Effect of atmospheric parameters on the silicon solar cells ... - CiteSeerX

25 downloads 0 Views 81KB Size Report
2 ELIAUS, Université de Perpignan, 52 Avenue de Paul Alduy, 66860 ... circuit current decreases with increasing air mass for the ... II-TURBIDITY EFFECT. Fig. 2 ...
Journal of Electron Devices, Vol. 6, 2008, pp. 173-176

Journal of Electron Devices www.jeldev.org

© JED [ISSN: 1682 -3427 ]

Effect of atmospheric parameters on the silicon solar cells performance M. Chegaar1, P. Mialhe2 L.O.C., Département de Physique, Université Ferhat Abbas, Sétif 19000 (Algérie) 2 ELIAUS, Université de Perpignan, 52 Avenue de Paul Alduy, 66860 Perpignan Cedex, France 1

Abstract-- In this paper, the global and diffuse solar radiation incident on solar cells are simulated using a spectral transmittance model, for varying atmospheric conditions on the site of Algiers. The effect of changes in total intensity and spectral distribution on the short circuit current and efficiency of different kinds of solar cells (amorphous, monocrystalline and multicrystalline) is examined. The results show a reduction in the short circuit current due to increasing turbidity. It is 4.41%, 4.79%, and 7.34% under global radiation and for mono-crystalline, multicrystalline and amorphous silicon cells respectively. However it increases under diffuse radiation. Increasing water vapor in the atmosphere leads to a reduction in the short circuit current of 4.57%, 4.4%, and 0.2% respectively for mono-crystalline, multicrystalline and amorphous silicon under global radiation and it is not influenced under diffuse radiation. The short circuit current decreases with increasing air mass for the different types of silicon solar cells. However, the efficiency increases with increasing air mass for monocrystalline and multicrystalline solar cells but it is the opposite for the amorphous silicon solar cell. Key Words- silicon, solar cell, spectral radiation, diffuse, global.

The effect of the variations of the solar spectrum on the performance of the different photovoltaic devices is not yet quantified on a large scale because of the difficulty to obtain spectral measurements. Therefore, it is rather important to elaborate methods to estimate the influence of the varying atmospheric conditions on the solar cells performance. The main purpose of the following sections is to know how silicon solar cells perform under global and diffuse solar irradiance variations due to the variation of the air mass, water vapor and turbidity using the spectral irradiance model (Spectral2) [11] for clear skies. The value of the photocurrent density Jsc with respect to a spectral irradiance E(

λ ) can be computed from the measured spectral response SR( λ ) using the following expression: J sc = ∫ E( λ )SR( λ )dλ

(1)

Fig. 1 shows the spectral response of the different types of silicon solar cells considered in this work.

I. INTRODUCTION

0,7

The most important parameters that describe the operating condition of a solar cell are the total irradiance, the spectral distribution of the irradiance and the temperature [1]-[10]. Usually the solar cell designers assess their devices by evaluating the efficiency at standard reporting conditions (SRC: illumination= 1000W/m2, temperature=25°C and AM 1.5 reference spectrum). However, these conditions practically never occur during normal outdoor operation [1] as they do not take into consideration the actual geographical and meteorological conditions at the installation site. The solar irradiance at ground level varies in intensity and spectrum due to varying atmospheric parameters such as the cloud cover, the turbidity, the water vapor content and the zenith angle [7-10].

0,6

Spectral Response (A/W)

mono-si

0,5

multi-si

0,4 0,3

Amorphous

0,2 0,1 0,0

200

300

400

500

600

700

800

900 1000 1100 1200 1300

Wavelength (nm)

Fig. 1. Spectral response of different types of silicon solar cells

M. Chegaar et al, Journal of Electron Devices, Vol. 6, 2008, pp. 173-176

174

II-TURBIDITY EFFECT

Efficiency (%)

7,4

Diffuse Global

7,2

(c)

7,0 6,8 4,80

Amorphous

4,78 4,76 4,74 4,72 4,70 4,68 4,66 0,1

0,2

0,3

0,4

0,5

Turbidity

Fig. 2. Efficiency as function of turbidity on a horizontal surface under global and diffuse irradiance. (a)- monocrystallline, (b)- multicrystalline, (c)- amorphous silicon solar cell

