Draft Genome Sequence of Mycobacterium

0 downloads 0 Views 145KB Size Report
May 29, 2014 - Citation Croce O, Robert C, Raoult D, Drancourt M. 2014. Draft genome sequence of Mycobacterium farcinogenes NCTC 10955. Genome ...
Draft Genome Sequence of Mycobacterium farcinogenes NCTC 10955 Olivier Croce, Catherine Robert, Didier Raoult, Michel Drancourt Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, CNRS, UMR 6236, IRD 198, Faculté de Médecine, Aix-Marseille Université, Marseille, France

We report the draft genome sequence of Mycobacterium farcinogenes NCTC 10955 (ⴝDSM 43637T), a nontuberculosis species responsible for bovine farcy. The strain described here is composed of 6,139,893 bp, with a GⴙC content of 65.73%, and contains 5,816 protein-coding genes and 76 RNA genes. Received 9 May 2014 Accepted 13 May 2014 Published 29 May 2014 Citation Croce O, Robert C, Raoult D, Drancourt M. 2014. Draft genome sequence of Mycobacterium farcinogenes NCTC 10955. Genome Announc. 2(3):e00523-14. doi:10.1128/ genomeA.00523-14. Copyright © 2014 Croce et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. Address correspondence to Michel Drancourt, [email protected].

I

n sub-Saharan Africa, Mycobacterium farcinogenes, the etiological agent of bovine farcy (a form of bovine lymphangitis), has major economic implications in some resource-limited African countries (1). It was initially described in Chad and Senegal as comprising two subspecies, tchadense and senegalense (2–4), further elevated as two species, Mycobacterium farcinogenes and Mycobacterium senegalense (5). Numerical taxonomy studies confirmed these data (6), as did the 16S-23S intergenic spacer sequence analysis which further revealed that M. farcinogenes and M. senegalense belong to the Mycobacterium fortuitum complex (7), a group of mycobacteria that also includes Mycobacterium conceptionense (8). M. farcinogenes has also been isolated from soil (9) and rarely implicated as a human pathogen, with one case of hip prosthesis infection, yet formal evidence is lacking for an accurate identification (10). We performed whole-genome sequencing of M. farcinogenes DSM 43637T (⫽NCTC 10955) in order to precisely define its relationship with M. senegalense and other closely related mycobacteria and to contribute to the development of advanced molecular tools for its detection and identification. Genomic DNA isolated from M. farcinogenes strain DSM 43637T was grown on MGiT Middlebrook broth at 37°C. It was then sequenced using Roche-454 technology (11). Two Roche454 libraries were constructed: a 4.9-kb paired-end and a 1.49-kb shotgun XL⫹. Each library was loaded on a picotiter plate and sequenced with the Roche-GS FLX Titanium Sequencing kit XLR70. The 2 runs yielded 115.66 Mb with 287,369 passed filters and an average length of 442 bp. Reads from 454 sequencing were assembled into contigs and scaffolds using Newbler version 2.8 (Roche-454 Life Sciences). Contigs obtained were combined together by Opera software v1.2 (12) combined to GapFiller v1.10 (13) to reduce the set. Some manual refinements using CLC Genomics v7 software (CLC bio, Aarhus, Denmark) improved the genome. Finally, the draft genome of M. farcinogenes was found to consist of 5 scaffolds of 63 contigs containing 6,062,162 bp and an estimated size including gaps of 6,139,893 bp. The G⫹C content of this genome is 65.73%. Noncoding genes and miscellaneous features were predicted using RNAmmer (14), ARAGORN (15), Rfam (16), PFAM (17), and Infernal (18). Coding DNA sequences (CDSs) were predicted

May/June 2014 Volume 2 Issue 3 e00523-14

using Prodigal (19) and functional annotation was achieved using BLAST⫹ (20) and HMMER3 (21) against the UniProtKB database (22). The genome was shown to encode at least 76 predicted RNAs including 3 rRNAs in a single operon, 57 tRNAs, 1 transfermessenger RNA, and 15 miscellaneous RNAs. A total of 5,816 genes yielded a coding capacity of 5,610,858 bp (coding percentage: 91.3%) and included 749 (12.87%) genes encoding putative proteins, 1,023 (17.59%) genes assigned as hypothetical proteins, and 5,766 genes matching a least one sequence in the Clusters of Orthologous Groups (COG) database (23, 24) with BLASTP default parameters. Nucleotide sequence accession numbers. The M. farcinogenes NCTC 10955 (⫽ DSM 43637T) strain genome sequence has been deposited at DDBJ/EMBL/GenBank under the accession no. HG964481 to HG964485. The whole-genome shotgun master numbers are CCAY010000001 to CCAY010000063. ACKNOWLEDGMENT This study was financially supported by URMITE, IHU Méditerranée Infection, Marseille, France.

