DRY

3 downloads 0 Views 11MB Size Report
cooling tower systems using metal-finned-tube heat exchangers and surface ...... C3 1 t Cd). --. 0. E-4 E-4 N 0)0-. Eq E. -H-H-. U^*. ) Q~. U) U) U)4. N ).4. U) 00. ' -H ...... 4'co'uD,,.' ulCO 'NI 0. N0LA c. 0. L. 2 O r 9-o. -t. -. 4 C D. Aun 0 N N. (N Co.
COMPUTER OPTIMIZATION OF DRY AND WET/DRY COOLING TOWER SYSTEMS FOR LARGE FOSSIL AND NUCLEAR POWER PLANTS by Michael Choi and Leon R. Glicksman Energy Laboratory Report No. MIT-EL 79-034 February 1979

COO-4114-5

COMPUTER OPTIMIZATION OF DRY AND WET/DRY COOLING TOWER SYSTEMS FOR LARGE FOSSIL AND NUCLEAR POWER PLANTS

by

Michael Choi and Leon R. Glicksman

Energy Laboratory and Heat Transfer Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Prepared under the support of the Environmental Control Technology Division Office of the Assistant Secretary for the Environment

U.S. Department of Energy Contract No. EY-76-S-02-4114.A001

Energy Laboratory Reporc No. MIT-EL 79-034

February 1979

-2-

ABSTRACT

There is a projected shortage of water supply for evaporative cooling in electric power industry by the end of this century. Thus, dry and wet/dry cooling tower systems are going to be the solution for this problem. This study has determined the cost of dry cooling compared to the conventional cooling methods. Also, the savings by using wet/dry instead of all-dry cooling has been determined. A total optimization has been performed for power plants with dry cooling tower systems using metal-finned-tube heat exchangers and surface condensers. The optimization minimizes the power production cost. The program does not use pre-designed heat exchanger modules. Rather, it optimizes the heat exchanger and its air and water flow rates. In the base case study, the method of replacing lost capacity assumes the use of gas turbines. As a result of using dry cooling towers in an 800 MWe fossil plant, the incremental costs with the use of high back pressure turbine and conventional turbine over all-wet cooling are 11% and 15%, respectively. For a 1200 MWe nuclear plant, these are 22% and 25%, respectively. Since the method of making up lost capacity depends on the situation of a utility, considerable effort has been placed on testing the effects of using different methods of replacing lost capacity at high ambient temperatures by purchased energy. The results indicate that the optimization is very sensitive to the method of making up lost capacity. It is, therefore, important to do an accurate representation of all possible methods of making up capacity loss when optimizating power plants with dry cooling towers. A solution for the problem of losing generation capability by a power plant due to the use of a dry cooling tower is to supplement the dry tower during the hours of peak ambient temperatures by a wet tower. A separate wet/dry cooling tower system with series tower arrangement has been considered in this study. In this cooling system, the physical separation of the dry and wet towers protects the dry tower airside heat transfer surface from the corrosion problem. It also allows complete freedom of design and operation of the dry and wet towers. A wet/dry cooling system can be tailored to meet any amount of water available for cooling. The results of the optimization show that wet/dry cooling towers have significant savings over all-dry cooling. For example, in either fossil or nuclear plant, the dry tower heat transfer surface of 30% makeup water wet/dry cooling system is only about fifty percent of that in all-dry cooling using high back pressure turbines. This results in a reduction of 27% and 37% of the incremental cost in the fossil and nuclear plant, respectively, over all-wet cooling. Even the availability of a small percentage of makeup water reduces the incremental cost significantly. Thus, wet/dry cooling is an economic choice over all-dry cooling where some water is available but supplies are insufficient for a totally evaporative cooling towers. On the other hand, the advantage of wet/dry cooling over evaporative towers is conservation of water consumption.

-3-

ACKNOWLEDGMENTS

This report is part of an interdisciplinary effort by the MIT Energy Laboratory to examine issues of power plant cooling system design and operation under environmental constraints.

The effort has involved

participation by researchers in the R.M. Parsons Laboratory for Water Resources and Hydrodynamics of the Civil Engineering Department and the Heat Transfer Laboratory of the Mechanical Engineering Department. Financial support for this research effort has been provided by the Division of Environmental Control Technology, U.S. Dept. of Energy, under Contract No. EY-76-S-02-4114.AOO1.

The assistance of Dr. William Mott,

Dr. Myron Gottlieb and Mr. Charles Grua of DOE/ECT is gratefully acknowledged. Reports published under this sponsorship include:

"Computer Optimization of Dry and Wet/Dry Cooling Tower Systems for Large Fossil and Nuclear Plants," by Choi, M., and Glicksman, L.R., MIT Energy Laboratory Report No. MIT-EL 79-034, February 1979. "Computer Optimization of the MIT Advanced Wet/Dry Cooling Tower Concept for Power Plants," by Choi, M., and Glicksman, L.R., MIT Energy Laboratory Report No. MIT-EL 79-035, September 1979. "Operational Issues Involving Use of Supplementary Cooling Towers to Meet Stream Temperature Standards with Application to the Browns Ferry Nuclear Plant," by Stolzenbach, K.D., Freudberg, S.A., Ostrowski, P., and Rhodes, J.A., MIT Energy Laboratory Report No. MIT-EL 79-036, January 1979. "An Environmental and Economic Comparison of Cooling System Designs for Steam-Electric Power Plants," by Najjar, K.F., Shaw, JJ., Adams, E.E., Jirka, G.H., and Harleman, D.R.F,, MIT Energy Laboratory Report No. MIT-EL 79-037, January 1979. "Economic Implications of Open versus Closed Cycle Cooling for New Steam-Electric Power Plants: A ational and Regional Survey," by Shaw, J.J., Adams, E.E., Barbera, R.J., Arntzen, B.C,, and Harleman, D.R.F., MIT Energy Laboratory Report No. MIT-EL 79-038, September 1979.

-4-

"Mathematical Predictive Models for Cooling Ponds and Lakes," Part B: User's Manual and Applications of MITEMP by Octavio, K.H., Watanabe, M., Adams, E.E., Jirka, G.H., Helfrich, K.R., and Harleman, D.R.F.; and Part C A Transient Analytical Model for Shallow Cooling Ponds, by Adams, E.E., and Koussis, A., MIT Energy Laboratory Report No. MIT-EL 79-039, December 1979. "Summary Report of Waste Heat Management in the Electric Power Industry: Issues of Energy Conservation and Station Operation under Environmental Constraints," by Adams, E.E., and Harleman, D.R.F., MIT Energy Laboratory Report N. MIT-EL 79-040, December 1979.

-5-

TABLE OF CONTENTS Page Abstract . . . . . . . . . . . . . .

2

Acknowledgements . . . . . . . . . .

3

List of Figures

. . . . . . . . . .

8

List of Tables . . . . . . . . . . .

12

CHAPTER 1: INTRODUCTION

. . . . . .

1.1

Background . . . . . . . .

. . . . . . . . . .

1.2

Scope of This Thesis Work

. . . . . . . .

1.3

Outline of Presentation

. .

CHAPTER 2: APPROACH AND MAJOR ASSUMPTIONS

.

2.1

Introduction . . . . . . . . . . .

2.2

Optimum System . . . . . . . . . .

2.3

Load Profile . . . . . . . . . . .

2.4

Treatment of Loss of Capacity

2.5

Power Production Cost

2.6

. . . .

·.

.

. . . . . . . . . . . .

.

.

16

. . . . . .

17

.

18

.

.

.

.

.

.

. .

.

21

. .

21

.

.

.

.

.

.

.

.*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

22 23

. . . . . .

24

CHAPTER 3: CHARACTERISTICS OF THE POWER PLANT 3.1

Plant Model

. . .

*

.

.

.

.

.

.*

. *

.

3.2

Turbines . . . . .

*

.

.

.

.

.

.*

.

.

.

.

.

.

.

.

.

Introduction . . .

4.2

Condenser

. .

. .

4.3

Dry Towers . .

4.4

Piping System

4.5

Pumping System . .

.

.

.

.

.*

*

.

.

.

.

.

.

.

I

. .

*

.

.

.

.

.

.

.

..

. .

*

.

.

.

.

.

.

.

.*

.

.

.

.

.

.

.

.

.*

24 .

.

.

...

CHAPTER 4 : DRY COOLING TOWER SYSTEM MODEL AND itPERFORMANCE 4.1

18 18

.

. . . . . .

Base Economic Factors

14

. . .

.PER.OR . . . .

14

25 32

.

.

.

.

.

.

.

.

.

32

.

.

.

.

.

.

.

.

.

34

.

.

.

.

.

.

.

.

.

.

.

.

.

.

43

.

49

. .

.*

CHAPTER 5: OPTIMIZATION OF DRY COOLING TOWER SYSTEMS AND RESULTS

52 53

5.1

Introduction . . . . . . . . . . . . . . . . . . . . .

53

5.2

Dry Cooling Tower Optimization Procedure . . . . . . .

55

5.3

Results of Dry Cooling Tower Optimization

58

. . . . . .

-6Page

CHAPTER 6: THE EFFECTS OF DIFFERENT METHODS OF REPLACING LOST CAPACITY ON THE ECONOMIC OPTIMIZATION OF . . . . . . . . . . . . . . DRY COOLING TOWER SYSTEMS

79

. . . . . . . . . . . . . . . . . . . . .

79

6.1

Introduction

6.2

Approach to the Problem . .

. . . . . . . . . . . . . .

79

6.3

Results . . . . . . . . . . . . . . . . . . . . . . . .

81

6.4

Discussion

. . . . . . . . . . . . . . . . . . . . . .

82

CHAPTER 7: WET/DRY COOLING TOWER SYSTEM: MODEL, OPTIMIZATION, AND RESULTS .....................

90

. . . . . . . . . . . . . . . . . . . . .

90

7.1

Introduction

7.2

Tower Arrangement and Operating Scheme

. . . . . . . .

91

7.3

Wet Tower Model and Performance . . . . . . . . . . . .

91

7.4

Computation of Makeup Water Requirement . . . . . . . . 100

7.5

Wet Tower Cost ....................

7.6

Optimization Procedure

7.7

Results of Wet/Dry Cooling Tower System Optimization

102

. . . . . . . . . . . . . . . . 103 . 104

CHAPTER 8: COMPARISON OF ECONOMICS OF DRY AND WET/DRY COOLING TOWER SYSTEMS WITH ONCE-THROUGH, COOLING POND, AND EVAPORATIVE TOWERS . . . . . . . . . . . . . . . . 119 8.1

Economic Comparison of Base Case Study

8.2

Economic Comparison of Sensitivity Study

CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS

. . . . . . . . 119 . . . . . . . 119

. . . . . . . . .

. 137

9.1

Conclusions . . . . . . . . . . . . . . . . . . . . . . 137

9.2

Comparison to Previous Work and Other Published Studies 138

9.3

Recommendations . . . . . . . . . . . . . . . . . . . . 143

References .........

144

..................

APPENDIX I: Equations for Calculating Hydraulic Pressure Drop . . 147 . . . . . . . 148

APPENDIX II: Cooling System Cost Models . . . . .. APPENDIX III: Piping Water Velocity Optimization

. . . . . . . . 162

APPENDIX IV: Dry Tower Heat Exchanger Specifications

. . . . . . 167

APPENDIX V: Wet Tower Fill Specifications . . . . . . . . . . . . 168

-7Page

APPENDIX VI: Condenser Specifications . . . . . . . . . . . . .

169

APPENDIX VII: Computer Program Listing For Dry Cooling Tower System ..................

170

APPENDIX VIII: Computer Program Listing for Wet/Dry . . . . . . . 215 Cooling Tower System Optimization APPENDIX IX: Glossary of Terms Used in Computer Programs

. . .

272

-8-

LIST OF FIGURES Page

FIGURE 2.1

Illustration of the concept of power plant scaling.

19

FIGURE 2.2

Illustration of economic trade-off between capital cost and operating cost.

20

FIGURE 3.1

Nuclear turbine heat rate characteristic curves.

26

FIGURE 3.2

Fossil

FIGURE 4.1

Indirect type of mechanical draft dry cooling tower system.

33

FIGURE 4.2

Temperature relationship in indirect type of dry cooling tower system.

35

FIGURE 4.3

Piping layout in dry cooling tower system.

50

FIGURE 4.4

Dry tower piping.

51

FIGURE 5.1

Illustration of Andeen-Glicksman minimization technique.

61

FIGURE 5.2

Power production cost vs. design ITD for 800 MWe fossil plant with dry cooling tower system and conventional turbine.

62

FIGURE 5.3

Power production cost vs. design ITD for 800 MWe fossil plant with dry cooling tower system and high back pressure turbine.

63

FIGURE 5.4

Power production cost vs. design ITD for 1200 MWe nuclear plant with dry cooling tower system and conventional turbine.

64

FIGURE 5.5

Power production cost vs. design TID for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

65

FIGURE 5.6

Power production cost breakdown vs. design ITD for 800 MWe fossil plant with dry cooling tower system and conventional turbine.

66

turbine heat rate characteristic curves.

27

-9Page FIGURE 5.7

Power production cost breakdown vs. design TD for 800 MWe fossil plant with dry cooling tower system and high back pressure turbine.

67

FIGURE 5.8

Power production cost breakdown vs. design ITD for 1200 MWe nuclear plant with dry cooling tower system and conventional turbine.

68

FIGURE 5.9

Power production cost breakdown vs. design ITD for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

69

FIGURE 5.10

Total capital cost of dry cooling tower system vs. design ITD for conventional turbine.

70

FIGURE 5.11

Total capital cost of dry cooling tower system vs. design ITD for high back pressure turbine.

71

FIGURE 6.1

Results of optimization using different methods of replacing lost capacity for 800 MWe fossil plant with dry cooling tower system and conventional turbine.

83

FIGURE 6.2

Results of optimization using different methods of replacing lost capacity for 800 MWe fossil plant with dry cooling tower system and high back pressure turbine.

84

FIGURE 6.3

Results of optimization using different methods of replacing lost capacity for 1200 MWe nuclear plant with dry cooling tower system and conventional turbine.

85

FIGURE 6.4

Results of optimization using different methods of replacing lost capacity for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

86

FIGURE 7.1

Water flow diagram for wet/dry cooling tower system.

92

FIGURE 7.2

Operating scheme of wet/dry cooling tower system.

92

FIGURE 7.3

Illustration of towc' culation.

fi! finite different cal-

94

-10Page FIGURE 7.4

Schematization of elementary volume within tower fill.

FIGURE 7.5

Power production cost vs. annual makeup water quantity for 800 MWe fossil plant.

107

FIGURE 7.6

Direct capital cost of cooling system vs. annual makeup water quantity for 800 MWe fossil plant.

108

FIGURE 7.7

Wet tower size vs. annual makeup water quantity for 800 MWe fossil plant.

109

FIGURE 7.8

Instantaneous makeup water consumption rate at maximum ambient vs. wet tower size for 800 MWe fossil plant.

110

FIGURE 7.9

Power production cost vs. annual makeup water quantity for 1200 MWe nuclear plant.

111

FIGURE 7.10

Direct capital cost of cooling system vs. annual 112 makeup water quantity for 1200 MWe nuclear plant.

FIGURE 7.11

Wet tower size vs. annual makeup water quantity for 1200 MWe nuclear plant.

113

FIGURE 7.12

Instantaneous makeup water consumption rate at maximum ambient vs. wet tower size for 1200 MWe nuclear plant.

114

FIGURE 8.1

Results of sensitivity study of power plant cost 121 for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

FIGURE 8.2

Results of sensitivity study of fuel cost for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

122

FIGURE 8.3

Results of sensitivity study of cooling system cost multiplier for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

123

FIGURE 8.4

Results of sensitivity study of replacement capacity cost for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

124

99

-11Page FIGURE 8.5

Results of sensitivity study of replacement energy cost for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

125

FIGURE 8.6

Results of sensitivity study of fixed charge rate for 1200 MWe nuclear plant with dry cooling tower system and high back pressure turbine.

126

FIGURE 8.7

Results of sensitivity study of power plant cost for 1200 MWe nuclear plant with wet/dry cooling tower system.

127

FIGURE 8.8

Results of sensitivity study of fuel cost for 1200 MWe nuclear plant with wet/dry cooling tower system.

128

FIGURE 8.9

Results of sensitivity study of cooling system cost multiplier for 1200 MWe nuclear plant with wet/dry cooling tower system.

129

FIGURE 8.10

Results of sensitivity study of fixed charge rate for 1200 MWe nuclear plant with wet/dry cooling tower system.

130

FIGURE 8.11

Results of sensitivity study of water cost for 1200 MWe nuclear plant with wet/dry cooling tower system.

131

FIGURE II-1

Direct installed cost of pipe vs. pipe diameter.

156

FIGURE III-1

Illustration of economic trade-off between pipe cost and pumping power cost for piping.

163

FIGURE III-2

Results of piping design water velocity optimization.

164

FIGURE III-3

Optimum pipe diameter vs. water flow rate.

165

FIGURE III-4

Optimum water velocity vs. water flow rate.

166

-12-

LIST OF TABLES Page TABLE 2.1

Base case study of economic parameters.

23

TABLE 3.1

Nuclear turbine net heat rates.

29

TABLE 3.2

Fossil

turbine net heat rates.

30

TABLE 4.1

Condenser heat transfer coefficient vs. water velocity.

38

TABLE 4.2

Comparison of condenser heat transfer coefficients obtained by Nusselt analysis and empirical correlation given by Heat Exchange Institute.

39

TABLE 5.1

Optimum design parameters of dry cooling tower systems for 800 MWe fossil plant.

72

TABLE 5.2

Optimum design parameters of dry cooling tower systems for 1200 MWe nuclear plant.

73

TABLE 5.3

Cost comparison of optimum design dry cooling tower systems for 800 MWe fossil plant.

74

TABLE 5.4

Cost comparison of optimum design dry cooling tower systems for 1200 MWe nuclear plant.

75

TABLE 5.5

800 MWe fossil plant net electrical output for optimum cooling system design.

76

TABLE 5.6

1200 MWe nuclear plant net electrical output for optimum cooling system design.

77

TABLE 5.7

Comparison of heat exchanger tube length and number of tubes deep for 1200 MWe nuclear plant.

78

TABLE 5.8

Comparison of heat exchanger tube length and number of tubes deep for 800 MWe fossil plant.

78

TABLE 6.1

Optimum dry tower design ITD using different methods of replacing lost capacity.

87

TABLE 6.2

Optimum power generation cost using different methods of replacing lost capacity.

87

TABLE 6.3

800 MWe dry-cooled fossil plant net electrical output vs. ambient temperature.

88

-13page 89

TABLE 6.4

1200 MWe dry-cooled nuclear plant net electrical output vs. ambient temperature.

TABLE 7.1

Comparison of two different optimum design wet/dry cooling tower systems for 800 MWe fossil plant.

115

TABLE 7.2

Comparison of two different optimum design wet/dry cooling tower systems for 1200 MWe nuclear plant.

116

TABLE 7.3

Comparison of capital cost breakdowns of dry and 117 wet/dry cooling tower systems for 1200 MWe nuclear plant.

TABLE 7.4

Comparison of capital cost breakdowns of dry and wet/dry cooling tower systems for 800 MWe fossil plant.

118

TABLE 8.1

Economic comparison of base case study optimum design cooling systems for 800 MWe fossil plant.

132

TABLE 8.2

Economic comparison of base case study optimum 132 design cooling systems for 1200 MWe nuclear plant.

TABLE 8.3

Economic comparison of sensitivity study optimum design cooling systems for 800 MWe fossil plant.

133

TABLE 8.4

Economic comparison of sensitivity study optimum design cooling system for 1200 MWe nuclear plant.

134

TABLE 8.5

Comparison of incremental costs (%) of dry and wet/dry cooling over all-wet cooling for 800 MWe fossil plant.

135

TABLE 8.6

Comparison of incremental costs (%) of dry and wet/dry cooling over all-wet cooling for 1200 MWe nuclear plant.

136

TABLE 9.1

Comparison of results to previous studies in dry cooling system using high back pressure turbines.

141

TABLE 9.2

Comparison of results to previous studies in dry cooling system using conventional turbines.

141

TABLE II-1

A listing of coefficients for calculating pipe and pipe fitting cost.

154

-14-

CHAPTER 1: INTRODUCTION

1.1

Background

A modern-day fossil-fueled electrical power plant has an efficiency of about 40%; approximately one-half of the heat from the fuel combusted in the boiler is rejected to the circulating water.

The efficiency of a

Pressurized Water Reactor or Boiling Water Reactor nuclear power plant is about 33%; two thirds of the nuclear heat generated is rejected as waste heat.

Therefore, in the electrical power industry, the amount of waste

heat discharged to the environment is enormous, and this must be handled safely, economically, and without causing damage to the environment. For power plants located at a river or lake where large quantities of water are available, once-through cooling is often employed.

In once-

through cooling, the hot water from the condenser is discharged into the waterway, resulting in an increase of water temperature which may have adverse effects on the ecology of the water bodies. Conventionally, when water is not sufficient for once-through cooling, evaporative towers are used.

The circulating hot water is broken

into small droplets by splashing it down the fill in the cooling tower. More than 75% of the heat rejection is by evaporation.

One major dis-

advantage of evaporative towers is the consumption of a huge amount of water.

A 1000 MW LWR nuclear plant operating at rated load with an

evaporative tower requires about 20,000,000 gallons of makeup water

-15-

every twenty-four hours [28].

Also, evaporative towers have a number

of environmental problems: disposal of blowdown water, fogging

and

icing in certain atmospheric conditions and mist carryover with high salt concentration. All the above-mentioned problems of once-through cooling and evaporative towers can be eliminated by employing dry cooling towers. Dry cooling tower systems are closed water loop cooling systems.

The

circulating water has no direct contact with the atmosphere and, therefore, there is no water lost by evaporation.

This allows flexibility

for power plant siting, for instance, a power plant can be located at a mine-mouth or load center where water is unavailable for wet-cooling. As a result, savings in fuel-transportation and/or electrical transmission can often be obtained. In spite of all these advantages, today dry cooling towers are not broadly used by electric utilities. is the primary deterrent.

The high cost of dry cooling

Only two power plants under construction in

the United States are planned to employ all-dry cooling--a 330 MWe unit at Wyodak, Wyoming, and an 85 MWe unit at Braintree, Massachusetts. The cost of all-dry cooling can be reduced by supplementing the dry towers with evaporative towers.

This wet/dry cooling concept has

aroused deep interest from the utilities.

The first wet/dry towers

have been purchased by Public Service Co. of New Mexico for use at their San Juan site.

These units, 450 MWe each, are designed to save

60% of the water consumed by evaporative cooling towers [10].

-16-

Recently ERDA sponsored a study by Westinghouse Hanford Co. to determine the regional requirements for dry cooling.

The study con-

cluded that there are economic alternatives to dry and wet/dry cooling up to 1990.

From 1990 to 2000, the combined effects of restrictions

on coastal siting, state regulations of the purchase and transfer of water rights from agriculture or other uses to cooling supply, together with the rapid and continuous growth in electricity demand, will have the potential of bringing dry or at least wet/dry cooling to increased use.

Nationally, a total of 21,000 to 39,000 MWe will require dry or

wet/dry cooling at that time [17].

1.2

Scope of This Thesis Work

The research in this thesis covers the economic optimization of dry and wet/dry cooling tower systems.

The dry cooling tower system

optimization program is a refinement of the model developed by Andeen and Glicksman [1,2,3]. This thesis work is part of the project titled, "Waste Heat Management in the Electrical Power Industry: Energy Conservation and Station Operation Under Environmental Constraints," prepared by the Energy Laboratory of MIT for the Division of Environmental Control Technology, U.S. Department of Energy.

The purpose of this project is to compare

the economic and the environmental impacts of employing once-through, cooling ponds, wet towers, dry towers, ad wet/dry towers in fossil and nuclear power plants.

The comparisons of these cooling systems

-17-

are made at the Quad Cities plant site between Illinois and Iowa.

This

hypothetical site was chosen solely because it is a river site where any of the above cooling systems can be built.

The meteorological data

of Moline, Illinois, are used in the evaluation of these cooling systems.

1.3

Outline of Presentation

The material in this thesis is presented in the following sequence. Chapter 2 is a presentation of the method of analysis.

The power plant

model and turbine characteristics are given in Chapter 3.

Chapter 4 is

a review of the model and performance of dry cooling tower systems.

The

optimization procedure and results of optimization are presented in Chapter 5.

Chapter 6 investigates the effects of using different methods

of replacing lost capacity on the economic optimization of dry cooling tower systems.

The wet/dry cooling tower model and results of optimiza-

tion are presented in Chapter 7.

Chapter 8 compares the economics of

dry and wet/dry cooling systems with those of once-through, cooling ponds, and evaporative cooling towers.

In addition to the base case

study, the comparison also includes the results obtained in an economic sensitivity study. in Chapter 9.

Finally, conclusions and recommendations are given

-18-

CHAPTER 2: APPROACH AND MAJOR ASSUMPTIONS

2.1

Introduction

The method of analysis in this optimization study of cooling tower systems in power plant is a scalable plant-fixed demand approach as discussed in Fryer

[4].

It assumes that there is a fixed demand for

electrical output from the power plant.

This is 800 MWe from the fossil

plant and 1200 MWe from the nuclear plant.

Further, it assumes that the

power plant can be scaled to produce a given net capacity which is just equal to the fixed demand at the design ambient temperature.

Scaling is

performed, first, to account for the difference in turbine heat rates at the design point and the turbine rating back pressure and, second, to provide fan and pumping power for the cooling system.

The concept

of scaling is illustrated in Fig. 2.1.

2.2

Optimum System

In general, a larger cooling system has a higher capital cost but is more efficient and, therefore, has a lower operating cost.

Thus,

there is an economic trade-off between the capital investment and the operating cost.

An optimum exists somewhere intermediate which gives

the minimum total cost.

This is schematically shown in Fig. 2.2.

The

purpose of an optimization is to identify this optimum based on a given set of economic parameters.

-19-

SCALED PLANT NET CAPACITY

-

--

-

----

-

-- -

TARGET DEMAND

>4

~3 u U p H

04 SCALED PLANT NET CAPACITY

O a~

DESIGN AMBIENT

AMBIENT TEMPERATURE

FIGURE 2.1

ILLUSTRATION OF THE CONCEPT OF POWER PLANT SCALING

-20-

//

--

TOTAL COST

II OPERATING COST

I EC1

I

ul o

CAPITAL COST I ~..

-

&-*.,&.d..

COOLING SYSTEM SIZE

FIGURE 2.2

ILLUSTRATION OF THE ECONOMIC TRADEOFF BETWEEN CAPITAL COST AND OPERATING COST

-21-

2.3

Load Profile

In this study, no load profile is scheduled for the power plant. It assumes that the average annual capacity factor is 75%.

2.4

Treatment of Loss of Capacity

The performance of a cooling system, especially the dry towers, responds sensitively to the meteorological conditions and any changes will affect the generating capability of the power plant.

The power

plant in this study is assumed to be within a summer-peak utility system.

Besides, there is a fixed demand.

The net plant capacity is

measured against this target demand; any deficit in capacity is necessary to be replaced by another generating source.

However, the source

of replacement is very dependent on the situation of the utility.

In

this study, the base case method of replacing lost capacity is the use of gas turbines.

A capital cost of $160/kW and an operating cost of

30 mills/kW-hr are required for the purchase and operation of the gas turbines.

This assumption may have strong influence on the economic

optimization of dry cooling tower systems.

A detailed investigation

of the effects of using different methods of replacing lost capacity on the economic optimization of dry cooling tower systems will be reported in Chapter 6.

-22-

2.5

Power Production Cost In this optimization study of cooling tower systems in power plants,

an optimum cooling system is identified as one which gives the minimum power production cost.

The power production cost, also known as the

bus-bar energy cost, is the total annual cost of generating one kilowatthour of electrical energy.

It is composed of fuel cost, operation and

maintenance cost of the power plant and the cooling system, energy and capacity penalties, and annual fixed charge on the capital investment of the power plant and the cooling system.

The mathematical relation-

ship is given below:

Power Prod. Cost

(Capital Cost)(FCR)+ O&M+ Fuel Cost+ Energy Penalty

=

J(Net Output)i (8760 x f)

i

1

~~1

for (Net Output)i

=

Fixed Demand

and (8760X f.)

=

8760 x Capacity Factor

;

i

then we have Power Prod. Cost

=

(Capital Cost)(FCR) + O&M + Fuel Cost + Energy Penalty (Fixed Demand)(8760)(CAPF)

where Power Production Cost is in mills/kW-hr, and Capital Cost = Power Plant Cost + Cooling System Cost + Capacity Penalty Cost ($);

FCR = Fixed Charge Rate (%); O&M = Operation and Maintenance cost ($);

-23-

Fuel Cost = annual fuel cost ($); CAPF

=

Capacity Factor

(%);

and Fixed Demand is in MW.

2.6

Base Economic Factors

The base economic factors for the hypothetical plant site, Quad Cities, are given in Table 2.1.

TABLE 2.1

All the costs are in 1977 dollars.

Base Case Study Economic Factors.

Year of pricing

1977

Power plant construction cost Fossil

$500/kW

Nuclear

$600/kW

Fuel Cost Fossil

(coal)

Nuclear

$0.90/MMBtu $0.47/MMBtu

Annual fixed charge

17%

Operation and Maintenance cost

1% of all capital costs

Average annual capacity factor

75%

Capacity penalty (gas turbines)

$160/kW

Energy penalty

(gas turbines)

30 mills/kW-hr

Additional steam supply system (high back pressure turbine) Fossil

$167/kW

Nuclear

$200/kW

-24-

CHAPTER 3: CHARACTERISTICS OF THE POWER PLANT

Both fossil and nuclear power plants are considered in this optimization study of cooling tower systems for steam-electric power plant application.

In this chapter, the power plant model and the turbine

performance will be presented.

3.1

Plant Model

The nuclear power plant assumed for the cooling system evaluation in this study is considered to be a Boiling Water Reactor (BWR).

On

the other hand, the fossil power plant is assumed to be coal-fired. The steam source of the power plant may be coupled with either a conventional steam turbine or a high back pressure turbine.

The tur-

bine-generator for the nuclear plant is a General Electric Tantum Compound Six Flow -38

(TC6F-38) turbine; its steam conditions at the tur-

bine inlet are 965 psig saturated. The turbine-generator for the fossil plant is a General Electric Cross Compound Six Flow (CC6F) turbine with reheat cycle;

its steam

conditions are 3500 psig 1000°F/1000°F. The conventional turbine-generator is typically the one currently used in power plants with once-through cooling or with evaporative towers. turbine.

5 inch HgA is the miaximum allowashe exhaust pressure for this Any operation at

exhaust pressures exceeding

this maximum

-25-

limit would cause damage to the turbine. For the all-dry cooling tower systems, a high back pressure turbine is considered.

The high back pressure turbine allows operation

up to an exhaust pressure of 15 inch HgA.

This turbine has short last-

stage buckets.

3.2

Turbines Today there are high back pressure turbines manufactured in Europe

that are only limited to small capacities.

In the United States cur-

rently no domestic turbine manufacturer offers high back pressure turbines for nuclear steam applications.

However, high back pressure tur-

bines, up to 750 MWe, are presently available from the General Electric Company for fossil steam applications.

According to this company [13],

the cost of the fossil high back pressure is the same as the conventional turbine but the nuclear high back pressure turbine would cost 15% more than the conventional unit. The full-load turbine net heat rate vs. exhaust pressure curves are shown in Figs. 3.1 and 3.2 for the nuclear and fossil turbines, respectively.

The data of turbine net heat rates are avilable from

the General Electric Co. [18,19].

The heat rate factor is defined as

the ratio of the turbine net heat rate at any exhaust pressure to the turbine net heat rate of the conventional unit at 3.5 inch HgA. pose

no

inch HgA,

Sup-

is the turbine efficiency of the conventional unit at 3.5 is the turbine efficiency at any exhaust pressure, and F

is the heat rate factor; then the relationship between

, nflo, and F

-26-

BASE CXVENTIAL UNIT: G.E. TC6F-38 NET HEAT RATE OF

STEAM CONDITIOJ: 965 PSIG

SAIURATED

NVENTIONAL UNIT AT 3.5" MA: 10071 Btu/kwhr

1.20 2

1.16 HIH-'"

01.12

PESUR

a: 1.08 wLd < 1.04 w

M1.00

CONVENTIONAL

I MI-

I

0

I

I .

-

I

I

I I

I

I

I I

I

5 15 10 EXHAU ST PRESSURE( INCH HGA) FIGURE

3.1

NUCLEAR TURBINE CHARACTERISTIC CURVES

-27-

BSE CVEICONAL UNIT: G.E.

C6F

STM C(NDITICN: 3500 PSIG 10000F/10000F

NET HEAT RATE CF coNVENTIc]NAL UNIT AT 3.5" HA: 7882 Btu/kwhr

0

NCH HGA) HGA)15 PRESSURE 1(INCH EXHAUST5EXHAUS FIGURE

3.2

FOSSIL TURBINE CHARACTERISTIC CURVES

-28-

is given by the following equation:

n =nF

.

(3.1)

The rating back pressure for high back pressure turbines is 8 inch HgA [13].

From Figure 3.1, it can be seen that the heat rate of the

nuclear high back pressure turbine at 8 inch HgA is 7.5% higher than that at the rating back pressure of the conventional unit.

For fossil

high back pressure turbines this is 6.3%, as can be seen from Fig. 3.2. Therefore, a high back pressure turbine requires a larger steam supply system than the conventional turbine in order to produce the same rated The capital cost of the additional steam supply system can be

output.

calculated by using the following equation: Cs where

C

= kW x (FB Cs~~~

-

1) x

s

= cost of additional steam supply system ($),

kW = turbine rated output (kilowatt), FB = high back pressure turbine heat rate factor at 8 inch HgA, Cs = cost of steam supply system ($/kW). Tables 3.1 and 3.2 are heat rates at different load conditions for the nuclear conventional turbine and the fossil conventional turbine, respectively.

These data are provided by the General Electric Co.

[18,

19].

The energy flux, that is, the product of mass flow rate and enthalpy, of steam (Btu/hr) at the turbine inlet ior each of the 100%, 75%, 50%, and 25% (fossil only) load conditions can be obtained by multiplying

-29-

TABLE 3.1.

Net Heat Rates for Nuclear Turbine

General Electric TC6F-38. Steam: 965 psig sat.

Percent Load -

100

-

75

50

.

Exhaust Pressure (in. HgA)

Output (kW)

Net Heat Rate (Btu/kW-hr)

Output (kW)

Net Heat Rate (Btu/kW-hr)

Output (kW)

Net Heat Rate (Btu/kW-hr)

1.5

1,232,850

9,904

957,922

9,914

644,391

10,161

2

1,231,633

9,914

954,273

9,951

634,903

10,414

2.5

1,228,000

9,943

946,798

10,030

622,189

10,626

3

1,221,392

9,997

935,807

10,147

609,091

10,854

3.5

1,212,377

10,071

923,257

10,285

596,362

11,085

4

1,200,869

10,167

910,259

10,431

584,709

11,306

-

--

-

-30I

-

---

r. . ..

4-i

(a

co oz

U'.)I 4J

0~ H

0~ O

tn (N

en

z

.H

r en

H (1

~'

Co 0 o H 0"

t N

'.0 q'

o

o

N

CO o uN

~P i~

L~ ,4:

n o

l

o o o

o

to u

H

H

0

O

0 (N

(0

0 H

0 H

~ C,

0

~

03N N o

0O

'' H

Ns 0

o (N

H

N

t

H (N

04

0 0N

0

~~ 4-I)4J

0

O0 0-

m

c0

0

0'

n

0

o

N ~

0

,-I H

o

(',3 q; Um '

N r

rT4 0

,1-4 0

~

4-.

04a) 3 4-igt : 0

U)

s n

o

0

o o 0

o

(P--I

ton3m o0 C 0o O'N 0 0

(0 co

rco - cow u 0 O) H ( 0

r'I tosN

o'l Ho '1

,.-I Cz;w 01-s o

0

o

) X

o

'

ao 00 C OO-t H

o

0 ,-I

(U 14 U)4

z

04p-

to

.)

