Enhanced 4C protocol - Babraham Institute

22 downloads 3679 Views 2MB Size Report
In brief, e4C entails the fixation, restriction digestion and ligation steps of conventional 3C, with an optional chromatin immunoprecipitation (ChIP) step to .... Complete protease inhibitor, EDTA-‐free (Roche 04693132001; see Reagent Setup) ..... CRITICAL STEP: Make ChIP wash buffer I fresh on the day of the experiment.
Sensitive  detection  of  chromatin  co-­‐associations  using  enhanced   chromosome  conformation  capture  on  chip     Tom  Sexton1,  Sreenivasulu  Kurukuti2,  Jennifer  A.  Mitchell3,  David  Umlauf4,  Takashi  Nagano5  and  Peter   Fraser5,6     1

Laboratory  of  Chromatin  and  Cell  Biology,  Institute  of  Human  Genetics,  CNRS  UPR  1142,  141  rue  de  

la  Cardonille,  34396  Montpellier  Cedex  5,  France.   2

Department  of  Animal  Sciences,  School  of  Life  Sciences,  University  of  Hyderabad,  Hyderabad-­‐

500046.  A.P.  India.   3

Department  of  Cell  and  Systems  Biology,  University  of  Toronto,  25  Harbord  Street,  Toronto,  Canada  

M5S  3G5   4

Department  of  Functional  Genomics,  Institut  de  Genetique  et  de  Biologie  Moleculaire  et  Cellulaire,  1  

rue  Laurent  Fries,  BP  10142,  67404  Illkirch,  France.   5

Nuclear  Dynamics  Programme,  Babraham  Institute,  Babraham  Research  Campus,  Cambridge,  UK.  

CB22  3AT.   6

Corresponding  author.  E-­‐mail:  [email protected].  Telephone:  +44  (0)1223  496644.  Fax:  

+44  (0)1223  496002.     First  published  in  [Nature  Protocols.  2012  Jun  21;7(7):1335-­‐50.  doi:  10.1038/nprot.2012.071.  PMID: 22722369]    Nature Publishing  Group,  a  division  of  Macmillan  Publishers  Limited]   KEYWORDS   Chromosome  conformation  capture;  nuclear  organization;  microarrays;  enhanced  4C;  e4C  

1    

ABSTRACT   Chromosome   Conformation   Capture   (3C)   is   a   powerful   technique   for   analyzing   spatial   chromatin   organization  in  vivo.  Technical  variants  of  the  assay  (‘4C’)  allow  the  systematic  detection  of  genome-­‐ wide  co-­‐associations  with  bait  sequences  of  interest,  enabling  the  nuclear  environments  of  specific   genes   to   be   probed.   We   describe   enhanced   4C   (e4C),   a   technique   incorporating   additional   enrichment   steps   for   bait-­‐specific   sequences,   and   thus   improving   sensitivity   in   the   detection   of   distal   chromatin   co-­‐associations.   In   brief,   e4C   entails   the   fixation,   restriction   digestion   and   ligation   steps   of   conventional  3C,  with  an  optional  chromatin  immunoprecipitation  (ChIP)  step  to  select  for  subsets  of   chromatin   co-­‐associations,   followed   by   bait   enrichment   by   biotinylated   primer   extension   and   pull-­‐ down,  adapter  ligation  and  PCR  amplification.  Chromatin  co-­‐associations  with  the  bait  sequence  can   then  be  assessed  by  hybridizing  e4C  product  to  microarrays  or  sequencing.  The  e4C  procedure  takes   approximately  one  week  to  go  from  tissue  to  DNA  ready  for  microarray  hybridization.     INTRODUCTION   Chromosome   Conformation   Capture   (3C)   has   revolutionized   research   into   spatial   genome   organization,  allowing  chromatin  co-­‐associations  to  be  assessed  at  resolutions  unattainable  by  light   microscopic   methods.   More   generalized   variants   of   the   technique   have   emerged   to   probe   chromatin   co-­‐associations   and   hence   nuclear   organization   in   a   more   global   manner.   One   such   technique,   enhanced   chromosome   conformation   capture   on   chip   (e4C),   is   described   in   this   protocol   and   has   been  used  to  identify  the  spatial  transcriptional  partners  of  the  mouse  globin  genes1.  Briefly,  the  3C   technique   and   its   variants   entail   formaldehyde   fixation   and   restriction   digestion   of   nuclei   in   their   native   state,   followed   by   ligation   under   dilute   conditions   which   favor   intramolecular   reactions   between   covalently   cross-­‐linked   restriction   fragments.   Hybrid   ligation   products   are   generated   between  restriction  fragments  which  are  separated  on  the  linear  chromosome  (or  reside  on  different   chromosomes),   but   which   are   physically   proximal   in   vivo,   and   their   relative   abundances   can   be   assessed   by   PCR   to   draw   conclusions   about   chromatin   topology2,3.   Over   the   last   decade,   3C   has   been   used   to   identify   chromatin   loops   between   distal   regulatory   elements   and   target   genes   and   to   correlate   these   loops   with   gene   regulation4.   Several   alternative   techniques   to   PCR   assessment   of   limited   numbers   of   ligation   products   have   been   developed   in   an   effort   to   map   chromatin   contacts   genome-­‐wide;   the   suitability   of   each   technique   depends   on   the   specific   aspect   of   nuclear   organization  that  is  being  investigated.   A   relatively   inexpensive   and   informative   way   to   map   all   chromatin   interactions   with   one   bait   sequence   of   interest,   such   as   a   specific   gene   or   regulatory   element,   in   a   genome-­‐wide   manner   is   the   2    

