b.c. Partition Th = {Kj }1≤j≤J of (0, 1), with Kj = (xj−1/2 , xj+1/2 ) DG space Vh = Pk (Th ) Multiply by a test function v(x) and integrate by parts:

Discontinuous Galerkin Finite Element Methods – p.7/10

DG for Conservation Laws: RKDG (II) One-dimensional, linear model problem: ut + (c u)x = 0

in (0, 1) × (0, T )

u(x, 0) = u0 (x)

∀x ∈ (0, 1)

with periodic b.c. Partition Th = {Kj }1≤j≤J of (0, 1), with Kj = (xj−1/2 , xj+1/2 ) DG space Vh = Pk (Th ) Multiply by a test function v(x) and integrate by parts: (∂t u(x, t), v(x))Kj − (c u(x, t), ∂x v(x))Kj + + c u(xj+1/2 , t) v(x− ) − c u(x , t) v(x j−1/2 j+1/2 j−1/2 ) = 0

(u(x, 0), v(x))Kj = (u0 (x), v(x))Kj

Discontinuous Galerkin Finite Element Methods – p.7/10

DG for Conservation Laws: RKDG (III) Replace smooth v by v ∈ Vh and approximate u by uh ∈ Vh At points xj+1/2 , replace c u(xj+1/2 , t) by a numerical flux + h(u)j+1/2 (t) = h(u(x− , t), u(x j+1/2 j+1/2 , t))

(

c a if c ≥ 0 (upwind) Here: h(a, b) = c b if c < 0 Nonlinear pb.: Lipschitz, consistent, monotone flux

Discontinuous Galerkin Finite Element Methods – p.8/10

DG for Conservation Laws: RKDG (III) Replace smooth v by v ∈ Vh and approximate u by uh ∈ Vh At points xj+1/2 , replace c u(xj+1/2 , t) by a numerical flux + h(u)j+1/2 (t) = h(u(x− , t), u(x j+1/2 j+1/2 , t))

(

c a if c ≥ 0 (upwind) Here: h(a, b) = c b if c < 0 Nonlinear pb.: Lipschitz, consistent, monotone flux Diagonalizing the mass matrix: Legendre polynomials d uh = Lh (uh ) in (0, T ), dt

uh (t = 0) = u0h

Discontinuous Galerkin Finite Element Methods – p.8/10

DG for Conservation Laws: RKDG (III) Replace smooth v by v ∈ Vh and approximate u by uh ∈ Vh At points xj+1/2 , replace c u(xj+1/2 , t) by a numerical flux + h(u)j+1/2 (t) = h(u(x− , t), u(x j+1/2 j+1/2 , t))

(

c a if c ≥ 0 (upwind) Here: h(a, b) = c b if c < 0 Nonlinear pb.: Lipschitz, consistent, monotone flux Diagonalizing the mass matrix: Legendre polynomials d uh = Lh (uh ) in (0, T ), dt

uh (t = 0) = u0h

L2 -stability; order of convergence: k + 1/2, if u0 ∈ H k+1 L2 -stability; order of convergence: (k + 1, if u0 ∈ H k+2 )

Discontinuous Galerkin Finite Element Methods – p.8/10

DG for Conservation Laws: RKDG (IV) Explicit RK time stepping: partition {tn }0≤n≤N of [0, T ] Set u0h = u0h . For 0 ≤ n ≤ N , unh → un+1 as h (0)

• set uh = unh • for 1 ≤ i ≤ K, compute (i) uh

=

i−1 X l=0

αil whil

(l)

whil = uh +

βil n (l) ∆t Lh (uh ) αil (l)

(RK parameters s.t. stability follows from stab. of uh 7→ whil ) = uK • set un+1 h h

Discontinuous Galerkin Finite Element Methods – p.9/10

DG for Conservation Laws: RKDG (IV) Explicit RK time stepping: partition {tn }0≤n≤N of [0, T ] Set u0h = u0h . For 0 ≤ n ≤ N , unh → un+1 as h (0)

• set uh = unh • for 1 ≤ i ≤ K, compute (i) uh

=

i−1 X

αil whil

(l)

whil = uh +

l=0

βil n (l) ∆t Lh (uh ) αil (l)

(RK parameters s.t. stability follows from stab. of uh 7→ whil ) = uK • set un+1 h h Pk -DG in space → (k + 1)-stage RK in time Stability condition: |c| (∆t/∆x) ≤ CFLL2 ≈ 1/(2k + 1) Introduction of slope limiters for nonlinear problems

Discontinuous Galerkin Finite Element Methods – p.9/10

DG for Elliptic Problems DG Methods: Interior Penalty: [Douglas & Dupont, LN in Physics, 1976], Interior Penalty: [Wheeler, SINUM, 1978], [Arnold, SINUM, 1982] Bassi-Rebay: [Bassi & Rebay, JCP, 1997] Local Discontinuous Galerkin: [Cockburn & Shu, SINUM, 1998] Baumann-Oden: [Baumann & Oden, CMAME, 1999] Non-symmetric Interior Penalty: [Rivière, Wheeler & Girault, Non-symmetric Interior Penalty: Comp. Geosc., 1999]

Discontinuous Galerkin Finite Element Methods – p.10/10

DG for Elliptic Problems DG Methods: Interior Penalty: [Douglas & Dupont, LN in Physics, 1976], Interior Penalty: [Wheeler, SINUM, 1978], [Arnold, SINUM, 1982] Bassi-Rebay: [Bassi & Rebay, JCP, 1997] Local Discontinuous Galerkin: [Cockburn & Shu, SINUM, 1998] Baumann-Oden: [Baumann & Oden, CMAME, 1999] Non-symmetric Interior Penalty: [Rivière, Wheeler & Girault, Non-symmetric Interior Penalty: Comp. Geosc., 1999] Theoretical Analysis: [Oden, Babuška & Baumann, JCP, 1998], [Rivière, Wheeler & Girault, Comp. Geosc., 1999], [Castillo, Cockburn, Perugia & Schötzau, SINUM, 2000], [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001], [Houston, Schwab & Süli, SINUM, 2002]

Discontinuous Galerkin Finite Element Methods – p.10/10