Diffuse Global

9,6

9,4

7,6

Efficiency (%)

Fig. 2 shows the influence of turbidity on the different considered solar cells. The output current is reduced but in different proportion for each type of cell according to the situation and shape of the spectral response. The reduction in the short circuit current due to increasing turbidity is 4.41%, 4.79%, and 7.34% respectively for monocrystalline, multicrystalline and amorphous silicon cells. The current of the mono-crystalline silicon cell is subjected to a larger reduction than that of multicrystalline because the spectral response of mono-crystalline covers a larger area than does multicrystalline. However, the spectral response of the amorphous silicon cell is narrower than both of the mono-crystalline and the multicrystalline but the maximum of the spectral response is at the same wavelengths that are reduced by the turbidity, hence the percentage reduction in current is larger. A general summary of results is presented in Table 1.

Table 1. Influence of turbidity on Jsc on the solstice summer on a horizontal surface under global and diffuse irradiance Turbidity Jsc (mA cm-2) Jsc (mA cm-2) Jsc (mA cm-2) mono-Si multi-Si a-Si Dif Glb Dif Glb Dif Glb 0,1 2,97 32,63 3,68 37,76 1,48 9,6 0,2 4,65 32,25 5,65 37,29 2,08 9,41 0,3 6,19 31,89 7,45 36,84 2,61 9,24 0,4 7,61 31,55 9,1 36,42 3,09 9,07 0,5 8,92 31,22 10,61 36,01 3,51 8,93

(a)

9,2

Monocrystalline

9,0

8,8

8,6

8,4 0,1

0,2

0,3

0,4

0,5

turbidity

I. WATER VAPOR EFFECT The solar spectral irradiance is reduced by increasing water vapor in the atmosphere at larger wavelengths to which only mono-crystalline and multicrystalline silicon cells are sensitive. Fig. 3 shows the efficiency as function of water vapor on a horizontal surface for the different cells. The reduction is less than in the case of turbidity because water vapor affects only narrow spectral intervals and the spectral responses at those wavelengths are weaker than the ones affected by the turbidity. The reduction in the current (Table 2) is 4.57%, 4.4%, and 0.2% respectively for monocrystalline, multicrystalline and amorphous silicon cells.

19,6

Diffuse Global

19,4 19,2

(b)

Efficiency (%)

19,0

Multicrystalline

18,8 18,6 18,4 18,2 18,0 0,1

0,2

0,3

Turbidity

0,4

0,5

M. Chegaar et al, Journal of Electron Devices, Vol. 6, 2008, pp. 173-176

Table 2. Influence of water vapor on Jsc on the solstice summer on a horizontal surface under global and diffuse irradiance Jsc (mA cm-2) Jsc (mA cm-2) Jsc (mA cm-2) Water Vapor mono-Si multi-Si a-Si Dif Glb Dif Glb Dif Glb 0,5 2,97 32,63 3,68 37,76 1,48 9,6 1 2,95 32,26 3,66 37,36 1,48 9,59 2 2,92 31,78 3,63 36,82 1,48 9,59 3 2,91 31,44 3,61 36,45 1,48 9,59 4 2,89 31,17 3,6 36,15 1,48 9,58

9,5

Diffuse Global

9,4 9,3

(a)

Efficiency (%)

9,2 9,1

Monocrystalline

9,0 8,50

8,48

8,46 0,0

0,5

1,0

1,5

2,0

175

2,5

3,0

3,5

4,0

4,5

Water Vapor (cm)

. II. AIR MASS EFFECT The variations of the short circuit current as a function of the air mass are illustrated in Table 3. The short circuit current decreases with increasing air mass for the different types of silicon solar cells. However, the efficiency increases with increasing air mass for monocrystalline and multicrystalline solar cells but it is the opposite for the amorphous silicon solar cell. This is illustrated in Fig. 4.

