Electronic Presentation Guide - Maury Microwave

3 downloads 0 Views 837KB Size Report
IMS2011 in Baltimore: A Perfect Match. AGENDA. • Introduction. • Existing methods. • STAN tool and application examples. • Q&A www.amcad-engineering.com ...
IMS2011 in Baltimore: A Perfect Match

IMS 2011

Stability Analysis of Microwave Circuits S. Dellier, PhD

IMS2011 in Baltimore: A Perfect Match

AGENDA

• • • •

Introduction Existing methods STAN tool and application examples Q&A

www.amcad-engineering.com

IMS2011 in Baltimore: A Perfect Match

INTRODUCTION

• Stability analysis is a critical step of RF design flow • Classical methods are either not complete or too complex…

• Stability analysis need to be efficient (especially in large signal)

- Rigorous - Fast - User-friendly - Compatible with commercial CAD softwares www.amcad-engineering.com

Slide 3

IMS2011 in Baltimore: A Perfect Match

EXISTING METHODS Linear analysis “small signal”

-

K factor Normalized Determinant Function (NDF) Stability envelope Pole-zero identification

• Non-linear analysis “large signal” -

Nyquist criterion NDF Bolcato, Di Paolo & Leuzzi, Mochizuki, … Pole-zero identification

www.amcad-engineering.com

Slide 4

IMS2011 in Baltimore: A Perfect Match

EXISTING METHODS Linear analysis • Widely used: K factor (also µ and µ‟ now) - K>1 & |∆| Help to find the suitable • •

stabilization strategy Parametric Analysis implemented Monte-Carlo Analysis

www.amcad-engineering.com

Slide 9

IMS2011 in Baltimore: A Perfect Match

STAN TOOL Integration in CAD Environment GENERATOR

Perturbation introduction node in

Var Eqn

VAR VAR1 fin=9.65 GHz Pin=12

Input power

ampli X1

Meas Eqn

Term Term1 Num=1 Z=50 Ohm

I_Probe I_sond

HARMONIC BALANCE HarmonicBalance HB1 Freq[1]=fin Order[1]=10 SS_MixerMode=yes SS_Start=f1 SS_Stop=f2 UseAllSS_Freqs=yes MergeSS_Freqs=yes

LOAD

out

P_1Tone cmp1198 Num=1 Z=50 Ohm P=polar(dbmtow(Pin),0) Freq=fin

Input frequency

CIRCUIT

v_sond Var Eqn

I_1Tone SRC1 I_LSB=polar(0.0001,0)

VAR VAR3 f1=fstart+fin+0.0001e9 f2=fend+fin

MeasEqn meas1 Zsond=mix(v_sond,{-1,1})/mix(I_sond.i,{-1,1}) frequency=ssfreq-fin

Var Eqn

VAR VAR2 fstart=4.325 GHz fend=5.325 GHz n_point=101

Start sweep frequency Stop sweep frequency Number of frequency points

Nonlinear stability analysis template

EDA Tool Templates for ADS, MWO… AC simulation for linear HB simulation for non-linear www.amcad-engineering.com

STAN tool integrated in IVCAD software User-friendly GUIs Slide 10

IMS2011 in Baltimore: A Perfect Match

STAN TOOL Automatic mode • The order of Hˆ ( s) is a priori unknown • Automatic algorithm for pole-zero identification in the context of stability analysis is integrated in STAN tool

n

H ( s) 

 (s  z ) i 1 p

i

 (s   ) j 1

j

Mag(H0) (dB)

H ( j )

Phase(H0) (º)

H ( s)

Freq (GHz)

• This routine eases the use of pole-zero identification for multivariable stability analysis www.amcad-engineering.com Slide 11

IMS2011 in Baltimore: A Perfect Match

STAN TOOL Multi-nodes Node „n‟

v out

( i in ,fs )

A

B FET2

A- No oscillation detected in the common node

FET1 FET3 FET5

FET4 FET6

BOscillation detected in the transistor node

 Odd mode (parametric frequency division)  will determine the stabilization strategy www.amcad-engineering.com

Slide 12

IMS2011 in Baltimore: A Perfect Match

STAN TOOL Multi-parameters • Analysis with swept parameter(s) • Verification for various conditions (Pin, Zload, …) • Optimization of stabilization networks

RG

PIN

f0, v out

( i in ,fs )

www.amcad-engineering.com

Zload Rstab

Slide 13

IMS2011 in Baltimore: A Perfect Match

STAN TOOL Multi-parameters

• Application requires absence of spurious for a wide range of operating conditions

polar(inestables_HB1..mod,inestables_HB1..phase) S(1,1)

Example: 3-stage LDMOS DPA for SDR applications

• Multivariable large-signal stability analysis versus input frequency, input power and real Unstable and imaginary parts of load loads termination ZL. Frequency division (fin/2) detected

A. Anakabe et al. “Automatic Pole-Zero Identification for Multivariable Large-Signal Stability Analysis of RF and Microwave Circuits”, 2010 European Microwaev Conference, Paris, September 2010.

Stable loads freq (1.000GHz to 1.000GHz)

to 0.990)regions in Stablemod and(0.693 unstable the L plane for fin=500 MHz and Pin=17.1 dBm

Slide 14

IMS2011 in Baltimore: A Perfect Match

STAN TOOL Monte-Carlo Example: L-Band medium power FET amplifier • Low frequency instability related to the input bias network

• Stabilization by the inclusion of a gate-bias resistor RSTAB • Monte Carlo sensitivity analysis for different RSTAB (5 % dispersion in all circuit parameters) 40

20

 RSTAB = 44 

0 -20 -40

-0.2 -0.1 0 Real Axis (MHz)

0.1

Imaginary Axis (MHz)

Imaginary Axis (MHz)

40

20

 RSTAB = 70 

0 -20 -40

-0.2 -0.1 0 Real Axis (MHz)

0.1

Slide 15

IMS2011 in Baltimore: A Perfect Match

Q&A

Contact Stéphane Dellier E-mail: [email protected] Phone: +33 555 040 531 www.amcad-engineering.com