Electronic Supporting Information Amphiphilic oligoether-based ionic

0 downloads 0 Views 165KB Size Report
Kennedy,d Richard Hoogenbooma,§ and Ulrich S. Schubert*a,c,e ... e Laboratory of Organic and Macromolecular Chemistry, (IOMC) and Jena Center for Soft Matter .... LN [A100 wt. %]. Surfa c e. Te n s ion [m. N. /m. ] A). 40. 45. 50. 55. 60. 65. 70 ... io n. [m. N. /m. ] B). Electronic Supplementary Material (ESI) for Soft Matter.
Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2011

Electronic Supporting Information Amphiphilic oligoether-based ionic liquids as functional materials for thermoresponsive ion gels with tunable properties via aqueous gelation Josep Casamada Ribot,a,b Carlos Guerrero-Sanchez,*a,b,c,‡ Tamar L. Greaves,d Danielle F. Kennedy,d Richard Hoogenbooma,§ and Ulrich S. Schubert*a,c,e a

Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. b Ioniqa Technologies, Horsten 1, 5612 AX Eindhoven, The Netherlands. E-mail: [email protected]; Internet: http://www.ioniqa.com c Dutch Polymer Institute (DPI), PO Box 902, 5600 AX Eindhoven, The Netherlands. d CSIRO, Materials Science and Engineering Division, Bag 10, Clayton South MDC, 3169 Victoria, Australia. e Laboratory of Organic and Macromolecular Chemistry, (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, D-07745 Jena, Germany. E-mail: [email protected]; Internet: http://www.schubert-group.com ‡ Current address: CSIRO, Materials Science and Engineering Division, Bag 10, Clayton South MDC, 3169 Victoria, Australia. § Current address: Supramolecular Chemistry Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.

1E+7

G' (Pa)

1E+6

1E+5

1E+4

1E+3 0.01

Freq. = 1 rad/s G' Freq. = 10 rad/s G' Freq. = 100 rad/s G'

0.1

1

10

100

Strain (% )

Fig. S1 Dynamic strain sweep measurements for an IG derived from the aqueous gelation of A100 IL (60 wt. %) at 20 °C delimiting the linear viscoelastic regime of these kind of materials.

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2011

1E+6 1E+5

G', G" (Pa)

1E+4 1E+3 1E+2 1E+1

60% 60% 60% 60%

1E+0

IL G' Heating IL G" Heating IL G' Cooling IL G" Cooling

1E-1 -20

-10

0

10

20

30

40

50

60

Temperature (°C)

Fig. S2 Rheological properties as a function of temperature for an IG derived from the aqueous gelation of A102 IL (60 wt. %). Heating-cooling cycles of the IG during the oscillatory shear measurements demonstrated that the melting temperature is practically observed at the same temperature regardless whether the sample is subjected to a heating or a cooling process.

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2011

1E+7

A) Complex Viscosity, Apparent Viscosity [Pa s]

Complex Viscosity, Apparent Viscosity [Pa s]

1E+7

1E+6

1E+5

1E+4

Complex Viscosity Apparent Viscosity

B)

1E+6

1E+5

1E+4

Complex Viscosity Apparent Viscosity

1E+3

1E+3 1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E-5

1E+2

1E-4

C)

1E+6

1E+5

Complex Viscosity Apparent Viscosity

1E+3 1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+1

1E+2

1E+5

1E+4

1E+3

1E+2 1E-5

1E+2

E)

Complex Viscosity Apparent Viscosity

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+5

1E+4

Complex visosity Apparent viscosity

1E+6 Complex Viscosity, Apparent Viscosity [Pa s]

Complex Viscosity, Apparent Viscosity [Pa s]

1E+0

1E+2

Angular Freq. [rad/s], Shear Rate [1/s]

1E+6

1E+2 1E-5

1E-1

D)

Angular Freq. [rad/s], Shear Rate [1/s]

1E+3

1E-2

1E+6 Complex Viscosity, Apparent Viscosity [Pa s]

Complex Viscosity, Apparent Viscosity [Pa s]

1E+7

1E+4

1E-3

Angular Freq. [rad/s], Shear Rate [1/s]

Angular Freq. [rad/s], Shear Rate [1/s]

F)

1E+5

1E+4

1E+3

Complex Viscosity Apparent Viscosity

1E+2

1E-4

1E-3

1E-2

1E-1

1E+0

Angular Freq. [rad/s], Shear Rate [1/s]

1E+1

1E+2

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

Angular Freq. [rad/s], Shear Rate [1/s]

Fig. S3 Cox-Merz experiments performed at 20 ºC on the investigated IGs confirmed the existence of elastic gel-like structures as the complex dynamic viscosity plotted against the frequency was consistently higher than the apparent viscosity plotted against shear rate. Data for the investigated IGs derived from the aqueous gelation of A102 IL are shown (wt. % of A102 IL): A) 40 wt. %, B) 60 wt. %, C) 62.5 wt. %, D) 65 wt. %, E) 67.5 wt. % and F) 70 wt. %

1E+2

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2011

70

A)

Surface Tension [mN/m]

65

60

55

50

45

40

35 -6

-5

-4

-3

-2

-1

0

LN [A100 wt. % ]

70

B)

Surface Tension [mN/m]

65

60

55

50

45

40 -7

-6

-5

-4

-3

-2

-1

0

1

LN [A102 wt. % ]

Fig. S4 Surface tension measurements vs. concentration of aqueous solutions of A) A100 IL and B) A102 IL

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2011

Fig. S5 1-D diffraction plots of azimuthally averaged intensity (arbitrary units) as a function of scattering vectors obtained from SAXS measurements for the A102 IL and IGs derived from its aqueous gelation at different IL concentration. Note that to ease visualization plots have been offset in the y-axis.