‘4C’   (defined   in   this   article   as   circular   chromosome   conformation   capture)   method,   developed   in   parallel   by   multiple   groups5-­‐8.   The   technical   differences   are   described   elsewhere9,   but   all   methods   essentially  entail  circularization  of  the  3C  template  and  an  inverse  PCR  approach,  using  primer  pairs   within  the  bait  restriction  fragment  to  amplify  all  bait-­‐linked  3C  ligation  products.  Such  4C,  coupled   with   hybridization   of   the   material   to   microarrays,   has   identified   networks   of   genes   which   co-­‐ associate   in   the   nucleus6,8,10,11.   However   in   at   least   one   case,   the   sensitivity   of   4C   has   been   questioned:   RNA   FISH   (fluorescent   in   situ   hybridization)   studies   identified   multiple   significant   interchromosomal   co-­‐associations   between   the   globin   genes   and   other   expressed   genes   in   erythroid   cells1,   which   were   not   detected   by   4C   in   the   same   tissue6.   Conversely,   the   majority   of   these   transcriptional  co-­‐associations  were  uncovered  by  e4C,  the  protocol  described  here  and  designed  to   optimize   detection   of   rarer   but   significant   chromatin   co-­‐associations1.   Increased   sensitivity   is   conferred   by   replacing   the   circularization   step   with   a   bait   enrichment   step,   employing   primer   extension  with  a  bait-­‐specific  primer  and  pull-­‐down  on  streptavidin-­‐coated  beads  (Fig.  1a).  This  step   confers   at   least   a   hundred-­‐fold   enrichment   of   bait   sequences   (Box   1   and   Anticipated   Results),   reducing   the   amount   of   non-­‐specific   genomic   DNA   in   the   (e)4C   product   which   also   undergoes   microarray   hybridization,   thus   improving   signal-­‐to-­‐noise   ratios.   e4C   products   are   then   amplified   by   incorporating   an   adapter   and   PCR   using   a   nested,   bait-­‐specific   primer   and   an   adapter-­‐specific   primer   (Fig.  1a).   The   major   limitation   of   e4C,   like   all   3C-­‐based   methods   to   date,   is   that   chromatin   interactions   are   pooled   from   a   large   population   of   nuclei.   Alternative   techniques,   such   as   FISH,   are   required   to   assess   specific   genomic   co-­‐associations   within   single   cells.   Another   limitation   of   e4C   is   that   the   results   of   each   experiment   are   limited   to   contacts   with   a   specific   bait   region.   The   3C-­‐carbon   copy   (5C)   technique   allows   the   repertoires   of   contacts   between   multiple   specific   targets   to   be   assessed   simultaneously12,  but  requires  the  expensive  and  technically  challenging  use  of  hundreds  of  primers   and   cannot   assess   chromatin   interactions   outside   of   the   tested   regions.   The   ‘Hi-­‐C’   technique   couples   3C  with  high-­‐throughput  sequencing  to  offer  a  truly  genome-­‐wide  view  of  chromatin  contacts13,  but   the   numbers   of   sequences   required   to   obtain   high-­‐resolution   profiles   in   metazoan   genomes   is   prohibitively  expensive  when  assessment  of  only  the  interactions  with  specific  genes  is  desired.  This   is   caused   by   the   complexity   of   3C   material   generated   in   large   genomes:   a   genome   of   n   restriction   fragments   has   a   number   of   possible   3C   ligation   products   in   the   order   of  n2.   The   ChIA-­‐PET   (chromatin   interaction  assay  with  paired  end  tags)  method  incorporates  a  chromatin  immunoprecipitation  (ChIP)   step   to   reduce   the   complexity   of   sampled   3C   ligation   products14,   but   the   numbers   of   sequences   needed  for  comprehensive  maps  remain  very  large.  e4C  coupled  to  microarray  hybridization  is  thus   an  inexpensive  and  efficient  method  for  the  assessment  of  genomic  interactions  with  one  or  a  few   3    

specific  genomic  regions  of  interest.  A  ChIP  step  can  also  be  introduced  in  the  e4C  protocol  to  reduce   the   complexity   of   the   sampled   3C   ligation   products,   and   was   previously   done   with   an   antibody   recognizing   the   active   form   of   RNA   polymerase   II   to   focus   more   fully   on   transcriptional   co-­‐ associations  with  the  globin  genes1.   The   detailed   e4C   protocol   described   below   is   that   used   for   assessing   chromatin   co-­‐ associations  with  the  beta-­‐globin  gene,  Hbb-­‐b1,  in  mouse  fetal  liver,  with  an  optional  incorporation   of   a   ChIP   step   with   an   antibody   recognizing   active   RNA   polymerase   II.   For   clarity,   we   call   the   method   e4C  to  denote  the  whole  3C,  primer  extension,  streptavidin  capture,  adapter  incorporation  and  PCR   amplification   steps   in   this   protocol   (Fig.   1a).   ChIP-­‐e4C   denotes   the   same   method   with   an   incorporation   of   an   immunoprecipitation   step   between   the   3C   digestion   and   ligation   steps,   analogous  to  the  ChIP-­‐loop  technique15  and  previously  used  to  assess  transcriptional  co-­‐associations   of   the   globin   genes1.   When   adapting   e4C   to   different   tissues   and   biological   questions,   various   experimental  considerations  will  need  to  be  made  and  are  highlighted  below.     Experimental  design   Chromosome  Conformation  Capture  (3C):  The  quality  of  e4C  results  is  critically  dependent  on  the  3C   material  used  in  their  generation.  Technical  considerations  which  are  important  for  3C  experiments,   such  as  restriction  enzyme  choice  and  obtaining  a  good  efficiency  of  restriction  digestion3  are  equally   important   for   e4C   (see   also   Troubleshooting   and   Box   2).   If   possible,   it   is   also   desirable   to   have   some   known   3C   results   for   the   cell   or   tissue   type   used   in   the   e4C   study;   reproduction   of   these   results   makes   an   ideal   quality   control   before   proceeding   with   subsequent   steps   of   the   e4C   protocol.   As   described   elsewhere3,   several   steps   of   the   3C   may   need   to   be   modified   to   optimize   restriction   digestion  and  ligation  in  more  technically  challenging  tissue  types,  such  as  muscle  or  plant  tissue16.   Chromatin  immunoprecipitation  (ChIP):  The  inclusion  or  omission  of  the  ChIP  step  in  the  e4C  protocol   depends  on  the  biological  question  being  addressed.  The  ChIP  step  selects  for  a  subset  of  genomic   interactions   involving   chromatin   fragments   that   are   bound   by   a   specific   protein,   thus   increasing   sensitivity   of   detecting   rarer   co-­‐associations   of   this   type.   However,   ChIP   enrichments   will   be   non-­‐ uniform,   skewing   e4C   detection   of   chromatin   co-­‐associations   to   those   between   the   most   strongly   enriched   binding   sites   and   making   quantitative   conclusions   of   e4C   results   more   difficult.   It   is   thus   important   to   verify   such   seemingly   strong   detected   co-­‐associations   by   performing   e4C   without   the   ChIP   step   (where   the   interaction   may   be   expected   to   be   detected,   albeit   more   weakly)   or   by   completely  independent  methods  such  as  FISH.  Furthermore,  the  protocol  has  been  optimized  for  an   4    