4 tn

0

(U4J

a) 04

4

J

:4J

o

to = 0 N

4JWkr

U)

0 m to ok COa v

CO (N (N

'.0 0O H

rr H

i n

0'

N en Coo O-

to '. 'ON 0' 0

C'

0) O

H

w H c

N

N

%o

C0 O

CO

(t

'0

No

0"

en

c

o4

N

oO

N

N 0 0)

Z

4J LO

to 4

U1

p

04 W-

*~ m n

Ew

O

k

)

on

0tD

o~

H

o en

0 '~ (N H '.0 '0

N ''

1V '. N

N N Ns

O' m CO O N CO

en Lt

to Co

'I (N

Co H

Ns H

to H

H '.

H .0

n

o

o '.

en

" 'U 00O '. '0

a

O~ 0

to

to

CO to

o

o o 0

4-i

0

(U a) U)

I

z 4-i . (

M

H

o 0

o N

n H

0 H

'.

H 000"

m

r4

o 0

4i m

'.0 0 a)

-i

0 ,--I

~ o "r co en CO COD 0'~ 0

'

nl

0 0 H-

o %D h .,-

00

H

I

CO00 C

o

CO

rN o

0C

(N Co

o000 N 0o Uo

en o

Co

to

on

0 0"

NO

iii

,

I

o

,-4 a) 4C)

A

VI HH

4

*d

rH

4

ure

L( )

N

cS

Lt

t

de

t

-31-

the output (kW) by the net heat rate (Btu/kW-hr).

For the fossil tur-

bine, this is 6.354x 109 Btu/hr for the 100% load, 4.84x 109 Btu/hr for the 75% load, 3.407 x 109 Btu/hr for the 50% load, and 2.047X 109 For the nuclear turbine, this is 1.22X 10 l°

Btu/hr for the 25% load.

Btu/hr for the 100% load, 9.49x 109 Btu/hr for the 75% load, and 6.60X 109 Btu/hr for the 50% load.

By assuming that each load condi-

tion has a constant steam flow, the above results are thereby used for calculating the plant output and heat rejection rate at a given load condition.

To demonstrate this, let us consider an example of calcu-

lating the output at 5 inch HgA for the 75% load condition of the fossil turbine.

Suppose

Q100oo

is the energy flux (Btu/hr) at the turbine A

inlet at the 100% load of the fossil turbine; then at the 75% load condition, the energy flux at the turbine inlet is given by Q75

=

0.76* Qoo

Knowing the turbine efficiency at 75% load and 5 inch HgA to be 0.415, it follows that the output (kW) is equal to 0.76* Q100oo

(Btu/hr)x 0.415 (Btu/kW-hr) 3.413

or 0.76 * 0.415 * Q100

3.413

kWe

and the heat rejection (Btu/hr) is simply

0.76* Qoo(Btu/hr) * (1 - 0.415) or 0.76 * 0.585 * Q100

Btu ru

hr

-32-

CHAPTER 4: DRY COOLING TOWER SYSTEM MODEL AND PERFORMANCE

Generally dry cooling tower systems may be divided into the direct type and indirect type.

In the direct type, the turbine exhaust steam

is condensed in the cooling tower air-cooled heat exchangers.

In the

indirect type, the turbine exhaust steam is condensed in a condenser and the hot water is carried to the cooling tower where heat is discharged to the air from the heat exchanger.

Due to nuclear contamina-

tion in the nuclear steam, the direct type is always considered to be unsafe

4.1

for nuclear applications.

Introduction

In this study the dry cooling tower system is taken to be an indirect type with surface condensers and metal-finned-tube heat exchangers. The computer optimization program does not use pre-designed heat exchanger modules. in detail. by fans.

In addition, the piping system design is considered

Theair flow in the cooling tower is mechanically induced The various components of the dry cooling tower system are

shown in Fig. 4.1. Condensation of the turbine exhaust steam takes place in the surface condenser at the saturated steam temperature corresponding to a given tbine exhaust prssure. water circuit.

e condceasate is returned to the feed-

Cooling water entering the condenser at a temperature

-33-

TURBINE

DRY TOWER

AIR FLOVF

XCE MNSER

)WATER IT

PIPING

FIGURE 4.1

PUMP

INDIRECT TYPE OF MECHANICAL DRAFT DRY COOLING TOWER SYSTEM

-34-

T is heated to a temperature

T2

on leaving the condenser.

The dif-

ference between the saturated steam temperature and the hot water temperature

is the terminal temperature difference (TTD).

T

perature difference between

T1

and

T2

is the water range.

The temOn leav-

ing the condenser, the hot water is circulated through the piping system to the dry cooling towers where heat is rejected to the air from the heat exchangers.

The difference between the temperature of hot water

entering the dry tower and the temperature of the incoming ambient air is the initial temperature difference (ITD).

After cooling, the water

leaving the dry tower is returned to the condenser. ing the dry cooling tower at a temperature temperature air range.

4.2

a T2 .

T1 a T2

The difference between

Ambient air enter-

leaves the tower at a and

a T1

is called the

The temperature relationships are illustrated in Fig. 4.2.

Condenser The surface condenser in this study is a shell-and-tube heat ex-

changer and it is a single pressure design.

The circulating water flows

inside the tubes and the turbine exhaust steam is condensed on the outer surface of these tubings.

For a thermodynamic equilibrium, the follow-

ing equalities must hold: Qs

=

UA(LMTD)

(4.1)

Q

=

(-

(4.2)

T)

Q* w Qs

Q(4 c

3)

-35-

TTD sat sat mW

w 1

1 Tsat= SATURATED STEAM TEMPERATURE AT TURBINE OUTLET

TTD= CONDENSER TERMINAL TEMPERATURE DIFFERENCE ITD= INITIAL TEMPERATURE DIFFERENCE w T 1 = COOL WATER TEMPERATURE

1

w T 2 = HOT WATER TEMPERATURE

2

a = TEMPERATURE OF AMBIENT AIR ENTERING DRY TOWER T1 a = TEMPERATURE OF AIR LEAVING DRY TOWER T2

FIGURE 4.2

TEMPERATURE RELATIONSHIP IN INDIRECT TYPE OF DRY COOLING TOWER SYSTEM

-36-

= heat rejection rate of the condenser (Btu/hr);

where

Qs

Qc m

w

= heat rejection rate to the circulating water (Btu/hr); = condenser circulating water flow rate (lb/hr);

w T 2 = temperature of hot water leaving the condenser (F);

w T1

= temperature of cool water entering the condenser (F);

U = condenser heat transfer coefficient (Btu/hrft2°F);

A = condenser heat transfer area (ft2 ); and LMTD

=

log mean temperature difference w w T2 - T1

Range

= ~r'rD+T~-TY TD Zn(TD+T TTTD

(Range

=Zn

-T)

a n e+

n/

The overall heat transfer coefficient

U

TD

(4.4)

+ TTD )

based on the oxutside sur-

face area of condenser tubes is given by

1 1 h

o

where

1

r

+°n

r.h.

1 1

,

r

r k

(4.5)

o

o

a

r. 1

= steam side heat transfer coefficient (Btu/hr-ft2°F);

h

h. = water side heat transfer coefficient

(Btu/hrft2°F);

1

r = condenser tube outer radius 0

(ft);

r.=

(ft);

1

k

a

condenser tube inner radius

= conductivity of condenser tube material (Btu/hrft°F).

The water side heat transfer coefficient

h. 1

can be calculated using

the heat transfer correlation for fully developed turbulent flow. correlation is:

The

-37-

h. 1

where

k

w

Re

w

Pr

w

0.023 k Re 0.8 Pr 0.4 w w w d

=

(4.6)

= conductivity of water inside condenser tube (Btu/hr-ft°F); = water side Reynolds number; = water side Prandtl number;

d = tube inner diameter (ft). The steam side heat transfer coefficient

h

may be determined by 0

using Nusselt's analysis of condensation on tube banks in the literature [13,35].

The steam side heat transfer coefficient is given by: 4

h

0o

=

0.728

(4.7) D

where

h

(Tsv s

= heat transfer coefficient

s)

(Btu/hrft2°F);

o

K = thermal conductivity of liquid (Btu/hrft°F); p

= density of liquid (lb/ft3);

Pv = density of vapor (lb/ft3); g = gravitational force

(ft2/hr);

h' = latent heat of condensation (Btu/lb); fg

1

= viscosity of liquid (lb/hr-ft);

D = tube diameter

(ft);

Tv = temperature of saturated vapor (F); sv T

s

= wall surface temperature

(F).

In a large power plant condenser, T

~100°F, sv

the properties of steam are:

(T -T ) sv s

10°F, and

-38-

p

=

62 lb/ft3

Pv

=

0.2 lb/ft3

K

=

0.364 Btu/hroft°F

h' fg

=

888.8 Btu/lb 1.65 lb/hr-ft

pR,=

For

D = 1 inch, then the steam side heat transfer coefficient is

h= =

h

(0.364)3 (61.8)2 (4.17 x 108 ).(888.8) (1/12) (1.65) (10)

0.728 0.728

0

=

¼

1932 Btu/hr-ft2°F .

In Eq. (4.5), with r

o

= 0.5 inches, r

1

= 0.451 inches, k

a

= 65

Btu/hrft°F for admiralty, and the properties of water at 70°F being Pr = 6.82, V = 1.02X 10- 5 , K = 0.347 Btu/hrft°F, the overall heat transfer coefficient U velocities.

is computed for different condenser water

The results are tabulated in Table 4.1.

TABLE 4.1

V (ft/sec) 8 7 6 5 4

Condenser Heat Transfer Coefficient vs. Water Velocity

h. (Btu/hroft 2 °F) 1

1497.0 1345.0 1189.0 1026.0 860

U (Btu/hr-ft2 °F) 842.9 797.2 745.0 683.6 612.6

-39-

In the above calculations, only one horizontal tube is considered. For n tubes, the average steam side heat transfer coefficient should be divided by

(n)4

in Nusselt's correlation in Eq.

(4.7)

[14,35].

The Heat Exchange Institute [7] has conducted extensive tests for arriving at values of the overall heat transfer coefficient for various tube materials, water velocities, and water temperatures. For example, with the condenser inlet water temperature of 70°F and No. 18 BWG clean admiralty tubes, their experimental data gave the relation between the overall heat transfer coefficient and water velocity as U

=

C

V0 5

(4.8)

,

U = overall heat transfer coefficient (Btu/hreft2°F);

where

V = water velocity (ft/sec); C

u

= coefficient = 263 for No. 18 BWG admiralty tubes.

The results of U

from this correlation for various water velocities

are calculated and compared to the results obtained by Nusselt's analysis in Table 4.2.

TABLE 4.2

Comparison of Condenser Heat Transfer Coefficients Obtained by Nusselt Analysis and Empirical Correlation Given by Heat Exchange Institute

V (ft/sec)

U, Nusselt's Analysis (Btu/hr'ft2°F)

8 7 6 5 4

842.9 797.2 745.0 683.6 612.6

U, Heat Exchange Institute Test Data (Btu/hr-ft2 °F) 743.8 695.8 644.2 588.1 526.0

-40-

Just based on these first estimations, the Heat Exchange Institute test data appear to be reasonable. The water side heat transfer coefficient is a function of the proThe thermal resistance of the

perties of water and the tube diameter.

tube wall is dependent on the tube inner and outer diameters.

For inlet

water temperature other than 70°F and tube wall thickness other than that the Heat Exchange Institute provides design correction

18 BWG,

of No.

factors for Eq.

Furthermore, a cleanliness factor has to be

(4.8).

allowed for dirty tubes. Given the values of the condenser water range, the TTD, the water velocity V,

and the heat rejection rate

heat transfer area can be calculated.

Q , then the total condenser

Mathematically, this is

(4.6)

A=. Range n [(TTD+ Range)/TTD]

U

Also,

from the heat rejection rate and the water range, the water flow

rate can be calculated;

that is,

m

=

-

(4.7)

Ran9 e

by taking the specific heat of water to be 1 Btu/lb°F. By applying the mass conservation principle to the water flow rate, we have m

=

PVAH

(4.8)

or

m .A

=

-E.

(4.9) P

-41-

p = density of water (lb/ft 3 ) at the mean temperature of

where

and

T

w T2 ; 2~~~~~~~~

AH = total hydraulic area (ft2).

Given the inner diameter of the condenser tubes, then the total number of tubes is 4AH 2

nT

(4.10)

7TD.

where

D. = tube inner diameter (ft). 1

Finally, from the total heat transfer area, the outer diameter of the tubes and the number of tubes, the condenser tube length can be determined from the following equation: =

~T

where

D

=

A

AT 7TD nnTrD T o

(4.11)

(ft)

= tube outer diameter (ft).

0o

In designing the condenser, the Heat Exchange Institute

[7]

recom-

mends a minimum design TTD of 5F to avoid unpredictable condenser performance at design TTD's below this limit. The relation between the heat rejection rate and the TTD can be calculated from Eqs.

For a fixed condenser design,

(4.6) and (4.7).

the water flow rate m , the heat transfer area A , and the overall heat transfer coefficient

U

are constant.

we get

£n A

By combining Eqs.

(TDTTD TTD

=

U Q/

Q/m /

(4.6) and (4.7)

-42-

or

*

v

An TTD + Q/m

constant

=A

TTD

m

Therefore, 1

+

Q ... = (m)(TTD)

constant

or

=

constant

(m)(TTD) Finally, we get

Q

constant* TTD

=

.

The maximum condenser tube length is about 50 ft.

(4.12) Thus, two passes are

needed if the tube were longer than about 50 ft. Due to corrosion and erosion problems, the condenser water velocity is constrained to a maximum of 7 ft/sec

[12].

As can be seen in Eqs. (4.5) and (4.6), with the heat rejection rate, the TTD, and the range being fixed, the heat transfer area is inversely proportional to the square root of the water velocity; that is,

A

1

This means a higher water velocity gives a smaller condenser.

However,

the higher the water velocity, the larger the pumping power requirement (Appendix I gives the pressure drop relationships).

Hence there is a

trade-off between the capital cost of the condenser and the pumping power

ost. The installed cost of a surface condenser is composed of the shell

-43-

A detailed cost algorithm

cost, tube cost, and field erection cost. of the condenser is given in Appendix II.

4.3

Dry Towers

In general, mechanical draft dry cooling towers can be circular or rectilinear in shape.

Rectilinear towers often have the heat ex-

changer bundles supported horizontally about 50 ft above the ground. In circular towers the heat exchanger bundles are normally vertically arranged around the base of the tower and,

therefore, they are rather

self-supporting and require less structural support than the rectilinear towers. [1,2,3].

The methodology of heat exchanger design follows Andeen et al. Assuming a cross-flow heat exchanger with the water side un-

mixed, we have the following two cases: Case I:

C /C

w'a


,C3 1 t Cd) -0. E-4 N 0)0EqE-4 E -H-H-

Ej 4U) Ho

o

U^* )

U) U) U)4. U) 00 ' tn mt Q

N * -H

1

r4

4.3 -H

4-) 0 -H4 Cd

a

u X U1) a)

a 0

eu

P: 0 9 '-4.30

H

u U

c.0H

44

0

I-V

H

(n

9

H

.) N

N

N H

m

0*

O0 co

o U=

o

*

'T

* LO

rL

m

dn

NOq 4. 04 0H

o4 a) 0 3

m

LA

H

O

CO

LA'.D

U)

P.

04

N H

co

3 r. 0

4)

040

E-4

.

*

,n

N

4

a)

a)

LA)kro

U) a)

N 4

U)

IQ .

,-I

0

zn- )

43

44

E-4

-

N

0

p

C.) 0

N

a0 ~0

Cz

.3-

44

U)

N

0

N

0

0 U

~4

)

N U4)$

Q) O3 4

44

0

4.3 4-4

(a

U)

4CdU)U)4-e 44 4) U(d44N H

U)

4-4

4-

4. 34-

U) 0U) ., u,4 0 (1

H

Ln

En

U)

L

o0

tO 0 CN -H U) r.

o 00

o 0

N

o oa N f-4 0 ~4 tp U) 4-4 H

o

U) N U)

U1)

0 la)

3U4-4 H Cd >:

L

o

0

0

4-4N0

4-

4-4 q4 U1) 0 U U) H 4-4 H U)

x

C>( a;

rL4

o

.-H 0

.

.,, 4.3

.),

C 0 qo

U) 4.3

4.3

a)

43 c~

'

4

U)

*H

*d dH CdI(L

> I 0 N .1 co

7 r

·

4.

-74-

TABLE 5.3

Cost Comparison of Optimum Design Dry Cooling Tower Systems for 800 MWe Fossil Plant

Costs are in millions of dollars Turbine Type

Item Circulation Pumps, Pump Structure, and Electrical Equipment

Conventional

High Back Pressure

(5" HgA max)

(15" HgA max)

$ 3.68

$ 2.42

12.68

6.26

6.92

4.59

33.96

16.66

4.26

1.78

12.37

6.43

2.75

1.34

Direct Capital Cost of Cooling System

77.56

40.07

Indirect Cost of Cooling System

15.51

8.01

Total Cooling System Capital Cost

93.07

48.08

407.79

400.92

Piping Condenser Heat Exchanger Tower Structure and Foundation Air Moving Equipment and Electrical Equipment Louver

Power Plant Construction Cost Additional Steam Supply Cost

0

8.44

Extra Turbine-Generator Cost

0

0

Fuel Cost

42.22

44.13

Replacement Capacity (Gas Turbine) Cost

5.05

6.93

Replacement Energy Cost

0.44

0.70

-75-

TABLE 5.4

Cost Comparison of Optimum Design Dry Cooling Tower Systems for 1200 MWe Nuclear Plant