REFERENCES 1. Hamid ME. 2012. Epidemiology, pathology, immunology and diagnosis of bovine farcy: a review. Prev. Vet. Med. 105:1–9. http://dx.doi.org/ 10.1016/j.prevetmed.2012.01.004. 2. Chamoiseau G. 1973. “Mycobacterium farcinogenes” causal agent of bovine farcy in Africa (author’s transl). Ann. Microbiol. (Paris) 124: 215–222. (In French.) 3. Chamoiseau G. 1969. De l’étiologie du farcin de zébus tchadiens: nocardiose ou mycobacteriose? I. Etude bactériologique et biochimique. Rev. Elev. Med. Vet. Pays Trop. 22:195–204. 4. Chamoiseau G. 1972. De l’étiologie du farcin de zébus tchadiens: nocardiose ou mycobactériose? III. Activité amidasique. Rev. Elev. Med. Vet. Pays Trop. 25:191–194. 5. Chamoiseau G. 1979. Etiology of farcy in African bovines: nomenclature of the causal organisms Mycobacterium farcinogenes Chamoiseau and Mycobacterium senegalense (Chamoiseau) comb. nov. Int. J. Syst. Bacteriol. 29:407– 411. http://dx.doi.org/10.1099/00207713-29-4-407. 6. Ridell M, Goodfellow M. 1983. Numerical classification of Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. J. Gen. Microbiol. 129:599 – 611. 7. Hamid ME, Roth A, Landt O, Kroppenstedt RM, Goodfellow M, Mauch H. 2002. Differentiation between Mycobacterium farcinogenes and Mycobacterium senegalense strains based on 16S-23S ribosomal DNA in-

Genome Announcements

genomea.asm.org 1

Croce et al.

8.

9. 10. 11.

12. 13. 14.

ternal transcribed spacer sequences. J. Clin. Microbiol. 40:707–711. http:// dx.doi.org/10.1128/JCM.40.2.707-711.2002. Adékambi T, Stein A, Carvajal J, Raoult D, Drancourt M. 2006. Description of Mycobacterium conceptionense sp. nov., a Mycobacterium fortuitum group organism isolated from a posttraumatic osteitis inflammation. J. Clin. Microbiol. 44:1268 –1273. http://dx.doi.org/10.1128/ JCM.44.4.1268-1273.2006. Orchard VA, Goodfellow M. 1980. Numerical classification of some named strains of Nocardia asteroides and related isolates from soil. J. Gen. Microbiol. 118:295–312. Wong TC, Chan WF, Tsang WL, Yeung SH, Ip FK. 2005. Mycobacterium farcinogenes infection after total hip arthroplasty. J. Arthroplasty 20:684 – 687. http://dx.doi.org/10.1016/j.arth.2005.03.001. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376 –380. Gao S, Sung WK, Nagarajan N. 2011. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J. Comput. Biol. 18:1681–1691. http://dx.doi.org/10.1089/cmb.2011.0170. Boetzer M, Pirovano W. 2012. Toward almost closed genomes with GapFiller. Genome Biol. 13:R56. http://dx.doi.org/10.1186/gb-2012-13-6 -r56. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100 –3108. http://dx.doi.org/10.1093/ nar/gkm160.

2 genomea.asm.org

15. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32:11–16. http://dx.doi.org/10.1093/nar/gkh152. 16. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. 2003. Rfam: an RNA family database. Nucleic Acids Res. 31:439 – 441. http:// dx.doi.org/10.1093/nar/gkg006. 17. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. 2012. The Pfam protein families database. Nucleic Acids Res. 40:D290 –D301. http://dx.doi.org/10.1093/ nar/gkr1065. 18. Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337. http://dx.doi.org/10.1093/ bioinformatics/btp157. 19. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. http://dx.doi.org/10.1186/ 1471-2105-11-119. 20. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST⫹: architecture and applications. BMC Bioinformatics 10:421. http://dx.doi.org/10.1186/1471-2105-10-421. 21. Eddy SR. 2011. Accelerated profile HMM searches. PLOS Comput. Biol. 7:e1002195. 22. The UniProt Consortium. 2011. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39:D214 –D219. http:// dx.doi.org/10.1093/nar/gkq1020. 23. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database : a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33–36. http://dx.doi.org/10.1093/nar/ 28.1.33. 24. Tatusov RL, Koonin EV, Lipman DJ. 1997. A genomic perspective on protein families. Science 278:631– 637. http://dx.doi.org/10.1126/ science.278.5338.631.

Genome Announcements

May/June 2014 Volume 2 Issue 3 e00523-14