antibody  recognizing  the  active  form  of  RNA  polymerase  II1;  other  antibodies  will  need  to  be  tested   for   compatibility   with   the   e4C   protocol.   Analogous   to   known   3C   results,   it   is   desirable   to   have   positive  and  negative  ChIP  controls  for  the  tissue  type  used,  which  can  be  tested  by  qPCR  once  the  3C   DNA  is  purified.  In  this  manner,  any  required  application-­‐specific  modifications  to  the  protocol  can  be   assessed  for  both  3C  and  ChIP  efficiency  before  proceeding  with  e4C.   Primer  design:  Compared  to  5C,  e4C  requires  the  design  of  only  two  bait-­‐specific  primers.  However,   the  fidelity  and  specificity  of  these  primers  is  crucial  to  e4C  and  the  primers  need  to  be  thoroughly   tested  before  use  (Box  3).  Previous  applications  of  e4C1  used  the  six-­‐cutter  restriction  enzyme  BglII   for   the   3C   step   (primary   restriction   enzyme   X)   and   the   four-­‐cutter   restriction   enzyme   NlaIII   (secondary  restriction  enzyme  Y)  for  incorporation  of  the  adapter.  In  principle,  e4C  can  be  performed   with  any  combination  of  restriction  enzymes  fulfilling  these  criteria  (see  also  Fig.  1b):   •

the  enzyme  X  digests  fixed  chromatin  efficiently  in  3C  experiments  and  cuts  less  frequently   than  the  enzyme  Y;  



the   bait   fragment   is   of   a   sufficient   length   that   two   nested   bait-­‐specific   primers   can   be   designed  within  a  single  X-­‐Y  restriction  fragment,  with  the  primers  facing  site  X,  at  a  distance   of  ~50-­‐200  bp;  



to  test  e4C  primer  fidelity  (Box  3),  a  site  for  enzyme  Y  is  present  ~20-­‐200  bp  downstream  of   the  bait  site  X,  and  closer  than  the  next  site  for  enzyme  X.  

Note   that   the   e4C   adapter   sequence   will   need   to   be   altered   to   give   compatible   cohesive   ends   if   a   different  restriction  enzyme  to  NlaIII  is  used  as  enzyme  Y.   Sequencing   or   microarray   hybridization:   e4C   was   originally   designed   for   hybridization   to   custom   microarrays1.  While  these  identify  clusters  of  significantly-­‐interacting  sequences  over  large  genomic   distances  (see  Anticipated  Results),  microarrays  tend  to  be  saturated  for  close-­‐range  (few  to  tens  of   kilobases)  interactions,  similarly  to  other  4C  studies6.  Microarrays  are  thus  not  suitable  for  assessing   specific   chromatin   loops   within   gene   loci.   However,   conventional   cloning   and   sequencing   of   a   few   thousand   e4C   products   reproduced   known   looped   interactions   within   the   mouse   beta-­‐globin   locus   (see  Anticipated  Results),  implying  that  the  microarray  technology  is  limiting  the  short-­‐range  analysis   of   chromatin   topology   and   not   the   e4C   procedure   per   se.   By   the   incorporation   of   Illumina   adapter   sequences  into  the  PCR  primers,  the  e4C  technique  has  been  made  compatible  with  high-­‐throughput   sequencing17.  This  specific  application  obtained  a  high-­‐resolution  profile  of  the  local  environment  of   a   human   tRNA   gene,   demonstrating   that   tRNA   genes   preferentially   coalesce   together   and   exclude   RNA   polymerase   II-­‐transcribed   genes.   However,   insufficient   sequences   were   obtained   to   provide   a   genome-­‐wide   view   of   the   bait’s   nuclear   environment.   The   decision   between   using   microarrays   or   5    

sequencing   for   e4C   thus   depends   on   the   specific   biological   question   being   addressed   and   the   budget   of  the  experiment.  Note  that  all  microarray  data  deposited  in  public  databases  should  adhere  to  the   MIAME  (minimal  information  for  microarray  experiments)  guidelines18.   Analysis:  Bioinformatically,  analysis  of  4C  and  e4C  datasets  are  identical.  Original  processing  methods   involved   classical   statistics,   such   as   running   means   and   medians6   or   t-­‐tests1   on   sliding   windows   of   fixed   size.   However,   it   is   often   difficult   to   predict   a   sensible   window   size   for   optimal   detection   of   genomic   interactions.   ‘Domainogram’   approaches19   allow   statistical   analysis   of   biological   profiles   at   multiple  scales,  and  have  recently  been  optimized  for  analysis  of  4C  data  by  other  groups20-­‐22.  All  of   the  analytical  approaches  have  successfully  identified  gene  co-­‐association  partners;  we  recommend   that  multiple  strategies  are  tried  to  explore  new  datasets.  However,  validation  of  co-­‐associations  by   independent  methods  such  as  FISH  remains  an  indispensable  part  of  projects  involving  e4C.     MATERIALS   Reagents   •

Pregnant  (E14.5)  mice  CAUTION:  Approved  national  and  institutional  regulations  for  animal   work  must  be  adhered  to,  and  experiments  reported  according  to  the  ARRIVE  guidelines23  



Fetal  bovine  serum  (FBS;  Sigma  F9665)  



Dulbecco’s  modified  Eagle  medium  (DMEM;  Gibco  41966)  



10%   (v/v)   FBS/DMEM   CRITICAL:   Solution   must   be   made   under   aseptic   conditions.   50   ml   aliquots  can  be  stored  at  4°C  for  a  few  weeks.  