Costs are in millions of dollars Turbine Type

Conventional Item

~~~~~Item

~(5"

Circulation Pumps, Pump Structure, and Electrical Equipment

HgA max)

High Back Pressure (15" HgA max)

6.52

3.55

Piping

29.46

16.40

Condenser

15.08

9.93

Heat Exchanger

71.79

37.60

9.43

4.24

29.55

14.45

5.83

3.02

169.70

90.49

33.94

18.10

Total Cooling System Capital Cost

203.64

108.59

Power Plant Construction Cost

739.69

725.39

Tower Structure and Foundation Air Moving Equipment and Electrical Equpment Louver Direct Capital Cost of Cooling System Indirect Cost of Cooling System

Additional Steam Supply Cost

0

18.13

Extra Turbine-Generator Cost

0

36.27

Fuel Cost

40.21

42.40

Replacement Capacity (Gas Turbine) Cost

15.00

12.54

1.15

2.11

Replacement Energy Cost

-76-

800 MWe Fossil Plant Net Electrical Output for Optimum Cooling System Design

TABLE 5.5

Turbine Type Ambient Temperature

High Back Pressure (ITD: 65°F)

(OF)

Conventional (ITD: 30°F)

30

800.82

800.49

37

800.82

800.49

42

800.82

800.49

47

800.48

800.39

52

799.97

799.99

57

798.72

799.33

62

797.93

798.11

67

796.57

796.51

72

794.42

794.35

77

794.42

790.81

82

791.13

786.07

87

786.93

779.38

92

780.78

768.79

96

775.28

760.86

98

768.40

756.66

-77-

TABLE 5.6

1200 MWe Fossil Plant Net Electrical Output for Optimum Cooling System Design

Turbi ne Type Ambient Temperature (OF)

Conventional (ITD: 30°F)

High Back Pressure (ITD: 65°F)

30

1201.13

1202.67

37

1201.13

1202.67

42

1201.13

1202.67

47

1200.86

1202.67

52

1200.07

1198.75

57

1199.16

1195.12

62

1198.13

1191.34

67

1196.93

1188.07

72

1193.37

1184.53

77

1185.92

1180.04

82

1174.35

1172.43

87

1158.79

1160.33

92

1144.39

1142.17

96

1136.52

1128.68

98

1106.12

1121.57

-78-

TABLE 5.7

Comparison of Heat Exchanger Tube Length and Number of Tubes Deep, 1200 MWe Nuclear Plant

Design ITD (°F)

Number of Tubes Deep

Tube Length (ft)

High Back Pressure Turbine

55 65 75 85 95 105 115

6 6 8 8 6 8 8

69.71 72.66 65.74 63.87 79.32 73.03 74.83

Conventional Turbine

20 30 40 50 60 70

10 6 6 6 6 8

55.41 78.19 74.45 71.31 76.18 65.74

TABLE 5.8

Comparison of Heat Exchanger Tube Length and Number of Tubes Deep, 800 MWe Fossil Plant

Design ITD (OF)

Number of Tubes Deep

Tube Length (ft)

High Back Pressure Turbine

55 65 75 85 95 105 115

6 6 4 6 8 8 8

77.12 68.70 77.97 74.14 72.89 76.06 74.26

Conventional Turbine

20 30 40 50 60 70

6 6 6 6 6 4

67.73 78.99 50.00 79.95 68.70 65.14

-79-

CHAPTER 6: THE EFFECTS OF DIFFERENT METHODS OF REPLACING LOST CAPACITY ON THE ECONOMIC OPTIMIZATION OF DRY COOLING TOWER SYSTEMS

6.1

Introduction

In this optimization study the power plant with a dry cooling tower system can meet a specified capacity at the design ambient temperature. At ambient temperatures above the design temperature the net capacity of the power plant decreases.

The base case study method assumes the

lost capacity to be made up by gas turbines.

The capital cost of the

gas turbine is solely charged to the cooling system even though the gas turbine is needed only for a limited number of hours per year.

As

can be seen from the results in Chapter 5, an optimum cooling system is one which minimizes the need for the gas turbine by using a rather large tower so that, as in most studies, no turbine throttling is required at the highest ambient temperature.

This is almost always a proper con-

straint when gas turbines are used for peaking; however, it will give misleading results for other conditions.

6.2

Approach to the Problem

In reality,

lost capacity would not be made up by gas turbines

devoted exclusively to that task.

Any gas turbines purchased by a util-

ity would be used to meet short-term peaks during other parts of the year and would represent stand-by capacity needed to meet outages of

-80-

other units.

Thus the capital cost of the gas turbine would be only

partly attributed to the cooling system.

In addition, depending on

the capacity of neighboring utilities, power pools and pumped-storage facilities, summer-time lost capacity could be met by purchased power. Finally, utilities may find it advantageous to use older plants normally reserved for stand-by duty to meet peak capacity. Obviously, the method available to make up lost capacity caused by dry cooling towers is very much dependent on the particular condition of a utility and generalization is not valid without detailed examinations of these conditions.

Thus, the purchase of gas turbines

solely to meet lost capacity is extreme and in some instances unjustifiable. The work in this chapter is to explore the influence of a range of options.

To do this we have looked at the opposite case: replacing

lost capacity by purchasing power at costs which are various multiples of the average power generation cost.

With large multiple values, it

is implied that some capitalization costs are included.

The high pur-

chase cost may reflect actual purchase from neighboring or more distant utilities, use of an older stand-by plant, or it may reflect true penalties to be assigned to peak-load users of the utility.

Conversely, the

purchase cost may represent rewards the utility should make to customers shedding peak load. There ic no intent tc idernti-y price.

the correct value of the purchased

Rather, the options available to the utility can be represented

-81-

by the results between the extremes of using gas turbines to replace all lost capacity and making up lost capacity solely by purchased energy.

6.3

Results Results are shown in Figs. 6.1 through 6.4 where the power produc-

tion costs are shown as a function of the design ITD.

Note that for

both fossil and nuclear plants, in Figs. 6.1 and 6.3, with conventional turbines, it is less expensive for a utility to purchase peak energy at 90 mills/kW-hr, more than three and a half times the average production cost, than it is to use gas turbines.

Referring to Table 6.2, this

allows the use of a higher design ITD and a smaller cooling tower. ever, by referring to Tables

6.3

and

6.4,

How-

it can be seen that the

higher ITD designs cause more lost capacity at the peak temperatures. With high back pressure turbines the relative advantage of purchased power over gas turbines is far less.

This is expected because high back

pressure turbines minimize lost capacity at high ambient temperatures. Comparing the results in Table 6.2, if replacement power can be purchased, the use of a high back pressure turbine may not be justified, especially for the nuclear plant. In addition to the assumption of a summer-peak demand, a sensitivity study for a winter-peak demand has also been performed. assessing low energy penalty costs.

This is done by

The results indicate, as expected,

that dry cooling tower systems would be economically more attractive for a winter-peak utility system.

-82-

6.4

Discussion The cost and optimum design of power plants with dry cooling towers

is closely tied to the method by which lost capacity at high ambient temperatures is replaced.

The proper method is highly sensitive to the con-

dition of a particular utility in question.

In general, neither the

extreme assumption that lost capacity is made up by gas turbines devoted exclusively to that purpose nor the assumption that lost capacity can be made up by purchased power will properly represent the real situation of a utility.

It is important to do an accurate representation of possible

methods to replace lost capacity when optimizing power plants with dry cooling towers for a particular utility.

-83-

800- MWe FOSS I L PLANT TURBI NE: CONVENTIONAL DES IGN DRY BULB: 50 ° F

33 I

LEGEND: - -- REPLACEMENT' CAPACITY=$160/JKW REPLACEMENT ENERGY= 30 MILLS/KwHR CAPITAL COST OF REPLACEMENT CAPACI.TY = 0 JURVE ENERGY PENALTY (M1 LLS/KWHR)

I

31 -

I

0

A

90

B

60

C D

15

30

E

(')U

.. J

29

z 0 %-o VUH 0U Z 0 27

m

//

7.5

POWER GENERATION COST FOR REFERENCE PLANT WITH ALLWET COOLING SYSTEM: 22.05MILLS/KWHR

A A

/

/

/

I-

U

00-1000,

ZD

Q

0

n- 25 /

ir.

w

E

0

13.

23

I

I

20

FIGURE 6.1

I

I

30 40 50 DES IGN ITD (

I

I

I

60 F)

70

80

RESULTS OF SENSITIVITY STUDY F THE EFFECTS OF USING DIFFERT METHODS OF REPLACING OST CAPACITY ON TE EOOICS OF DRY COOLING ITCWER SYSTEM IN 800-mw FOSSIL PLANT USING CNVENTICOMAL TURBINE

-84-

33

-

800-MWeFOSSIL PLANT TURBINE:HIGH BACK PRESSURE DES IGN DRY BU LB: 50 F LEGEND: ---

A B C D E

31

Y,

ul 2 %..JO -

0n

J

REPLACEMENT REPLACEMENT

CAPACITY $160/KW ENERGY = 30 MILLS/Kwu

CAPITAL COST F REPLACEMENT CAPACI CURVE ENERGY PENAL'Y(MILLS/KWHR)

:_

I

I Y= O

90 60 30 15 7.5

POWER GENERATION COST FOR REFERENCE PLANT WITH ALL-WET COOLING SYSTEM: 22.05 M ILLS/KWHR

29 A

LI)

0

zU

27

p0H

0 0~ D_

LLI wC 0 a-

25

23 FIGURE 6.2

I II 55 65 75 85 DESIGN I T D( .. =r

I

I

I

95 105 115 F )

REJSULTS OF SENSITIVITY SUDY OF TIE EFFBCETS (F USING DIFFERET tHODS OF REPLACING LOST CAPACITY ON THE EXXNC4ICS (F DRY OLING tIUER SYSTEM IN 80044W FOSSIL PANT USING HIGH BACK PRESSURE TURBINE

-85-

1200-MWe NUCLEAR PLANT TURBINE: CONVENTIONAL DESIGN DRY BULB: 50 °F I

ILEGEND:

-

CAPITAL COST OF REPLACEMENT CAPACITrY=$160/KW = REPLACEMENT ENERGY 30 MILLS/KWHR -. ._n -

-

34

CAPITAL COST OF REPLA rCEMENT CAMACI T T /

0-

I

32 P P S

J J

-

30

O

0

U

.O F0 z

u

28

26

01L ll

cr

24

I

FIGURE 6.3

I

I

20

30

I 40 50 60 70 DESIGN ITD ( F) I

I

-- I

I

_ Lj30-

RESUJLTS OF SESITIVITY STUDY OF THE EFFECTS OF USING DIFFERENT METHODS OF REPLACING LOST CAPACITY ON THE ECa4JC4ICS OF DRY COOLIE'G TOWER SYSTEM4 IN 1200-MU NUCLEAR PLANT USING COTETIAAL TURB1PTE

-86-

1200-MWe NUCLEAR PLANT TURBINE: HI GH BACK PRESSURE DESIGN DRY BULB: 50 ° F .

-

Lme

f

.

33

V ;IKWHR

-

X 3:

/KWHR) -

31

J

-P

-

Pi S~

%00 UE

29 A

0 0

27

CL 0 lIr 0d 0:

25

0

0lL

FIGURE 6.4

I

I

55

65

I

I

I

85 95 75 DESI GN ITD(

I

I

105 F)

115

REJSULTS OF SENSITIVITY STUDY OF-THE -EFFECS OF USING DIFFEENT ,LTHODS OF REPLACIMG LOST CAPACITY ON THE EBNCMICS CF DRY COOLING T'JER SYSTEM IN 1200-MW NUCLEAR PLANT USING HIGH BACK PRESSURE TURBINE

-87-

TABLE 6.1

Optimum Dry Tower Design ITD Using Different Methods of Replacing Lost Capacity

Replacement Capacity

160

1

1

0

Replacement Energy _

30 Turbine

0

(mills/kW-hr) _

60

90 ·

Fuel

($/kW)

.,~~~~

·

Optimum Design ITD (F)

Fossil

Conventional

30

40

44

Fossil

High Back Pressure

62

63

67

Nuclear

Conventional

34

40

43

Nuclear

High Back Pressure

65

65

70

,. .

_

TABLE 6.2

__

_

Optimum Power Generation Cost Using Different Methods of Replacing Lost Capacity

Replacement Capacity

($/kW)

1

1

0

160

0

I

Replacement Energy w

30 Fuel

Turbine

(mills/kW-hr) _

__

90

Power Generation Cost

-

60 (mills/kW-hr)

Fossil

Conventional

25.53

25.08

24.85

Fossil

High Back Pressure

24.47

24.48

24.36

Nuclear

Conventional

27.06

26.42

26.00

Nuclear

High Back Pressure

26.23

26.37

26.37

-88-

TABLE 6.3

800 MWe Dry-Cooled Fossil Plant Net Electrical Output vs. Ambient Temperature.

NET POWER OUTPUT

Ambient Temperature

Conventional Turbine ITD (F)

(MWe)

High Back Pressure Turbine ITD (F)

(OF)

30

40

50

55

65

75

30

800.82

802.00

803.15

800.18

800.49

801.91

37

800.82

801.66

802.37

800.18

800.49

801.82

42

800.82

801.16

801.71

800.18

800.49

801.42

47

800.48

800.56

800.94

800.18

800.39

800.77

52

799.97

799.91

799.62

800.18

799.99

799.74

57

799.39

799.13

797.52

800.08

799.33

798.23

62

798.72

797.79

794.48

799.68

798.11

795.86

67

797.93

795.66

788.68

798.83

796.51

792.31

72

796.57

792.58

783.71

797.79

794.35

787.56

77

794.42

787.66

776.57

796.25

790.81

780.84

82

791.13

781.90

706.64

794.02

786.07

770.17

87

786.93

774.82

627.67

790.90

779.38

760.06

92

780.78

691.68

545.51

785.85

768.79

748.95

96

775.28

613.69

477.42

780.77

760.86

698.74

98

768.40

573.55

442.57

777.68

756.66

678.90

-89-

1200 MWe Dry-Cooled Fossil Plant Net Electrical Output vs. Ambient Temperature.

TABLE 6.4

NET POWER OUTPUT (MWe) Ambient Temperature (°F)

Conventional Turbine ITD (F) 30

40

50

High Back Pressure Turbine ITD (F) 55

65

75

30

1200.13

1202.94

1205,45

1200.40

1202.67

1210.06

37

1201.13

1202.68

1204.25

1200.40

1202.67

1210.06

42

1201.13

1201.90

1203.24

1200.40

1202.67

1206.14

47

1200.86

1201.00

1202.09

1200.40

1202.67

1202.49

52

1200.07

1199.99

1198.71

1200.40

1198.75

1198.71

57

1199.16

1198.81

1191.53

1208.16

1195.12

1195.44

62

1198.13

1195.33

1179.20

1204.22

1191.34

1191.93

67

1196.93

1188.03

1164.64

1200.15

1188.07

1187.50

72

1193.37

1175.79

1150.01

1196.75

1184.53

1179.91

77

1185.92

1160.87

1141.92

1193.47

1180.04

1167.87

82

1174.35

1146.61

1008.28

1189.93

1172.43

1149.55

87

1158.79

1138.22

884.13

1185.46

1160.33

1132.37

92

1144.39

983.61

757.61

1178.88

1142.17

1113.63

96

1136.52

860.94

654.66

1169.20

1128.68

1079.35

98

1106.12

798.76

602.61

1163.09

1121.57

1044.85

-90-

CHAPTER 7: WET/DRY COOLING TOWER SYSTEM: MODEL, OPTIMIZATION AND RESULTS

7.1

Introduction

By examining the results in Chapters 5 and 6, we see that with the use of conventional turbines, the design of a small dry cooling tower system requires throttling of turbine steam flow during high ambient hours in order to avoid exceeding the maximum allowable exhaust pressure; it thereby reduces the plant capacity. An alternative to steam flow throttling is to augment the dry tower by a wet tower at high ambient temperatures.

By doing so it is able to

maintain the generating capability of the power plant. generally known as wet/dry cooling.

This concept is

The outstanding points of a wet/dry

cooling tower system are that it can be tailored for any combination of design ambient conditions and water availability. In this study only separate wet/dry cooling towers are considered. The major advantage of separate wet/dry towers over integrated wet/dry towers is reliability.

In separate wet/dry cooling towers, the complete

physical separation of the dry tower from the wet tower protects the dry tower heat exchangers from the corrosion and solids-laden exhaust vapors of the wet tower [15].

This keeps the air-side heat transfer surface

clean, prolorngs equipment life, aa changer bundles.

eliminates replacement of heat ex-

-91-

Furthermore, separate wet/dry towers allow complete freedom of design and operation of the dry and wet towers.

There are no new hard-

ware requirements; all components of this cooling system are conventional.

7.2

Tower Arrangement and Operating Scheme In combining the separate dry and wet towers into a single operation

unit, a number of possible arrangements of the dry and wet towers are found in the literature [15,22,23,33].

An evaluation of all these

arrangements is beyond the scope of this study. United Engineers [10]

Published results by

indicate that the series tower arrangement is

economically preferable to the parallel arrangement. In the present work, only the series arrangement is considered. The water flow circuit is shown in Fig. 7.1.

The cooling water from

the condenser first enters the dry tower before it enters the wet tower. The wet tower is mechanical draft and is made up of a certain number of cells.

In operating the wet/dry combination unit, as the ambient tempera-

ture falls, incremental numbers of wet tower cells are shut down to maintain a constant turbine exhaust pressure.

This operating scheme is consi-

dered to be most water conservative [10,15].

However, it requires infi-

nite controls of air flow and water flow in the wet tower.

7.3

Wet Tower Model and Performance The dry tower characteristics have been discussed in Chapter 4 and

will not be repeated here.

In this section, the model and performance

-92-

Il

I I

U

CONDENSER

DRY TOWER

P-|

l

.

I

P

l

WET TOWER

L

i|

=

FIGURE 7.1

WATER FLOW DIAGRAM FOR WET/DRY COOLING TOWER SYSTEM

C

DRY TOWER DESIGN POINT WET TOWER DESIGN POINT

U m w z F-

.w OPERATING SCHEME:

Ln

ull Lli

cr a.

I

I

I

AB

DRY ONLY

pq.

w

I

I T UNT

I

0 20 40 60 80 100 AMBIENT DRY BULB( ° F ) FIGURE 72

OPERATING SCHEME OF WET/DRY COOLING TOWER SYSTEM

-93-

of the wet tower are presented. In wet (evaporative) towers, the cooling water is allowed to come in direct contact with the ambient air.

The primary means of heat trans-

fer is evaporation, which takes place when the enthalpy of air saturated with water vapor at the water film temperature is larger than that of ambient air.

Thus, the cooling capacity of a wet tower is a function

of this difference in enthalpies.

Since the enthalpy of the air is

determined primarily by its wet bulb temperature, the heat rejection rate is governed by the difference between the temperature of the hot water entering the tower and the wet bulb temperature of the air entering the tower. In this study of wet/dry cooling tower systems, the wet tower is taken to be a cross-flow mechanical draft tower using splash fill.

The

cross-flow configuration rather than the counterflow arrangement was chosen because of the availability of a flexible thermodynamic program for the former and not due to economical advantage [21]. The purpose of the splash fill is to break the cooling water flow into droplets so as to increase the air-water interfacial area for heat transfer. The thermodynamic performance of a wet tower is determined by the solutions of the Merkel equations. Referring to Fig. 7.3, let us consider an elementary volume of the fill with water entering at a temperature ture

t

o

.

t

1

and leaving at a tempera-

Since the water flow rate entering the wet tower is much

rPCTA7'1l

IVTT.T.

-94-

gTPRICTIJRE

I

7H AIR FLOW lha

h

ti

UNIT CELL

UN IT

CELL

W

H-

w'

Ti

H.

UNIT CELL H/Ax = N W/Ay = N ma

t

i

h

fma ' to

h0

i

A Ax

xhw

FIGURE 7.3

T

H0

ILLUSTRATION OF TOWER FILL FINITE DIFFERENCE CALCULATION

-95-

larger than the water lost, the rate of heat lost by the water can be given by QW where

c

m WL Ax Ayc

=

dt

(7.1)

= specific heat of water;

dt = change in temperature. Also, air enters this elementary volume with an enthalpy with an enthalpy

h

.

h.

and leaves

The rate of heat gained by the air is given by

0

m _ Ax Az dh a HL

Qa

where

dh

,(7.2)

is the change in enthalpy.

The condition for thermodynamic equilibrium requires that

%a

=w or

m AxAy w WL dt

(7.3)

Qa(*1

m AxAz a

LH

dh

(7.4)

However, Eq. (7.4) alone is insufficient for predicting the cooling performance of a given tower configuration. Since the heat transfer rate is proportional to the air-water interfacial area and this area is a function of the efficiency of the fill in breaking up the water flow, we need an additional equation which gives the transfer area. Merkel showed that within a reasonable approximation, the driving force for heat transfer across the air-water interface is proportional to the difference between the average enthalpy of saturated air at the bulk wator temperature

Ti

and the average enthalpy of air at its bulk

-96-

conditions

t

.

That is,

Q or

where

(h

- h)

=

KA(h' - h)

=

Ka AxAyAz (h' - h)

(7.5)

Q

=

heat transfer rate (Btu/hr)

K

=

proportionality constant (lb/hrft 2)

a

=

heat transfer area per unit volume (ft 2ft/ft3)

A

=

total heat transfer area (ft2 )

hr = h

=

enthalpy of water within incremental fill volume (Btu/lb) enthalpy of air within the incremental fill volume (Btu/lb).

From the condition

m AxAy w dt WL

=

0

Q

=

w

0

0

Q a~~~~ = Q

m AxAz a dh LH

,

=

we have

Ka AxAyAz (h' - h)

,

(7.6)

and we obtain the following equations:

m AxAy dt Ww . =

Ka AxAyAz

(7.7a)

WL(h' - h) m AxAz dh a a

=

Ka AxAyAz

.

(7.7b)

LH(h' - h) The equation relating the temperature of the water entering the fill

01

and the temperature of the water leaving the fill

be obtained by integrating Eq. (7.7a).

dt

J hl-h e=

02

can

We get

Kay mw

(7.8)

-97-

Further, by integrating Eq. (7.7b), we obtain h2 dh

h

-

KaV (7.9)

-

h

hi

m

a

Equations (7.8) and (7.9) are integral forms of the Merkel equations. Croley et a.

[16] approximate these integrals by solving Eq. (7.6)

for a number of elementary volumes of dimensions within the fill.

Az

For each volume,

½H.+H) ( 1 0

h' - h

where

Ax , Ay, and

-

dt

=

T. - T

dh

=

h

1

)h.+h 1

(7.10) (7.11)

o

- h.

O

0

,

1

(7.12)

H

=

enthalpy of water leaving elementary fill volume (Btu/lb);

H.

=

enthalpy of water entering elementary fill volume (Btu/lb);

h

=

enthalpy of air leaving elementary fill volume (Btu/lb);

h.

=

enthalpy of air entering elementary fill volume (Btu/lb).

o 1

0

1

For computational purposes, we can assume that there are equal numbers of elementary volumes in the horizontal direction and in the vertical direction of the fill.

Az Az Ay

That is,

'H -H W

(7.13)

or H

W

Az

Ay

=

N

(7.14)

-98-

Substituting these approximated equations into Eqs. (7.7a) and (7.7b), we get

Ka (H. + H h

-h

1

=,

-h.

a

V

0

1

(7.15)

2

m N

where

- h)

0

= the volume of tower fill (ft3 ) = HLW, and - h.)

m (h a

o

1

=

m (T. - T ) w

1

o

(7.16)

.

Referring to Figure 7.4, the air flow is from left to right and the water flow is from top to bottom across the fill; then we have

t.(j,K) .1

=

Ti (j,K)

t (j-1, K) 0

=

for

T (j, K-i)

for

(7.17)

m = N

1 < j < m, 1 < K < N

(7.18)

.

With air entering the wet tower at a wet bulb temperature entering the tower at a hot water temperature are the entrance conditions for element (1,1).

01 , then

and water

T T

and

1

Using Eqs. (7.15) and

(7.16) we can solve for the exit conditions for this element.

The air

exit conditions from element (1,1) are the air entrance conditions for The water exit conditions of element (1,1)

the adjacent element (2,1).

are the water entrance conditions for the adjacent element (1,2).

Thus,

the exit conditions of each element can be calculated by the finite difference method. The temperature of the water leaving the tower is given by m

02

-

> 02(j,N)

m j=l

.

(7.19)

-99-

-AY

-'

i

WARM WATER IN

TAz

(mn, 1)

AIR IN

OUT

(m,N)

COLD WATER OUT

FIGURE 7.4

SCHEMATIZATION OF ELEMENTARY VOLUMES WITHIN TOWER FILL

-100-

The temperature of the air leaving the tower is given by N T2

=

N ~

T2(m,K) .

(7.20)

K=Finally, we see that the heat rejection capability of a wet tower is a function of

T 1 , 01, m w , m , and w a

Q =

Ka

only.

f(TI, 01, m , m , Ka) w a

That is,

.

For a given tower configuration, the water loading The air loading of

Ka

m

a

(7.21) m

w

is constant.

for a mechanical draft tower is constant.

The value

is determined from experimental values offered by Lowe and

Christie [25]. Therefore, for a given wet tower design, the performance of the wet tower is only dependent on the temperature of the hot water entering the tower and the wet bulb temperature of the air entering the tower.

7.4

Computation of Makeup Water Requirement Now we proceed to the computation of the water evaporation.

Let

Tdb = dry bulb temperature of air entering the wet tower; Tb = wet bulb temperature of air entering the tower;

wb

Patm= atmospheric pressure; Ps

= saturation pressure corresponding to Tb .

The absolute humidity of air entering the wet tower is given by w.

=

0.622P P

atm :1.

P

,

(7.22)

-101-

where

w

1

P

= absolute humidity (lb/lb of dry air) and

=

P

-

0.000367 P

-

(T

1 +

wb)

(7.23)

Assuming the air leaving the wet tower is saturated, when the wet bulb temperature of air leaving the tower isknown, its corresponding saturation pressure can be read from the saturation curve of a psychromatic chart.

The absolute humidity of air leaving the wet tower is

given by 0.622P w

-mP atm

0

Pp o

(7.24)

w

= absolute humidity of air leaving wet tower (lb/lb of dry air);

P

= saturation pressure of water corresponding to wet bulb tem-

where

0 0

perature of air leaving wet tower (psia). The water evaporation is then given by 7.481 E

(60(62) .(60) (62) (w o

-

w.) 1 ma

,

(7.25)

E = rate of water evaporation (gpm),

where m

a

= air loading (lb/hr).

The blowdown is computed from the evaporation using the following equation: B where

=

E c-1

'

(7.26)

B = blowdown (gpm); E = water evaporation (gpm) c = cycle of concentration of total dissolved solids in circulating water to total dissolved solids in makeup water.

-102-

The makeup water quantity is the sum of evaporation and blowdown.

That

is, W

where

W

m

m

E +B

=

is the makeup water quantity

,

(7.27),

(gpm).

Note that although the dry bulb temperature is not used in the prediction of the thermodynamic performance of a wet tower, it is employed in the computation of water evaporation.

7.5

Wet Tower Cost

In this study, the calculation of the capital cost of a mechanical draft wet tower employs the concept of a "Tower Unit" (TU).

The number

of Tower Units is given by TU

where

=

RF x GPM

(7.28)

RF = rating factor; GPM = total water flow rate

(gpm).

By definition, the rating factor defines the relative cooling efficiency and is a function of wet bulb temperature, cooling range, and approach [16].

For instance,

a rating factor of 1.2 is considered to be 20% more

efficient than a rating factor of 1.0 and requires 20% more fill plan area. The capital cost per tower unit is estimated to be $10 based on Dickey and Cates.

-103-

7.6

Optimization Procedure The computer program for the optimization of wet/dry cooling tower

systems is modified from the program for the optimization of dry cooling tower systems.

The wet tower uses pre-designed modules.

The wet/dry

cooling systems are compared based on the annual makeup water quantity. The optimization procedures are as follows: (1)

Select a design ambient temperature.

(2)

Select a sufficiently high design initial temperature difference (ITD).

(3)

Find the combination of the water range, water-to-air capacity ratio, frontal area, and width-to-length ratio of the dry cooling tower that gives the minimum power generation cost.

Other compo-

nents designed at this point include the condenser, piping system, and pumping system.

Plant scaling is performed here to meet the

specified net capacity. (4)

Evaluate the heat rejection capability of the dry tower at the highest ambient temperature and design the wet tower to supplement the dry tower to reject the remaining heat load without throttling the turbine steam flow.

The turbine back pressure is at a specified

maximum. (5)

Evaluate the performance of the wet/dry cooling system over an annual cycle to determine the annual makeup water requirement, capacity penalty, and energy penalty.

(6)

Repeat procedures (2)-(5) with a new design ITD.

-104-

(7)

Repeat procedures ()-(6)

with a new design ambient temperature.

(8) Compare the power production cost of wet/dry systems which require the same annual makeup water quantity and select the optimum. (9) Plot the optimum power production costs vs. annual makeup water quantity. The computer program listing of optimization of wet/dry cooling tower systems is given in Appendix VIII.

7.7

Results of Wet/Dry Cooling System Optimization Optimizations were performed for wet/dry cooling tower systems

using conventional turbines.

The results are plotted in Figs. 7.5 and

7.9 with power production cost vs. annual makeup water requirement. Here the annual makeup water requirement is defined as the percentage of the annual makeup required for all-wet cooling. Referring to Figs. 7.5 and 7.9, we see that the power production cost decreases monotonically as the annual makeup water quantity increases from 0 to 100%.

Note that even with a very small amount of

maekup water requirement, the power production cost is significantly reduced.

For either fossil or nuclear plant with a 30% makeup water

quantity, the incremental cost of all-dry cooling using conventional turbines over all-wet cooling can be reduced by over 30%. An examination of Figs. 7.6 and 7.10 shows that the major advantage of wet/dry cooling over all-dry cooling is the savings in the capital cost of the cooling system.

For instance, the capital cost of the

-105-

wet/dry cooling system in the nuclear plant with a 30% makeup quantity is less than one half the capital cost of all-dry cooling. Tables 7.1 and 7.2 compare the design parameters of two different optimum design wet/dry cooling systems, for the fossil and nuclear plant, respectively.

Comparisons of the capital cost breakdowns between the

all-dry cooling with conventional turbine, all-dry cooling with high back pressure turbine, and wet/dry cooling tower systems with 15% and 30% annual makeup water requirements are shown in Tables 7.3 and 7.4. Note that for either the fossil or nuclear plant, with a 30% annual makeup wet/dry cooling system the capital cost of the heat exchanger is about 25% of that for the all-dry cooling using conventional turbines and is about 50% of that for the all-dry cooling using high back pressure turbines. Figures 7.7 and 7.11 are plots of tower size vs. annual makeup water quantity.

Tower size here means the fraction of the total heat

rejected at the highest ambient temperature.

For example, a 70% wet/

30% dry tower size means that the wet tower rejects 70% of the heat load at the highest ambient; the remaining 30% is rejected by the dry tower.

Note that in either of these two figures, the wet tower size

increases sharply from annual makeup water quantity of 0% to about 5%. This is due to the fact that within this range of makeup water the wet tower is only used for a limited number of hot hours, although the physical size of the wet tower is not very small.

For example, a wet/dry

cooling system with 1% annual makeup water quantity needs a wet tower size of about 30%.

-106-

In addition to the annual makeup water requirement, there is another potential restriction on water consumption for cooling systems in power plants.

This is the instantaneous water consumption rate

[15].

For

example, if there is an instantaneous water consumption rate of so many gpm, then the wet tower size can be readily read from Fig. 7.8 for the fossil plant or Fig. 7.12 for the nuclear plant.

These two figures are

graphical plots of instantaneous water consumption rate in gpm at the highest ambient temperature vs. wet tower size.

-107-

SOO-MWe FOSS I L PLANT 27 V)

0

(-

z

0 sof I

25-

U tY D -

0

-- ~~~~-

-J

rr 7b

23I

0g. 21

FIGURE 7.5

I

I

I I~~~~~~~~~~~~~I

I

I I

1 I

,

I

20 40 60 80 100 ANNUAL MAKEUP WATER QUANTITY ( / )

O0

POWER PRODUCTION COST VERSUS ANNUAL MAKEUP WATER QUANTITY FOR 800-MWe FOSSIL PLANT

-108-

800-MWe FOSSIL PLANT

1C Ow

8

U >

ul

1 Oil U

H Qe (do ,

H oa)

-H :> U0

o

(N(N1

HOLr)

o

o

J-C

o00

1

-H


a VU

sa)=

H )

E-1

H L)

uz H

H U) (0a)O 0 >I~1

4-0 -HU) U) 4-4 '4-4 '-4 (

.0I -) O* 00 O0 0

-4

uU4

(N(CN

(N(CN

s '-Hm W r 0 E-1

C) 0

CN

CN

1-

P4

o[-N

0((0

HI

r-(N

U w

0 04 Eq 0

U,

0 ) rx(1Q

0o

o4

u

%o

~ o;0;

a)

oo

o I a)

0

o-40r4

~4 (nNN HO

aity

0 --

rIli, CN CN 00

-40r4 (N(N` @D v > (N

I"T (N( 0

CN

cS

O r H(N

cq

CN

o

jLAO O O C4 -4

0(N HH NCN

C

(N(N H .rH 00 (N(N LI)

..C~C

..j

O O (N(CN NN CN 0

CX) k0

0

0 i

tS

N

CN tS

%O

O~00

dO r-

(1

(` (N

O O

m CO

i

EH

u >1

U-) En

0

4

i

U

04

a)

U)

0

U

o

L

rN m

r O 04 H

LA

H a) [44

q)

HO r-

0

O;-. ~.,. 4 H 0 U'-'

0)

U a a-)

U] -H

U)

U

V a) 40)

4_

U) -4

4-

4)

P

>1

a)

14

4-

dP

4-) -H

004-H4

Ln

LA

Cl) U)

a)

00

o

' (HN (N

(N

gA:

a) -d 5Z4

Ln (N H-

-134-

c

co

a)

dP

a

0

U)

r- .-

Lfr-

H

--

C~lN

(lq N N

ON1(

..

..

o-

a1 (a

m CN

(N

N(

-

(J(N C

an 0)

LO

in

IIJ"

N

"Tco

(N (N

CN (N

N(N

(N

N

(N N

(r m

(N

rnV)

4-)

E

-.4 40 d ) -H .H

P

-1

.

. ,

oa

E ~.

U O 4) 6Ot 4Z4)

40 ,-H0 -,i 0

o

.E4p a)

o'o~ u CO

Hrto

o4

to4

CN N

U) U) P.4

U) Z o a)0

Cr54-i 0a)

4 -U)

C0

Q)

0 4-) E

,4J

U) >1 .rq40 (12

o

o r-

EH

sN H

o

N NN

N

N

CN

o ow 00~

u)

0 En

o4 ou H

~. o U)

0 0

.,

o

ID *

'IDO0

A0

CN N

4NH

(3( .H

(N(N HO

0 0 u

a)

a)

{" 0

o4 0 4

co

U 0

r-{'

N CN 00 0

0.(

o

4 C'4 ("4

44 OqO

(~i CNl

C14O4

UCNC

00)

C(N(N O

o o~ O4 :n

CN

.Cm

co

NC

CN CN

,-

NH

' (NH

(N

N

CNH-

EH

Eq

4-)

.

v

4-) U) 0

,-4 P 4

4J

U]

40 rd Q4

^ a)

4)

4Jg

a) 41

cn *

1-

4

4.-

.0~0 H a) U-)-

4J

0

0

0 U

a3o l

U) 0 U a)

on H UQ-r4

00 I'l

O 0 ZU) -

a1) a):: r..-

u a)

Ln) u3 10 N -

H

r4

-II

C)

r

a1)

00

04N

:3 -,-t *d1 _E

Cr5

10

(.,

LL4

C)

0

n

C4 H-

-135-

TABLE 8.5

Comparison of Incremental Costs (%) of Dry and Wet/Dry Cooling Over All-Wet Cooling for 800 MWe Fossil Plant

Mechanical Draft Dry, High Back Pressure Turbine Base Case Study

Wet/Dry Makeup Water 15%

30%

11.0

8.7

7.9

9.5 12.3

7.8 9.5

7.2 8.7

10.5 11.9

7.6 9.8

6.1 9.4

14.2 9.3

12.2 6.9

11.0 6.4

11.4 10.8

8.6 8.8

7.9 8.1

11.5 11.0

8.7 8.8

8.1 8.1

11.1 10.9

9.0 8.5

7.5 7.9

Sensitivity Study Plant Cost ($/kW) 750 375 Fuel Cost

($/kW)

1.8 0.675 Cooling System Cost (Multiplier) 1.5 0.75 Replacement Capacity ($/kW) 240 120 Replacement Energy (mills/kW-hr) 60 22.5 Fixed Charge Rate 20 15

(%)

-136-

TABLE 8.6

Comparison of Incremental Costs (%) of Dry and Wet/Dry Cooling Over All-Wet Cooling for 1200 MWe Nuclear Plant

Mechanical Draft Dry, High Back Pressure Turbine Base Case Study

Wet/Dry Makeup Water 15%

30%

21.7

15.1

13.4

19.3 24.1

13.5

11.9

16.6

14.7

19.4 22.0

13.1 15.7

11.7 13.9

26.5 19.2

19.8

17.4

12.7

11.4

22.1 21.7

14.8 15.3

13.2 13.5

22.7 21.6

15.0 15.2

13.4 13.5

21.6 21.4

15.3 15.0

13.4 13.4

Sensitivity Study Plant Cost

($/kW)

900

450 Fuel Cost

($/MMBtu)

0.94 0.3525 Cooling System Cost

(Multiplier)

1.5 0.75 Replacement Capacity ($/kW) 240 120 Replacement Energy (mills/kW-hr) 60 22.5 Fixed Charge Rate (%) 20 15

-137-

CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS

9.1

Conclusions

In our base case study, the optimum power production cost for a 800 MWe fossil plant with a dry cooling tower system and high back pressure turbine is 24.47 mills/kW-hr. once-through,

The incremental costs over

cooling pond, and evaporative tower are 2.85, 2.64, and

2.42 mills/kW-hr,

respectively.

With the use of conventional turbines,

the optimum power production cost is 1.06 mills/kW-hr higher than high back pressure turbines. A 1200 MWe nuclear plant with the use of high back pressure turbines and dry cooling tower system has an optimum power production cost of 26.23 mills/kW-hr.

The incremental costs over once-through,

cooling

pond, and evaporative tower are 5.30, 4.99, and 4.67 mills/kW-hr, respectively.

With the use of conventional turbines, the optimum power pro-

duction cost is 0.83 mills/kW-hr higher than high back pressure turbines. Our sensitivity study on replacing lost capacity by purchased power indicates that the economic optimization of a power plant with dry cooling tower is very much sensitive capacity.

to the method of making up the lost

It is important to do an accurate representation of possible

methods of replacing capacity lost at high ambient temperatures when optimizing a dry cooling tower system in power plant for a particular utility.

-138-

The results of economic optimization of wet/dry cooling tower systems show that wet/dry cooling has significant savings over all-dry cooling.

For example, the heat exchanger cost of a 30% water makeup

wet/dry system is only about one-half that of an all-dry cooling system using high back pressure turbines.

On the other hand, the advan-

tage of wet/dry cooling over all-wet cooling is the reduction of water consumption.

When water is insufficient for all-wet cooling, wet/dry

cooling is more economical than all-dry cooling.

Moreover, a wet/dry

cooling tower system can be tailored to meet any specific amount of water consumption.

9.2

Comparison to Previous Work and Other Published Studies As mentioned in previous chapters, the dry cooling tower optimiza-

tion program in this study is an updated version of the model developed by Andeen et

al. [1,2,3].

In addition, the wet/dry optimization program

is modified from the present model of dry cooling tower system optimization.

To justify the improvements which have been made in the present

model, the results of this optimization study are compared to the previous model and to other published studies.

9.2.1

Comparison to Previous Model

The previous model of Andeen et a. models and cost models. system.

did not have realistic physical

There was no condenser considered in the cooling

Piping was assumed to be a fixed diameter pipe the number of

-139-

which was determined by specifying the pressure drop in piping to be less than a fixed multiple of the pressure drop across the heat exchanger. No design was considered for the tower distribution piping and header piping.

The cost data were out of date.

Also, the program was only

limited to turbine full-load operation and it was unable to examine the economics of operating the dry-cooled power plant at part-load conditions, for example, a winter peak system. been corrected in the present model.

All these minuses have

Instead of just optimizing the

heat exchanger, the present model optimizes a total cooling system in conjunction with the power plant. A comparison of the results of this study and the previous work indicates significant differences in the design parameters.

In the

previous work, the optimum water range is less than ten percent of the design ITD and the heat capacity ratio is larger than three.

In the

present work, the water range is about forty percent of the design ITD and the heat capacity ratio is about one (in pre-designed heat exchanger modules offered by vendors the capacity ratio is estimated to be somewhat less than one).

The differences are due to the fact that the pre-

vious model did not have a complete cooling system and it allowed a much higher water flow rate because some hydraulic pressure losses in condenser, piping, etc., were neglected. Other major differences between the previous work and this study are the heat exchanger dimensions.

The previous work only considered

single-pass heat exchangers which always require a more expensive piping

-140-

system than a double-pass heat exchanger.

However, no tower distribu-

tion piping and manifolding, etc., were considered in the previous work so that this economic disadvantage was not realized.

In the previous

study, the heat exchanger tube length is on the order of twenty feet, which seems to be practically too short.

In this study, depending on

the turbine type and the method of replacing lost capacity, the optimum tube lengths are in the range of 50 to 80 feet, which are the typical lengths of vendor-offered heat exchanger modules.

9.2.2

Comparison to Other Published Studies

There has been a number of studies on dry cooling towers in this decade.

Most of these studies have different years of pricing and dif-

ferent power plant sites. date.

In some cases, the cost data are now out of

The results of this study are compared to two recently published

studies.

They are United Engineers [10] and Battelle Northwest [36].

The former uses a fixed steam source-fixed demand approach and predesigned dry tower modules.

The latter employs a scalable plant-fixed

demand approach and optimizes the heat exchangers.

Unfortunately, an

examination of Battelle's published results indicates their results for the nuclear plants are doubtful.

For instance, with the same plant size,

both fossil and nuclear plants have the same heat rejection rate which gave them the same cooling system cost. nuclear plants have a poorer efficiency.

This is impossible because

-141-

TABLE 9.1

Comparison of Results to Previous Studies in Dry Cooling System Using High Back Pressure Turbines

United Engineers (Middletown)

Year of Pricing Fuel Type

January 1985 Fossil

Nuclear 7.74

Incremental Cost Over Base Plant (mills/kW-hr)

Battelle Northwest (Wyodak)

January 1976 Fossil 2.60

Nuclear 3.43

This Study

July 1977 Fossil

Nuclear

2.87

4.83

tResults doubtful

TABLE 9.2

Year of Pricing Fuel Type Incremental Cost Over Base Plant (mills/kW-hr)

tResults doubtful

Comparison of Results to Previous Studies in Dry Cooling System Using Conventional Turbines

United Engineers (Middletown)

Battelle Northwest (Wyodak)

January 1985

January 1976

This Study

July 1977

Fossil

Nuclear

Fossil

Nuclear

Fossil

Nuclear

--

8.48

3.98

4.01t

3.93

5.66

-142-

Further, both of these published studies only investigate the fullload power plant operation.

Neither of them examined the sensitivity

to different methods of replacing lost capacity.

Depending on the situa-

tion of a utility, lost capacity may be made up by purchased energy as discussed in Chapter 6.

In our present work, considerable effort has

been placed on the examination of the effects of using different methods of making up summer-time lost capacity on the economic optimization of dry cooling tower systems in power plants. The results of this optimization study using the base case economic parameters are compared to these two published studies in Tables 9.1 and 9.2.

Since the years of pricing are different, to facilitate the com-

parisons we can assume an inflation rate of 7% ayear and bring United Engineers' cost to the year of pricing for this study by dividing their costs in these two tables by 1.6.

Similarly, to bring Battelle's costs

to the year of pricing of this study, we can multiply their costs by 1.1. With these estimations, except the doubtful results in Battelle's study on nuclear plants, it appears that the results of this study and those of the two published studies are in reasonable agreement. Also, an examinationof the results in this study indicates that the cooling system cost (mills/kW-hr) for a nuclear plant is about 50% higher than that for a fossil plant.

Therefore, our results for the

nuclear plant are more acceptable than Battelle's published results. The major advantage of the optimization program in this study over other studies that use pre-designed dry tower modules is to allow the optimization of other new heat transfer surfaces rather than metal-

-143-

finned-tube heat exchangers.

For example, after modification, our pre-

sent program can accommodate the optimizations of the Periodic Cooling Tower and the new wet/dry plate at MIT.

9.3

Recommendations In this study, only dry towers using metal-finned-tube heat exchangers

have been considered.

Future work could possibly include an evaluation

of other heat transfer surfaces, for example, the Periodic Cooling Tower (PCT).

A more effective and/or cheaper heat transfer surface could fur-

ther reduce the cost of wet/dry cooling tower systems.

The present com-

puter program should be modified to accommodate natural draft towers. Future work should consider other arrangements of wet and dry towers in wet/dry cooling tower systems. here for future study:

Two tower arrangements are recommended

(a) two separate water circuits with a dual-

service surface condenser; and (b) parallel water flow circuit with a single condenser and a single waterbox. Finally, it will be interesting to see whether there is any economic advantage to using high back pressure turbines in wet/dry cooling tower systems.

-144-

REFERENCES

1.

Andeen, B.R. and L.R. Glicksman, "Dry cooling towers for cooling plants," DSR 73047-1, Massachusetts Institute of Technology, Cambridge, Mass., Feb. 1972.

2.

Andeen, B.R., L.R. Glicksman, and W.M. Rohsenow, "Improvements of the environmental and economic characteristics of cooling towers, Part I: Optimized design program, fluidized bed, and non-metallic heat exchangers," MIT, Cambridge, Mass., June 1973.

3.

Andeen, B.R. and L.R. Glicksman, "Computer optimization of dry cooling tower heat exchanger," ASME Annual Mtg., 1973.

4.

Fryer, B.C., "A review and assessment of engineering economic studies of dry cooled electrical generating plants," BNWL-1976, Battelle, Pacific Northwest Laboratories, Richland, Wash., March 1976.

5.

Rossie, J.P., R.D. Mitchell, and R.O. Young, "Economics of the use of surface condensers with dry cooling systems for fossilfueled and nuclear generating plants' R.W. Beck and Assoc., Denver, Colo., Dec. 1973.

6.

Knudson, J.G. and D.L. Katz, Fluid Dynamics and Heat Transfer, University of Michigan Press, 1953.

7.

Standards for Steam Surface Condensers, 6th ed., Heat Exchange Institute, 1970.

8.

Geiringer, P.L., High Temperature Water Heating, Its Theory and Practice for District and Space Heating Applications, New York: Wiley, 1963.

9.

Kays, W.K. and A.L. London, Compact Heat Exchangers, McGraw-Hill, 1964.

10.

"Engineering and economic evaluation of wet/dry cooling towers for water conservation," United Engineers and Constructors, Philadelphia, Pa., Nov. 1976.

11.

Smith, E.C. and M.W. Larinoff, "Power plant siting, performance, and economics with dry cooling tower systems," American Power Conference, April 1970.

12.

Ard, P.A., et at., "Costs and cost algorithms for dry cooling tower systems," BNWL-2123, Battelle, Pacific Northwest Laboratories, Richland, Wash., Sept. 1976.

-145-

13.

Marketing Information Letter No. 1017, Steam Turbine-Generator Marketing Dept., General Electric Co., Schenectady, N.Y., Feb. 1973.

14.

Rohsenow, W.M. and H.Y. Choi, Heat, Mass and Momentum Transfer, Prentice-Hall, 1964.

15.

Larinoff, M.W. and L.L. Foster, "Dry and wet-peaking tower cooling systems for power plant applications," J. Engrg. Power, Trans. ASME, 98(3), July 1976.

16.

Croley, T.E. et al., "The water and total optimization of wet and dry-wet cooling towers for electric power stations," Iowa Institute of Hydraulic Research Rpt. 163, Jan. 1975.

17.

Surface, M.O., "System designs for dry cooling towers," Power Engrg. Sept. 1977, pp. 42-45.

18.

"Heat rates for fossil reheat cycle using General Electric steam turbine-generators 150,000 kW and larger," Steam Turbine-Generator Products Div., General Electric Co., Schenectady, N.Y., Feb. 1974.

19.

"Thermodynamic data for turbine-generator units matched to standard BWR/6 nuclear steam supply data," Marketing Information Letter, General Electric Co., Schenectady, N.Y., May 1973.

20.

Sebald, J.F., "Report on economics of LWR and HTGR nuclear power plants with evaporative and dry cooling systems sited in the United States," GAI Rpt. No. 1869, Gilbert Assoc., Inc., Reading, Pa., June 1975.

21.

"Waste heat management in the electric power industry: Energy conservation and station operation under environmental constraints," Interim Report, Energy Laboratory, MIT, Jan. 1978.

22.

Von Cleve, H.H., "Comparison of different combinations of wet and dry cooling towers," ASME Paper 75-WA/Pwr-10.

23.

Li, K.W., "Analytical studies of dry/wet cooling systems for power plants," Dry and Wet/Dry Cooling Towers for Power Plants, ASME, 1973.

24.

"Heat sink design and cost study for fossil and nuclear power plants," WASH-1360, United Engineers and Constructors Inc., Philadelphia, Pa., Dec. 1974.

25.

Lowe, H.J. nad Christie, "Heat transfer and pressure drop data on cooling tower packing, and model studies of the resistance of natural draft towers to airflow," Int'l Heat Transf. Conf., Denver, Colo. 1962, pp. 933-950.

-146-

26.

Miliaras, E.S., Power Plants with Air-Cooled Condensing System, MIT Press, 1974.

27.

Rossie, J.P., "Research on dry-type cooling towers for thermal electric generation," Water Pollution Control Research Series, Environmental Protection Agency, 16130 EES 11/70.

28.

Larinoff, M.W. "Performance and capital costs of wet/dry cooling towers in power plant service," Waste Heat Management and Utilization Conference, Miami, May 9-11, 1977.

29.

Rossie, J.P., "Cost comparison of dry-type and conventional cooling systems for representative nuclear generating plants," TID 26007, March 1972.

30.

Electrical World, October 1, 1976, pp. 92-93.

31.

Electrical World, January 15, 1978, pp. 72-73.

32.

Electrical World, February 1, 1978, pp. 64-65.

33.

Smith, E.C. and M.W. Larinoff, "Alternative arrangement and designs for wet/dry cooling towers," Power Engrg., May 1976, pp. 58-61.

34.

Andeen, B.R., personal communication, March 1977.

35.

Krieth, F., Principles of Heat Transfer, 2nd ed., Intext Educational Publ., New York, 1973.

36.

Fryer, B.C. et al., "An engineering and cost comparison of three different all-dry cooling systems," BNWL-2121, Pacific Northwest Laboratories, Richland, Wash., 1976.

37.

Electrical World, July 15, 1975, pp. 25-27.

-147-

APPENDIX I: EQUATIONS FOR HYDRAULIC PRESSURE DROP CALCULATION

The calculations of pressure drops in the condenser, piping, and dry tower heat exchanger use the equations of Knudson and Katz

Laminar flow:

16 Re

f =

(d =

4 log

log

Transition region:

where

d

Re < 2000

for

1 Fully turbulent flow:

dw/e + 2.28

e

~2e/

()

+ 3.48

for

-

-

Re$

e = roughness (inch) = 0.0018 for carbon steel = 0.00006 for admiralty;

f = friction factor. The hydraulic pressure drop

or where

is given by

AP

AP

=

AP/L

=

2fV2L

gD 0.7459* f* V 2 /D

V = water velocity (ft/sec); D = pipe diameter (inch); AP .. L

= hydraulic pressure drop


250;

25< HP < 250 HP> 250 .

The cost algorithm

for the plenum is: Cy 1**2 C' *W *D 1 08 FR FR FAN'

CFR

FR

where

CFR = fan entry ring cost

1. 10* 1.10* 1.10* 1.10

($/fan);

C' = unit cost of entry ring including coating and fabrication; FR W. = unit weight of entry ring (lb/ft2); FR 1.10 = factor for manufacturer's overhead and profit and general

contractor's overhead and profit.

(iv)

Fan Recovery Stacks.

=

CVRS

where

CR

s

C

VRS

*W

VRS

The cost algorithm is:

*D

2 * 225* 110* 110, FAN

= fan velocity recovery cost;

C = unit cost of velocity recovery stack material CVRS

($/lb)

$0.55/lb for galvanized steel; WVRs = unit weight of velocity recovery stack

$0.46/ft

2

galvanized steel; I.l(

--

t),il

.h't

r I()r Intllkll.IlAtl, ,r'li lr(JFit

,il

()vorlltd;(~.

for

-152-

Total fan system installed cost =

(C

FAN

+C

+C

E

FR

+C

VRS

)

1.10* 1.10

where 1.10 = factor for general contractor's profit and overhead.

II.C.

Piping System

A design pressure of 125 psig was assumed. material is carbon steel.

tw

25~DP

2,S + 2 *P

tw where

Pipe wall thickness

y

Piping and fittings t

+ 0.10)

is given by

w

7

P = design pressure = 125; D = pipe outside diameter; y = material coefficient = 0.4;

0.10 = corrosion allowance; 8/7 = manufacturer's tolerance allowance; S = allowable stress = 12000 psi.

The values of pipe wall thickness for pipe diameters from 12 to 144 in. with increments of 6 in. are given in Table II-1.

Pipe Installed Cost ($/ft) = (C *t +0.084 P w where

C = unit weld cost = 20.17t - 2.33 w w = 34.79t -10.42 w

DC

w

< 0.5625" for tw > 0.5625";

for t

Cp = basic material and shipping factor; Op

other installation costs;

D = diameter (inches); 1.10 = cost factor. The values of C.,

w

C,

and

P

0

P

+0p) * 1.10 P

are shown in Table II-1.

-153-

The direct installed pipe cost ($/ft) vs. pipe diameter is shown in Fig. II-1 for both pipes installed above ground and below ground. Pipe Fitting Installed Cost ($/ea.) = (t *C where

x

* D*C

C

= basic material and shipping for fitting x;

0

= other installation cost of fitting x;

x x

and

+F

+0 x ) * 1.10

can be a 45 ° elbow, a 90 ° elbow, a tee, or a reducer:

F

x

=

3.34 for elbows

=

5.01 for tees

=

1.67 (D + d) for reducers where

D

is the

larger diameter. The values of Table II-1.

C

x

and

O

x

for elbows, tees, and reducers are shown in

The costs of flanges and butterfly valves are also shown

in Table II-1.

II.D

Pumping System Pumping Cost ($)

1496500 + 314.4 * KW

KW = pumping power in kilowatts.

where

II.E

=

Heat Transfer Bundles A tube bundle consists of heat transfer surfaces, headers, bundle

frame, and cross-supports.

-154-

N

fn

C

t LA %Z I-

000000000~ 00 000

O 0C-

00000000000000 0 a 0 H H H H4 H H H1 H H H H H

00000 0 0~ a 0 CD0Ct H H H H H H H H H1 H H H Hx H H H H H

9

C)0 H H HI H H1 H

d qhHHHHHHHHHFb E

HHH

Ln

4, 0 0

n

- N

%D 0-

0 P

.

-

N l N " N N

9-

4*

9

*

S

*

*Ug

*

,4

LACO

n

.

"4

-

en

L

n

'.0 0

H U H H H H H " E J4 f04

6s r

* u0

LA N is-o

CD

OLn C *- 9

C .-

N-

NO

r

NaO

N 9-?-.~

.- 0 _ LA

No

q-

o

V)

* *

N

LA

.LA

0

0

00

0

.

N

9.

N t4 Mo n n n NSe 0000 O H 00O00 CD C) H H H H H H H HQ H H i4 F- E 6 E

*0

.-

.P C) "4 .4

*

0

o-

tCN

LA0 0-

o rs N r; N N 00000 a a co 00000 O a H H 1-4 O C) H " H H -4H H E4 4 E E E, N N

o

0

ci

Ot O O -

0000O 0 C) C. a 0 0 o 0 C 0000 H H H H H H H HHHH H H H H H H HH H H H H H H H H E H E-4 1E -E E-4 1H

O

O

a, )-

0

Sn -'

S

o

g

0

0 "D 0 o 0 m oi -I ' N 0

*

-

.

.

.

.

N 0 o 4N :0 0 C)0 0' C) 0 '.D N rN 09 - 0" - ' LA 9 '-'.oN

r

s z -.4

~OfN 4

*o ,.-.

.

C):t-rn T

oLr

vLA LA r-N

n

* *

*

rv Cp r-% VI 00

*

en

- F0 N

0

0

a'>o

o* 000o

oev-N 000n C

Nq LA

N

-

V ILA

C.a .n

4

0@

*~

* I

4 H N

LA f

(U .4-

faD

"4 V ea 0 0 0'

-;.o~ oo '0

* 9 .0 ·9-

I

fn

-

r*

O

v-

b.

N6

9

=

0

0

9

9

6

r.

:?

9

TA A?

N

o

C n n r-

N

-

0

***S

a

6

*

v-a

*

.

* p

*

0

.

9-

L

-

-

N vU r-

*

*

6

4-

0 N

:

CD 0C

l --

e

.

f4 cp C> CN:r 0 N 'U

L

9N-

'.0

- v- -'0 ON%D LA

v-

0

0~

>

0

00

N4

*

co -0

4 N ' ; LA;; C4 N

0' %C 0-

rn =I

m t

en r-

n

9

* O-

_-_vJ

c 3

00ao

,S C. W

J

(N

IU CC

.a 0,

0.>

'S

4: .0 C.

UN

tn 0

o*

rq O~ N V:4

a0

P4

LA LA

..4 JV .,.¢ 4J 6

*

44

6

La r-

.

N..

N 0 N 0

LA_ -*

6

m

L A'_U

'. 0 9- 'U'-

- N N

3a

*

0

00

*9

CZ 0' 4-- 0 9: U 4"') 4-- co - '-, N C U'4

a Ln n ai 0 Ln cNr-,4 *4 *10rn J C0

*

o N

) o

* * 0

NO

0 0 _ C"

e4

*

0 sr 0' r' ': 0 - L,) nUC %C o

_T n ' LA

r

N CM C4

*

; 6

* 9

*

*

0C 00 *- rn

6

1 c4o

9

-- -t -- - O CO (N v: :tLA Oe-: r 0XrXt 0 'U .

9-

9-

4;

0

9-.

6

L

L

v-

0004Oo 0 e O N LA * OcFo4 ,LA * , 04-44n 0 o fn* ') 04r- " C>0 LA r'

*

.

.

LA'-

0 1 N

v-

.

LA N

-

9-

:-

*

.6

LA 0 .'.

0D _

0N

Ct

0V C) C4

0

CO aa -r

· ·

9r-

V71 Ci 9

*:

N

n

*

H H)

9

"-

L;A

.0~0

.

rN n

mn0

I" ; H

.~

9

0*

N (4

N. 0 *) 0 LALLA

S

(N'*

*

.

*

O 'L

t

LA '

L co0

9-

"4

4, 0 "4 4 '14

C4 qco

NO.o

-

r

N)f

9-

ot.*

0

4-. 0oLA N

O

aOr

v-L

r''

o -- 9 o LA LA, L * o0- 0 C> t 0n N CD~ _ CO C) -rN0- Ln 0

r

NS

tn Ln r-

.

.

0 0

'04-

00

.O9.-.4

W.

_

0 *4 o-

4 Al 0' "4 -,4 4,

O( C

rq--Ln Y rnCq(Nf

n

-

'-

r- N n

C.,)

*

*

')0 e z-

.

.

.

.

.

.

.

0

N4u-n 4- 4- r" N N _- 0 N rb I' o LA lF) Q'. Un Q (' t_ 4' 0 N 00 N C 9'-N -

I 0 O-U)

.9.4 O .9.4 H H 0 H 3 .#4 _

H 0 0

.0

00 0 'U

(d 0

-f

_ 4,43t >0 -"4 p0 4 - 4 30

-1550% 0 O

09oN en4- LA "O N- o 0% 0 (N en t A t Un UL L Ln Ln Ln ul L uLA 0 0 CO .oC>L 000 0000CD CO oD 0 C) o O o~ 000 CH H H 0000 Ho H H H H H H H H H H H H H H- 1- F H " F H H H Hq 4 H- H- H H H H H H.4 H H H H H H H H H H H H H -4 E E -4 E4E1HE-4 -4 4

m 4 LA CO r

N

0 Co 0 aO> o 0 0 H H IH H IH H H tH F H l-4 1-4 IH F E

co g 00 ?t 000000 H H H H H H H HQ FH H H H H H 1" HQ H E -E- E-4

C> a? :t

0

C)O> O O OO H HX HQ H H4 H1 -4 t-4 E

0 0

D4 0 *

Qe rn-

C D Ln cr

_

_o Ln

9

S

U*5 _

.

*

. .

.S

0 *

*0

'4 m aN' O r LA

oo . -

.

* . LA I 'M'M o N 0 r r A Ln Co0DT ml -r =o LA N ULA:? N N r-n v@ 00' C0 rn N':0 c Ln r r ba %

w

*

a,'

O

. ..

O i-r-,

0

NL A t- co O "D

S

(N3

rO

0

mL V 0 '-

*

@

o. -

.

0

.

r-e'..

9-LA

-C

n m. (N

.

r4( (Ne--

c; "I. O -

0

o 0 LA LA 0o n o mr m

-- 0 C4 0 '

LA C

N

,aO(N

* 0

*

-

* o

a

N

V-C

'" _11'".-. C1 . 0. .

*

0_ NL 0 o-'N LA 4000 N 0L (N CDO

O

9

Ln

0 c

o

0

'LAUN

*

S

I-* 0

0

LA CD' 0o N r'. 0 90'3:4on CO :0%P (N %O LA LA4 (N a' 00 O UN - r% C' N CO ~0 ' 0 m N N 0' C c)oo D O ZT V 0 co C C\ m oN 0 en ,'-Co(0 V0r % .

**

.

.

*

n

zy

o

1

*

.69

rN9 m 0' o (N 0 (N L 0 LA LAt O 0t

0 on

N

C4 0

-

-

Ln

~

D

P) 08

.

.

.

.

.

.9.9

0 Nv 0o CO wr 4D eli N L 'C '.>0 N 0% :S0 Ae N 0r LA CO

rn

9-

=_r

r CO

LA *Ml .

N *

w

9CS

9 *-

.0

CD

9

c L

Ln>' 'N NIo o *0 n M0 0 O 0% N~ n 0'.: r' ~0 ,-0 ..1 40 C0 O .. LA ~0 0 COC el LA LA 0 CO9CO (N "C0O a ori r %o vco N rn C (co ' co Co re)U 4Cl'' r r CO L 0%c N CON r- (N Nr) LACO I* 0 0 . . 9 _l0%C'Z .w o nr

0

1

@90

O rB 0

,,"o

O

A 0

N

'%

N co 0 NO (N C 0 LA LA O r- : CN Ln CN CO N rWN o N(OC

L'-( r4ini m N *'(N CO m Or.- N rM r

fv11'

o: N

L 0

0 r

r',O4 o

n in LAL

N NCO N

* 0 9 * * * * 6 * . 0 * . * . * .9 N (N CO LA, 4 N- 0% 4'co'uD,,.' 0. N0LA cN LA 0% % O 0% N 0 L 2 ulCO O r'NI9-o -t 4 C D Aun0 N N (N Co m '" _ (N - (N (N0rCO L (NNf 9- '9 -LN r :?: (N O M co 9-

* 0~ 0

a' LA ( N LA

- N LA .

'30% z'4 D - rn C . co r.n 9- LA r.

*-U 0 5

9

.

n I

N

M CD

4

*

LA ( N'- LA 0 (NC Co C 0'4'O' O : . LA LN ODM e as a% 0'o CO Lu _ LA - 0C m (N (N r m Mfn N er M

9

-

N 0 O C

r-L '- r CO LACO

* 2~~~*J4JJ.JJ *~~~~

N 0 0 'D0 (N co'

ON Uo

C r0

(N-4o

-

. _

LA

10

ri a

ULA 0 Cz4 :

Ln

V

>

0 0%

CzW~

w cu

o

co C*

00

CZ

3 o

a

0 CZ 0

v

0

Q

t

.

_

I

>

0

E4 .-cJ

4)

4. :>H0 m o

-156-

DIRECT INSTALLED COST OF PIPE VERSUS PIPE DIAMETER FIGURE

2000

II-'

cuRVE

-

MEANING

I

A

PIPE IN4STALLED UNDER GRCUND

B

PIPE INSTALLED ABOVE GRfND

IL -J

--

0

0

144 48 96 PIPE DIAMETER (INCH )

FIGURE III-2 PIPING DESIGN WATER VELOCITY OPTI4IZATION

-165-

A

A

lA

I-

u

Li

i-J

2 WUj a0 _

-E

C] 0o

10

3

1 10 WATER FLOW RATE (GPM)

FIGURE III-3 OPIrM PIPE DN4EER VERSUS

ATER FLOW RATE

1