18,7

Diffuse Global

18,6

(b)

Efficiency (%)

18,5

18,4

Multicrystalline 18,3

9,4

Diffuse Global

9,3

18,2

9,2

(a)

18,1

Monocrystalline

18,0 0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

Water Vapor (cm)

Efficiency (%)

9,1 9,0 8,9 8,8 8,7 8,6 8,0

8,5

Diffuse Global

7,9 7,8

8,4 1,0

1,5

2,0

(c)

2,5

3,0

3,5

4,0

4,5

Air Mass

Efficiency (%)

7,7 7,6

Amorphous

7,5 5,2 5,1

Diffuse Global

19,2 5,0

19,0

4,9 4,8

(b)

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

Water Vapor (cm)

Fig. 3. Efficiency as function of water vapor on a horizontal surface under global and diffuse irradiance. (a)- monocrystallline, (b)- multicrystalline, (c)- amorphous silicon solar cell

Efficiency (%)

18,8 0,0

Multicrystalline 18,6

18,4

18,2

18,0 1,0

1,5

2,0

2,5

3,0

Air Mass

3,5

4,0

4,5

M. Chegaar et al, Journal of Electron Devices, Vol. 6, 2008, pp. 173-176

176

REFERENCES 7,75

Diffuse Global

7,70 7,65 7,60

(c)

Efficiency (%)

7,55 7,50

Amorphous

7,45 4,8 4,7 4,6 4,5 4,4 4,3 1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

Air Mass

Fig. 4. Efficiency as function of air mass on a horizontal surface under global and diffuse irradiance. (a)- monocrystallline, (b)- multicrystalline, (c)amorphous silicon solar cell

Table 3. Influence of the Air Mass on Jsc on the solstice summer on a horizontal surface under global and diffuse irradiance Air Mass Jsc (mA cm-2) Jsc (mA cm-2) Jsc (mA cm-2) mono-Si multi-Si a-Si Dif Glb Dif Glb Dif Glb 1.031 2,97 32,63 3,68 37,76 1,48 9,6 1.058 2,94 31,71 3,65 36,69 1,47 9,31 1.148 2,87 29,02 3,55 33,56 1,43 8,48 1.327 2,73 24,74 3,38 28,59 1,35 7,17 1.666 2,51 19,18 3,1 22,13 1,24 5,47 2.370 2,16 12,75 2,66 14,68 1,05 3,52 4.341 1,59 6,05 1,94 6,93 0,73 1,56

III.

CONCLUSION

The global and diffuse solar irradiance incident on different types of silicon solar cells are simulated using the spectral transmittance model Spectral2 for varying atmospheric conditions on the site of Algiers. The analysis shows that the efficiency increases with increasing air mass and turbidity for monocrystalline and multicrystalline solar cells but it is the opposite for the amorphous silicon solar cell under global irradiance, the effect is greater under diffuse irradiance. The efficiency increases with increasing water vapor for the different types of silicon solar cells under global irradiance but it does not influence the cells parameters under diffuse irradiance.

[1] K. Heidler, A. Raicu and H. R. Wilson, Proc. 21st IEEE PV Specialist Conf., Kissimmee, (1990). [2] Z. E. Smith and S. Wagner, Proc. 19th IEEE PV Specialist Conf., New Orleans, (1987) 204. [3] J. Burdick and T. Glatfelter, Proc. 21st IEEE PV Specialist Conf., Kissimmee, (1990). [4] R. L. Mueller, Proc. 19th IEEE PV Specialist Conf., New Orleans, (1987) 166. [5] T. R. Betts, R. Gottshalg and D. G. Infield, REMIC, Belfast, May (2001). [6] I. Zanesco and A. Krenzinger, Progress in photovoltaics research and applications. 1 (1993) 169. [7] R. Shimokawa et al. Solar Cells, 19 (1986) 59. [8] S. Nann and K. Emery, Solar Energy Materials and Solar Cells, 27 (1992) 189. [9] M. C. Gonzalez and J. J. Carrol, Solar Energy, 33 (1994) 395. [10] A. Parreta, A. Sarno and L. R. M. Vicari, Optics Communications, 153 (1998) 153. [11] R. E. Bird and C. Riordan, J. Clim. Appl. Meteorol. 25 (1986) 87. [12] R. Gottschalg, D. G. Infield, M. J., Solar Energy Materials & Solar Cells 79, 527-537,2003. [13] R. Gottschalg, T. R. Betts, D. G. Infield, and M. J. Kearney, Solar Energy Materials and Solar Cells, vol. 85, pp. 415-428, 2005.