37%   (v/v)   formaldehyde   (histology-­‐grade,   free   from   acid;   Merck   103999)   CAUTION:   Formaldehyde  is  toxic.  Perform  fixation  in  a  fume  hood.  



Fix  solution  (see  Reagent  Setup)  



2   M   glycine   (Sigma-­‐Aldrich   G8898)   CRITICAL:   Ensure   glycine   is   chilled   on   ice   before   use   in   quenching  fixation.  Stocks  can  precipitate  with  prolonged  storage  at  4°C,  so  should  be  stored   at  room  temperature.  



Sodium   chloride   (NaCl;   Sigma-­‐Aldrich   S3014).   Stocks   made   at   5   M   concentration   can   be   stored  for  months  at  room  temperature.  



Disodium  hydrogen  phosphate  (Na2HPO4;  Sigma-­‐Aldrich  S3264)  



Potassium  dihydrogen  phosphate  (KH2PO4;  Sigma-­‐Aldrich  P9791)  



Phosphate  buffered  saline  (PBS;  see  Reagent  Setup)  



1  M  Tris-­‐HCl,  pH  8.0  (see  Reagent  Setup)   6  

 



NP-­‐40  (also  known  as  Igepal  CA-­‐630;  Sigma-­‐Aldrich  I8896)  



Complete  protease  inhibitor,  EDTA-­‐free  (Roche  04693132001;  see  Reagent  Setup)  



Cell  permeabilization  buffer  (see  Reagent  Setup)  



NEB3   buffer   (10   x   stock;   New   England   Biolabs   B7003S)   CRITICAL:   When   thawing   stock   to   make  working  solution,  vortex  thoroughly  to  ensure  dithiothreitol  (DTT)  is  fully  dissolved.  



20%  (w/v)  sodium  dodecyl  sulfate  (SDS;  Sigma-­‐Aldrich  05030)  



20%  (v/v)  Triton-­‐X100  (Sigma-­‐Aldrich;  T8787)  



BglII  (50,000  U  ml-­‐1;  New  England  Biolabs  R0144M)  



Dynabeads  protein  A-­‐coated  magnetic  beads  (Invitrogen  100-­‐02D)  



Bovine  serum  albumen  (BSA;  Sigma  05482);  5  mg  ml-­‐1  in  PBS.  Store  at  4°C  for  a  few  weeks   maximum.  



Anti-­‐RNA  polymerase  II  antibody  (serine-­‐5-­‐phosphate;  ChIP-­‐grade  rabbit  IgG  Abcam  Ab5131)  



0.5  M  EDTA,  pH  8  (Sigma-­‐Aldrich  E6758)  



Dilution  buffer  (see  Reagent  Setup)  



ChIP  buffer  (see  Reagent  Setup)  



ChIP  wash  buffer  I  (see  Reagent  Setup)  



ChIP  wash  buffer  II  (see  Reagent  Setup)  



TE  buffer  (see  Reagent  Setup)  



T4  DNA  ligase  buffer  (see  Reagent  Setup)  



T4  DNA  ligase  (400,000  U  ml-­‐1;  New  England  Biolabs  M0202L)  



Proteinase  K  (10  mg  ml-­‐1;  Sigma-­‐Aldrich  P2038)  



Ribonuclease  A  (RNase  A;  20  mg  ml-­‐1;  Sigma-­‐Aldrich  R6513)  



Phenol-­‐chloroform-­‐isoamyl   alcohol   (25:24:1;   pH   8;   Sigma-­‐Aldrich   77617)   CAUTION:   Phenol   and  chloroform  are  toxic  chemicals;  handle  in  a  fume  hood.  



Glycogen  (UltraPure  20  µg  ml-­‐1;  Invitrogen  10814010)  



Isopropanol  (Sigma-­‐Aldrich  I9516)  



Ethanol  (Sigma-­‐Aldrich  02860)  



Molecular  biology-­‐grade  water  (Qiagen  129114)  



Phenol,  pH  8  (Sigma-­‐Aldrich  P4557)  CAUTION:  Phenol  is  toxic;  handle  in  a  fume  hood.  



Chloroform  (Sigma-­‐Aldrich  25666)  CAUTION:  Chloroform  is  toxic;  handle  in  a  fume  hood.  



3  M  sodium  acetate,  pH  5.2  (Sigma-­‐Aldrich  S5636)  



Quant-­‐iT   PicoGreen   dsDNA   assay   kit   (Invitrogen   P7589)   or   Qubit   dsDNA   BR   assay   kit   (Invitrogen  Q32853)  



VentR  (exo-­‐)  DNA  polymerase  (2000  U  ml-­‐1;  New  England  Biolabs  M0257L),  provided  with  10  x   ThermoPol  buffer   7  

 



dNTPs  (2  mM  solution,  made  from  100  mM  PCR-­‐grade  stocks;  Roche  11969064001)  



Biotinylated  Hbb-­‐b1  primer  (Sigma-­‐Aldrich):  5’-­‐biotin  CTCAGAGCAGTATCTTTTGTTTGC  3’  



NlaIII  (10,000  U  ml-­‐1;  New  England  Biolabs  R0125L),  provided  with  10  x  NEB4  buffer  and  100  x   (10   mg   ml-­‐1)   BSA   solution   CRITICAL:   Store   at   -­‐80°C.   When   thawing   NEB4   buffer   to   make   working  solutions,  vortex  thoroughly  to  ensure  DTT  is  fully  dissolved.  