~~~~~6

-166-

>-

-

,b

U

ZU

0

W .J

16

> U

~12

Ad 8 I0

4 0 103

FIGURE III-4 OPTIF

10 10c WATER FLOW RATE GPM)

1TER VELOCITY VERSUS WATER FlICw RATE

106

-167-

APPENDIX IV: SPECIFICATIONS FOR A TYPICAL FINNED-TUBE HEAT EXCHANGER

Heat Exchanger Tube Outside Diameter

1 inch

Tube Wall Thickness

0.049 inch

Root Diameter

1.024 inch

Fin Diameter

1.737 inch

Fin Thickness

0.012 inch

Fins/inch

8.8

Tube Pitch: Transverse Ptich

3.079 inch

Longitudinal Pitch

2.0623 inch

Fin Area/Total Heat Transfer Area

0.825

a

(Heat Transfer Area/Unit Volume Heat Exchanger)

58.1

a

(Free Flow Area/Frontal Area)

0.643

D

eq

(Equivalent Diameter)

0.0443 inch

-168-

APPENDIX V: WET TOWER SPECIFICATIONS

Tower Cell: Width

36 ft

Length

32 ft

Fill Height

60 ft

Pumping Height

75 ft

Fan Diameter

28 ft

Air Loading

1800 lb/hrft 2

Water Loading

13 gpm/ft 2

Configuration:

Crossflow

-169-

APPENDIX VI: CONDENSER SPECIFICATIONS

Condenser Tube Material:

Admiralty

Tube Outer Diameter:

1 inch

Tube Inner Diameter:

0.908 inch

Tube Wall Thickness:

0.049 inch

-170-

APPENDIX VII: COMPUTER PROGRAM LISTING FOR DRY COOLING TOWER SYSTEM

-171N M J L 0 0 00 o000 oooooooooooooo

o

r

N N (N (N N N (N (N N 000 00000000 000000 C) 00000 0 C 0 G 000000 O O n o O D CC oo C O CD CD E-4 E H H F4 H EA H E 4 k-i H E E al C( . al ( C - N G(N i C4 CN0 0n (lC0 4 (N (.N ; 2; H= Z Z = = :z X H Z z He z z H " H1 FH H H H H H4 IP- " 0FQ4 " " " " " F4i

oo

ooonoooo H E 4 t

N rn 4 A r r- mcy 0 - oN m

CO , o_-

,

- N M - O'.o - V- - o- _ -

0

o

H H Ft EH (IC f (N 0W . (N (N ( CN (N ZZ :zz 4 z z :z z H H H H H H H " H H-

M M M M 0 C C~ > 000O CO H H H E-4 a' (N14 C!4 MI 04 0-.

H

z H " "1F H

4 H

H

C,

ID U)

co

0 N (N co 0

04

o _YNN

* A

I

r un C %OVH~ LA

OH it *

S0 D

co9

o

'.0C

*AO

IW

0C1

C* 0 (N'.O (NO

4-

P N U0 o

U>

.0

L) (N

(

0 ro a i

o

ooC

~D '.

o c00M

0o

Ir

(NN

4i

U

OA

-

.:

N

*

.9

I

o(4

N C0

, C)

co F

ao

Z; UlS00)

ic)V N

t

M -IT

if) c

r4HN

( Nr

4H

.00oo

'.

9

.

C.

0 C,

o O,

(Nr'm

N --

.

.

r t-o C) cn : r n C 0 H ',D 0 C (N N

(f) 004 ' 0

Ul (1 LA (n

oH O LI) C. S

0

o

H H 0

N

4U

.co,-~" (Do0

,0 C( H* c0v.- ON CD 4 co .o 0 .00

to

.4J 40

04

. co ,,. 0 0 H f* Hr 44 --t

. . (N C ,

M --

I

rV-Lf

n

:

S

C

4'.o 0'.0

o

. o

r

OHf.

r LAOr

H(N 0(N.

LA)

D N

en

00 .N .

0~4 -.

Cl N

H H

Dv- r-LI *r . 0 . U o r u '.0

1.," 0O a

'-4

C M (N 00 N o N M co" (N - LA v-Co

q.

0 o

e- 'a

.

*

.

0ko

N

vT -4

'.0 4 '.0 4 L 0 LA 07 N

'.0'.00;

(NO

04 LA n) 9-A 'r

j;J;~JLI

9- C o0

r-

N

H- N0

H C o0

Co CT N

0

(N C,4 0

cc) C) M* MB *.o m 0

( N ..

V.-

0

I

N -I c

N

-0

0 0

0 rH

C

C

uL

LA

* OV-(:r

4

C

C

0 N M 0 04

. LA . C C)0 Co 4 H 0 U)

r

AD LA,

t

-

W-

.

:o4 0

I-.aH m-

0 M

M N

0 u

V- 0

H

'-

9-

3-.

g.

.

.

.

.

*

.

C

.

m

T

9 D

'.0 LA

M

N C . .. e 'D' 0 LA :M -' m v- N . ,- N u _

*

LA m H 4 4 9- q- LArH i LA 'o

C'

V

-

:t

.

O00 v- C uLA T - C) -0

o

m

)

J

0

0 t H> 0 . -N *(N(' * O o CO000 _)0'0s c'.0 moo 0 0 0- L C .C - 0 LA O °

O ,44~rW Co 9-

o

ol LnAo O

0 o C)

L

00 L

9-

M o-

IZ

' oTO

0

9

W-

.L

J4

u uL0 3 'IO00

m ' =N 0 L r4L v- CO 9- '.0

(N

v-

4T

JJ44;J L A{-

J>4;O

o

-

N UL

-oD

e

C ('

D00

.

00

,

m O

0

LH-

0 LA 00

f'

N

Co m

H(

nrN

4(Nv:.S

-

.

_r: . .ll n * C,*0 4.*'.M0C

'0

D

. . ( LU.

(N4U

9-

0t

r

C

C

.00

.

0u *,-co $w

'

0'

CO

-~

(N '.0

m T-

a-

N

4 LA 4j L0 (N (N (N C'- ,N H (N 1- CD 0*5(N N- No C')ro -

. CD O 0uLA

0 00 '.0 -.- CO

LA 0 N co H o :t -- u' H- 0 o0o -J (N 0 LA c)

-

*

LA .... C") . v-N LA 9

*

*

N

0...

v-N>

5

0

v

.

* 3

C 3

.

4N 4 J 0 4 (N

0

.

aa>

44 'r- N N r"H(N

t

m

_

*

.

3

1) (N4 00O oC L V.-

f

-172o -

Nr

- L

~ m

z N

4 4 4 4H . 4 4t t L uLA 000000000000 000000000000 E4 0 Eq a z 0 C> 0 F CP 0 Pz 0 Pw C> a- C.4HPE-&4HF Q n C> C> C E4 E-4 E4 PE-HE-4 000 04 94 A4 rQr4(4 la,040CIC4 0 222222222222 H H H H HH H H H H HHH

~

N) 0

L1

tw_L L

L

0 r-

L

L

CS 0

L

"mo '

o

0000000000 E 0 CD

>

0 0> F>

1i 40404

4 H H

-

LA LA LA

H H H

Ei

co-C

Ln %0 r'D Ko xc

D

o

o

o

C

,> b4 C!>Es b: Eq)

C0J

04 4

4 0M

j

H H H H HS H HH

o

ID "D rl

o N

c, E

0

HH H

N

- t-

0

>

0

04 "A'

0

H

iH"HH .4 r

.* 0

0

6

*

*

*6 .

.

Ln-t CA N_ : v P.

cr% n _-

*

Un

-

6

* *

0

Ln

9

.

'-L

o,0~

.

*

.

0

.

%D 0

n co

N

Mo

'-4

Oe 0o

*

.0

N4 0: M~N

0

N

.

9

M

6

r

N

ur7

B LA

0

0

OLA

0

mL

LA a 40 )

r

0. LA '.~ LNLu L

0A

-

r

.? 0 zr

*

.

6

*

r N

r-O4

m- %LA

o

6

.

.

9

.

.

N

QOC ONNI

*

.

0

N4

MO N

0' M1 04 '.0'A : M o M ) o 0m 0 %D N N LmN L N 0a ONv a% _ D n '-L v. 4QO s N

o Z N

L4

t

rLA cD v

*

0

.

LA LA 00'C;0; v _-r 0 - 0n N Cl N LA or) " 0 N LA o m - N CO0 LAN r4C -LM N %0 LAN N _'-4

*

0'G 0O

*

0

C'N

O0

o

CO

-_

J~ ~J~~jJ~JJJ~~jJJJJJ~Jv

9-

.H V

4-

0

O S 0*

*

o

~ 0

Ln

N

6

*

0*

0 *

D tn

N Ln N

N 0%

LA0 *'i 4r M - N N -

0*

*

M 04a

_.

6 9 * 6. * * e * 6 . 00,0 N 0 N 00 LA 40.4 N N N N 0 0 a 0'w - 0 N M 0 1 00 n 0) LA o 6a oA 0 O N :t ( LA N N a O0 % A (o -01co N 0 oll M Mvo AN . N' mChI -I0 , Ln v M ¶ -. o * 6

* . LA

0 LA.

0

0

V r. -H

0

LN

0

o

0o4 Nt r

N 04 rN 0 LA'-

9-~

H

*6

-N

0' N

t

6*

6

N Cs 6 06b ) C, MO00M MU) O C>oN f )M0 N LA 0)iZ i LA N a)Q* r-S LA '.0 M~ as (Ul N N 0)0 r- 0 LA m - N L '-0 t N CO LA LA O t'- - N LA 4(-)tM0v. '9LO7Ln o

a

6*

4- C_ 0

m 0' 0 C. A

N

,-

0)t O

W

M

0- 0N

N0

M

v-

0*

V-

*

S *

0',N

L

NNMC~' 9

~

*

t

j t-a-jJ

O

o M

6

0C

o

r'io

N

0

*

.

*

0 r6,Mn LO

v-

0 t LA 0O

6

0D 0 0co L 0O LA lo; 0'0 flo-LA t ;1 A,0' C 6~1 N 0 o 0 LN L -t'0 D m 0nI cA'.O 0)'-O ) N rnON n oM- 4 - M

-

_jjj~jjJ J~

9-

o

M *

N Ln '0 9-t

*4

.

* I

0

* 6

* 0

.

0 N4 AI ch r oL 0 0rA o M - N N M 0 : ! A- N 4 L N LA ) N- C N %O 0) %o N N m o NN co N mo -,

9-

*

.

a

L

L

0

N

MN

*

9.

o r 0 ' Nr v 0 N N N 0 LU% . N LA 0 N :t o un 0 o o LL ,% :a)

C LA

4 M

'-0 o N

r N m rn o rN co- co N 4 co

O co 9-

0

MO O; 0 N 0 A LA 0 4> 0r - 0 Nr * O 0% A o-040 o% LA tc 4 N W%0 M 0 o Nv 0 LO - Ln 0 N N N %MO N oNLAV w N rm c N D

!.

N LA 'N LA LA 4 N 0' LA N..0; N: 0 0 0 r- N'tL , N 0N LAI0 - -I N-- -r N N_- L0 Ut% '0

: Da

4:N -

N

00) ' -'s

%0'-vm r -L AN

)N

-N

-- -

0 4) 0

N M %I.n

- trl

LA %r; LA L

..4

N OD

U)v

cL N

o

a*

'-0 N

en0 ) o0

N-

r

0

co

~

O 6 0* * 0 6 * 0 * * 00 -0 * r) LA N N- N 0 0 ' 0D N r I '.o 4 M N- N 0 c-o rq O LA '-t co 0 LA S N - rn 0 N ) LA r > LA N L A '-Lm 'IO eT o '-N N 0O NO 0 '-LA 40) 0 - r0 MN rN NLA NNr v*

4

0

*Q '-

0

LA 0

**

0

N9'.L

N N-l M M e N

* * ( o N:4 N 0r 0 '- 0

1Nr N -

co c7,0

~o

n* :LIu

r r r- r r

- (N4 00

-173-

000o

0

o0

000 000

o0 00000 av C) O- ors 0o co H H H H o EA

;a z

z

H

FH

H

zz- Z. >5l ; ll

H

-2.

Z Z

"

" H0414

c

o

a) 0

.,

cN

m'l

0 u

0 o

J

-

C>

0

. OD *0

: ._

C;.

I-

co C 0-

00 -

lai 0 . -H

0 (N 0

N 0 .0

Ln 0 0

C) 0 U% 04 N

H H

9-.

00

0 Ln 0

ON

04

J;

:

!

Op.Io

Mo C;

I

C5 0 IA u')

*~

S

0 O 0o oO0 9--

.n

U -

M 0 Ln _

o

sin

S)

D

0

S

S

C

or-

ON Ln

.

00

O0 (N

CAr

00 0 0 " ·

.

·

0

I

in oLM r- CO C

&A 0

on OM o 0 0 04

0I o 0GO,

.

o o o C>

. -

-

0ao

0.

n

aeLAM 0 0 000.

Oa

U,

-1740 Ns r :4 Ll *sb co C, ) o :1 q- N(") 0000o o0 00 0 0 000000000 O 000000000 C,4 O N- N (-. H N N -' N N N Hn NHNNNNNNN C),ru a4 C, 04 ia, r- a j H

H

H

FH

H IH

H

LI If-

0

00

m

*

N

M

S

0 O

O

Ln aN

%D

I 0

co 0

o~

O

,< E-,

wH

N vD-

o I_

Ln

O 4

0

o

C

< o

N

N

0

I

H H

eC

in

3

LA 0N

C0 a

r0 *ai*

0

: en O

0 000

> EI- ° H

O

O

Ln

C,

C

00 o

o

0

0 *!o

o

D E40-O

",0 >

O N O

0

,

~C>s -

*400

09 L OJ * S ON0

o

z

0o-

'

n :t

o o

e

o0 u u

O

ca eN

*

n e N

or-

cn .

0

.

or'

-175-t C> oD(:. 0 a: w > o -N m in c r o a O N - Nr'4-Co 0 C: - - N N ooOooooooooooooooooooo o 0 t C3 n C 0 o n) 0 c) C> cn 0 C: C> C, c C>cl

~~~~~F

H~Hq " e< 4 -, -, dt a < < < VI z X: V- - Ez VI : VI z: V

C: < 3: IC

P. V')

t PeD-

u .

L) ~U

zf

m{4

)4

U)

gn ft u V)

0X

.

x W

Z u u V

X

%

;

->cl,

Ub

D as A,

L)

%

O-

_

U

O

to

) tn

t

0i

U

C

0:: C)

Q_


M

Z :t-^Z

U UJ o

U

O'. C. ;

%u

NrX,

Ei G-

)

I

rL

_

-U

z

0

a)I

L

*r W b4 b4 -e: Z ; W;aC1 0 V. IL U

Kow

t)

U)

-

0

U

O E-

Q

n _

% O CZ

t)

M

Zf ::W C)

4

O-

-,

C -w

W

04

C4N-n W CZ

.

E;C4 N vPJ V oKwK U

M

K

E- P,4 W

n

-c

Z;

a

%un

*L

U Ut S

cr;

.C 19< z

.Z

1- -

o

01

M P4 C.;°;¢: t:

o Z

V

qu

04

Em

O ai %M : :%CYvMl %M PL4 z 4. orL en VI W 'M Wf Z 0

"I,

a
Z

H

i4

A:

F. U

:>

¢-o

En

1

E;

;

.

X E-

% 4 La:

4

C


¢ < VW m lb 0s OC F: U H W _- U W M %M = P 9u-b E U Z E-4

_

U

W

)

E4 IC

04 H

C4

C

k-'

%

X- 1;z ;!

tH- t:n_XX

) C

A. m z

W

%O -

n

F-

C4

C

%Wv-W Z

V1u

nN cl

-I-

0

P

-u

U

CZ e c

c

"U

4H

H _.4

H

- 0.

M z fio

n

3

C4

t

O

0

-

.4 O

in

W

C C

o

SU

U

%

nig

'- -^ C14 A

O

m z

ai

C-4

Z

3a

-

0

r-

m

uww

L) 01.

Nt:

W F4

nu% a, PK :z

. zr !; *Z .C x % cc

E-

,F U 4

M

oc

P

WQ DVCZ- " W : % M et ; % m ~ U n

o

u

3c

h .

W Z

W

r;.V)C.

tx U :

a

z .I x4

z

p

*M CM w 'k =

U >4

10

b,

W z

3; Z V,a:t

_ P~ L -3 mt ' '

~~~~- : Z ; 2:zzZ: H H FH H H H H H -1 HQH H H -I C. ,¢ -,¢ E E ..: .: a : E E

2zmzzz~;'~ H H H H H H -It I- -IC . vz5zzt

< rK zz

>~ z =

r%

_ z z _.o~o V

t -- -

0

O

-

-

o00000000 : =z=zmz;4= Z Z .Z2;zX " H H H H H -. < C < 't E

z 28

: Z

:

- N M x 0.

. r- _- r-

-

vi

-

-.

-.

-.

-.

o

r

(

, r-r-r-ac -

-

-

-

-

000 z IH 0o0 H

;

H H H 4 H H H < K < . < : 222 HH He < '

; Vg sx V

2: 3r 3c

3 =

E:

;4

ar, e

I

U

VA E-4 (a

C P;

pq W

Z0

s-

u~ Un

0

0

P on U,-O

'

II

0

'-

0 C; z (DO

a-4

H

E

0

s _w

P~. P'. fs ~ 04 N ~:oo

co

0

0

Mmj .~

0 0 0-4 f-N U,4

o

_1 _ C

-

_

O O OOOOOO-C

00000000

0so 'C : -f--

- H Z: + E+E-4

..4

-C

,

o-'C!O 0 % r- ' OO r r-

OV.

~~~4

ScIln , 11

P_

W

O-O

PF4 C-4E. W W--U0. H r...U') It O- J,J' f

rO 0 U~ 11

Em Pk Es b4

aNI r

'-

00

.0

u-

N

_ 0

U

En + O0 PII4

C,

m

*r 0

a,4 -4 H

p5V_ 0

Ef-

H cr; 4 ; A

V.0-

oo

9-Vw c

V.

V.

X

* CM

b

:

0

oc C, 11

H

0

U. C;)

- _-E-4

-.

œC 1

b U')Lm

,1 o

It I 4I lJ 4 - En 0 0+Of-E-4V En) U', It.) H

1 Un 0 En U _

z ,4 P I t O ~'- 0 , -be-I 1) < P 11 b4 P U N

-s E-4 m U P C) 11 1

0

11

.

H

-180,-4 rn CO 0 0

t

000

ZZZ

IH

H.H

a 0

Ln I'D t-

0

- N

o 0 o co co - - - yH> H O 0000000000000

Mr = q.;Zq-

H

l

V

3c

H

H

d< wC

t

:

n - r c c a 00 00000w 00 I N Nt N N N N N N N 0 0 O O z Z 0Z0 ;& Z Z Z ; H H IH H H H H H H H

zzzzzzzzzv.,zz 4

·: : X

t rca 0 o a C 'Ci a' C or, o 0

:z

H

,.

H H

C -- :gw :E ;XgrSzKSX :w :;t

0' 0 r N Lt LO l N N N N o o, o

4-

N N

o z

sc V. a:

HQ H H H ¢
0 00000000 -+-- -->---- C> 08 C3 0 0 L 0'00 C 00000000 z

-4X0XXX a 4 H4 to E-w Ew

22222

z CZ Z

E- FA X

Zz

Z 4

P

X X X

Z

z

z

4

C :z

U) as

X X E4 X (4b

0

_eO

K,

_H

.

O U

_

I _

:3 H H. tt 2 0 0

Z

2 H 1-4

Oi

.

In H 111 V0 0 jl II HW

Q

-C

DC

'C

_ =l

4 C

u

-

0'

4

a C Z4

11 II

.4 "- IIZ 0-'4 , 0 I') - 0 (N U 0O UFI FOH E-U0 00 0 0a00 00C- ) 0 0 0 0 0) O 0 0 U U) U) U) UE0M U )C0 ) C LI)U) O )

OOOOOOOOOOOOX - gl E OOOOOOOOOOOO mm q mm

000 ) O CU ) ) U U ) U ) U U )

C

0> z 0

U

b4 I

0r U -l g-

-A

A : 0,0 ·el

-0 N

ac

,

:. ,.-

-

E-

1l-

0 ,' ~

U) U~ O

o

I-4

n E-4

1,~ ~

~

0 v I. 0

~~~ -

'

: t V)

*N

Ez

000 OH H, rol,,.4 (l~HOOOq a U 0U II u

,.3,,,,3 ~UU_ ": El H o ,z_ l N. UH W i-_F0 11o: 0

·

4

~~~~~~:$ 1-b

X

ON00t_

PL

.*

II

. -

o0II

II II

II II

H

*¢.--.---.

O

11

L u ,,UN,.'m u .~ Pa U') =X r ""'""'0 II I

E0

11 0

~

-

~

E-

_o

1 U

'1

F1

rL

- 11 K

-

_

_n

o

U -4

CU

. _I II

_ *~

*

0 -0 U _I

4

eL

~4

~~-z O

C

O-

-,SO.

C0 -

0

0

lO X0 X PU

o

L9

.. 0 0

o Wo C _a - uo ^>*r -b * oo 0*E

* >

OC _

-0

0 0

I- -O -

o

_CC N- t

(-4

0

S

* * 0 * * : P bJ n

b)

_

< C X

3

: :

_

4 .S:

4

I t

1 I -1890

ooooooooooooooo 0 000 0000000000000000000 U U U

U U

U U U U

0

U U U (3 U U '3)

U~ U~ U~ ~9 C9 V. U~ U~ Ul U U1./1U Ul U U

U V U

U~ V~ .r

0=".

i

c9OP

I

E

E *

4In E4

.N: 0 a 1414r* 0 E

i

~~~~~~,·

EE-49 : C· w rE" _~ I*I*4 I~ - O.3 NO C* 0'-

'

0

45,"e' P,1 ' ·l~ · -J4 ) -~t~'4 CL *

en

: b: =

E-*

A.

C)m E-.

^-bd ' :c * co H

-CO

O

i Pi. H O

Z 4

0.c

.4 P~~~~~~~ . _E4F*.¢UgLI

O n

co

'-o

o Ez

_. U I! ,

, _9~ 0 -

u

0 -P

0

co P

a

MC

OU-.u0

II. cw - 0

. Ik *

Z E 0 0 C z coziHHU 'U :X

I

-190N

0

nU

oo0

0

o

00o00000o00o oo000ooooo O O O t 0

z

r-

a, 0 o0 0

D

0

0o

z: z

m: z z5

oo 0

U

O

r

Z zz

U

c4

t un O r- C a l c.n rq (N N N

oooooooooo Cc aO 0) 0 0 ooooo

zz z z

z

)

UU

U

N M r

0

0oooo0

ooo 0 0

z z

C) U

U UU U

.)U

0

_.I,LP '0 r,

o

U

n M " ff rl r X oo

z

:z z z

U U

U

U

u

-- Ln 'fD

N

-

O aoooocO O> Co

oo O~

O

o

t) U

ooo O. O

z z z z UJ

CD

U

P4

tn 0

oCN-U

:R;~~~~~~~~~~~~~~~~~~~r -

oC

't^:~ _V.

-

0 sZ

EE

E-4

t n C, *

W3 4 _Cl

X - tn N

M -:

"4,. N N% m

¢

ouou HHQU

-.

-e M

000

pq

N

H

C-c4-~c f 1

1

.

tn Z

aU~Z

5HZ00011 * C U

: H

-0 Z

0

>~0

z

b

z

1_

0 a

E

! -e

0

0Q I I DC 0 o 1,

OI

_-U

N.

0 9-

K;

s~l

*;;

S:

MU:

o

Fs

*>

rcq Z*M

b

*fa

- -P: C> I -H :¢E -

H 0

0I

W I

1-4

P4

0- 40

,

E

E- -

-4r

0

N

0:

Zr

: 00011

_--o * 0-

'

0

0

0

u 5-I

0

,

r0

-. ,.0

eo LO)

oXS :* vB NO 0 0 ,* 3 . E-:?

.-.

_ 11

ePO Uralat: ,J . .

, II 0,4

1I .5.,-. N .-. ,-10 '-'0 -CE

0 040 H14 D.. -. ,0 It H b-N I.I HI . b1 H

1-4 O

0 0

0

-

P' I,

n.

4 t~ (-_ . eN

1

lo

4

*4 0U

-d

a O IN

0

__O

-3 I) H**H e=

N P_N _ .( -: f f* * .4cb.I4-4He

11

O U be H 0 4.4 0 0 H km

N

W N

r N

a-

ct

-192n>

rc I.

u3 o r

a

r- r- o -

0o-N

'I r M O o _-

CO Cm ao ao o Co oCo O CD O O O O O OO O a O, O O O r.- O O O O OD C0 0 0 002 S t. 0' 00 O SD S 00C> 000S D 0S 00 O DO u 0 S 0 0D S (0 C0 z Z

Z

C

o

Z

Z

o

,

UUU

U ()U(LJUUUU

Z

Z

Uu O

Ot)

u C;

m,

O I ,.t0V

o~; '~~~~~~~~a

b~~~

0m N 1-E ,04 * I _' e,

V

'~ O

E-: I- .

I9 "o04" ' ' 4,NIII, e4"1.3 *n I 0 W

. ,-~Z 0~~~

*

WC

_

!IIII'I1 ' ,I~l:I '"'~ z" E-'~ ~"11 '-'11 00 H 0~ *""' 0

H: .

0

OW -o X

_U

*

:

I

94

gd

::-. W

_-b4

_

.II

0

0n a1

- HU H_O r

t

o

4o

*0 *

3 1+, 0 W 0

-

>

_o

a

. 9-

W Z

-193TV-

(O'

o r

J: n

t n

"

M M I N N N N ,M m N N .- T_ ~ -,_ oc: 0) N CN o0oo oooo C Cooo H E EH Hi H E4 H H EE ooooooooooooo H E E 4 E P [- F, E-4 >4 >e > >,~> >4 >s-> .> .I> > >- > >. >s Ns

00000000000~oc

a

m ¢; Aa

C a

cl

X~~C

- 2O :u.

Z U 04 X CY _~~~~~~O

f4 W1

sqU

U

h

n

:>

>4

>.,

>.

>

>. >4.

>4

S b>

>4 :>4 be

Few E -E- H

Es -4

EdEEH H EH

,,O~In

_

-O O '~,,

P *K %

1-


Xo O o w o q aJ W °

NU

PL4

%

_,

;U

*

0

O 1hW

W

.

,t.

~~~~~~N c. u Oo <
4 1F. pe b4 >4 M: Or, K (4 M

QC.)C- 14

a

0' -

N' rm -t 0A r- CO a, 0 Lt o o)n Ln Ln Ln L V L LA 0 0 0 0 00C>0 0 00C 01 0

0

E-4H

t

o00 o

o

C An

Cl

a

MC:

>

a' 0

n

4H,

E-4 HH H H H E H H >4 >4

>4 >4 = X C4C

W>

a a i3

aC3

- 0N

'. r r- -

D C> , D l-

C C

H H H HEH

>4 >4 N >4 w4 E >4 >4 >4 4 C4 M Cr tl 1- Ce 94 M'. W. C

a

00

LAr Or'

N

0 or-, C> O W,>

'>->4

C a

C a

C)

-4'-

E

H

>4

>4

;z

WC4;

(4 N

XIn

eC)-)C

E-

0 L

I

#

w

o-4 *

o

* 0

* *

* * 04 O

04

04 + * #4 * t~ Ob _~

*

N

o PN

0 0 ffi

04

EH *

04 H *

* *

* *

N

14

* *

N Hi

N LA

r

W

o4

I;

o 0

+ LA

LA'

'-4

*f4

_

'4 LAi -

q-f

*

,4

*

-

~

Eqfi %.k

:Z:H

z 1HH L4 E0 * 4 i H wC o H II II 11 -4H1 'N N I.t 0'. ;:; r,..D: H iN N; N N , It I. UO

4.

, r n N 0 A LA

E--qL.,) ('AL o

I ~

LLn UA

=-o K- *

N: co

x

E-4

O.

0 H-

Fl

*I- __

-:, Z I 0

o- M

.0o.-.(N

CO e

NS

i Cd

EN 0 N

-4

H

,= z> CO0 4

0 >

M cX >C

0

N

E M o OC -M 11

C

* * tn II CZ I

H i;I E- It U < g

M rtd M~ 1C1.

H H

M

I> +

04II Z

*

o

-

114 W

i

*

-;

C 0

wz

0~0

%f

(.90

OO

I)

Z H * * , * 0 . Z 0 i r t' * .0 o 1 C+ * UNN oo 0 o z I H-'n _ * O + 0 AM NE4 Ei n Cc a W :-N I1 f ) -x 11 - O U M I C) . %o. D Z N I Z * 0 '~ C) 11 W 3 It : 'C" H o I 0 I E- Z 11' &

0 ls

04N_004_

~

0

P4O

Of

,n

r",.A

.

E-

+ _

04 N1-.

_

,r-4

EH * %

-..

o

°~ ,D°~ iV E~'-I c:oF _i E N N o~0 D4 ~ q %O ID O z .e1. 4*Ul CA ~ Ot! I I H U:= M *: : C O0 . z , E- E-i: -*, N4 H, H H , O ~:* :

:~

sI ~'Cr~ o

*

~

o

=

~: r.,s.} ~:

::N- ::, E1 o.04 E- **~ U

LA 4 N * s: ix

t~~~~

th a + 'co0 LA04

* 0

d

Pz

o

*r 0

0n4 :tO * LA04

r

*

_

U

U

H 0E-4O

r,

O %

O

U

II

M) Mt "

4 U E tN - CH -tN4

,,0%

-195M LA %O rco r- r- r- r r r

0o - N rm r- co w C c0 oo 0OOOO0OC0o0 0 0 o0 C 0 CD o C) o E- H E H H H H EH4 E-iH H ps S>: MC Ct

>4>4> ;X

>4 Ccr "

a

a

a

a

> P

CO 0

H

0

0

i

cl a

X

>4

en

0oO o 0

-EH4EH E H

>*4 >4>4

>4 >4> a; M

a cl a --

O L o r- o co000C)00C)00C0 O O o mO r.

0

0

o.o

o

o o o0 -0

00 0 7' 0 00n 000C0 0000,n .;C 0

EH H

-EH

>4>4>4

4>

HHH H .

>.

>4

oCoo o. o

(N -

00C

0

-

-0 - 0 -0 ---0

13C 0

>4

>4>4

H

E EH H

EH N

>4 >4

>4

C:z Ci C4 W4 X a: M M a, Cr M = CY C K X

CL M

-4 C c:~C .

Qaaaaann

C) 0

0

>4>

PH H H

4

0

>4

Can C ClaC nC-

n an

N

CCoi CoC4 =o

,,

z 0 U

M i * , U)

0

Of

En

00

O' 0

O

,C

0

A

H

b=

+

*

NN fs 41. *

N * *

%0 b O * *9 o

* N >p. *

2

0::z:* pa + _ 4 z

0 U i VA Z0 mi S 0

I= E * * 0 0 0

-~

b.4 .a U ~-

O%

U

0

04-.'

'-

t-

... e¢~~~~C .

U~ :r

tDU oq * 04 O 0 * Co .au: I 0 N cw 04u *- Ih HN:E .E-4 it* 0 + Z Z z J* 0 U4 V 0N 0 )4 '. U) 00 00 z0 U-4 w ) O O UH

il U) M U) 04 z

PJ U) - tn t 0H*m *HL p K

11 a V)

en) (N

0

OH H-4E-4

A,

1. f Qa L1 9 -oI!99 II a0 >X EH*

-

U)

IZo< 04og* 94 H E-i >'xU a n*

,,H I

0 14f HI

Q H

0

U

-

*

_

Ir-* :,- ti ._Z . N r * _z n1 V) V)_ 4 )~'

0..,, :Co 0I I1 , .

o

C>

t

C:) 0 E

I ..~E-

04 :h O 40 H ' rF' +I N

IH o :g+inz -J'--: ::- ,0 U .* -

H N z

O S

Z~

L)U ~'".-4 U U o-JN4 4

>{ >4 >

W, M W M

M Q

vq

M c

C

QL;x

T-

>

0 0 0 OOo H H-m

0

N o Y " rco00 a- N n mn rl r - -- -I -- : rn - a- a - t- a- - a- - a- - a-

a

rn

v.- v- I- a

C)

> >4

000 O o000C 00 H H E F H H H H 4 H H H n >4 >4>4>4>4>4>4>4 >4 >4>4 >4 N N a; 0m0 = C C C 0 0- Zi " C C0 0 C)

4>4t>4

W = m W0 000

o Co q

C a

r-

H H E-4 H E

4 >

>

* M " m

aa04

a-

.

_-

0 EFa E

E >

oC ClM O q Cl a Q (s

Q a

ce

N N N N N N N N N N

r-

-

q

rq m

0'-

a a~ a C.

>4

a cz :: a 0 c0 a C a 0n

0

P 0

*

>4

_

IC

3

*

*q f-4

0

*

0

fn cr n

f%

0 0

En

ON * N

H

* *

H

LI.

0

0

*

H

*

*

bQ

r, ,* %,4

4 *

Z *

H

_ .

0 E-4

oc

V~~~to

0 v-

~

I

0 E

~

- -*0

0

.

,-1\_

HON m

Iti Z

II I3 O C0 >4 SZ

E4

""-' tl i.1 i5f I 0e

P4"zb 29:a 0b4

6

0s

0 ... l I

_ a N-* * * *cDa-::

cC:

=*

CO

II

ii loc -C :

*N .

a -CO Xi " Ii _' Hi¢ in

0 0

Oj

0 0

_

HO a' Z.~-

t

Fc 'a\ za* 0 I CMoii0Z

H bJ *4 I Z 01 * 00 8

0

+

0 :~I:::

~

O

O

O W C

-,un

zI

I-

-v

rX F C

E-. *

I

*

aC

z

0'

NE- -'

I ZU ZId r F* F >4.J H Z OHn

0

- 11 0 I1 A 0 H H Z U z

_

3 l at

Tnz

E--e E œ ~, O

*eP + EE040 '- .H z C) r- 0 O *O: E Lr)~~~~~L a40 O H' aLW a=0a ra tD Z 'W0O b.0 tn C4 Hm L' 0 H OEw M * L1C0 X* m1 ¢+R + O *:De '% N

,-.

0 O

d

.,0

0H sn>E4~~~~~~~~~I

;

*

0 9*o

EH " N

~ I

v-

*t:-4

Lw I

O .? ISt~ * ;! 0O i0 ZN. 10 ii 100 0r OI 0,

a II

~

F4 Z,. H 1

H

~a

I

ab

-1970 " r C 0 0 - N n 4 un %D r- ao c 0 V-- N D un 0 Ln un n U n un %o :r -t zt zi zi Ln V- _

U

-

- _-

-_

i

- .-

0000000000000000000000000000000000

H H H H H E E4 H E E4HH H t4 >4>4 >4>4 >4 >. >>4>4>4>44>4>4 c; m; =: m

cr

~

Caaa C

XI C; cm c;

m

~C

) n

=

_-

D

- .-

.-

4 -LA

,a

lZ D OX

-

-

CO CN

-N

o %D r> r- f- I-I

- U-

T

-

U-

-

-

U-

'.0 - C o 0 r- r Ir r- r W

t

Ln

-

-

-

V-

-

-

-

D00

h

E-4H H PH

=

cr : a;

>4

,C10 :IaaaanQlQa

H

H E H

>4 >4>4>> m; az as = 0z a;

4

~mn

)C

H4

EH H

H >4 >4>>

4>

c

m

=

>4

H E

HHPH 4

>4 >4

4

=

;X X. c; X: 0;

w

1QanaClC~Ca4 C C mC~ C =1a c

co

ra 4

H E4 H

* un

04

* :>

H

0

* 44

Ln

CN

E4

4 N zT

H

o

* Clun

4

>

H.

C> 0 4. O:

N U3 H H 0

0

H

F:

os

H

E

0D - *0

. H

O~~E -

C)-

o:-

P

Z co

I'q z

0


11

~g14

t.O 4 0 .. H

c4, H

>D> Cz

U-

a

II1 I

*

H Sc J

II

*U

I

KcS

4C 4 >4 >4 4 >4 >4 >4 > > co 4 mC4 C r4M m; a;=

E4

L)

~- 0 ~- O~-

r- M)7 a~0M

y

~- CD ~- a '- ~

~C~,

N N

ID co n ID r- C =' Ca0 CDrs N N-~ fn -.uIn00 N N N N C N" N C4 N4 N N N " N N

a0 0a 0 00 00 C> 0 O) C O C - O-1 O O O O O O~ H HH 4 E-t H H E E- H E-4H L) EA PH 4 E-4E HE-4 E4 4 .. >4>4>4 t.>4>>>4> 4 >4 N >4 >4 >4 >4 >4>4 >4 4 >4 >4 > >4 = X W ,r Le, W4;r4 i% WSa= W, m zC C4 LZ c xX ui cri c X W 0D C4 a a~ a C aC) C. 1: C4

0 C)

E

t-4-k

M u

H

H _m _

-

I-4 U,'~ z V^

W

0 04',I

co m

9

3

eCa

H HJ

-H

.* I_

9-

)

0~~~~~~0

0z

o

0.4 v -C *

N U U-

b5

* Ne'A

OL)

H_

HH

C I 1-4

0 = 0C

U _

z

~0

H ,,- 9.

_U

0Ca 4

H-' _~

-, F4 ": ~ '"' u

* 04,# u::'-"

9"I a _p,

4M

A3 b' 0

H;L" H 0

1

~04~.

J *4 ...0

,* H sO UO*

...

4 -I

-4

a:HO

'., -t.D

~

:U'C

n

N-Cis = zc u i ii aii M i U ii X-iOIXME n N1 4 z z e -0 H iiz z0N U .3f4 a I* zc4 O 1S z4; oX Hz 419 . ': 0a, F cr 04Ib . z c X 19IUUULD:;;Ux e H 04 0 0 PI

* H m

*

M H U4"'I .U L' O_-U t.z~ H 2'-f0 * EUH Q t Sr4t~)> CH0 4cr ,,i O g- Ufl II I".-.. 9.-

N

.U

# ,

('. ... U

CZ

* H.

H. h ~~, 'C'1I--IC i :4 (-V] ! fN 4^ U+ + E- E4 ..

F H cii 11 i H

_HH

.C

C

C U1 U1

ii1 t oS

U EA X 11

U 11-CEHE-

4 0

cw T- Z W W 5. JVI

U1t-'0

1.

'. [4

cd

04

xi _

4-

cc

t n 0

i

tz

H

0, c u 4 H E 4lM

z *

;a 0 W H I 4* m

:

*

* PO H N N '.4' * n- _N 4m0 : -40

*

UD 'Z I! 0.4 * 04 * U U

*

: 4-

N

0* v 04 C

U) U t)o4 0 04 11 U .4 11 k. w = = 0=4 I i U 0 0,= a04 .40 '.L)CZ * '.kUI04 U a . e0 04'- eN 4:P U U5 0X JU H 4 Uf 4 C:4 II .. m UD II uUUC. Co P4 A I p CDP 1U a lU

-200-

Mun-1

un D I aD N g- N M -Y ur q r Wo a o vs N M -I 00 r' M a io L n u o D o ' ' o r r- r, r- r- C- r- r, r- rN N N N Nq CN4N N N N N N N N N N N N N (N q N N N

0 0 0 0 0 0 Cg 0 O0 O 0 O O 0, C ) 0 EH E- E4 H E- E-4E4 E PH HE H H EH P h -H 4

;

4

6.4

Wt

>>4> C

>4 %: >4 r- >

>4 M; >Mt >4 >a

0 0 0 H H

ccn> >4 caz >M; >4 ;4 >

0 0 O O0O0 CO OC ' LA H, H H P E - H P

44

L.>4>

>4 >4>4>

=

QN

~c

H

Ub I-.~

;

m

m 0 m0 0; U,

UX

U U 41 0 0

u

~


: P * V4 U. :enzo aM U * * * E - co Co III U *

-4n

e

IL)

4;*

0-

-M*O bX * 0Hr oz 0 Ca* Km DC 0U a, z

a C

U >M

0 9

a)IL U vN bA

za

tna

4

H~

0

V U * 0~~~~~~~~~~~~~~~~~~U 0 -

0 0

C3

U

0;

aN

-C

H *Q

vu 0 z0

Hu

*

U

a

^ U u

M

U

CZ

U

U.-)

M

-. 0 m u

H

W. 04

04 Pi >

* 41

0 +

o . '+

P

OKo

.U E

W U)-

o

vn P U

~H

0 0n nU)

u U a U

UQ

*

U a.A 0% .C. 00 C eU nn C 4

ko-

040

0

'

04W

-

+

N . 3 t*N toQ o Q u UUi E- '. Q * U* Z4.4 +* * Z W*r4 ;. -u 0

QuQ0

X

X Uf 9).

c .s =E1* sX z Li P o F * *

A (N C M>* 'C * 4 N O M0U) 4 (n *0 CZ 4 N U * 0 04 04 * a0 a V ' P 1 < o-c U 4 V U -) - ; c - m 0 M u V C - o t - U 0 U n3 U U U U *t:n H < * 04 E U ) H H U):d 0 E U )" Z -H t W Ut C.,U f) > 4 :4 C0 IAO . .. . W 4 I l *4 -r 4 0 .0 C - C 4 WO a , -; M2(0 4 0W,j 941 41 ; V) HU U Cw tD 1,4 * It 11I I U U a. CL H P II 1 1 U W C)0.UH U 11 11 1I U m04 Q. Ea1100:104 O0H00 11 C . A 11 cH cz P.N if -1 11 ItO co I n 11 Vi U11 U U It Ca 11 000 C II ' 4 :O $C 4.4 0 M 0 U U U 0t M U a UU U U) U . U a .4 0 U U ID a ' ¢J 04 < .: E D. m M .0 U 0 * a. .4 U , U 0 U UU... P 4 0 U C0 0 ' U UE-.4 0 .( 3 4 H EU u 0 , E . WH )W U 0 04 a c : .4 H U)W U

~N

v-

9-

.

9-

N

* N

04

U U 0m.

u -c4o H n 040 .U 0. OOa cn 00o

-

4

-

0

U~~~~~~~c >W H

vc

U 0 U '4* Ub U uU n U W

>4

9

>¢ H 41 0 0

9-

C4

b

>4 >A 4>4

U M m C z4 t ; a . M; Xr C; W;

ca

M u

*

9-

C e

N

u u

aK

ub

>4 >4 >4

m

0 C) 0 0 0 O H 4 E-4

*

c 4 >4 >4 >4 >4 > >4 ; > > >4 >:' >4

E-4 r

4> >4 >4>-4

a0

a

E

'o -

Oa

a

a a

aCaaaaV

C

a3 a~ Ca

c:r

V:

-

-

0D ON N Na a a

--

Oa

a

1

a

E- H4 H EH E- H >4 4 > >4 4

4 >4

al W. a a

a% .a4 a. a.

N m Z N NN Oa EH E4 E- CD 4 >4 >4 N

c a4 a aa NC of

0 0

14:

_-

M

*

a,

U h

a, 1)1~

3a, P a 04U V P4

04 4.

E4 0 O-

on 0

1-*.

O

4 E4*

: 04

1: -41:

u

UF

U

oa ^014S 0* 9104 a,m ,a, u

_nU

1

as3g3*; ee.-

HH a

.4 a4

4.U 04

U004

a, 1*

U N*

H

aE4 c.r

E4J

fi

U

0

I

4W

,II II u

II z

0

i 10444 z-3 .. H 4: s- 4 ;3

4 1- 1*11' *. Em.15315.

m U

C4

*-W4#' _ "'+ ,EINE ,'

I Q t)U

U

Qi

II

H

14 040* fi Q

8

0 a; * 1r

* -.. _

*

a, a Oa 04 la, m o41: f

4

m

04

,U3

U

a.:

I* i

I I

q-

*

P41, *

0

, 011 N

:t

ae

15

ab. 14 1. ,4 04

E-

144 0

C- 1004

0

0

14

*

00 o41o

4.i

c,:

O* P. >

,a

z

0*

O

o O

W1.3 144C*

P E-4 4~

, C o \ co a,> 4.04: *4f*

0I

*

0

S e4 g E 39 .,1:3 00 O *z 9 I 1 30H V 13 * a,:< IC40 4zIz4 E) .46 U 1530 1.3 H 14 E0 141 141 * 111i I4 P1 ,13 co so tlI 04 Ico11 044: 1 3 014 Ii .4 110 11 ODEr U m4 0 z II -0I1M I 012 I iz I31 z 04nI~1 :Z: _I 15. 1:I :3 0 I 4V aU 0z o 13'£ P4 W *)tt; a, 14141414 I.1 H a, 04 I12 13U02OO 01P4 i 'tnl 404 1-40

I3 441 * N o',-, H -* * 1344 J =3 1' o. =2 .E 0W _ 04 C' *

U a c: U uu

.~ O C 04 14 4 t s 01.. 4OC

-

. ^W U D 14

o

U3 +e +

P+I 1,

0004P

+ 0

_41

a,

o *

0

* O 03 00 cw = *J04 U- 3E4 4 Es* 1*2>

.4

N U*'

£3

.N

_n .. 3 14 *H 0. U * 0 W E-4 U .4 :x 1 40 EE b 4.0C. C\ + f1W.3 U 4 U *' CCU +4 U =U0*El + + :e z 4 *

II bu *A4 .-.C140UN

*004 -04a

o

o 0

1-""u z4

, oI* -04 ) 0 H U + roa,+413

a

o0

U)

0

c0

0 g3 CIO I1 a 13

u

04 0a,* V

a10 I -4 C>

0 'U

k

+: .4E4

CCH

*

b~

0 0 I*

93 1.4

u

C EZ+::

PNO

n

0O

3

+ us

F.

! 64 2 u0 0

+0

04

4

03 U

1

02

0.i t.4.

U~

:

U*

0.3U

-202- N rn :' 0to r- cO

0

D %0 r- O

N m

N

m

mm

4M

00000000000000 o o 0 o> o> o> o F-4 E 4 H E4 H

n

rn

o

o

rn r

m

M

n

a

o

o

o

E- E- E4

E-4 H E

C

oO

U

U .~~~

CO

+ +,

X

4.'.

~4

9-

~

~

P U'I 0 * O 1 '' * * IA U1 0

M z #45 I o , _a ~U om .o *

P* *

+w U

Z 0

. D' *

0 0 L +

U I

H_: "09. I ~ O tn Ca u * \w Aw_

?

O a

+

0 n _ to U 0~~~ UM az.4'c cz 0 +

0

VZU C a( a, V)

~Z 19

+

0* _

*

g~ 0 Li *

*

,: gz: F4-*

f

.5

0O*

Eu.

to in c '

*O

r OD

Z

+ :=

VW C:s

W 1E4Li* * U iP+n O

+

Uo

-4*

ID;

m

mr

+

KMXW E-4 -. X _ H *Et:

+

*

W P

m-ccwLDuiz0U)U)~ %F IM M *4 N W 0D U1 COb OW 14 *O, D 0+

M

, o 11 -- I XU

W

a

E-4

C9

:H S. s >-I : >-4~-04 r: C 0i¢;0 ;2 m =

F >-4 >4 b- t- 1 co tr WC C C a;

r* co

m

r n r' m m M e'

MfiEi4* C U L

U t2 ifLi En Li

CZ

'LU b IIi b4 U + U 1 U U U c: O >UU 1 U : :U1 3

LiQ VL 14 U L+1L _ _ iiLiii~i40I~

0 UEtU

Ia)

U~~~~~~~~~~~~

-203v- N r -, O 000000000 0000000 C00000000 00

0000

o

a0

0'N n L£ .D 0 CDN C> U0 CO -*qNN (N (N N N N 0000 00 0 000000o0000 C) 000000 C 0 , CD O O O CD CD O O C)O 00000000000

0 C

C) 00

C) 00

000 C

UUUUUUUUUUUUUUuU Z Z : Zz 7- Z N Y.

':? Z ZM : 90330OOOO~O

OOOoOO u

uU UU

Qt)U U

t

uuV

C C UUU(anUUaUUa : :;;Z :5 Z Z Z Z I U U U) U U U U U U U Z z V.Z;-

Out)Uu

0au

* 0

02 U

U) . a:0

U)U 2 K

N

In 2; *

9-. *

U

U

U

U

t

to U

U N 0

* *N

U)

,-.,L C( -

U-) u% o

%

OD U)

rr

z 5-04 C) tN

b z N40% R NN- O N

Il)

H

9O 1,

U"'| n.0\ U

00 .N rU ,o v-*N

'.- 40

0 Z

c i- ) ,- U V)CJ ,Eu r~ U

'

~o

*.-4

UX

-

E-

a:a . .4 * .4 % H

11 11 It .C I r).

a

-4 -U

u

Z 0 z

) * 0o

U) Z3 -

~~~UHIJ)E-4 EUV2U)

U),-)b.*

W)

On

aU n

W

5-4

_

04

*;

"-U E-

0 x

n IJ

V) U

n

q

=~

ot 11 V I V) ,.4 E5- 1-' A. PW 11 E- 11 - Z O u) U UU E U) E. 11 i

cr

11

O

H q EH U

0

a:

CO

4.

+ UL ;

* -C X4 X :w X :

+

UZ

:z:

j

4.n

*N.:

·

U

*m '-.:o

* et U ,-

:+t

* NS

,+M

:04,# CZ +cn '-* _ Z *0 *-

-

N+ *X

* .r4. _* + t4

* *

* c~ * Y

en a.

z, a

*p ULU * N

.4.

-207N :cr U v 000000000 00000000 H Ho1o H

H

at 0

0

o

r

a

H O

0D-

C'4

000 0 O o000 HCD C C> H H H

H Co oo

0 0N 1W: 0 "0 0 0 W1N

of0

W

IC 9 c*

_

M IC)

:5

U * K 2 :CZ

* K K

l.

*

-U *0

rn

* *

f o rn* H E-:

*

j-4

x

04x

*

L

_K#

* .

.4

0

Io
4 11t -W FIIN

>-4 11. 11 Is I IC I N *. .O II 0" 1:4 P. K- 0 oH S$H N x H 0 wN'P P.4 '-

N

m

ur

Ln

%r

, r Ie 0i

co

EZ

z N Z

1~Q

-210en

_N

0

T

a

t-

0

o Oa 0 0 o 0 0 0000000000000000000

m

OO

p om

04N

C4 C

J

4

0

U

P4 40 0U

%:

:U

U4

U

PI. cc

-

H

4N Ci fi,. WX

A.

'VW

%o

E

Z

E4

I PJ U

3:

~U z4U a:

'

EC 0

W-o

b H 3

:

U

0 Z VI W

N

UO H

P

_

%_w 3t

O.-4

E U

A.. 4 b C.

09 "" 049tn % :::b N

O0

U) m OI I OI OI : 3: : 04i.Il z 4 0 - 0 W0 " , Z Z -U D ZE- Z-,

cu

4 0C)

:! ~ ~~1 ~~~*

N 0

U) 3: z O ; 9-

3:4 03 aD z z

00 .Z00:t

o ID U .

00 99-NU- \Or

N H

*

*

-

*

F,

0

= U

H Ir ;

-

Z

%0E ('04t 4H OUO O WI

NON.o UUUW

=

un H 0 * x-,4

O on NH (S

.C

H 0 -bV_1 u N04 00 =D _ O4 :nE: N 'NOJ_ 9 4 ' N3N umpMU %; >4 Qo 0 X X f o* z zz 0CW 0E04 o0Y X 09 -o4CV)z:C U Ooo~ 3 vr: E;W 4 O0 ^ 0 o-o43: : 0o 3: 04 P4 z )_ * v_"Mm mv )N C, F-4 : N MU oN b :: Pi m WH C o I 00o 'NO 4. oO

:

_

UrK· ~-_- Ul 3 .14 :is 3 \.E-4 3: 4 UUUHri-P 9[ 3 0

O0

9 _

* *

C)

r-

: E-4

U

4 N DOOUOONC 9i NS eq * U 'E-P :3:3:3f: 4

q

UN

~o I NO · U :~ D~

EU-

E-4U

.-

o

=:UUUOUUUU %U %: 3 E U Co HE3, 0E-4 U

'Q

U4' O ) 00

o

~0~ O-

4

u4 E-

-

Ux U

b9

0

0

00HU

zc :r. H VI

3: 4 %t=

Z UN

0-

xa3

0

WUN.n Al CX

04o'

C)

U Eq N

NH

W

50h-b U

4':

U 0 "~:-4

e * U uvi l U 1a; 1... __ 4I H E H- D Z O11 A, W 11 w II 13- i ' 1 131 W~ E (0~E F4 ° - i O-4 m - - -1.aow Vn E-4 1 1 *i II I E-q - . _ CO)-: a--'.0o ' -E. Ci 0 _Kg; Z zer H a:: -Q1:: 1:: Fv~.-. F0NO 7;4 F E4 1 11 W 17 E11 Ci., WI E4-'Ed ss4 a-i l- 1 E/ vz II E- i C : 1-49-II : H E-U U U: E-4, E- E-1H I)Xi' 1-- U U U 0

01110 E9-

W[- bII .Ei '*g-F _~~b

+ I

-N

M --0 * ¢;4Vr:D i -.iZ04U) 0) 00.411 * 0; rs 11 On 11.11II LI1 0

~I

OO

Mw> >:)o

0

00

o

o

N

C00000000

M:t U

O

r- W 0°

CooOoooooo

- N r, 00

CO,Ooo

000000000 onco OD o 000000000

!oOO

E" ' F4 a0t04 00000000ooooo 000 0000 0 0 oo3o000oo 000 E- H E-4 F E E H E H E-4 u-4E-4El HVn f- E:n f U' Ln M ) V) u: CA V) ut

E E-

0 H E-4 -H

m v)

(n

L u IV)

4 cu

0 CO Q 0 UI Z; ,,-j 0u 01 J -

I~o E:,

'-Cl V;

* WZ

- Qa W .F
1

>S

N m-i*

0 0 E E-4

14'_

I

00

K

-

I

K4

C4 N * >4 0

*

Y~*

_

Z:

N * 0

'~

H.

4 W-

ICI II II

0X

-

N

0

m

K f0

* *

w-* - >9

0

'.4 _ N_ *F

0o4

*

pC+

m

1. x 9 NE ,N '- CD,->4

I _

I

.

0

40

0

_

*

0*>_

K* Zi 14 K4 14J* U N*4 * 1140 '-+ I 0n N 4 *

0~~~ H H I**H

H O

Z

Z.4

021Oz m t EU 01--_~ H Z w I · w = '4).4 I- 0,"- ~ m tl O h e4 0K1 HHZcHe-1 '

H2

* > . 1

'-N

^ +

" o EHI

* H 2 II .H 0F U 110 O. I

>

2: 0

:r

>1N

O14

0- I >4>K * 00 )* I tD

.Z

¢

V'N 9- )UZ

+ mI

1+01 4 14*

I

W~~~ / '4J

_~

_ N ^I+

N n 14>4IN * 0>K * >4 0I N K41X1K * t 0>4 N 0t > * * N Nq X * 0} _N I4 * N *

tZ Z Z * _~ _ _ < Z ¢c -C vs -< X 14 x4 x >- >'>4 i

>W X I r

>

I iII I t II 11 II It - C 0 0 11 - N 0 9- N m '- NO wu n H Z : Z X KX >4 K X

IA

o

r

c

X4

** A

11 C2 Z

1>4 P ni ni t

0:

H

t

-215-

APPENDIX VIII: COMPUTER PROGRAM LISTING FOR WET/DRY COOLING TOWER SYSTEM OPTIMIZATION

-216_

o r-

L

N M

000000

cch

0

0

_ N r

0 C

en O

O

*1

N

N OO .

*

cmI

0)

O

O OC) ° 00o000 oo 0 C C)00

*

rS

9r

S

9:

9

N:?

J'L

jL

4

O N

Ie O I Nq 0 Nq -

9 O

jJ

,0 ) :. Ln N

00 Ln co * O* o-

LAN0 L '-., N C

144

S.1 16

N1

N-A LO

N CS

9.~V

D

Q

4-) 0

o

c0o 9

r-LA

.

)o 0

0

N

e

_00 *

*

N M t uN I0 n m In ff r rn

-

Dooo

0a

O r- 00O *

No oo uL o r a oo ° , N NX N4 iN N NS N N I

N

H - H4 E-H E-4 E- 4 4w04 04 Cw ci a, 04 04 0 0 L. 0 04 0 0 D 04 04 04 1 [-4 t- [-" - Z ZZ Z Z 2;Z Z z. 7- =. :? : ;, H H HH H H H H H H H H H H H H Q H H w HH

O

j :?

o 0

x

ooooo

E-iH F4 H E-HH E- 4H E-4 a, 4 r w 0.. 4 C4 0 Z Z Z ;ZZ Z HHH H H H H

e X

0 r

n

000000

- -

* 0

00N

9 3

0 0

m. C,. 0 .-c 0 LAOr I'D C>r 0oj. NO Un CY, -'0

rr-

43) CU OE

co OOO

a:

'.00'·

-' 0

00a

N c

'n

~

o .r

*9

S. *n*~0 . .

*

*

.ON

Jj4

N

4j j~:

r-

0 a:?AOD e .

*

*

I

v

* .LA ,o-L LANrvr.

Oco 0r-o 00

0

N

9.

,LA ou * 9Ln

H *

LA*

co

fn

o

00

I-ON

O

co N N U,

00 . mr r0 oi :0c 0 ~

* -~

-t

O~ O

* *N

0 :J

0O

O

rs

-_l

r

*

S

.

*

*

_N

q_ OL_ 0 O

N

.I.

C)O

O- O

9D fM) V-

n

OO

-

D- O

**U

S

.

-

M

9

.

95

0'O, N

99* Q,,"; D

Q0 -r' r-

-

.

O a

i _-

9iFo

en

'-f'-

LA n - 2 '- 'O'O :?

9o

LA

_: D

,49r SO

SOO

M

I-

C)

l_ ncN en n *

S

r-

-'D -t

IL-C 9

4-I c(n, -

DnN:?u

sa

r

9

'

-L

9

9 0

-

Ln

m -

r

I

*

o

9

a)'-:? N a) LA

.O

A

L'A )

49-

CI N O C

.

Ln

LA "I

'.

~O

0 4 oOLAAN

.

C)LA0 0Lac O O- ,w

'.0

Yr-

-

0*

-

V-

NO C N N .OOU .0 co ,n @~~~~~~~~~~~~~C * * i-N~ 0D)a)C

N_

) -.-0 r 0-

LAO

e 0

Ln

C) OS

0 . * LA ANC)

.

(Q 4U

r0

0

a -

-

CN

-c

, O

I 0) \.00

r) N

--

0

Nt0 4 rn' rn N:? I -: ?

O

ry,

% _00 wr.Or-O0\00.)C)0~ 9 .e'~'.OC)0 *C)0L O

-:

I . .4 .

9 C;S

'ONO o i ,)o

!N tN N °% fru

rC 000Lf f) o0)NL 0oO 9 9. . . . 9 I. O N r C14 ° * o :-I M MOMOeeM 0 o 04 (7 L °os * *N* '-r-00 o:r O:?

0 N

N N

I

!-* * 9. '.0a co 0 . O

C3 0

. 9-

a

r, O

0

.

oO

~0 O ' ~'D ? 3 "O a~~~s ao n

Ko .

Un 0L

N,.,- 0 L 0 L r0

'.o CO Lrl O D -000 O

rn

N

In

n rN

> .

.4 '.D

J

'o):

~' :' %D n

9_

4.-

.

x~ cor-

Co CO 00

o cS 0l:?

N --

0 0 o O

H

ONU *. L

9z

%0;' zoo * C

.*

0ON C) co -rc LA C.; 'hrlC)C C co N N

N 0c Os

.

*

.*

Z;.

3 ?N I? n

.4 *

Ln Ol 0

-217N o C , rq m ) r co c0 n'o '0'0" r r,D "o 'D '0 00 D'D 000aN 00 CQC- 0 oOO'D O) D C: O OCD o O .0 0 c c C oC) OOo 00 M H -E-4 - H H H H 404 . E t HH E- E-H 4 EH H H E H E- 0..4 0 04 H E4 H U-4 H 0E40-4 Er, a r0 04 a' , , 0 rl 4 a4aHH- : : Z z 2 Z n 2: : 2: Z2 z 2: 2: 2 2 2: Z 2 2:2: 2: 2: : 2: HHH4 H H H H H " H H H H . E- L4 H H H H H H H H H H1 H H H H H H4 H Eoooooooooo~~~~~~~~~~~~~~~~~~~~-FH H "

C

rmo =rO uo o =r -T Jw e> :o x x

oO ro

zz H H-4

co - u-N D r. u% -~ m% V)Un 0 0 0

.

-

Lnu U'

U%U%

N to QCO

LA o

cN C) C7o o 00000000000~o

n

0:2

0

t ('.

QO

r

a,

O4 C 0 M w- N(N4 %o

to':D- X cl r-

r-o

t0fDo0 I I0J 0i' ID

(N

o~

*-

.

9

L9

.~u)

r-c'i

(.O r

i_

_

I,

r-

04

r(11o I

LA -

ONC~c

i-L

O

r

0 o

O

.

9n

9

9

LA

'0 O

D W O r--

L

*

'0N

tO N r-

pi C s PS N:t

N eSt

t-l

o 009-0 0 n m N r N o otfo N r- in I0r .. 000 n -o 0LA N 0O r- 'oN

0 co mff 0 to0

I

o-

0 ,

_-

:t

9

n

L

2Z 0%7 Cs

m

0

. . . 0. 0 0) r- L0 t'i -

0, 0 N L

L

L

a

LAn r'

r

U LA

± 00 'IN 0 '0 CM in rl (, "De n Lr ^4 q a '0 CS 'N t '0 LN N9-(3 )

-

it

.5

-

Co C 1

O 0

9-

'oU '

C

0 N

el r~ 0 mc 00 LA ( LA N U') Ln - (N 00

9~ Z

L

' LA) to '00C 0 r

Ln r- r- X -

J~JJ~

I

r-c0

x,

r

r4

0

.