QiaQuick  PCR  purification  kit  (Qiagen  28106)  



Dynabeads  M-­‐280  Streptavidin  (Invitrogen  112-­‐06D)  



Dynabeads  kilobaseBINDER  kit  (Invitrogen  601-­‐01)  



Streptavidin  beads  wash  buffer  1  (SBWB1;  see  Reagent  Setup)  



Streptavidin  beads  wash  buffer  2  (SBWB2;  see  Reagent  Setup)  



NlaIII  reaction  solution  (see  Reagent  Setup)  



e4C  

adapter  

forward  

strand  

(Sigma-­‐Aldrich):  

5’  

TTTGGATTTGCTGGTGCAGTACAACTAGGCTTAATAGGGACATG  3’   NlaIII  cohesive  end  is  indicated  in  bold   •

e4C  

adapter  

reverse  

strand  

(Sigma-­‐Aldrich):  

5’-­‐phosphorylated  

TCCCTATTAAGCCTAGTTGTACTGCACCAGCAAATCC  3’-­‐amine  C7   •

High-­‐concentration  T4  DNA  ligase  (2,000,000  U  ml-­‐1;  New  England  Biolabs  M0202M)  



Adapter  ligation  reaction  solution  (see  Reagent  Setup)  



HotStar  Taq  DNA  polymerase  (5  U  µl-­‐1;  Qiagen  203205),  provided  with  10  x  HotStar  buffer  



e4C  adapter-­‐specific  primer  (Sigma-­‐Aldrich):  5’  GGATTTGCTGGTGCAGTACA  3’  



e4C  nested  Hbb-­‐b1  primer  (Sigma-­‐Aldrich):  5’  AGGATGAGCAATTCTTTTTGC  3’  

  Equipment   •

70  µm  cell  strainer  (Falcon  352350)  



Centrifuge  (Heraeus  Megafuge  3.0R)  



Orbital  shaker  



Haemocytometer    



Phase  contrast  microscope  



Thermal  mixer  (Eppendorf  Thermomixer  shaker  EF4283)  



Magnet  (Invitrogen  DynaMag-­‐2  magnet  123-­‐21D)  



Rotating  wheel  



Microcentrifuge  (Eppendorf  5417R)  



PCR  thermal  cycler  (MJ  Research  PTC-­‐200)   8  

 



NanoDrop  spectrophotometer  (Thermo  Scientific  ND2000)  

  Reagent  Setup   Fix   solution:   2%   formaldehyde   in   10%   (v/v)   FBS/DMEM.   Warm   FBS/DMEM   to   room   temperature   (23°C),  then  add  formaldehyde  just  before  use.  CRITICAL:  Make  solution  fresh  for  each  fixation.   Phosphate  buffered  saline:  155  mM  NaCl;  3  mM  Na2HPO4;  1  mM  KH2PO4;  pH  7.4   1  M  Tris-­‐HCl,  pH  8:  Tris  base  (Sigma-­‐Aldrich  T5941),  adjusted  to  pH  8.0  with  concentrated  HCl.  Stocks   can  be  stored  at  room  temperature.   Complete   protease   inhibitor,   EDTA-­‐free:   Dissolve   one   tablet   in   1   ml   molecular   biology-­‐grade   water   to   make  50  x  working  stock,  which  can  be  stored  at  4°C  for  a  maximum  of  three  days.   Cell   permeabilization   buffer:   10   mM   Tris-­‐HCl,   pH   8.0;   10   mM   NaCl;   0.2%   NP-­‐40;   1   x   complete   protease  inhibitor,  EDTA-­‐free.  CRITICAL:  Make  buffer  fresh  on  the  day  of  the  experiment.   Dilution   buffer:   83   mM   Tris-­‐HCl,   pH   8;   42   mM   EDTA;   2.7   x   complete   protease   inhibitor,   EDTA-­‐free.   CRITICAL:  Make  buffer  fresh  on  the  day  of  the  experiment.   ChIP  buffer:  16.7  mM  Tris-­‐HCl,  pH  8;  167  mM  NaCl;  1.2  mM  EDTA;  1.1%  Triton-­‐X100;  0.01%  SDS;  1  x   complete  protease  inhibitor,  EDTA-­‐free.  CRITICAL:  Make  buffer  fresh  on  the  day  of  the  experiment.   ChIP  wash  buffer  I:  20  mM  Tris-­‐HCl,  pH  8;  150  mM  NaCl;  2  mM  EDTA;  1%  Triton-­‐X100;  0.1%  SDS;  1  x   complete  protease  inhibitor,  EDTA-­‐free.  CRITICAL:  Make  buffer  fresh  on  the  day  of  the  experiment.   ChIP   wash   buffer   II:   20   mM   Tris-­‐HCl,   pH   8;   500   mM   NaCl;   2   mM   EDTA;   1%   Triton-­‐X100;   0.1%   SDS;   1   x   complete  protease  inhibitor,  EDTA-­‐free.  CRITICAL:  Make  buffer  fresh  on  the  day  of  the  experiment.   TE  buffer:  10  mM  Tris-­‐HCl,  pH  8;  1  mM  EDTA.  Stocks  can  be  stored  at  room  temperature.   T4   DNA   ligase   buffer:   10   x   stock;   New   England   Biolabs   B0202S.   CRITICAL:   When   thawing   stock   to   make  working  solution,  vortex  thoroughly  to  ensure  DTT  is  fully  dissolved.   Streptavidin   beads   wash   buffer   1:   10   mM   Tris-­‐HCl,   pH   8;   2   M   NaCl;   1   mM   EDTA.   Stocks   can   be   stored   at  room  temperature.   Streptavidin  beads  wash  buffer  2:  10  mM  Tris-­‐HCl,  pH  8.  Stocks  can  be  stored  at  room  temperature.  