.

I '*

I

I

'

.

2

O (N >

I

00

-X N Lei AO CT t _:t l C, N U) O Ul t -L 0 9- O N LA N

N

M -1

t t1N

-L-

L

0

9~

'

m

0

-

9LI N 9 9 9 * . * . 9 9 ot- (N N L 00) (aD to N:> LA to 0 L 0 * 0o9 p ) 11 b r CO N 0' pcN. 0r Ln A N rl cO ::t 0 n 0 o T 1 @, m N r C MD Xr I ro n M r) -) N ', co to a- to (N m a 0 'I-z0 fN N 0 U.)

M N 0

ii

i

i

I

t

l

lta

0 r

!

N 4) 0 U

H H H

N p9~ 99 9~ 9~ 9 9 0 0N * 0 0 0 LA N 0 LA 0 0v N 0 to a0 to I ) o 4 0 I 0 m n D ocry a, o o:: C r- LA)0 0 0N a. N 9 0 9No N L (N'o0 0 0 0'm Lr r ) 11 MI LO %. LA 9m N- 0 uA'0 a; (NL4 r U0eLA) LA N-C J 0 L rn O 0 r (N N N ON N ma; CD 0 (.Y,0 D N -n (N 0 o tov m m* cI a rs ro A -: rn :: 9--(N 9- M9 I ml to AO9- w N N 0 -. m U1M ID0 9o1r enU)O -to 99LA,V-

9-

-t

. . . O: -

I

to1 0 -

N4 .' .' 0

a

- N nr- N

C-0

·'i,o

9

I

I

*

I

0

a

o 0 :? 00 to N 0 NC. nN 0.o LA m T o o 0 m rn

r

ars ;

D co

- N

r

rI

rr

_-

'.0.0 I * I 9 O; a;L am 1£ (v rn V; LA Ln L 0 C*r C r V) x. rnt-- - D n 0 O mntv N C, 4O M D r : x CY 0D n Lr U) a ) N r) Nt (10 O L r, tn LA 0 'D a; N r n M mo'LA' U) o

4

mc

0 LA m0 **Or~ 0

9-

o *. m 000

0

M

w

9a

r

a t LA

LA N- o

ON

0

9

0 '.o

to

LA -t

u -D

& I99

" 1

"M N

r

9

(N

-

*

9

9,

to , ,-N __N {' c

:1

r rc

"(Nr

N Jt

L)

(N LA 0

(N O N-t

CC ' 0-- CN O 0 L o0r C P-- ,N

LALA

D

0 :T co

N

r

-

oA

9*99e

LA;

0 LA L

_

0mN .

N

I~

0 (N IYo9I 0

m0 o

(N to (N a; L L

0

0

-T 9 . * 9, 9, . U; 99 9: 91 I' 'o LA 9- N N LA ON m 0 o N, t N o 9 9 r N - LLA T 0 rv T N :t LA a-, -- ' a, (N r t r t 9- Cv N 0 0 Oi 0 %C - 0 O ::f.C 0'- tIN tO - . - - p9O% 4 qLA o04 LN9- N LALo(N LU : 20 Ico r U 9'. D o '0 0 "'0 Da; N m a:

;

LA to, 0 t ) n

O 0

0

m

N

o

m m

tl)

CY

r-

0s N

en CC

to to

9

to

9

O O 9

'.0~ ~~~~N

0

r 0

'j44JJ'J~:J4J;91~ 9 N- r- , *rN 00D

0s

I41~C

o

9N

r

(I rv

(

.

.

9

.

*,

*

* .

. ,4 m .; 0.0O i ° (N _O kO mg9 6 u9 '- 9,-C ) Z ol M vm *n t i on 'D Cm o t 'm C.).o l : -It tLA'0 N Lr m0n r- t (N m 0o - -u0 'D en me mi r D -I !N N 0) 4 cc (N (1 I-o N M

9 0 *0 L m N t-,tDo-

,

r

j

rn

*

n

yX U^n

r. -I

+

-218o-

tn O r

", r0

CC 0C0" O

- N rn e7 Ln o r- cc, 0 0 a 00 C 0 0 0 0 0 -o0 o °1 O C000 O 0O O 0 00 - 00~' 00000C0 _ 0, C O0 FH 0

-t ,.n 10 r-aC

J 0

-C

0

C) C 0

C

0 0 , C) .0 0 0 0 H H H (-4 H H H H Zoz¢ . , ;i;, a, Z ,. Z; Hs H H H H Hk H 0-4 04 0-4 -4 0-4 04 04 0 42 :, ;- -, :i_ ;.

O4 0, 04 04 DI OOOO HH H Z Z Z :F, ;!

04 Z 04 04

o0C 0

> LA \0 t

00000N ri a, n cc co In c) o o C 00 C) ,T 0O 0o 0O 0H C) a o o 0 0 C 00000 H H H OOOO0 - E E ,.4 E E4 H E.4

I

H H H H H

H

H H H H

o 0

Ln e

o-

00 0 N 0 o .D 0>

0 Ouq

9

o

9

o

0 N 0 0 f 0 LU

9

0

-0 0

0

00 0r

0) r 0 0 0 L 0

Ln O

9

*

0

00

0

la 0 C: 0

.

*

.

*

*

*9

O00 0 0

:1t~c1 o Ln O oo CA S -'0 I * 9 000 9 S

~t'

9

0

0%N

CN

WI

I-

10-gCooLn O 7 0 r- Ln o Co 0 = 'D tn -, o o o 0

-

N C)

W-

LAC) 0ov

o

O0

N0

r

0

n

co - co9- 9 0 9i9-5 O ~

C-

Irt ~00 >oOO

O

0 ON

N

In n,*

u 0I *LA) 0*n . C)

o

e NS

e

0 *

O o

0

't~n CO 0 _O 000o * 0 00 o~~~co9

J -U:;4' D0-

., C-) 0 R

9

0

* 0

000

0 eg>C:

.

00

9

oOo

0

*

*

0

6

O

0

9

*

9

*

00O

0000000 °

0

O

O

°

0

t oO

oC) ) Jc)C)J n o O o(IJ\ JnJtJ

oa oo N t0 C"- 000 0Y - vo o o

O rC - rn

9 9

0

O

-*

O

9

~

0~o00

N

0 No 0

f-

0 'C

-" 0 N ° 000 - '0 z LA O 00)

U- O ON-- - cN re

S

99O

0

9

-

O

o LQ eo O O -r * LA 0

O

O

O

0 0*

O

O0 9

0

9 9

*

9

0 0

0 000C) o 00 - N 0 O

0C'- .3

.

.

.

.

0 0o 0O o 0 0

0

0° a-

9 *

f

O

I

I

.

-

)000

O LA LA

000

J000 000)0

°c

0 a0 0O 'o

r-U7n o

0

O O °Dr00

0

O

I

0o

-

5

oO:

00

0 L

n

00 000 . 9

.

9

f

0) 0 0

)

* C. L

--

.

L

o 009

'. 0 N 0 0 N 0 0OO r o O0 -0 'D LA n LA fc0 L 0 0L L r- o000 T o %o N a r- ,O L 0 0 N 0 r- ' 9

00 0C:) 0C)0 00

N L

.0 - 0o00O000O 9-; a 0 N N N

N 0 C- T 00000 {N OOOOD-ODU)'U-00 N LA 0O t o00 N - Cr-D 0 O0~~~~o C. 009SS9 N 0 C'

- 0 cj O- 0 N 0 ° zt 5

o LA u) :t o ZNt 00n OD - L

r

9

O C; 00009C-"0o00

.

.

*

.

0 0o 0 0 0 0O0o :9

9

-

LN~ 0 0 0 - r- ( 0 0 0 0 0 0 000000 o o o 0 - 000 000 o ) 0 0 0 a0 0 r'OLA t 0 0 0 0

O 00009-00000009-00000009C00 .. : ° 0 co N ms ) °~cO o rv 0 0 0 0 N 0 0 0 0 0 0 0

o

00 s m

0-0000

000 9-F

Lo

o *

000 o r:) o' OS O * 0 0 90 9 OOOO0oo0o0000000 OO OO,) , 0 uruq-"

*

S

0

0

U) 0

e- 00 t) O 0

* S

- N 0000o 00C0O _O 0 L 00o 000

0.

.

Ul

C) ooN

O C0'.3 La

00 08

I o

N

'o00000000

LM b N t- N 0 000 O 9 a) O 000 9-0 0A: 00

C) f1 Oo 0 N LA 0'0 0 N 'D 0

0 0

z:t 0 0

0

.

LA

00

-0O000

99

9 t0 A 0

.

N 0 N 0 n0 00 '. CO - 0 3 0000o N N 0 'D Ln ,t 00o LA

~~~~ 0

.

- CO 1- No L) C,- o CD' 0009 II 0. . . -0000000-

*

C0 0

000 CN N C:O 0 OP N o9 C0 00 0000000 o 00 a L 0Oo 0C :Jo C (N 0C

H H

.

o 0 0-

I

NSo~ 0oo9 00o'

4)

.

C0

I *

r4CO0 C) c9-e X 00 t ND 000N C) 7- (1 0 o FI (N 0 co CD X r' C N C04 OD ' L L) 0 0 P 9 9 9 9 6 9 4 9* M Cy, * S " !°°°°°°°°_00 9 O ) 00 0o N c° r-m -t-00 0 o00 x O 09- t- 9-09O

0

.

O 0

-

00

n0 n L C 0 O0 f' L Ln 07 ._ 5

0 0 (N r . C, r- C

r

0

C

N

o

o,- 0 *. . . 0o0--oooooo t0

9-

Hr H

9

C) C--

0' O

o

o r0 0n 0. N N4 00 N 0 C t- 'D 0 o

-

° rm on w m 0' 0

000000 O r

00 1.1 ) 00 ,00

0

0 0 50 C 00 c0oC3

L 2

o 0

O a,- o 0 0 0

oLI 0 L

000000 oo)

000

000

oo oaCCCO-

N

-219o 0

- ( --

C-) 9-9

r

C)O H E4

-

E 00

J'0Ln

m

-

-

-

-

--

-

H

z HI HWH HWHL H, C*-, H4 F H H 4 9~ o- Fq4-

n

n °i

N -

N

N

XH N

-

9-

-

-

-

-

-

000 O O O 0 C) O E- H E H H H E H H H P H

O

CN H-

" 14 N

t-

C '-4 -

-

0005

H

W H H H H H

00 OOO 0o0 N 0 Hl _- N 0)

O

9

- Ptooo0o oO

9

9

9

oooooU

:0N000000

H

es N -: -

00o

o

r

n

9

.

C-

00

O-

o00

i 0

'

0 00

C) (?~000' C

a

o000

E-4 H P C

H

~

a 0 .H 4-) 0 C-)

000 O

a

0 0

C

t

o N

0

C):

.

.

. 9

*

000

9O

9

o*

0 0o00 07:Z C)C 00 in c 9

I

0 0 0

I

9

0 9

.

.

o.-o0 0

M 000000000 jj 0000 0o o:0 cn

n

.

9

a

00 oo

Nj

o .9

oLn mc . . .

un O o o * * .g * to a oo

I

I*

o-

0o

o

a0 N '*

o0

o n o

. o.

I

0 9 o 0

- 0O 0 H Ln 00O

.n

I

0

-. O.

0 n

n

0 0

C -

0

.

0 .

n -* O0

.

0

0 *

00 II~C 0

.-

O

0 U

0

asOo O 0 t

0

.

O0 c

~-00000 0 o V 00 N O) C) z r,

000'

C)

'

zT

c>

0

O 00

c:0

O

O- Ho.. iC ) o

0 1-: tO

0000000 0000000 * * *

-°o0 a )c

U) n

U1 un --

9

O0

e

o

oo

C0

000

0

O

Hn

*

0

C) 00

:

Lr

oin

00000 1--

0

iI

r'1-

00a * > 9*n

n.

9

C)C! -1 N 01O8£o CO0 01-o 0 0 00

r~

.

O' .9o o

00 c)

i

00 C

co 0n CN

*

00

o

0

.

00

Zi

.000000 N rn C)

000 o * .

.

I-000 a f-0

(9

C) CD

000

r. in0000000 . 000000o . * . .

9

o*

.

) .

9

CD m00'0

aD 0 0> 0 0 . * . 9 .

N0 *

9

0 *

9

ro

c0 oo o0 on n 00 000

O C;

O-

, O 0 00o

C)O 4f

FU '0

9

000009--00' 000

N in 0 oo

N

N

s

N N 00 co

O CD o

O

o~ O- o'

O'ID t 0 0 ,n r

N N r N

0O

o

O

O-O

O

o

00

O

T1-

D0

> °~ C)O O

C;

- o-

. 9

I

0C)

.

'-

0 -

o0 CD 000

-

0

o

o

0n H

0

C 00-

I

M 'C-

n

00003C'

iN

: '

0Hn

0

0 0

:7- 0C:0

0 0

:0

0

N Lin C, 00~000 0 0 o 0000

o on o W7

000w-

000o

H H

-

n O 0 0 9 cr IX rm N nLz,3f 0r-O0 Lr :l -00000 a)0 r,O

0-

.

o-

)o.

v O 0rx n O aonrO OOOLn O '0000C 0 N '-' 0 0 0 0 0 0 0 0 0 iln '0 :i t io ) N (1 in 0 0 0 9- 9- '0n 0 '0i £ 00 9rO - C H Q co

o O0 :r0 0 01 0' O. N.H 1- C; 0000.' 00 .

O H4 -E ;=

0

'0i~~ a)t r-o '- 0000000 O° tl tlll° Lr) c)

t N00 0 i

o

0

o

o0 0 o0 0 c-)C: C

o-0 0

o-4 o -

O

OO000 o D

I0

N N in0

'-0 0

:t ::3

-

-

0

U1 0 0 O (9 'D O D N

0000 !

r0

o 0000000 n0 o0 0. 000 .0

:-? ::t 9

H H H H H H Hi

'0 j r 0 H '

O 0

00

G- " H

4 H-Z; 4 H FA . H

-4 HI' 4 S.-

m

T-

4

-

*

N o

r

9.-?-

0 0 O0 O CD 0 H H H H E- H H E- E- E-

'~0000 o

9-

-

r

-

0 00 cc

M

9-

I

-

o

N

N

O

0

o

t cO 0m 0

o

.

.

I

c0 r .

.r

a

-~'

I

0~900 0000000009-9000000 0D N Cn 0 ) -in rH 1" 00 N c00N 0 0 0 Ln o 0 '0N 000 r00O H 0 in '0 a '\0in 000

wH .- .

9

9

0)000

.

9

I o a0

c 0 0 00 0o O t N N - r N 00o H 0 inr

o co CY, 00 C- 009 N 0 00' O

0,> o 0 a r % in

00 n 00 on ) O 0 0 aO N a) c 0 00 M H-n

o

e) 0 00

3 N in in) ) -T 0-- 0 0 o00 in i0 0O H N '0in 0 0 0

.)c

.; ,o * o * * *~ 9 o ." .~ 9 9 o .~

9

*

00

C

9

9

N n 0 Cn n H H_ 000 O N 00 0 Tn Ln in 00 0 00

9 00 Oc) 9

00 0

C

0 9

9

0

0 9

N

00 rc 0 0 O

o

9

00

)or0z N ) C)

O0 o

9

,

CD 00

0

o

in 0 0 0o H in 9- 0000 O° 0 Lt n 0 0 o'o

in

C

0o 9

00 0

0 9

9

9

000

000

OO 00 9 9

,)OOOo 9

000 C

C0 9 9

9 0

I

I

-220-

9-

-

)

00 E- E-4

-9-

-

-9-

H H H HH

C M M 0

E-ZZZ E-Z 4

n

o\rn :-T

o) o

'

not

CD c.

0

o oo

~Z

wtotODOt r)

y-

-

-

H. 1- H

H H Ht H H

a.

nf

Z

0

L

t-$

H H4I

,

rl >

;

H

a, O

::

,

;I -

~- A

- " "t

-o n o~~~~~~~~~~~~~~~~~~~~Lr xr

CD

r-

r- f-

9-

000000000

z- O

O a

N r rI

~Do

m 04 04 ~, b a, Z 'C 4 4 0Z n, Zi Z Z Z ;- Z ; >. z ;;_IZ

[ z "I = EH H-ZH H,4 04040 Qt04 i 0fi Z" t"

H H

0

0

-

.

H H H

,,

-, 9-

_0000000

E-4E-4 5

-tLA O N- CD0 a 0D O io frs

o r0 a o 0 oaj Ln L Ln Ln nu) u,) ur vD

r 040 09 O :T -? 4 tn

LO I- v-

JJJ.ooooooojJ.oooooJ.o**'QjojoJJ'ooo O O CP O Oo O- O O Ln O n O O O O O, O- O3 -3 OOOOOOe

'U

cg~~~~o

10

0 00

N- 0- a' N LN LA

00

O-

00 0 0C

"I

.00

9-

0o

N N0

0 Oa,

O O 00

0 .,-

:? un °0 0

n-A C"

LA 0

0

0 LA t>1 ° 0 N N0 0 0 0 N 01 c; 0-000

0

C) N

0

009-0

-O 00

C'

00000000

N a-0' N zt0 - -)

0 0

8

91

00

U) U O O 0 O 0 00 O O0 O0O 0 : c N O LA 0to o 0o 000

o

C, 0O 0)

vvO C>

a, ' 0 0

0

c)

0

CD '0 LA ?: 00 0-o

0C

a 0 o o0 0-> C 00 1

9

9

o

0

-0

0

H

0

00'%

0nO0 O

I *I O

0 0O0 0 O 0

N o 0 .0 N 0 0 0

o o 00

0 0 r070 000000O 00 0O o

NO o 5no ; L 4

00 N N Q rO N :

0o o0

o

a o

0o

9

00 000

9,

a9

0 0 0

0

O

.

.

.

o00

I

I

0-oo n0

xO c C0 OO 0O N OC Lo o 00r

o 0 0 0

0

I0

9

00

I

co tn '0

e

-to

*

.

0 O 0 00 O _n C' 0 000

9

0 )

9

C0 a0 a

0

0000o

0

*

.

O

O

O 0 0 0 COO 00C0 D0 A .o 0 o

.

I

.

.

I

I

0

,) aoen

>

OCD-00 C-0 0O

0

,-

9

0

N N 0

.

*

O

I 9

.

L

O

O r-s m O a *9O 6sD 9a ) 00 09,- C C 0 O0 000'" O O - ~0 OoL 0000009-'00fU LA00A0

0

a

00,O'0 o '-0 o '00

0

0 0

0

0

LA 0000

0o O0

. 0 a' C' N

40C . *

o

00

*

O

0

00

O

9*

0

a

I

I

*

0000000O 00 av- L 00 I ° 9 ID9.9* O 00c00 00c o ..o. OOO0O0O

9

9

o 0

o

~ Ca o~

C00 0000 o

o o

0o0o

C' N

o0I

0

9

O

C' 00 O O

9 0

19

0

0

0O 0 C 0 O

O

C0

°

O

O

~, 0 0 0 0 0 00O

O 0 :)00

* *

a

.

I

.

a O 00

0000 LA C' C' 0

O0 o0 0o 0 0 00 0 0 0 0 ,0 0

0 0

.

O . *

0

000 0 O . o0 ,

0 0 0

00

9

9n

)

0 9 - 0 0

9

C)0

> 0

0 0 0

O

O

0

o

O

0 0 0

9 : .o

O



o 0

0 CD' o0

S

I

) 00 0eO 0 ..

I.

9.

-

O0

9.

00

9

* 0

*

I

0

I 00I

0

'-no *

000_o~

000 o0 0

a0 0

C, o0 aoc

*

0

4O moO LAO 9n :I

09:ro O4 0- a00ou

000a

o00000 '0 tn

n

~0 9D 00 'O 0-w-0 . O . 0. o N 04 m La

I

:t

o

6

~D

,-00 w ooo oo ooo~o N LA 'O0 L 00,a000000 0o C0 00 N '-

o t-

9

'O 7 oul 0

9

N Q0' 0 C oLA -N 9

*

000

c)

03

0

I

*

9 0

00000C

o

O 0

0 °0

00 0

0o0

9

0CL 0

9D 0n O

*

Lu9T 0 '00LA00000 ~a-0 0000 O, 0 Lo 00000 o00 t - o N000000'0

00

I

'N LA N LA

CO 00'

0

O

9

Co 0

000000-'-ooO

LA CO3r or A N

~

* e

9

.

0

O0 -

0 O

_ 0 0- O 0

.I I

o 0

000000 o O O O C 000 C 00 000 MC a' 0. 0 0~0 -- 0o:skn LA00 0 I 0 0 CDy-- a o o o oa fn O: C O C) o OCo

00v-0100000

0 O 0 O 0

6

9

N 00 0 N O0C00N

C),

N r0 D

000008000e

O

0 O

.

000O

0 0, 0o

O

9

0

00N0At0000

-A

o O

9

000 t~~

N 9-

I

009-

O 0

9

00 C0

O O O0 A0 0 0 O0) O O0 O0 O00 O 9 9 0 * 9 I9

0

0

0

-

I

a L

!

I

) n ,O en

O

C) 0o0

9

c)00o

0 0

0000000

jNo 0o 0000 oO .'o,Co o O0

O0

aI

o-

C)00O - 0 0 L LA O a'

0

0

0C O0 0 O

0 No0 9

0

L

o

9-0

o o o o m r o o o o L T

I

000

O 00: o o00

0

00 0 0 C0 00000oo o zNN00 o 0'N LA0000000 N- o0 00D o C 0-- o 00 en 0 0 00 r rN- a-00 0 00 0 rN N M N-~ 0 LA t 0 0 0 LA n a_ c O 0o -- 0 N ON f LA z 0o

N

0

00

O-0 9

O

I

L C C -- ,o 0LA

0

0 u

oL '

o

° O-000

O 0 o00

O0

9

00'000000

O0 0O0o

0 0 0 0 0 O0 0 O0o0

O

O '0

0 ° O O O°

. 9

0 000

cr,

-0 N 0 O C- C' a'

000°0000Oo0

00000 O' 00000

r

O0

o

9-OO0O00O0000°

O O 0 0 00 D O0o000

iD L

a'

) r0 t 0 0 0 0 r- ' 0 o 0 N a'O LA O O) O0

O

O00000000O0

r-

C, rCO C::,0 0 LS LD '0 ::t C 0000 0

0 0 C) A 9-

0

0

-

On

4i

~i

04 Ot N

C- (-' m 0 C)0 1N-

00 N C' 0o0

0 00a

0 n 00 0

-221-

co co 0DOD00 · c0 0- - ) 04

..q

rD 00no

,)

n

t-

x

-

Z.

H4. H

I

m"o 4 In .0 r Co 0; o >

' 1)

-

,O cO H , I CH5

0o

C0.a

-

w a o '-N 0 xTLo O r v 0 O C)4 C: N I qoq In.0 c CE 0o - To -, ooo N N N N cq cN , N omNN N C 0o0 N Nq N oN fZD C), C EE- H E-' H H H H H H- H p EA H L-4 EA E_ E El t El H H C- r., X cw - G Ca4l C CI Ml r. Cq 4 H "24 a~ , C, al 0: z ;. 0. . 0. , 0. s ;I - z:Z : ._ a, f-4 a, z K4 " z z z 000;, ? Hi rHo H HQ H H "H-" H- " H- H~H_ H_ H H_ H. H H OOO4 HHH -4 z 71 Cl cua n 00 '-N 0 T 00 o o e C0 °O 00c c 0 40 0tx0cco o r- n ce- 4 4 z o o 00 ¢ 0 C t - .0 N .0 0D C t) N 0 N c '- C .0 0n 'O C M r' 4

cS o

cN

-

r

a,

1

~

" r-

co 0

L0 n o N 0 0*

0 *

I

*

r-

0 0

N

' *

.

0CD Lo 'D

4

.

.

N

*

000

Oo000

o zc -' X

-

C *

*

I*

*

0

t CIn t 0

a -

N N

*

0

.

In

4

(N N In LI *

2.0 x I. *.

CN

0 C)

c

-

.

.

oa

C'4 N

'

un

000

k0

0

0 0 C0 C

O O

*

CC L a0 Co r-

.0

O

*N

o I C0000000 .

o o

o o:

Ln

O C o 00 00 °

0

0

N

g

0

0 0

0

*

I

'-U °4 ° N-_

000O

O 0

000

00a000 000

0

c'-

*

I*

*,

I

I

I

O

un Lo 0

0

-

I

*

*

I*

I

*

n aC .

*

*

*

*

(

I

*

4 In rv Co _

000000000000 0 0 0rs cn Cl

4- C -CY a e- 4

a 000 I'

0 O

tn)N n0 N 4Y

S

*

*

m

*

-OC 00

N - In00 ID

(0

9

I*

I*

1I

I

I*

N 0

,

*

0

000 C C) n

N

0

I

I

'

-- 0 N N

0 - CL N NO

I

*

0 C 0 '''N

n C)

rn

O In In !- In r In 0o (D 4 ::

C

*

I

r-

o(.

O. N

4CD o uNNa

)N

'-

00

r. 0 I,

I

C o 0 -'-'r -nn

.

*

NI N

O 000 ° o

0n *

~

4J

0 0m

r0 zr 4r nJN

I* I,

r-o

hS

-H

C)0 n U)

000050 00 C 0 0 N 0 -- ,tln0, N coe r-m 4-_ Ol o 0DnLn o r-- C, uC) 00 ~n L 0 r-

Nc ~Q C,-rO

*

I

~

O N0)

n r 000 In C,000 Lo 0.0 Lo 0

0 *

*,

oXv"

04000

N

I

c1 ces

00 m o 00 rn

N °o In - ~.O

on C) Lo t

C ° rC n O 1C 0 O

0

*

I

O 0 f0i0 1 0C

C 0 0 0e7 . I * * Coo o I- 00000 * * * .

0 0 0

*

I

r

o00000o 000 0

CZ

-

N

00

o

-r,

0

C> (: xm\

0 0

000000000,.

4-

o

CD C)

on

0

0 9

r

C 0 00)o , )n 0) IC) 0 Io 0n ( r- 0 cN 0 0 ' C) 0 C O 4 uI r- 0 D D- 0 ° L a, o r( -n - N N n4 Oy4O crC N Co k.r c. cc 0 N °0

J

o 1D

C3L

Io

-0

: 0 .0 N * I

I

4 :1

.

0000 o 0 o 0oD 0o 0o 0C)- o 0 00 n' 00

0

00

O O -

O

~N

0

C)

*

)e o--I *

t 0-

04 N

I

'.0

* m

-

0, m' '.0

o

00

4r Co I

N O On 0 4

0

0

NNr

00t-

Co

In

eC 00

H H; Hd

000000 * *I * 0 Ln C C

I

C 0 u

0

.O M 0 0C) o No

c M Lo 0 0l 4- oM 4 0 o 0 0 _. 0M 0 '00 o o 0

N0 00 C I I gI In 40000O O O O , * . *, * * 00o 0 '.0 N Lo 0> N N'I 00 0a 0 0 O O O0 ,C 0 * 0000C)0 * C, O * ** N * * '* m0 __ :r O zoooooooo

*

oC

r'

0

'-r 'N

s

0 In o ' 0, *

'.O

o 4

v

0 I

I

t-N 0

o fN 0 N No0 C0 C 0 0 ON n 0 -O NrIn 4 n r- 0 C 0N (7* -, C, 0*. * N 01 Nl * ** *0--* ol _.1 _-

N

C)o! 000

o

0o) 0 0'

o

*

9

C)

O

0

coo 0

n0

Emor -' o

t~~~~~L ° Of O) 0 C) 0 r00 * 0 I *m

4D InSS r-

Ol

N N

0 o o o 0000000 *

.

*

.

.

*

.

.

I3n In 0

4.0

o o n0 00

)* N

4 an a'

.

.

0

o N

4'

00

N 0 r N r- a'nr '0-In 'oo- N 0 In Ns 00 N N r 00 *

.

.

.

.

*.

.

,

.

.

ooC

N 0 N )C o

0 --Or 0o0

I'O O0 ID m

D 0 .S 09 C0 U* N

10 N

In '-0'

0r

,

oo

n

w 09

n0 : U- t;O O

00000 00 \0O tn ) 0 o l0N n 'oO Lo NoI 4 cr Lo n n n 40° 4 0 0zop °a C"'cN oC'- 0o> * ,,,J7 * 06 I D *4'0o~ooO~In~InN'.00Oo00oOO N0 0 *t No 000000 °)0 ::IC) Z )001) In0N 0 N0 5 C :t f0 C' L 0 - 0 .0 0 N0 LI 0 0000 0 o) o oN0 In rN 0 o 0 o Nr 0co r n c o o0 o 0 0 , *. . . . . . * . . . . . . . , . . . . . . .* O°O O OOO _ _ 00 0 0 0 0 °o 00 °00 °~ '0- °0 N 4 N re ,-S~~ r In 0 n * s * I* * '-_-'-N N 40o 0000000.crq)n 0 InD '00 N 000000000000O0O00Cn N 0 0000000

I

00 O CN 0 O No IC . 0 0 0 0 o 'N( o rI 0 O r ' tr O31 - N u- o N O r--.

00400

0 0N

zr C%O uS I-*?3to* -9 ew* : T 0'JnC* n O

*

I

'- .. N

Lo 0 N N ONCm m O N n 000 a° n ° o N o 0 4 r- 0 a.0 00 0 N 0 n o ° l o N q0 0 n f O In _ON tM O en LO ° O a, o C> O' OD ° O °) O Xx) vO

0

* 0 n Do C) N o N , 2 -rah X -Nx3nNoo m00 0 0 C) 0 _0 4 '.0 0 0 a0 N Ln 0 N ' (" r. C0 >0 0 ** col g.*n C)o f-N ** '0 N* Lro N0 Ln aN) --

°

4

-

0- Lo) IC) 0 0 r N r0

.0 - 0 0 '--' 0 0 0 .e0 10 IC 4 Ln 0 N _ N n v- In n - L

4

jj,,jj *~~ 400o O 00 0 -t0 O~~~

In Lt

n :T oD '0 0o 0 0 C) 0 C>0 0 0I-)0D0 00 co Nz N Nt 0 o a 0) _ o )C- C o rn 0 0N o~ 0o C) o 0 0- 0- 0o 0o c -0 -1oo0ooo~uro Io n .0 n '.0 N aooooOo4

c- ff '

a 'o *

* .

Ul

'-

u.0 N N N In uN 4 I >N .

,

.

*~~~~~~~~~~~r~

|

.

*

N N

c00 I

In.

0

0*

*

'-

O

(o 0 co N'C

.

l

-222r-

0% 0

c-

N M -) u-L,,,c r-

o a,

NS r'n ::7t LA " r,4

o v

p,

0,04 c4 (o4 4q 04 nc4 c, V: CL4 4 C4q 04 0M a . 004 Oq4 0404 M

.

z

zX

Z

z

z

H11 HHHH I H

H " H HI

ri

m

N N N Ni 00c: E-4 H ECwmm CO04404 z z ; z HH 4HH4 - H H-

04Cq-0 N

: ;-

H H H-

0

U)

U'~

u5

r-

-

r-

e . CO 0 ..

O W0

0 0 %0

ooO 0

rn

N 0 0

_,-

o

ro Co

09 I C)

00

U 0o

co

la

'O

*

C .H

U

-

0 co ko CS

ID O

0

4J

0 0

'-i H H H

O 0

,0

·' jL 0

rl-*%D-

H 04 o

Ln

C4

N

'1% -

04 C

0 O

O

0

CO 0

0

0 0 CO

,C~~~~~iC ^00 N

[-4 U, co a I NO 9-

OLA n

O

C:~0

00L0

0 S1

I

0

0

0 0 H w 00

0! 'S· D% 0 o r- t, r-

. L N .n9

0 LA

M co C0

:I

r

0 .*6

0. 0 or

co LA

V-

~

rA ZN'

00l

J)

0" CO'" @

0r * J0 I~O4P

ILA N 1-

L 0 9-

o 0%1

t .4

00

o

~

00

~

Eq Cmc o E-4Coo-e

0

'.O

00 '

q4

~~ 0%

0

:~p r

0 0

1 ,"o o 4:r =Cm F300

0 0 C LA

~O

oJ U M VM .

*

Uj Oo 00

O '.

CO4:

rs

rJo

>· D 0O r,

.

n

U) H u

o

oo- m

o,

o

· ~e *,

'

0

o Co eC 0 0 n

0 0

0 0

-223Ln)

0000 0000

DOn

O0 00 Z ;4 HZ :

;4 ;

.H H H : er < Y r- W- F- 2

FH

"

~-

--r u) ID

£ r- --;I_ z

fl

O C ?t

Z

¢t 2s:


Z

0.

,~ ·. D. OO := .n O . -' 0,

W Z Q D %a oy -C ¢ n

UH 6 W-r44 ," %

_

_ -

C:

, F. oo,< -cO

,,

~:~:

-C 4 U

4 a,

3 ~ :O

U . ^%,u

Eqr HO

XE

· O~ Hr zu~ *n
-4 >_

-I

:r; ZnV ~ ,:~ :E. , :a; ·-[-'~' :,,4 H 'n M ' · M' , Fq ·

~~~ U U. _n

r1 cZ L.).D

co 710 -O 4 4 r4 CN4 O - -

o Z 7:

2

,4 < -4 ::F- :;_-V

p

U w;

0

1.4 -

H

4 -1 J:- :- w-

a~ U U

I I:U

U -

- ('fn

C7) C) C:) ID C) 0"-,3 o

, -- V0-4 1-

4

.C: -, -. 2w- VE 1,-

.

"~

r- C-- M O ,) c) 0 C--

O O C) C) C) O O 'D 0 O

Z E4

-

::l : , · U---.N~ U') Nu_ · U '

C'4 U · '. 0-~r. U,:M '4 L-.

n PL, M;XzZ

h

.Z^ -

0 :: t

0.

> O. x - 14e

z J OO0 u ux

;O

f ,

nl

C3

-S

:C)

=

fiZw

;rn

Ln OO

;

2c

fr

=

De

o

O

HqU FgU UZiU

Z E M

U C:E..Z 0000az0 U HUUUU'UU v. Cu N

C

^

-224 r q9 r-1 rn i tf. a) I fr, y, - '- ' r" .-r ( r r - 'I r"n (i h c o, r t t ',I" r 0 Cy , - * c ;I ci r1 t t -1 1- I t- r- rf) ',D , C-)C' i 00 c) (') tn 3 U) 1 I2) L'' ) ¢' C)l (.' ) oi C) c C) C c) C) C u. C) 0 O 0 ., i C) () C) C ) C> C) C) 0 0 Oo o (2) '.O O CD O .~ O, r) OO -: C C) C) C' C )I 7) ) ,O C)

;-4 H H H H H W tH ,- ¢~ >; - t 4 ::~F

;;r

>t

H 4

H H H H ¢ zC c
.

X- ZF 1:

Z4 ;z z 4F H - k- H ;H, ;- Z Z ; H H H H H HQ H H HQ H H H tv4 H H-- H.< a: -I -! -l
: >,

C Z

H

H

H

4 H

::

0W

DI 0

E-4 04

a 0

CC, E-4

04 0

-4 m

Z ·'CI4' 0 "": ::Eq 0 ZZ U

-.. 0--I · , '0.O0 9U '

q'v0YU 04l * .H CQ 4 bU 0c ,C on p r

DE C)

U -r _

N

9 -

'

|

U

C _, e __999. ) ' N 9 -H90 -I 9H-0H. _tH 0 __ 7 04 - - _o - - -o -

H . H H H'q .-'N N 0I_s C~ Cv -,--,-,%-- .. SX SC

%. E U

Ns ',, ~%, E4 % "~

rN O CN.-4

... ,'..

i - -

·

t,"

- ,"-

· 1- 11

,

-· ·- -I- m . t Iftb 1l U %9: .,,'e III-I4~I ' ZA dUH ,H 0H 1 I 1 . ,I- 'CI L) at U'-W U N U ' ~, X : 1_ II1111 11 (H II ~d ~- H HII H F _t ._,.*.-_.. LH z-'a'

O O E 0O' : '11-H 11 :w-=OOO 11 CiU N-N 3F-11 H 1-4 H = NK E

04

E-4 0 Q

'-

0000000 ) a5 p E- E4 -r. ,-% o3~:o O o O ::o o~'

z z Cz 0000000M mp3'= EW:Z 3Q 0 U

O U

O U

O U

z

in tn

U

'

-

Ir

-%-:

ir Ln

---

S% --

t

--

:

Fc;

4 a;b

C

.4 a

U

U U U U - - - - -

0404

-

0-'-P U Un in l LA L

q

H H s- ----

-P

-

r- rW LA O r- r

L I

3: CD ¢0 rX M =: m qn -- CD 0-C CQ .C ¢~ , O 0 o cq al w w w aj U U U w; 25 m; A M, X ;

-4 - -U -

:s. L

n

U

"--u-"- ....