9    

NlaIII  reaction  solution  (per  reaction):  20  U  NlaIII  in  50  µl  total  volume  1  x  NEB4  plus  100  µg  ml-­‐1  BSA.   CRITICAL:  Make  buffer  fresh  on  the  day  of  the  experiment.   Adapter  ligation  reaction  solution  (per  reaction):  2000  U  high-­‐concentration  T4  DNA  ligase  plus  200   pmol   e4C   adapter   in   40   µl   total   volume   1   x   T4   DNA   ligase   buffer.   CRITICAL:   Make   buffer   fresh   on   the   day  of  the  experiment.   e4C  primer  design:  The  same  principles  are  used  in  designing  the  biotinylated  extension  primer  as  for   all   other   PCR   primers   in   the   protocol.   Primers   are   20-­‐24mers   with   a   Tm   in   the   range   of   60-­‐65°C   (62°C   optimally),   designed   with   the   primer3   website   (http://frodo.wi.mit.edu/primer3).   Before   use,   primers   are   also   checked   for   specificity   in   the   mouse   genome   by   BLASTN   alignment   to   the   mouse   genome   with   the   “near-­‐exact   matches   (oligo)”   setting   on   the   Ensembl   website   (http://www.ensembl.org/Multi/blastview).   e4C   adapter   setup:   The   adapter   strand   sequences   given   generate   an   NlaIII   cohesive   end   when   annealed;  the  terminal  sequences  will  need  to  be  changed  if  a  different  restriction  enzyme  is  used.   The   reverse   strand   is   3’-­‐aminoacylated   and   the   forward   strand   is   non-­‐phosphorylated   and   contains   a   three  nucleotide  overhang  to  prevent  adapter  concatemerization  during  ligation  reactions.  To  make   100  µM  stock  of  adapter,  mix  equal  volumes  of  200  µM  solutions  of  each  adapter  strand  in  a  1.5  ml   eppendorf  and  incubate  at  65°C  in  a  water  bath  for  15  min.  Switch  off  the  water  bath  and  allow  the   mixture   to   cool   slowly   overnight   for   strand   annealing.   The   stock   can   be   stored   at   4°C   for   several   weeks.   Microarray  design:  All  BglII-­‐NlaIII  fragments  within  the  repeat-­‐masked  mouse  genome  are  retrieved   and  fragments  containing  fewer  than  45  bp  of  non-­‐repetitive  sequence  are  discarded.  The  remainder   is   used   for   in-­‐house   45-­‐65mer   isothermal   oligonucleotide   probe   design   and   custom   microarray   printing  by  NimbleGen  Systems.     PROCEDURE   Single-­‐cell  preparation  and  fixation  TIMING:  30  min-­‐1  h   1  Dissect  5  fetal  livers  (containing  ~2  x  108  cells;  see  step  8  for  required  cell  amounts  in  e4C  or  ChIP-­‐ e4C   experiments)   according   to   approved   methods   and   transfer   to   a   1.5   ml   eppendorf   tube   with   cold   10%  (v/v)  FBS/DMEM.  Obtain  a  single-­‐cell  suspension  by  pipetting  vigorously.   CAUTION:  Approved  national  and  institutional  regulations  for  animal  work  must  be  adhered  to.   10    

CRITICAL   STEP:   Dissection   and   fixation   steps   must   be   as   fast   as   possible   to   conserve   nuclear   organization.   Other   tissues   may   need   harsher   treatments   to   obtain   a   single-­‐cell   suspension3,16.   For   use   of   new   tissue   types,   it   is   recommended   to   perform   haemocytometry   in   pilot   experiments   to   confirm   single-­‐cell   suspensions   and   estimate   cell   yields   per   amount   of   tissue   dissected.   If   working   with   cell   lines,   use   appropriate   scraping   or   trypsin   treatment   methods   to   obtain   single-­‐cell   suspensions.   2   Filter   cells   through   a   70   µm   strainer   into   a   50   ml   falcon   tube   and   increase   volume   to   40   ml   with   cold  FBS/DMEM.   3   Centrifuge   cells   at   400   g,   4°C,   8   min.   Remove   supernatant   and   resuspend   cells   in   40   ml   fix   solution.   Incubate  with  gentle  shaking  on  an  orbital  shaker  for  5  min  at  23°C.   CAUTION:  Formaldehyde  is  toxic.  Perform  fixation  reaction  in  a  fume  hood.   CRITICAL  STEP:  Add  formaldehyde  to  FBS/DMEM  just  before  use  in  fixation.  Fixation  medium  should   be   at   room   temperature   (23°C).   Depending   on   the   tissue   used   and   the   specific   downstream   applications,  percentage  of  formaldehyde  and  fixation  times  may  need  to  be  varied3.   4  Quench  fixation  reaction  by  adding  2.67  ml  2  M  cold  glycine  (0.125  M  final  concentration)  and  mix   by  inverting  tube  4-­‐5  times.   CRITICAL  STEP:  Keep  samples  on  ice  between  subsequent  centrifugation  steps  (steps  4-­‐7).   5   Centrifuge   cells   at   400  g,   4°C,   8   min.   Remove   supernatant   and   wash   cells   by   resuspending   in   50   ml   cold  PBS.  Centrifuge  again  at  400  g,  4°C,  8  min.   CRITICAL   STEP:   It   is   important   to   get   a   homogeneous   suspension   for   the   wash   step.   One   way   to   achieve   this   is   to   initially   resuspend   the   cells   by   vigorous   pipetting   with   1   ml   PBS,   then   to   add   the   remaining  49  ml  of  PBS  buffer  after  resuspension.  If  cells  stick  to  the  pipette  tips  and  numbers  are   limiting,  consider  gentle  vortexing  of  the  suspension.     Cell  permeabilization  Timing:  30-­‐40  min   6  Remove  supernatant  and  resuspend  cells  in  50  ml  cold  cell  permeabilization  buffer.  Incubate  for  30   min  on  ice,  mixing  by  inverting  the  tube  once  every  10  mins.   CRITICAL   STEP:   Cell   permeabilization   buffer   needs   to   be   made   fresh   on   the   day   of   the   experiment   and  chilled  on  ice  before  use.  A  homogeneous  solution  is  required  for  efficient  permeabilization.  One   11    