H H

4Uo

U--

U

-

N N (N N ( N N N N N N N '4 :1* *: :1 r : b t : LA f A U A L A L A L A 1n ul IL) n J nL) n Jn U-) n U')'

~ ~ ~

< ¢4 ¢ "J 'iw cr cM;3 Cd

-

U

A: d-< .. 4 -< ¢< Ca wwwawaw lXXXX sW ww 3 = = W; "t Cs; = % ¢; = =; a

-225ID r- co 0' 0 .- ('m :? n to r- r- fl- r- rl-r- r- cc cc m CO c a 0

C> O 0 00

o 0o

C

0o

o> o o

Zc c Z Z ;2. . H H--H- H H H H H H cc H ¢ c FH 0 C >_ OOO:: HHH

:

:E:

H

O,

a'

o

o000

FH H H C_

H H HIHF H SO¢ OO

H H H HQ H OO H H OO OOq~:-_ 2-~;OOOOOOOOOt F: E:. S z X

X:E E:

:

, n oZ rca 0D0C 00

C 000

cCD Z

Z ;Z H

H

O

OZ

=-n cco7s 0

-O

C,

C 0 0 0 0

cC;

Z

N in > 1 C

cr C)

cr a

o

cc FH H '0

rj o~

C) 0c Cc

oc

C)

U

_ k COqv (i .. ., ,.~ ~ ... cc, ., _..D 1 .rn -.,.' vD q r.. % · r~--~ % , ' ,, ',' t4 0,.% , ,",' n , ' ., Ic ~I~D "',~0, .. CY ,,~'CO, "'- , -, · I r--- ,'O,· ,,1 r- ,,l..~9fl,, %D % 9-~~~ II%O,-00 _ -. II r- -',' tE coDN II4 H IIlH i-w H IIt-4 II 11 II~- I %-' I I I % 111 % % 11 11 H HH H 11 H dHHUFl-CY 0ot ----.'N. " N N - - - * -* - - % _- - - -I4 ir' .-.

~ ~

'-

T

\

N

~~~~------------------- - - - -1 -9

U

-

-o 1f -

U JU =~U UW.~~W

% Z

U U' ; UNJ°U N

U F H

E WH HE'. H E-H H H

- -S t-

- -

Nw V

%

v

"

H 1-4

FH FH H

w~~~~~~~~~6 4 FQ 9 F

-

%'

_ CN N N

NN

t) O

NCCSCSNNF

" U, r4 E

O U - U N< N

0 (N N N U

)

N 00CS

CS

#-4

H

W W W .4

wW W

-XN

U _u3 U U UU_ U IuUUU U U u1U~ ~-~_ _U _U _ _U _ _U _UU_ U _ U _ _U _ UU _ _U _U _ U_ UU _ _ uu1 _ _ VU-U _UU U

n inin in in I in in in in in in in in N :NF,"t t N A N N.:N aJ:N : : a 3: f:: n a: i a aj a a a .
X" -,::

~F.

9

_-

000O00

C

Z

¢ :m

f"

(-r'L N, -(N ( c, ,c4

H

" < 't E: S,,:17

a

:

x-

kF.

c0 0-o- -N 1n Ln - N -, 1 l n n r 9 9- _0 0 00 0 00 :< Z :7 : ZH H H4 H- H H4 ;j H H -

-t

< >: 3-;

< X

. Z

c


0

~

.

) 0L

.

t

.

.

.

,

.

t

o

~ LA 0

_

C

M

, *~~~U-

rt.)'' (4 F

aN 1

l 1

OC:4

"

:

E-4Q-

4

Zo

iZ Ul

i:d iZ-X,

HHHHH

-' 0 0 *~~~~~~~~~~~~~~~~' N tA X c NW PL P. 0 ' aN, :rCn )e tO N NN N EI E N*' z- > > A 0uN N

* _ ** ,* *

0 "

f

E-4 ]_or- b0 N U No N

g < Q

c

(L4 W

H

H

n

V

0

)c

XX X;4 XXN

a: Cao

u~n a 0 NNN:

c:;A; :;;x

< UvPE -t

r ~

r

r

u-r u < cu: ;

;

~ ¢u u,%u N

C

zi

A;

a

-228rN a' co co

,

_.

') "a n C0

~ ¥

,- ,- .-

o00o0

00

z

z H

H Hi H1

v0

a

0>o

O '

,..

.

,00 o

- 1 CT) '

-

Ln f

C a'

w-

*. -

'

(2000

C

c) C z X ' H H H H H H H9 H H

*H H H E t;

' C

'

q. z

n~r: z:

t

Z-

X

z

z

Z

q- '

J

t a' NO rC ' (N ( rt a' a 0 n O O0o O oo CN N (N 04 (N C.I ( ( 4 0N 'N ' l .N Cf4 r'. " ¢ r oa 0 o 0 00 o cC o oo r ') o0 z X Z Z Z H H H H H H H H H H 1-4 H H

' r)

0 ;

H

N

rn

r0

t 4

^

>

>

4

S

>

u~~~~~~~~~~~~~

0~~~~~~~~~~~~~~ ;U~~~~~~~~~~~~~~~~~~~~~~~~~q

74 ,< 4 U)

u

E

U %0 U O

In U

. IU

04 'U _

_:r

m I. P4 U

o U P" 4

,

O. *gI 11,., _

* H~ IE'1

X

>

E-4uUa 1' ^

H

W

E-~ :;4 O .e t H ; W :n4 9

~ ~

D. C,

%

XZ

-

H

)1

>Ft

>

C)

v

E..

*

cr

14

4 ~~ ~ ~~~~~~~~~~... 0 E-4C . * _ @XO ~~~4 E-4 0H

,9~~~~ HE-. : :~ I : Cq.4 9 C4 .4 "-a% :_ -Ml..C e0 OH E-iaq ua4ax % H ow E r.4 HH

0

>""

PL4vO InP1xHuf Enu W'

_ o,.EC H Z i

Ec4"*'I D

0 *_

UlV 0 a

%Eo --

O

~

_

Cd Im

I

C-t

C

D0I 4

:

z

E H

H+


-t z*o , ~ 0/ C IIx0Z~>4 .4 U H 0'3 ", rE-4G"

( -C04< u

"

be4W PL, I

=0

-229r-. W~. O v- -

- N, m N N C' N N N N N N 0 0 C O Z &ZZ ;:~: z H H H .H -4 H H -;z
a4 : E-4 H z

3N W mx 3q

l :

_W 04 u

U)

:

.C

.4 ) CO n4 ' Z C. COf4 C 04A-

_-"

UHH

a-

fr-1;

E-4a4*

or4

E-4EdH

c

+ n H NQH, 0 4H 4a A;~ + K H N~* 4. 0 H * oN0 ca U U U~

!

r -C)2' o Z. . 4 v.D Ln ¢ HEU)

P

U ~ O~4 O :: oO'Z:UH9 OE4H

H 40

P-

(o

4. 0

W~f,-, E4

z'- 0 + 4 L,:

Qu E4 t z U U u :

a i

~

U ** UU.* zUU Q~: :II : II I I II IIUII '-"-U 1 II II :'- I .w t -1' ii -'-"'"I :3 r II II _ 0 0 4 1 aE -. * II 9F00 9z _ cOwo P: 0 r. rv A; -z a, E4 0.0 O , v) D,. u E-4 II U * a It O40 II HU^a -C H 3 u 0U NUV O1:v U}H U o Em m-4= *4ZC Cl u.4 C\d' C

~

C O DC 4 U : VUZ EV7

[N::cr .3 U Q

*fiUUU

;*U

c

II

'

II "

II " U II

9

H

C

P4 [-1E: * H ¢ 4 uu XH

u

-230.- Ln Q n .cm o r- coOO~ (:m e Ln C 0 f0 tn I LA t- D ',Dr0-- c r_~ v oc,4 o L L L C4 N o ", C4 R 4No4 r N N N N N N N rq N4 r cq cN N4 N q r4 0> c CD 0 0 0D OCO D, cl CD 0o 0-- 0 0. 0 O) O C- 0, 0

m

Ln u N 2

Z

H

z

Zz

H

X- I,

Z . H H HH -e A

1 " i

H

F"

H

H


E

C C,; U

< n M -H < - U' ZU

HLA4 VI aJLA5 -d0: LA O 43fl 0- 4

-

E-4

L *E-s4~ -t L ; -I **1 _l OO4cr: I1bOco H F4 0 IH H I H I W A i> FS H EA O

~ wrnUa-

'~ ~ ,, E- f4U11 l)C :n%WC 1 4 CZ

O u "0 C4 W Z LAU L VA

0 O ooO0

0

SU

V

O{

a5

|

-4 * VU W

~.1*r

*A E-4 0 W LA Z 0-

-'~d

LA>'4 :z

~

-Xv w

*WLn.;=co 0

4

Hn

*:X

,

o

~

~U

U II O :!

-

0Lxrl_i 3S. US. U~ H; a Q

U E-4

U) -

* C U

HZ-4 x, 11 o'l 4H C4 41l >41r < n X

,

N

4 M _-4 ->

D9rL

*

LA % -- E-4H I * _ :Z-4_0

-:·

m

>E

0

u5 g-4 co * O0 ·' m *.SHN

N'4r40

-F

N

wx , t3 q

C 0

k

-

X C-

>4No

0

--

:t

rt

3:

W 04

O

zHJ 0-,4

;'" ( -4

--

O

-

C-4 "o5

o

H "= F,4,

-C

H0

N, 0

'C

*-)
°4V

0 Z-4 S; S

- >;

H

:

'

0

H4 H

H

H H H H

SN

N

fn

r-) M a o m rl

tm Xn

rn M 00

r

E C-,

I i

I 11

X

0

as

0

O

J

J

N

1 Z

C

-

I;

0

; HW

N,',Z

:I

rn C:lC

14 O

0J Ell * 0~~ 11 *HE 0ZS1 WaA iW

tN bt;

H W >H1,-H

L)&Q04 V = -z cnum Ca Z4Ofr:H E-: 1:s NrH*.N >4

>4 \

% 1 XO

-

v5

*

0-4 E

b

>

~~~>

4

oz

n

>4 N.z Ln ,-Hn u

4,

* _i

H4 0:3 E'4 :n al D , .. -4 o

4

N

0

>E4 0

H

O

N N 0'-'I:["1'U . E4l i rI.4 U 000000H X.g-~ LOE4MN1 644-

X 4

~q

u) ~ cw

*0,/(, u

,

%Nw

U

C

~ C>

,-

0I 03

_9 53 ."-

c,- x

,. NUE-4HIf 4F z u II N 11 W. l'1 ,II

. H

C) :s

0 U

N

.1

H

e

i

II 1 V) mx

Z4.s:

0

- _

H H C:C UH z'->u H v)

Q E-4~ U ZE

c

. U--

- WNI

C)u *4 -

aV)

0

~~~~, N~~L :

>4H : OH

>

'o

N

" * E-

f) * 4A Z>40a ::D0 , 4 fS O lo

U

-

Z

ll

EH

XX

N

0I

H IX

oO

I

0 0P u 11 'U 4 , q~~~~~~~~~~~.-

H

°C)

X

. N

t9 O4

LA

U,

C> > U 41

0. El nu

*n

'-

U

>4

tl

-

0

4 X " *. .C O'n Z-"4 0 IIC~) · -4

:

cr1

HN= U

W4 CE4k :'IU) N : UUQCf C 4 I0 I H ::~ 0 : I I* ,, ;4 1P '0 ; O'HA -,. U:5 NF2: Hv zo O >>44xH

WH

W

1.0 F4 EN,H E-40 'o HH NH QH4z~a

U)NNXieJ 11O E-4 HE

M

N U) U) =

Z

IM

-C)X U U: H N O =

P

0

o4 OH Z:

4

E

uH , E-

- H 0000000 -4 % = P4 A b L) 3: 4 HW 4 n oo4 X .X \N 0 N I>4 :3 ;l 0 t [t. N qm,,m, H, {'3.I H 4 O 0 151 0O p'O UX O ;: 1j 4O 0) 0 eN < H : NE-4bH ' Ho>~ Dr4 H~ 40 [zI-,N:3:::: : F aQn X ,A O:ZU N 30 : 0HNU o H N: H F: H Ni FHfH _14 A N _C .1C)O O O O o o F4QH*-;E4 En 'E-'OE' H 4NU OH

o

~

-

w

-oa

w-

-

4

rP -4

_

4

:3:3

14 ;SX

a; :3 z; Z

>s v:ff4 >N 4 Ls1, ) H: x - Hf -4 E4 E-4EX~>4 0 Es N 4FC H X Nc H F: *4 N :3:3 N 0 44 >* E :; ¢EW o O F4 003; E-0 U_ ' _ _ , 4H' O N. i:]H0. . Nw

N

'- N

M-I

a,

_

M

:tun

r

. _

o.~

4 LA

%O C'0

o

0

~- ~- ~~~~9

0

'

w

i

'.0

- c oo

a-

N

U) nD

n

- OD C)

-232Os o c ' uL co

c-

D : o

-- -1 -r :: -t -Y (N CN (N (N M m ' ri) M el) 7rtn 1 t =emn m n ,m >r rn r (1 r) ) rn m n m rn fn rn n -) m C 0 O O C) C )CO) cOOC C) C C C) O)c:) cO 0 C O O) Q) '_' ;

Z

4

z

H-4H 4- "H 4

t;

%i

4-4 H

Zw.

.: -r -r, < -- -e c;, -C - 5C'2E8 Y 7 - - !:

% f-4>4

z

z ;z

;._ i,; ;4

HHH H H H

A '-- "

H

>t

;

H r-J H4 HW _1

'I < -., :-- : >' > X

-

G o4 -

U-

-4 i

H i U

C)C 0 0

,, L II

U

U

X

t) U U1

' U E-

>

H

N

U)

Z

N H LI, 04 CZ .4 U -4 I

H 0X~~- .I4 0, Og - :~ .. o1:~ :~t4 -I 0W0 0 ,,,L 04 ' ' 1W4 0>4: o CaH * - " C I c

>4 N, 4_ >

04~I

0 m1 t

z E4U H

aa

i UfH o co C n'0 :3 W W; 0M0O

0 z H OEI * *H

.C) 0M. >4

COQi4>4

D >44

Ln H N 4~

O .-4

%a

Or o PA

_I I

%.. ;4 ^ W.

G4

4 X

-4-.

U

z

1)

U,

C4 rf

* z

I OD

4 X

~~~UNO

_

4F

£0 0I

0 II

-4 L:)

0

-0

Ur- + N, H

0 1 ~-U H (--'4)-:

'-

.- n

o; a

a n C(XN O Q

* ~u U * u C) U

N.

_I I m_

)i -U,_ W

40

E- iv[

0O c c7' a5U iC tO

%I.E

CQ I-v

Q E ¢ r-j U V) -t- : UI (.)(-404

H~ _ _,

U 0V ;j...U .4 U' 0 II U~ G-E-4 r 10 II I1 z 11 II -i 9-II -4 04 ,.3 I.I C, II -4..' ¢ rtnrj 'i CI4 " tl ,ri z O Ze m ·- .44 N :,~ U . 4

U

N LA el

LA

(uI

n Ul

-C

U

S::

-233-

-'N

e

ID N- 5

' o

N

T

r

N L N

m

r- r, r- r- r, r r- (I

,O

,, In 0 0 C-, 0 0000000C000 Z ;,, Z- , z m Z ;C Z ;4 " H H " Ht H H H H H H 25 H ¢ < ',: a: .S 't r: V! VC < C:Y, > >: : x?C ;C >nI-kCE : >HHH 0000

Z

H r

0

04 * N

rNI

*

p

~I H u~~~~~-

_4 EF +

1

z

~~ ~CZ ~~~~~~~~~~~~~~~~.. i

-I ~ ~E D -4~~1h 3.)'-~~~ :::.l 3 1W. '~ 1 t Z O~~i H.3 0 H *) 4 ; Z4~fO -00X ; q 5 (N 0 1 -C 4 N . 0J 1 o4 H U

NU) =

rJ

14 OW 04

UI

U

*

4 **

4

04

S

H

rL4 -. fA CN LO NX4

'

E

~00

UN11

_ QO

~E-4

(N CA 04

0

4n

U

:t:H4

U)

a z 5* )%UE-

) U +- OM0 ., ,C U 4 -UL)4L Q U) Q:4 U 0 MA 1 7 U t U 1 4Z * Z

o~m H

.

'O I

w-CUUE-4:W==0 x U F" o a4 jn Mni

rU0z

1-4-> II '"Q If-II :3.0

C -,:-a

3F

CT:4 ~ '

_ m.,o -,'

O

C) _. '

I

-235r.- X 0 0t - N o" m L -l A C0 0 ,o LA L LALA L D r r rL Ln L o o ooZ 000000000000000 o ) o CO o O o o o 0000000 o o o o o ooo 000O0' 000 L0000-) U) Ln C tL 0 000000 H H Eo C, o 0000E-E000 OE , 4 C. LA L LA L o . . uL LA LA L,.'A u L v, U1 'l 'U) LA LA L' L1 A

4 m .uLn 0 r- Cc 0 0 r- O CO,LA 0 Ln 2 Ln , y :1 lt :? :c: :r M n (1 e' o o o o, o a a en o> a, o> o 000 0C 00000 00 00 0 E4

E-4 H

E-i E-

E- E-

H

E-

E-

H

0

0

00000000000000 03 Ln U3

LA m, 0

1 0

Li

LA

:r :1' Ul LAu-lAD

C9 0

U 4 U OC U H 0

H

U% 4 0 Ln-

O' 09-

4 U

,-

u

90

H

0

'

0 o 0

LA

L




.-

rn

t(

3:T LA "D 0' o o o

0.0 0' 0'o 0' 0' o co D Z CD o o 0000000000O O C 0000000000O P H E- E H E H E H

0 00 000 -4 O 000

IC =I n M.

0' 0 C

b

0000OC

E4

0000OO

V)U) U) U1 .. ..

') U

u

Um

' (" l '

lb m, 0

0~~~~

cr1

0~~~~~~~ E-4~~~~~~~Z

.-

04 ii

--.II PU Ez. (Nil III4 I P -.-5 zo LA~_ C~ 0,~'~ q-* ; ~

A O LC,-

0 OHt N

9-0

-0 0

H

00 UN11 g 14E !,) tn n

_W _

_

N V0

F H E)

°-

o.

. I-I 11 U "11 1 A; LV- cyL H -1 H _i _I II 0.0 H aV'l - - ell _- r 1 O-¢

U) ¢-

-
-

~

o - -o-

0

a 0

C> o

o

No

ooo -o

oN N

o

C

Ln o r

co Q' o

oNN N N N 0 C o C

a0

C:

o

3 z:2 -z ; z ;r_ ;4 z :4 Z w4 " w ; -4 "z LO w P4 "4 "4 D " H F, EH E4 E E F H FH El X

X

cq vr'

-

0 '. 0

C) m 0

e m

o

>

C0 0

00

C) o

, e:~_

o

o

a; :;- :Iz

" "4 W W " EH H H -i H>

X

.d

X

>

>

.

X

-_

H

sc -

4 "4

z

0 U H

=. 0

Ct;

~~~~~~t

f4

_

!H

_~~~~

H

E U% N

tt o

#~

~V)

E

*

"'--

~~~~~~~~c, 4

bt.4~

_ J

it

O ,~ e-~

· I I

~

-, -I-11

C

_

0

,-0t ·- 0

~

"4

F

~a

0

_t

U1

_

P:,,

'0 A

H

0 O%9 .

U'

-

O

No ::D -

0 H -

0v U -E-4 g_

U _

;, ~E-4

c4,

I

-ts

.

94 10o o 0 :1. 0, (.4 J Q0U 4.. H U ; 4: : 4

- LI ^ - ; cZC4 ; i Hz * *

-O I

Z Z H 0 E:

H H H> Q E "'

> > > i I,*c - - I -i - i - II-

Ci; WO ZO O Z' < ZC - Nz z- N _¢ N Oti : 0 0 HH E-4 '' -___ '

sn

uE u U 1

~-4

w .. E

u v: .U

JE

S

¢*

... u

e'HoN IF

4-

'0W

OIHR O OI

En

:.P

VY

E

U"OV 4 U-

a'

CI

H4 4~ ~o

E-4< 4

N \~U)

b. 0 I-4

I

* · .-~

, ::.

44 D,

U1

tn an M .1 -. > d

u - >q >s>4

P -O

*

II i 4~~

O

%q

-

*

C *

-

it

)

11 if

N

_

4 to I14U4

< r _

;Q 0 _0

I> )o ;I1

j H

H EH

-238-(.l,m 0~ c3 , r ? :: , .? .3C:J u 'n Lr un U' ri rn n o ,--t O C O 0 a00 00 O 0 ) 0 0 0 C) 0 0 C) "e z Z, z Z " z, :CII 5; A W W W k1 (W H r,2 [-4 F t4 ( H - E-4H H H E--F E E E-- E - ES X X4 xX X X X X X K K >0 o Z O c= IC£

0 -~-,.l:. O x -- 0

,4

-

"'0;4 .ou01'oI./ zV}'-, ~0 H4 -H 'V , ~ ,-,: : :> :

:3 En,; z

H

o

I :

o' ,'- C) U II tI

0r~'

'

O0

U 0 0*.Ca

H

-o

,,

0 I

>

C"

-


, 00 ,

v-


1- *=w "N ' , e- .

i C:4

-o ,-

1

\-Z

r-

4tl

I_

I! .

4

CD

v-

13~ C-. I! C II C) U :-T * ST H' H U H H HT U -T

r:4 t-

C'> H

HQ4 }~

U*C o

I,"