way   to   achieve   this   is   to   initially   resuspend   the   cells   by   vigorous   pipetting   with   1   ml  permeabilization   buffer,  then  to  add  the  remaining  49  ml  of  buffer  after  resuspension.  If  cells  stick  to  the  pipette  tips   and   numbers   are   limiting,   consider   gentle   vortexing   of   the   suspension.   Different   tissue   types   may   require  different  buffers,  such  as  those  used  for  3C  experiments  in  plant16  and  Drosophila24  tissues.   TROUBLESHOOTING   7  Collect  nuclei  by  centrifuging  at  764  g,  4°C,  5  min.   TROUBLESHOOTING   PAUSE   POINT:   The   pelleted   nuclei   can   be   frozen   in   liquid   nitrogen   and   stored   at   -­‐80°C   for   several   months.     Restriction  digestion  Timing:  18-­‐20  h   8   Resuspend   nuclei   in   1   ml   1.2   x   NEB3   buffer   and   count   with   a   haemocytometer.   Make   up   500   µl   aliquots  of  1  x  107  nuclei  aliquots  each  in  1.2  x  NEB3.   CRITICAL   STEP:   One   or   two   aliquots   of   1   x   107   nuclei   is   usually   sufficient   for   standard   3C   experiments   or  one  e4C  experiment  which  does  not  include  a  ChIP  step.  If  the  ChIP  step  is  incorporated,  two  to   three  aliquots  of  1  x  107  nuclei  are  often  needed  per  immunoprecipitation.  In  turn,  depending  on  the   immunoprecipitation   efficiency,   three   to   six   immunoprecipitation   experiments   may   be   needed   per   e4C  experiment.   CRITICAL   STEP:   When   thawing   10   x   NEB3   buffer   to   make   working   solution,   vortex   thoroughly   to   ensure   all   DTT   is   dissolved.   If   using   a   restriction   enzyme   different   to   BglII,   use   the   compatible   restriction  buffer  at  this  step.   9   Add   7.5   µl   20%   (w/v)   SDS   (0.3%   final   concentration)   and   incubate   for   1   h   at   37°C,   950   rpm   on   a   thermal  mixer.   10  Add  50  µl  20%  (v/v)  Triton-­‐X100  (1.8%  final  concentration)  and  incubate  for  1  h  at  37°,  950  rpm  on   a  thermal  mixer.   11  Add  30  µl  (1500  U)  BglII  and  incubate  overnight  at  37°C,  950  rpm  on  a  thermal  mixer.  If  the  e4C   experiment   contains   a   ChIP   step,   after   2   h   of   digestion   transfer   a   50   µl   aliquot   to   a   new   1.5   ml   eppendorf  tube  for  subsequent  quantification  of  the  input  DNA  (Box  4)  before  proceeding  directly  to   step  12.  If  the  ChIP  step  is  omitted,  skip  to  step  23.   12    

CRITICAL   STEP:   Efficient   restriction   digestion   is   important,   especially   around   the   bait   fragment.   A   method  for  testing  digestion  efficiency  can  be  found  in  Box  2.     ChIP  preparation  steps  Timing:  18-­‐20  h     12  Prepare  Dynabeads  protein  A-­‐coated  magnetic  beads  (100  µl  per  immunoprecipitation)  in  1.5  ml   eppendorf  tubes.  Use  magnet  to  separate  beads  from  storage  solution  and  resuspend  in  1  ml  5  mg   ml-­‐1   BSA/PBS   by   pipetting   gently.   Wash   the   beads   a   total   of   three   times   in   1   ml   BSA/PBS   in   this   manner,  and  leave  the  beads  in  the  suspension  after  the  final  wash.   CRITICAL   STEP:   Time   between   removing   supernatant   and   adding   the   new   solution   should   be   minimized  to  prevent  the  beads  from  drying  out.  This  is  true  for  every  step  involving  the  protein  A-­‐ coated  magnetic  beads.   13  Add  3  µg  of  anti-­‐RNA  polymerase  II  antibody  (exact  volume  depends  on  the  concentration  of  the   antibody  batch  provided)  to  bead  suspension  and  incubate  overnight  at  4°C  on  a  rotating  wheel.     Chromatin  immunoprecipitation  Timing:  14-­‐18  h   14  Wash  protein  A-­‐coated  beads  (from  step  13)  three  times  with  1  ml  PBS,  using  the  magnet  as  per   step  12.  Resuspend  in  1  ml  BSA/PBS  and  store  beads  at  4°C  until  step  18.   15   Pool   BglII-­‐digested   chromatin   samples   (from   step   11;   aliquot   quantified   in   Box   4)   to   make   the   equivalent   of   100   µg   DNA   aliquots   per   immunoprecipitation   in   separate   1.5   ml   eppendorf   tubes.   Centrifuge  at  14,000  g,  23°C,  1  min  and  remove  supernatant.   CRITICAL   STEP:   For   fetal   liver   nuclei,   ~90%   of   the   chromatin   remains   within   the   pellet   as   intact   nuclei   at  this  stage.  For  different  tissues,  this  should  be  confirmed  by  DNA  purification  and  quantitation  of   the  supernatant  and  pellet  fractions.  If  a  significant  amount  of  chromatin  is  in  the  supernatant,  pool   greater   quantities   of   digestions   to   obtain   the   same   amount   of   input   chromatin   for   the   immunoprecipitation  step.   16   Resuspend   nuclei   in   230   µl   1x   NEB3   buffer   and   add   20   µl   20%   SDS   (1.6%   final   concentration).   Incubate  for  30  min  at  65°C,  950  rpm  on  a  thermal  mixer.   CRITICAL   STEP:   When   thawing   10   x   NEB3   buffer   to   make   working   solution,   vortex   thoroughly   to   ensure  DTT  is  fully  dissolved.   13    