_OO CO U O1-

U

~0toX

I "E::· ' _5* r-C7

rH U. -4 i 0H . Cs. ,o0° '"c:, o4 *

II J4 , . U> r H

--0n O O

o4' E

C

>

II

~~~~S-0

E:O

O

C)

'4P--, , X'' :... - : 0 gO~

"'~D '(:~[ , O> .4 * OK ~

pv C40 H UE4 O ~. ... ~-' '=e -4

'

O

I

c:3=. II r e3-~4 : ::A,,OeI .. %9-|

_T H4 o.1'' :_ -H E.

,~

O

" > ,,. 0 ?' H$H . Qr H~~~~~~~~~,.1 ~ c : ., ~e %: (r 4 ,.440

,-

WC

n

_T

0~~~

k-4

M'

C) e~~~~~~~~~~~~ -

:

. -

~X

^

H .. k.4

Un

(N

--

e

, o 0-,4 QoU)

I

II1 0 X4 41

LM N

(N

~

* 'g ::,rn-5400

N < C4

o4

ro r-

_ 4. "

L4

-

fl~

irD r- x coe0 v SJ s r- r- r- - r-rr- cccowm CDo00Co 000000 C 00 O Oo 0000o0 U3'

Z ,

z z

u C)d U =UU U> 0 0 a 0

r~-ax o

Z'xc

-243-

o

N rn ,Y

coc02

°00000 C f0 0000000

o 0NI

- z z:2 Z 2z UuU-UU=UUU-UUUU

a uuL)V uu

u

D

U

D

(N

'DD

Du Uu

z

E-4

o0

O 04

Ca zt %4

0 _< a-4 * H: < -_0

O

o

.

H

~co

om

_ C-;

~-

_t Ln H .n oNr oE

3c-+

U . 0 It U :3 EI It - ._~ o" Ji v- II II -S 11 E-H

H' r) C M;IR'64 a = 0 :3 Z : 0 II C) r Z .z: a OK Q = F- Q = o4 oI = 11

~

N

C)

11

S

H

IN a ,.-, *

e11 . =

z

OH00000HE4

N a

0 ZZ

Zv-

N

9H f4

t p1

t4H

,.~ .: 4

=

:Oa Y a

=

tO

N 0 aUY ~4

u4:?

-245r- co Cr 0 0000 0000 oC)

o C)o

Ooc0

0000 UU

XI ' - 02 'I o r N m _Lt X M tn Q v .N -P -i -- -- -: ? -t -- ZT Ln n 0 Ln n n oC) CD o o (:: o D o o C> C o ) oCo C o o 0 o o C) n ooooooco-o 4 4 " -- -; 00000000000 4 -

COO oOoO00 00O0000O0

C

c

u o o ,

n

Z I-

C

aN 0

- N

0

o. O o o- o CD 4 ,4 4

oooooooo oo u0U0000000

UUUUU000000000 000000000l~

U

r

0000 0000

o> o

OoOo UUUD D D O oO) ( 0000 1 Uq u

O) U

C o

C)o

P- 4 - #-4 -1 00000bod00

~

oocooooo 000000000 UCOO 00OO UvUUU~

c, 0 4

t

( N

[~ H,c~ * E-'O

(-.

HHE I

*

*

H~:3 :3

:. :3.@

Ul

EO

0

H Ewo -' 4.

Y

c

_0

0 +("4 4. -+ -~ 0

E4 _

=:

-4*

l< * Oa

--4 9-

0

l"4 ,di SO[-I

- Cg -a4 Nq

osO H

~IU 0

(N :3Vw

En

0

N E

'-m o

:!'- 1H

o:2

Eq H

(",4 ,,,

_

'--4C~ EN') -N 4

C

>

>/

L a-, inx 000 ;: -) L4

s

24= 0 00 C) al P

%

~

z

04

0 aL

0

N 14 E-4C" ~ Z U

: Oz H

H

~U~~U40~ : i :

z .04 :a:

-: ~ : ~m E- -

m

pZ l4

C a ri :

0ac:

04

2C 9

4

c) o o CD C HE- H E H H o > >>4 >4 N 0 0 c., c: m

>

9

9..LI9

: >

(N ( ? Ldn vD IN X XI'mn m rl '° ° , C o o

N N N

z


Z E, :w" Q ' :H CZ o

U u EE

uVo :::~ O; ,~:E-.F4 O~ 3uP S O' U I U O O4 U .4 O r- V) X O; x OU -4 Ut

, U L0 I

9- Q,

_,

L 0 ", -. PQ.4H 0 E4 'J t n

E-4 O -0 -fiU %.4

a

%L%U

F4

9.L E-

~ oHs ~0-o--C-)- C) LI -

04 NO

D b I O °t)Vt)~~~~ U U-

Z

U)U0 U 0

Z

E-

EU

0M :: :O O-V C u

E:

rU

U UH x

=0H0 4

zZ;u n 1: 04

F O

CO

Z

E

U U Cw C= Ct4 Dw _:onm

:

rL4

t)

crb3z.

>

O1 -O O%

-.. u

U : [

~-

~-

O

U

9U *

E

* C

9.

H

,

OCl N9.:

tn :w CL4 0 U% U4 C-%fU %f4,

0

_H +

U . UEX

G

U) H

I

9 uU ' 9 >9 CL4 =t ¢ . g'r- C,, (O%C) 0n 4 Z Z XC zr~. m14 2O C x 9%

.

cu:

i,

C1~0'-04~:X0 H

C~ ,

H.~ ~1 O H

pkt a; C) Cl -4 QU F r-4S 4 %

n

:z:

UU

z 0r _.CUU

- 9.>4

Uo

U U U. UU '-JoUprz~ -

CL;

04 C4

0

~--

*

0i

H

0> a00 N f ¢-0P.i :

U) 0>4

N N

>4 >. >4 >4 > 0 X 0Q;

C l a) cl 1z

F'UAn ~

W U4 U CyLI-

U

~-

tn

N

~

,,'"U iE·-L .~" I 00 4 U

_

N

C)9. 0-

0

Z9.a ,. c 9. := 0 - .

N

9.9.

Ln

z00 U ~ O U O 02E.,-: U a

- N

z

z i

) E)U:

0 S

r)cn

z

U4,C

E H

' -

>4 >4 >4 > > C C0 04 i 04

C2 CZ1c C)a n

.-, O

9

-

,oooooooocooooooo ! C()C) 0 CD00C 00 oDC 0 00 0 000 C 0 o 0 o 0 0 cC' C> 0C CD H H H OE ' E E H H E E P H

E-4 OO- H E>4 >4 > >4 >4 >4 > > >x >4>4 Co C; X4 ci

-247n .o N m m 0 - N

T

U' U U

~0UH %raDH U H

Z O t V et %

P

_

E-

% 3c LP C 4 p. ^4uUV

-

N

;HLIHQU U U)HH Ott) 0 '*. R3 o.r-fiU a, NN U) *. C) No'0EE0U U U 24 J -4 U w4 0 (N @ . ; '-4 C:) NNH t z U U P Mk % Z U1 aM 9f1 % -: t V '- O' DE 4 M: E4 M:U ID co I r_ E H U rs LiV N0.4NN.H EA) 9N Q tf V 00 -CMU Oj :: C) n 0X O E-- :s E- r0 W>I r LIn E ur -Y0(Dx z 24 m C r: -4v- L =UU 3E X 9. E-4 -C4 cQHH, : HH U0 -cJ . a, %: el E o4 C' . ,H

a! U

0U 4

:) z- CL H -9.04

XU ' ZC 2:DU Eo1 YQ 3[ U E: IcUz;> -v-3 t Q DNt Un

V U

o::: tn9 mO

0

0

W

0

0o~~~~ 04 U

0

N0 0

-4w=

'-

N

tl

;

H:>

Cl4 a

0 U 0 D

aJ

X P

04 C) ; wM 00

C4

*-0 aX

z H

' P Eq 'F4 9 E X EzZ4~H Z U E- :=

aC C UD U ) tn5; (m O O Fq

H ra W

I- C '-'U) I: W _ PLI

aL

0 *0 a.- 0E - UD

U

III

-248b

co

r( co CO 0' {-o

N fn -t U)

0o- .

L

Z

000000O 0500000 E E-4E-4

O °) O~ ° 0C ° O

H H- E- H P- EA F

HiH-

4>4 >4 >4

>4

>4

>. >

>

n 0 0

ca0

C N uL L 000

Ur

C:, O 0000 C) - 0 Z)0

>4 >4>

0C n 0 0 n

H

xD rC 0 t-i n LA LA ko 'o Q- 0O0o 0 00

ti

H

>4

E

000

H

i 9:

0

CZ1

H E

4>; >>

c-C)

00

o0

H

>4>4->4

a! C' 0 0 0 X 0 c; 0 a, r- 9:1 CZ -n

rN Jt

Ul

0 00

E

>4 >-4

Ln Ln

0x c, C c

Ln Orl o 00

H4 H H H- H >4 >4>4 4>

0 0;0 CZ -

0 cl

-C r t- r00000

0Oo

o

>4 >4

=

H t- H^ H H-' >4 >4 >4 >4 >4 J

I 0: a7 - C3 n

,

C-) C) C

t-

U,

a

0 04 -1

0

0 a

iE4 f

*

41 ~4

4

.4 co

0 E4 N 04 in* 04 M4.

. cJ N 0

m

0 O 5-4 *t N

E4

o

*

K3

04 #

_4

* *

.

_

54 9

u%P '.0* -4

N

tA.. N ... 0

Ck I UO

EH 0 * Vsio 04 4 H-

-249V'DOf0 OC, O 1 N r- r" r- t- r- r- r- r cor CO0 oC) o CD n (- 000 00 C 0 C . D 000000000 H H Fn E E AH H>4 >E 00 :4

>^

4

J)

U

V-

t0

a co C cc: n :D Z HH

E- t

H

O'-4

C 0000 0000 C H H P E

C00' 0000

N

c o3

0 c::J LF oo ~,0 r. o~' c_- C3 )--- ,-, r~ O :! Lr ~,. 0 ri- c m .0 r _-.- ,0 0 -tC C

H H n00000 a

- 21 >

O;C. 3 CC) r- 00000a> '

cn

-

,,Q

._.C

C.

0-4

c)C,

C

00r

0 U4

0 o 00 0

Lfl

4 C

+ N * *

_ e *

0

Z

U G

0 U U4

*

z 2 H

X

U 2 04 v-

z 0n

.

0 2

m

0

u

CN * *

0-

o+

u

OF

0 > *O

*

oP

0 Z U

01Z >4

0

0 4

~U~ EH

N E-

HA H

II

0

NE

o4 >

* 0

:04 0

+: e

) E-

0 %O

N0440 tD V 4 >4 ,

C4 11

x i

Z' U 0 *4 "-'

E

0ii>:I* I it X I f-4

0

Z 4

04R W

a4

Z

0U

E-4 H E-4

'

N OH E

W Eno

N

0~ I.-

0

c

_ .; 0 (4

O* t3 * l 4 -%m= _Z4 H HO

_In c; _rn

o rn iw4 0 : u u 11 Z u) :

H

L41

;.q

z

*

II uQ ¢1 Z0ce . fV _ ;04 .~ *2 * * -* N

:3K:=o

: 5 ;4 z,

;,_Z It ;m

I

*.~o 0 + t-,t * II 31 t ;W4t N~~~ * *

E- H

v9-

0

N*

4

rv, taE1-:41 C0 rr * * m >

# '.

H

t 3aa o _* *00_~E

_

.f4

O

K

NtZ

H QJ

* DC

co~

Hk

n

n M

0.

t

tH

>4

H

*N * *

X

e

E.- L

:>

O 4* N)

II

t:

>4 4 x

)C- n

044

*

>

nt

4ZZ

0C

0j L-

H H H t- H H H4 H

>>

cr, Cm _2

;= Ca".

-

,-

,*

:3

.

,

* -*-~

~es 011% t-. 0 N OI orII H>F H t NHF 1wI H Io C.. H C.A ma *3 x

r-

0

DC -4t nU t-t 0 .C if = II :

U-) I W

EH *

E OH E- -1 (N 4 1--z 0 11 0 o u 3 11 :3 z U t :U z4 05 *5 2 s-

0 1 v-

v-

> -

C4 H

m 4 a00000

ilE >;

t Q :15 >c

1. 14 X : *4 " E' 0H N~ 11 r!4 7

11

9 (9

-251L)

'o

r-

e

co

Lr un Un U) O

-r 0. QO

Ln .o r

-

Ln V

Ln

-- o -(4 n x LA k AD ' V 'D o 'D LA Ln

L - O0

t- co oH 'D ' 3D .3

(--N t)

-T L'

'3-

r

Y 0 0 n 0D 0 00C 0 0 0 EH H H H H H H H L- H- L- H, H- El C-44 1-* H 4 EHH E-EH H -4 4 H E H > > -4 >4 > > > ->4 > > - >4 > >4 - > >4 >, >< :. >4>4 >4 >>4>14 >4> 4 >4 >4 r ,-4 CC . x ; C; =4 z U = M. _ *;;! X; re ;4 = "i c-; = C4H H I4>4 C4>-4>a>r M w4 ix, XE -n IM c -a) C- 00000000-- C:~r- a C: nC- a aCa G C1 CZ C) -'- a oooooooooooo 0 00 .0 0~ 0 00 c. 04

T-

I-

-

000

o~ C

CD C.

O

. _ o

,-

- 0 0

-r 0

O

0

0

rt r-

r-

c

Ol

0 0 N

>U #

H

o

*

H 4 H 0

4

U, * _ 0 H

0

CN

0..

E_.U ~ EA 4-

A

4

o

I- + :c2

E4 N

*

-ls H

t

* u%

--*

9-

O

0 H

Ln

0'-

O H '*

-0 .

x, 4C) ~ i,,..3

HOO

H N

*c

c

*:

*

^O Uco -0

*

E4

c

o

.0~' ,

H4c EE-4 co~~~u ClM0 ;4An

0 C>

O4.

:>t>, *s F

w"(N 0

S

n0

V, Ii HHCC)H

oc

n~~~t : otoC L4

"

E4

0

t)F

: 0

A'X

H E-4

QH

r-Dco

>4,*X. >

*-

.o

)

II 0 z0 Ln 1: 4H 4 sD It zce::- LA .vo

IIH* -

+t

H

(N

O-4

0 D! PA 0 MII if: :11 + O H >4 X Al 0 .4 E-4 H4 H C

a:

c(4 0 H

r.~ t-~ :4 OD

CO 0

o O EO ' c u 0 H *vo~

,,40

-C (-

I K a ) OxH "I I4:* -H~ O +¢ O ' -.-Z *

'G

>4*
4

I @ HZ 044t

-252a-

N en

;.- ; 000

r a:- o -N N 0 Q c o co co co -,r__ ..._ y w . -1 tn ")

>-

(H'H

z

r- -C> 00O

r 0 00

or-

o o a" C a'o -

_

N N

0000 000000000000 O O 000 E4 E4 t E- H H 4 H H H E4 W H E >4 ' >4 >>4 >4>44> > 4 >4 >4 > >4 C4 zM

N

N

N

N N N N N 000

N

.

t

tn '.0

N N t4 N N N N C 0000 c

4 H EA EH4 H H (

E, H

>4 >4 m r4 5, CZ cr; M a~ -) a-

r! re: M;ia r

rn 2

N

C:)

O D E-4 HH E4>4 l :>4 - >4

W

C-

O

O

C)

>4

>4 >4 >>4

cm =

>4

a7 a~ i:

,n

>>4

n

n

_-:

I

~-U U-

H

P

p

UU. U u

Ei z co

~ ~ ~N ~

04

en UG

tif -4 ..

0

0 0H-4

0 N Q~

-

U

H

0 w

*

_

IJ

Ln

C4

U U

PL

m:f'IC~~~~I. N

: N : W Q

U z

,

z

,-4 1;teN It

I*

z

.... A7 U I'H IU

za

M;,Z

DUI ai =

z z

U :1k

is h--4 ,

H H

-N

-~' _ r.Hc

E'-'

I U

=

--i

H

En

r.

I

N

_ %U

' ¢ :'*

HQ sC-

H

* HQ

P -,* H U + < _ , U) NZ m H U l - c 4 V, + > _ +

~*

C

HI-,I 0111

* ¢

H

r.

H


oa; z i4az

~.

P ,:

r 4 *.-. UC ,,-1 H

~'Oi ~ ~II _ *0 ~~~a H Fl oH a4 ~ )~ C- U)F )U u *u u x.H

04 204 zc a £ 114WM4 MI

*

Ca

i, aF

wlit a, E- 11 -4 11 C) P 4> C:Z - M cX Cl

nC c

o N N , N" N C H H

-

a~' i~~~~,- ,

N

O, no 0-'

C , ::' LDONnein '.co r-

Nq N N" N 000 0 o H H H * >-. >. >'4 :~0

r

N 4 N N N N N C N 0000 0 C 0 o0 H-4 Ei H -4 H H H H H w >- [4 >4->" >4 >-, > 4 >4 >4 >

> 0>,

0 C)0a) ,

~ C)

C)

i,^ ¢4

N

r: W

*U cl

C4 U

ce4 .u

U

U

u c1

U) cr u u

ID U v

U

U

U U

e

u

vU

C), U

P N ii

M

u U *

U C4 iM

+ x

00,4

oL.)

""'

NE:IU'I

,,,

U

HiV H

c4 q

V

4.

,,Un

En

U O'4

U in " U, {.-1 cr

cr 0 o0

.4 CN * N< "

U

01

0* 0 +

0+

C --CnE4

.4 uD ch

OH 0" 0n

ou

U CD

- .

a I it -3~ 0 .4M H-

D I If CJ z

Z U O H O I)

-4

_D ;

O

-

O

C)

V I

'S -

_U O P4 .

0

CN +

.0

n G

.4

Nc

*

) E-4~ ' I H

0

H.

z UP

i~

: U )

O

I:.4

Hc

·r .cq .E-~(.

N '.S* i

M4 .4

M

Q

M,

D4 i

bN 4 2

Z.H *

e

%O

*

04W

:C U '* U U 01'04* * :'-N a,,D .Z .t#sE-

r 14E0UH II U U .411 Z4,

U

I I5

,4 U .c D- E4 U

:5 t

u04H ) *

"",1V M M 0a

HO

H:: l3u * N C3 I A o* zC -' .4* PL4 N D , U 0 I:So * Z 4 X 0* S * 0 * II E.431SF: CZ L~ ,>¢ N q tO C11,

OH r

.J M i.* 04 * t

O U:2

9

>1Gqi

L'*

Pi0

a,

E-4 z

H i1S. -I N

U I::- El.

II

> W

,4 h4D

II ,

:,

.u:

-4 4,,g:: z2 3N 14. FZ #¢inD Z U E--

1-Co c co

F

fn -y tr

CO0 C-)

L

U*)U)*LP)

(, N M' -T Lt

0 'O D '.0 .0 .0'° .no xD t0-r-r- rr r- r- rr-c Cr, ,, en,3 Cl ( r( r (J r ( NS r4 Nq r" (N (N4 r"J ('4 (N ( C -4 (q4 row C j f4 .J (N4 (N rj JC r I i r j ,L- O c) c 0 C) C, 0 0 U) t) ' C) r.j 000 O 00 O )'" r"( *) f (9 * i E ; E-4 E-*td{ s4 E-> P H EH EH EH EH b H tXfxt* ,tt(4t uL n

Urn ,

O.

b>4

n

>44 >->4 >4 9 >4 >4 z cc :- C-. ,r':M: 4 )C 4 - C)

>4>4

a mn

0I0

f

,a.

-4

>4 >4 >4 4 n-yi

>4 >4 >

>4 >

>4 >

>

r> C-Ca C4 C; a: :

cz~:1

>

: C1

>

>

>

Or'-,c-w

>4 >4

(-C :

~, Ln

>4

a - "r_

1=~m c3 C.) ni

C,
. ,4)nl . bW 02 H U4'DG < C=--)"L 0z

bz

ul0

*

U >C

(!Y-

en 0- U2 VI

0* i

I04

3

3

3

-

* 0

0

m I

ID

U

: U-

I

IU

atf

U I U V Q0

*

T o uw

(N

-4

(N mj = a!02

0

"- ~: u I I tU:1I:1 If 02 + 0a r 4u HO v * 020 rQ-

0c

N H

,+

:C

E n (N4

O41 44z.

04

-

U U

t

0U

U U -

Z:~

4

a

~

N

04 a:;

H 1r.n * ,.-.

I

-VU

o,

U 1H

04

r

I

m o11 0

nu U :

a

U U 0

O

'4t

-4

U

H a

020U ~U

rn

*e

bD W

n

Ha

II + .

4r0z

:4 4

cou a2(1) *

Z 00

02

N a 0-4 0> (N 02

(a. "9H E' z x- j. JI.: * 04 Q, 04 * 04 s c.) Q02* 02C,01 ,:J H40 * 11 11 II IIt 11 Q 11020C2 2 If (-I a2 , 02 02 U U C.)4 (.1 U U-dUU r% II C.) I! U - a '-4 U ::

7:

E*a

3c 204002i sXfi= -4(

Al

040 L) ; ,. cl a 9 UJ

-255all o

a,

CO C,, LI, or

3.'1 0

N rI -- U) 1z I- OD 0 C 0 C 0. N N N N ' N N X4 N N 000:)c)0 0)>C) C- 0 U' H H L' E- E- El E E- H >4 >4 >4 >4 c a; cc

>4

(;

:;

>4 >4 >4 -i 2z

000-,)

O

4 >4> >4

rn

-- 3D

-r

C) *n r

t

Ln

t-

3D ; 3

o

00M

- N -n

-v-

I- ,r rnM f r rn o CD C 0 o 3 E- t E,- EH4 >4 >44 > >4>>4 3, 3D CC 1D

a0o o n C) o H H t E

>4 >4 >4>>4

cD

C

: C)

N

C o rj M rn CD 0 C) E E

0

c~o¢n ooooooa

C) Q

G:C-4

Lo u

r co

- v

-

rn r cD

0 - Nn -

N N N

rn

mnn

P

o0

h

o

C N

rn O 0

C) 0

C)°

E E p H H H vD

>4> > >4 3D 3DC:3 3X

C

~-

s

>4 >4 >.43 "- 3D 3D 3D C4 ),c

> 3D UD

, a rQ CZ j:: rv Cn

U H C+

U'

o

U

0

CD U

0-4

0O

*

0 0 0

.4 _

0

Z

C;

:.o -

o: o, 9-

2

.4

Ua t- N

*

U.C; 01U5 p.J Ln'

_D+ H4.

O_

ur

O Z' ; ' U U U + - Q4 a. ZJ U a +-; W U: U o- EIU uP Ca P+ F

*

O 0

UN U DU U co.u U N 40* .4 H H 3D U 0 + H LD 4 E-4 z -VU z + + *Q u 4 Q *

pF

CF) Ik4

Cq ti3D

I-4'"" +

0Ur4

H U'H

U~ ZO0 P3 ur

O

Uc U

U U

04 + U-. ,CUC%U +o0+ 4 04

O*

U: V) L-Iq 040-.4.;4 e U UU EAC O U+ * C11I O4 . U'04N E 3D -C)EU EU :nu X3 zoPH 4.4 c f W ! ¢ U U L) ;:rPt4i-'tt)Us[~U >4hlU fi2 4 'J4# E-4 M4~ ao p

_XX

OU1

E-UIUUUUUUb

X

O OA # P,-.

P4 Z * 1 .4 * .,

0 0 * - : ;: U'v

~

:B: O :r *

QON' 80v'

I:cj# i. v c0, o 04 04.4

3

; ;4 D

~

K

* 4E-4 a

**-7 &>

EH O U 3Dw 4.

~E4

U*

WC

S

; ;i 14 1 L( H

*Y - .

N I4 *

3ON *4 E-P-,E-

*

+

DH

(1.4

*

# :*

~:t #

a; V D;

U)

;

it II rn '

2 z U' * tic3 11 1

U' I,

a,43E-4 E04 U

*

P

1N

s-

zi*

4.0-

Pt 0

0 H4r" 01I * N U' 3D 3D #CV * >, .. o 04 u Oi v? Z 3i tl r :nc ,O' U'U (.I MI tII (1IulU 3-0 3, U -h' C) >' H = 'I 3> U' II71 bi U' I, O ,3 D 04 II U (1, 3:DOi I~ ii .41 U 11 OL i CL4 H-l HU D4 -E-4 P.. 1 1 I (z i 4

>4

> i4 , fS-,

a

nM

n; t-- j:1

> -

>4 >4 >4>4 .a wC tz

Q QlQ Cn a~ a

4. CU : u _--

U, +

9-. *n*

U P1i 4. ?

0 U

U

tn U V -t

U .* _

O

-

4.

o *

o

a~

N 0

+

V4 IX V *

Di _

4. *

O, 3Q :z * o + >

4

H ou 0I

Z0 -

.4N UU O 4U * U: 0t_4 0 H

E-4

40U: r* 4 Uq UE U 9- m VI

u

14

L 00C

t

tnuuvw

; tz. C m +-it -4"V .4** 4 tD E 0U1 ) Oi m 0 :U 110~

-m L

* U 01

: U Cf h Vll U O>4 ;?U LII

'-

9-

0u

E

9-

-257- ,N en -?

'n Z

c",L.0 r -

-

000000 oO oa0 o 0 o o oA o~ C C C 0000000000000 coooooooocoooo

U

ZtjZ

0 o 00000 U U UU

I

o C

-Z

000

-IU

0

-

'-

_

_

_0

:o~ o~

o

oo

_

o

Z

C l

t-

0

'r-

N Cl :i Ln k r(N (N (N

_- r'jN N

aa

3Q

a0a

m

CO 2z C4 _ 0000000000

CO

U tUUVUU

aa

I:

C) C c

U U UUUUUUQduL)u

U'

0 X

4

VI

C) U

U1

E04

0~ >4 -

H 0 t-

+ ,-.U '-0 %0 0CO U)'N 00~ O0 I 0 e U) O O0 _ C;

O,lra _

H

*-4

0

ci o -O

,

o~'-

*,0 9

l

% N. 3 N,O0V

~

¢4

E4

E>4 E-4

czn

0

Ot H

4>4

C

* E4 o>4

44

a 1=

It OF. Eu

*p>E-4 II LI H

0U

o

Ltn

, o_ 4

.t

On*w i

F,b

-H

HUU.4LI4 UV) E-I DL * t U3 I

o ,m4E- m: E4Unu ~,-c-pt X u

U O H

uz HJ H F

U:=F

a:

r

UH

,-WE '" -4 0U ) tt ul H~ L o LI U4U

'*

U

a " S tn - a

A~~~ cn

,,-1 t C]t-tO O H

O

1,

) HE-Tao _U) to ; EH U U _t D V0IQ -_ H

,

-0

> U 4 4 0-. :: ) _ U- U +r

zoc

1"q 0 4 , C-a- /L,", En *rN LI I C

E-tNU U

V E-4 *Z

x V3 .. V w

(N J + HS

*Td

, _,

O-EH

Q

n

0

CO0

e,-u U *lQ0(

4 c: 14-ow -

o a

V

I a

)V

CL

0

-258'-x ol " U o, 0 O N ') :t.) qv- r N 00 ° 00 0 0 0 0 C C)0 000 C)) 0 00 0 0 0 0 n C CO 0 0 o Ln Ln L) U) z .) L) , . z z :e ;oooooooooo¢o , Z < W 2!; Z 5 ,: Z < 4 oooorcoooooo4vi 4 < ¢ o 4 h4 'w 4:

-('4m O O o 0 0O 0 ZZ 3* 4.

Ln

:t

Oa

C)

C

~-

0

D

> CD 0

CA Ln

U

9z 04

N A

P p

z U)

* U'q*

'.U

*

Un r** S* * (* N * cx

Z...*

I U) CAN

:l.

,

AU ,{:*

%V)

Wd +_ ** S * "XQ

'-

I I 0

04 C

C)

C4

U} CO CZ

ZAU 14-4Ug U}rA> m

N

¢4

,0 0;E rn E4En Ca U-tE-4. D C W 9 4M1 CO

z*

I

N 3 % Q

, N,

11=

I0 b

E4 4

o

E-4P E4 4s rx _ I 11 1c -9 OC n4 Oj 4. c4 :r

cj

Ux *q. * ::MP *II | -Q~ CJWN 11 .1 LA 12;: 11 11C N H: E-

FHu aU u 9-

I

2;o

9

*I .-3 3 LA *ANrOL ~~ Z II Q CN +U~. ~' I~. , t,,,O en{,U1 Ot U n a N0N N 'I1D -4 N 4 M W * =ECO '

*U

rN

m

0

-259C)0

en

-lUt

C)

0

.c

r-

OO

-O o lO: O) O- O O Oo O4 O Or O Or O' O4 " c. w w

X

000 000

- N m zj Ln r z C - N D N N 0 - 00 0 0000N 0 O C a 0 0 O a C 00 c o00 oO O- X C-

C' 0

c

o

"

t:;D.

M

:s W-lr-_ - ;4)1- -- w w C w a; Ao < X X > X X X = X '= 0 00 _ _00

0,

_o

W X

--. ,

'

0 CD N

C N

C' C) C~ ° C) 0

O

N C)

N

N

0o 0

C)

Me

N

0

0

e rn

0

0

0

en

O 0 0 C)

0

o4 C~, "_m

;4

XJEXf X

L

-A X

X

>:

w

*< X - X

X X

X-
_L4

0 C:;

O U

0

*

;~~~~~~~~~~~~ z

* C4 H

a + N 5Ei U

4

co~ *

z U z

co U

N u% NI

IL

4Z LA)

I

i-

z

a!

LA Nr % N

0

.

U P.,

,3 *

,O O

* N

rnN

o) Un q: cqN'iZ m := )

E4

-vE- U

i,4

MI NF4E4EqH C: C:N V FQ 0

U

CY'P4 H4& 4 < H: NO .S Qj E4a a0naa

.:

-

O

Qe


M: 4 C4 Z W: ,1 * * 1H 5::V)V 4N OU C * IIn UI il ' H U LA I F U U I vU X LA *

I co I

'

C4

o

H0a Z Z* HLAC3

IE , z 4 OHO 'l 0 4.U1O~ X 0E- -fOa 11 C:1 W iX C O C C a11) z&H U H C H 'J %gUUU i 0: : - F UVOUUU

E-4 H- H- H- If -0C

In

r-

Ir-

IIEn 14+II :U sp: * 4

+P Z 0 C, Z 04

VU+ V fJ .4bZ U ,-% v ZU3 U *

f.. 00 U) I I

0~ Z *

UI * V

I U7

I

osa:-

.a -U} ..

en

N

r< U. LA L

*n

Z0

U -* oH oF3

bQ

0 O

*

U

U 0 NeO

M

C*-'

0* -

'

osCONj

LD 3

-

NO

rn uo

U

r.0

I

*0N A:s i 0) *X

C

U U

0

en

,

LA

z H

.o

-U 0 'En

N N

N

O*1A O3 0 "

n

N

*

F

N

Ln

K

N

00

n

a co

z

LA s 03Q3c Uj. Ir: :: I

U

I

~r-

t'

oo C' ¢-, ,-¢"-260cx

00 C- C) o n o0o00o0 xO o o

+ Z

4.

=3 4.

*

V +

N

-

=

*

-.

*4.

_,-

tF* C-

X:~' *

*+4Uw

* -

*: + *

*

W

x:uQ q

U . rs U CN

UUer:-

*UU N

I

U

a,

C~-1

-261'-~ 'm Q 0 - N -:n'a (N 'n >~ o oD r , G C 000000'-000O ,-C) m% 000 v- q 0000 a 0 0 0D -

H -q H

H C

H

H

H

H 0

" H C)0

00

I

O

;4 C'; ] C~

-w.D3

.; " '

;,j3

4

-> ;4

C

I

Ln

(N

C. X

U% _ *

4 V)9

U% N

m

U

*

L, I1. I (N.

9-.

v-

Ln

>4

P

*C 0 . N '"N Z N.U r *

en X

N X

Co

r

*

1b,

>

tO

OU *11

.X

,.

C~

r-

z

* LA

K N o*

0o

> 4( *

z O

0

110

I: .

s

. E4 OII4 E--

4L*

x ~ :2-

= (

il E4 E4 C

0

H VO _

N

n

11 Cm

EH -- >4m;

II

- II

U 3: ,

*. >4

Ln

w4 VI

U U _.I

n

4

:;

2:

0

I1

-262N I

M _1 L) Oo

0 m Co

O t-

0

r

,I

*tfL

rn

"D

r-

C;

, C O C 0C) oO OD a O O O O C) O O C) 0 o O c; O0 t 0 n O IQ W i.--I I. W -'S 1 4 W X CLI4C4C~ CLi fi Mi fri C' .14 A~C~ CAla'I . CA 4 H H H H iH H H " F1 H H H ~-. H H H

c,

H 0fi , L

H N

- CX

4

4

Z

j O o 4'

,'4 rJ 'N

N N N OCoD o D c)Q -I W

O 0o

G.4 C H 1 H F D GCo

OOOO

.'

o e

O

!. £, W i An C f W H H1 H

o toO

* *

9

_~

* _-

NtJ U

_

. C Wb ,U U"

U U

UUtI U: U

U

04 _S

* _H

4 N

U

H

ON l ~q cU E-4 ~U' -

**

m

HH H H e* H

U U

UU

~ ( , 0r-0 ~ v0Q el.3 li,U. U U :) "4 .4 0W O

lb C1 P

:-

thXn

04

%M

U

H A4

N O-0

A

X

oHX H O + *

UCU UN

r~

~

U

U U

V 0

*H:

u cw,

ro,

H

H

44

t-

g~UU'UUUN 0w_W V ca or)~

VI

N -4

I W

U N Int

-: X

:X-M - :- U U C4

P~ b4 .4 t

LIn _

:t

.q U

N

-q

N

:r

- C-

o

W :'I

II·0

m

cr H '.01 \c 1 II

0

I

9N _

-

I

H

H * I

PQ

II U U

*

-

0-

9-;

r *'

1

1 FH

*F*

*

E - U

.+ 1-4 -4

u

r

'~ I

E 01WU aiO *r- :*

cr ; U wE OOMWN .11 - It u IC F >t o00 0 C1 Z U HX U)U OU O EU~Q 0-

=

V a:

*

' . d

.-

u_'

*U U d

0l

-U4

H

_II

t

*

H

0

-M _ N N'-

_

__~

_ H *%

O N Ct; _ *

H U H E14 4 \ D Z a

U 4 4 _v N

I,.-~U~ U 0 4 U-.H E *N t VIr H

%M

E4 N

N U

UUN

rf*9

mU

4N 0,44Na 'eN

O

N

-

-t

H ciz

0

HdU '>

t_ ]ia Zfi sJ0 0 I; U-N

U

& 4

X K UX

Z '

-263-

c CT 0-N

J Ln Qrh

Co4 Ca, CD 000 o o- C

000

- C

t O

CD G o O: -O O Cl, GLa, C- nL 04

000 "hff

-,

00

z

CV

ii.

-4

000aQ

. "

a

oooooooooo

_r

aO C;0- C,

O

O

4 ,-i .1 ,0 -- 0

O - O a

aC

O ~O O

- O. C4 cL ; afi 0 C

.4 0

C~

(N

NNN

_

'4

C:~

c't-

n

0

4 aI

4

2

a]

Co

Co C~oooo~

.; 0 .,:

z :',,

E-4 4

>4L a; * -0 _ *40 O

o

I-

r

N

-"F

0S 0

0S

|

H N * ,4

H W Oa HO

0.D" U N,,

W'CD IW 94 -- °~ E' 4>.N

+ N N-

0,4

*

11, 'N 03.

-_

+

*

oW toF-

OI X ,4W o o,t xI "4H

o

Z 1s r

%

(i>4 - Wm W o

C4

->4N

3:NC C .40*

0

1

E-. zCW -4 C:m4 0' F4

PL4

:>4 '-'P H

X Z Z-11 II eo1 0 ~~ . ~~I

OE4

I-

(N :t * La

I

I

N

ro 114

-t

>4 * LM

o E4 Nr- W :3 " I I b'" * :11I 11 - C E4 n o v 11NS :Z Cu VL Ill P=

W

_N

I

-264c>. ooEN oo0

.o r0 C 000 or00000

C)CD

o 00-

-

ONrn zt LA 1o IO 0 ,.- ,r" r- f'q

c!,CO' C 00000

c)

Ct 0000

N Nq f

-

tU) iD

N

N N

00000000 C)

j-

0O \N r

X

0

N N

N

IF) n,

In

n

n

rr

C

00000000 C, C, CD C) C) C) 0 ecz o 0000000000000000~ 0O cOOOO 00C 0 00 GOO £- E H H E H H H H H H EH P El HHP E- J

~q c~ u o 0 0 0 C 0o 0000 co 000000 00000 0O0 C 000 H E H H '-HEH 000000 o) oE C) o E-H i) H H -aC> EE o 0 0 0 C} nz a a C} 0Ca 0 P z_ MM 3 X? :,C pw A= 3 r. Xi M'It. t5

0n

a0

)c

:ic

C

:c

J

::I 0a

3

x:

0

3

0)

n 0 a

na a Q

:m 3, XI3 3 :A ::C w -

~~~~ ZS

:

~ ~

C #

0 u o( Us

U~~~~~~~~~~~~~~~~~4 s-4 U w. U E,~

m, 0

0 W 0%C

04 z ~~~~~s ~~~~

UE O

E4.

x-: UO.:'U O0 P-4 '-*

Om t

U . L-.X CO :. Ct E=

M ar Eq

uu

,"

uu 14

eH %-

H W :

n

;t

L)

H-4

%~
cla

.b

O 3 O DC ~ ~

:C Z~E

~

O

~

nr

n

;' O ~

I A3

~~~~~~~~~~~~4

.

*

*

A 0

C0

0

:=:

J

U E

0 # co

0 U 4U

O O

*

:v* C> %O

A

t

V) H U U

Un

z

C) U

o C1U

> 4 (N

H U H

00o

09

H E-4 Ca H

o

U z

E E4

* *qI

~1m. [*CI {"4 Z ~

-

§HqH

P4

O ~

E

P

H *

r; ~ 0 ¢r13

U 0 I o

r-

'-H

*00

* e-

xe .e

'-34

1

H (4 L-4W I! U -H *= E I H I" U)M Ii E -4 W II : :x -: HU~ 01H EA= I z13 nc 4 ; z it ci" II > if 11 -.3 F E cW;= F4

n C C: C ; F-4 r

E

=mA~

a,3 :x

3

maNo4

0- 0 z4

0

Z:

!= C"; H N ;ar I POM .HH N>

N, >. ,,) ,-~ . E Pi W-C " A

H

IOAI*

UE-4 H

Z 3 U F O

-I

:I

.

U U

) ON *

P

0 0

4 H:

*

Iz~ 4 H

UO~ -0

U * U :: o, *

U

E ;=, '04 D

H

n . on *L 00*

II

3:

1V lE-! E Ci~,

e ;I H 'O0

hk Z

=

11

L9 0 z: C .. 0 0 -40 E ; IUz =d E-4 O O CUS 1 U) .. U) 4c4H 4 00 E (_n C-1, CX : ~V H ; Iu DC Nl O E CzU 0 L =

4

HU) WE-4

Oi

I.I /0. z.= 11 E4 1E ;a

1

W.

m xz H E-.h

Lo

II 0

Z:

'-no)

.,

"

N3

Q

I

MI H U~

UH Cl U-. 1 U'E1 * H ,IU· * U U

UA UO W4 U 1 PQ_ 9k 04*1 .- EaJ ,. 1 H EtlU"1 ~oO0II {II I31 En 0UUr~UH H U V W uD 3nU)n o :3 0UUU D uU,

fn

:-t Un

r r

-

000 000

o 0 o

n

a~

M: X :=

9-

Lfl

94

S wI

o4

u-4

Cl?

Jo't eq

-266-

-267S rn J1 Ut 11 r- co O$ O

CD O

O - tJ n :t Ul 1

CO O O O

- -

~~~

OO OO~

-S -

C)

X~~~~~~~:t;

O0OOOO21 CCO a COC~ ooaoo

-

a

C

:

a

" _

r- t o O1~ . - - -1 -

o

N rl ---U

O

Cm O, cS- " (1 S fn m

£

0

.

-,

Z

.= 4 w

LoOOOO1 0 0COOOOOOOOOOO 4::4 ~OOOC

;

0

0

0

~

O4

-cc CO.

L) UO

L)

V

U

U U

L) U UO

U >4 UUUc n

~-3 Cz; ~Z ·Z ~ 4: U4 -, v >4%:It

z

u

EqUPL

tn U

UC

CI

DI

C! W¢nE

:

z::v C4^

.-%

U

U

'

~: r0 U

_:

o; _ e4

xC

WU U 4 U= Ln% U Ch *,L Xl U U 4 %U %:..I- -

;)Ln

FOa

-: O' :U z ~:~ W % Z QD cd ZU~ O V U FC. m[ e: a:l, X DR3ZF zM Cn FQ%:

a4 p. H Coi U

0 -::'U

[

u

c ffI % U W

Q

;0; K

U

a #

U 'U

S

X4

0

O

-

0M

.C,*,

-z4

E *

% ', % [--4 z;

30

r4 _z ft

F

#_ UUU ,U~UUU P" M= Z C4 b = OOUO U

0 00

E-4CO

4c\*o-.I S CL

'OOO ~g^UC F1WU EA E4

ttn

%

U) Fi34

u u

u t-

H*

~

~

U1 U1M4)O

M

,X

F4

E::: Cl:

0: 3

U H

)

C

R

,O

E4 O-

3-4

O

0

C

CL C%

o

" 4

=

;m

P4

1 *n

E-

J

m

4 F

Ln-

0-

W

-r0

ae

E

z

en

q

z

-: rX m 3 :c ca =} 2EI =

o

4

z

E 0

:

u

U U

F

4

iQ4

X

M O

:w ; oC)C Fa

V3 :

a Z

En o o o

Q

: M:

U 0

O O4 O

CW V O-

MJ U

U 0- JP;

H O 0

H C,

a4

En

', Z

s

w

H

-': -

U Q

'U

X

U

#

-4:z;

-

)

¢

n

~

.

U

U

;-z _C OL U

II N~ _n Q

NO + C4a

VF4 -

p4 E qn

Ln tn

W

-4 E-4:

N E-4 r

'

-268r- no a', 00000o rlO r\) O O

r:J, C) z (D

N rn J C", O

t V C

O

rs ti O

C-)

%0 - N r zn urftl -r LN t 1Dtnr ) nVtD f ( O 0 O C) C

r-- C) O* 0 Ltif)t C

O 'to D00

(N e t t-D r- ') CTI %: O 'D C CD'r .D O) ., rC C, >C) CD 0 0 C>

C) C, C C ) Z XK *_- C C5- (' u; =t " X. ; M : 4 W, 0; a; " f-; ;X; aW X 4 -4 [;; m =: Cr at5 (r; X Xz W, 000000 oooooo 00000000coooo Coooo© O 00 C O O0 000000 0 cO C. C O0 C oV hoOO0 1 : OCCOCO 0°°OOO° rvX ,., O. :, N r. CL4 PL.4k C- V, C.. D' r-, U. .,4Xa r.. r,. Z4 CO44 4 4 , r, a, cl, Cl, C CL r-a r, ;1 n C C C o~ c- C., Cw.M C14n, C. a a, r

r

r-

'r

O

N,

o, CL 4

C, r', C

L 4

C

0 -IwCU C.)

0 0 0

[-4 04 * H (X) * *

0H-O E- 0 E04 t

04 E4 #

* *

4D :4

H _ E4 N *

0 CHe 04 *

-E4

0

C4 +N 04 * 04 0 if1C#EFw *

0

H

C., Ln

E-0 0

0 'oo

n aE

Ln *4 U~3+

04'-' 4,, HO

0: +

,

N~*

0 Z:'-::]: OE o H ~ -4H 0 -E H II 'I

X JW

FH =a 0

sD L L

WO

O

Z

EHHHZCL

H Er IEt

c II

C.4

0t PD 011 11E-4H-i> 01 H0 E-oI44zIE H~-E-4 4 E- o E- 11 -C E_11

:r 'L LA Ln

-

Ze >4-H

>E ;5 =

-* '- i

A, -,H E4

:P-

2

Ee I -

W E'-

H.O

o3 H

.4E-

9-

:C/ rn PI 141 3 :F4 I M ii

.1 L I . 4 0 II * vC H * _UU ko 11E-4 E-4' 41 , CI U 00. 4 S K 11 EH O E- E-4 E4 "_f11 E O:= " 11 n :: E-4 Q :.( O O 11ZE4E4= UU11 ,L. : I! I! 11H nE-f O P H O O H4 U U P EuD ei v U i %Q

o :

LI)

IX E-4 4

0 E

H

3

*DE

_

*H

*

X

~0

C) - v-

,CN 0

O 09bd

I-4

Ln

_ E-4 E4 Z4 I X * m, .

o

EA z

eN-

0

o o

Ci

= -

11

IH 3I u :?- a, Z = U 4t '4 = -~ EH4VI I--

-269m invD r

N C) 0

o rC) -t Ln

0 0 OOO

O000000

OO

4 DI, r.:K4 !t. PI ;,4 w Cl4 la, CLc o fi r

Cl a

o

0n000

00000000

0000

Q1

C00

r000000C 000000 0000

c r- co

r.

U4 rk> , o4 D. 0. Ol 01 >

C

ffi l

(3

0 N 0 b') .U)"

W

i U tZ UI

W~~~~~~ O

U

*E

C

o

E-4. P W~~~: ~,

t* 1 En

n

I

0o-

*

2 * O0 OZ4 g> 0 E-4 D O

W

L

r-

~OE-4 ~~ P U* I ri4 t* U

t N 0 PC H 34 v

*4

04I:l

.4

0Z 1 W

0

n

40:> 4

Z 0 z Z.

p,4 :

U II

%

014

0 oo~~

11

a -'V WUcl-

I@U E4 CK VI

0 11

w

I

11 E

V 0

II

11 ,.

U

It1I

Cl O-E

11

U 0 4 0

UUHE)O

U,

%D

4 n

O

U 0 N ' C4 U E-z CL f4 5: E 4 L.4 U : E -UM J Ut :L UUU H Qe H U u U U U L U H :4 H U Fu

,

,

tOF D 14 W U X4 4 014 AW

En 13

0

F4-

U

-n H

z

1r3 X F

Z =

N

N4 Q x

o

4

:X

W · Q

C

-270r- N4P9 .t u% o o C oooo 00000

C

0 - 0 In -- Lr) .o r- 00 - -- - - C) 0 0 CD C 0 0 ) 0 000 > 000 00 o0 00C) o 0 o 0Cm C) U Ca

C 0

CC C'

O0 r xIn rC) C> 00

C

M

c C'JNri 0

0 0

C)0 0 0 C0)0

o 00000 0 0 000 O C) 0000000000000 Eq H H H H nH H H H L H H H H EH (, H EE H IH H v vlm tn um mum u E m I m n U U U O0 V In n to

0 Un H uz

a,

4

0 U cn 0 U I

Ut-

0 .:

=

0

'" 3IUU 00 000 E E..I 4 H

pH

0~0 ka w

Z z

J

HPQUUO 000V000 z z z 0000000 xuuuuuu ~U0UUUUU

I

l

Xz ZZ zzZ

000 Z z 1n ' S: z V0 000

UUU

7-

II II t' .- i HN04 - -^ 040-0

II

c DC 0C) 0

H 0- U H Ii II II II II z U) ,-G. II ~" -

H-0

H' O

Z ~ LJ

:= 0 E-4 ~ U OUwZ H U rI"

7-

-271-

~o

o C

0)

:7 U' on 0 C- -Nt 0 , ) o. q 00 C)00001 0C00 0000

- ,0000C: C O Eoooz o oC 0 *-1 b- A1 A ooo E 0l 0_ I I 0-

:7 ?-

UD r-C oCO ~~~l~

'0 o N t :? LnO u r- CO (N (N N N N (N (N (N OO°C0000 °000~'

0

- r7

~r~

M~ rn

M

o0000000 C 000

C0 0 A(DO

; 00 ,n 0 0 0 0 -3 E0 ~n 0 o~ r ':~ 0 ~) Q 0~ 0: 00 LI) -: C .4E, ¢ E-4 E4 E: 4: E¢ H F 4 ¢4 H: .C-4 C-4 ¢- ¢., CH Pl H E -~ EH H H EHH E- H H H FHH H H H H E H E- H4 H H H E-9H H H H H C-4 H '

i

H N

I

*

N N

c,,X E4* H l>4,.-.'-

N

u' u')

NN r,E- * >e r>

O O -

E4 E4 N 1

*1

I

0 0 C'41 >4_

-N

_,

ZZ 9-

Z

rX

i

9

- I e* X *XI *

4. · -4.>4 #>4, ',. +* N *n >. >4

H H N 44

X -N

11

_

It _i_

~

,>

EO

I

I

>NX I

9,-

- 4. fn * + M >4 XX q +>

>4*

N* *~ C

0 0

0 -%K ( C N x> _

>4>4 .

>4 cl r-

I >4 K

t

0 -44H * !

IXJO4 H4 Z4

*

z

" 1>4>4O

4 la O-4 on X -_ >

LfE .P4

4_

0

I E::

Q Z: >;

r-

->4

9 I>d

tr4 -C

VI

H-

S

-

9-N _+

A>4

~-

e

0 CI

H

0

V Nr

I m >4f n fn +

I

xF>4 X

_ -+

Z -_

C: X XU H C4 0 I 0H 11 0 z.

+

_N

X ;2

CO

CO _

L)

I H X H X0 O 11 0 C Z _ Z Q H -,

O

4 * *

,-Cq--:-4

_ >4 II r-l 1 H >; = , W t X M

* K~4-

* >4 N e >4 rv 9 >4 >*

z

* "S

--

N

* N N

rnN*

mt >4 X

--

>4 *

11

-

* >4 *ritII (N -4

M;

4 >4 > 4 4 >4 >4 t4 >4 11 I X >4 > >4 3 :0 H i1 11 if 11 ii 0 -1 E -- V E1 A 1 19 N cfn 9 -(N ' 1 CN 11 pX PI Z2: 9-

ZX

44 4 4 4 :

*

X >4 4

>4

>4 X4 x