17   Add   150   µl   dilution   buffer   and   600   µl   ChIP   buffer   to   the   chromatin   sample,   then   remove   the   nuclear  debris  by  centrifuging  at  14,000  g,  4°C  for  10  min.  Aliquots  taken  at  this  stage  can  be  used  as   input  controls  for  assessment  of  ChIP  efficiency  by  qPCR  (for  example,  as  described  in  ref  25).   CRITICAL  STEP:  Make  dilution  buffer  and  ChIP  buffer  fresh  on  the  day  of  the  experiment.     CRITICAL   STEP:   The   pellet   of   insoluble   chromatin   can   be   quite   loose.   Take   care   not   to   disturb   the   pellet   when   taking   the   soluble   chromatin,   as   contamination   with   insoluble   chromatin   reduces   the   efficiency  of  the  immunoprecipitation.   18  Use  a  magnet  to  remove  the  liquid  from  the  protein  A-­‐coated  beads  (from  step  14).  Resuspend   the   beads   with   the   supernatant   from   the   BglII-­‐digested   chromatin   (from   step   17)   and   incubate   overnight  at  4°C  on  a  rotating  wheel.     ChIP  washes  and  elution  Timing:  90  min-­‐2  hr   19   Wash   the   beads   three   times   for   5   min   each   with   1.5   ml   ChIP   wash   buffer   I,   incubating   on   a   rotating  wheel  at  23°C  and  using  a  magnet  to  remove  the  supernatants  at  each  wash.   CRITICAL  STEP:  Make  ChIP  wash  buffer  I  fresh  on  the  day  of  the  experiment.   20   Wash   the   beads   three   times   for   5   min   each   with   1.5   ml   ChIP   wash   buffer   II,   incubating   on   a   rotating  wheel  at  23°C  and  using  a  magnet  to  remove  the  supernatants  at  each  wash.   CRITICAL  STEP:  Make  ChIP  wash  buffer  II  fresh  on  the  day  of  the  experiment.   21  Wash  the  beads  three  times  for  5  min  each  with  1.5  ml  TE  buffer,  incubating  on  a  rotating  wheel   at  23°C  and  using  a  magnet  to  remove  the  supernatants  at  each  wash.   22   Resuspend   beads   in   50   µl   1   x   NEB3   buffer   and   add   4   µl   20%   SDS   (1.6%   final   concentration).   Incubate   for   30   min   at   65°C,   950   rpm   on   a   thermal   mixer.   Separate   beads   on   magnet   and   transfer   supernatant  to  a  new  2  ml  eppendorf  tube.   CRITICAL  STEP:  Take  care  not  to  contaminate  the  sample  with  residual  protein  A-­‐coated  beads.  Any   chromatin   still   adsorbed   may   subsequently   undergo   intermolecular   ligation   reactions   and   thus   increase  the  noise  of  the  e4C  results.   CRITICAL   STEP:   When   thawing   10   x   NEB3   buffer   to   make   working   solution,   vortex   thoroughly   to   ensure  DTT  is  fully  dissolved.   14    

  Ligation  and  DNA  purification  Timing:  20-­‐24  h   23  Dilute  the  chromatin  and  neutralize  the  SDS,  then  purify  the  DNA.  Due  to  the  different  volumes   involved,  the  procedure  is  different  if  a  ChIP  step  is  incorporated  (option  A)  or  omitted  (option  B).   (A)  ChIP-­‐e4C   (i.) To  the  eluted  chromatin  (step  22),  add  1  ml  1.1  x  T4  DNA  ligase  buffer  and  55  µl  20  %  Triton-­‐ X100  (1%  final  concentration).  Incubate  for  30  min  at  37°C.   CRITICAL  STEP:  Final  DNA  concentration  will  depend  on  the  amount  of  chromatin  eluted  from   the   immunoprecipitation   step.   A   yield   greater   than   10%   of   the   input   is   very   unlikely,   but   would   create   DNA   concentrations   greater   than   the   10   ng   µl-­‐1   used   in   e4C   experiments   without   ChIP.   If   this   is   a   concern,   consider   increasing   the   ligation   volume.   Percentages   of   non-­‐specific  ligation  can  be  estimated  as  shown  in  Box  5.   CRITICAL   STEP:   When   thawing   10   x   T4   DNA   ligase   buffer   to   make   working   solution,   vortex   thoroughly  to  ensure  all  DTT  is  dissolved.   (ii.) Add  2   µl  (800  U)  T4  DNA  ligase  (400,000  U  ml-­‐1)  and  incubate  for  4  h  at  16°C,  then  30  min  at   23°C.   If   testing   for   restriction   digestion   efficiency   (Box   2),   omit   T4   DNA   ligase   from   one   aliquot  (‘no  ligase  control’)  and  process  with  the  rest  of  the  ChIP-­‐e4C  samples  to  step  24.   (iii.) Add   40   µl   5   M   NaCl   (200   mM   final   concentration),   25   µl   0.5   M   EDTA   (12.5   mM   final   concentration)   and   10   µl   10   mg   ml-­‐1   proteinase   K   (100   µg   ml-­‐1   final   concentration)   and   incubate  overnight  at  65°C.   (iv.) Add  2  µl  20  mg  ml-­‐1  RNase  A  (40  µg  ml-­‐1  final  concentration)  and  incubate  for  1  h  at  37°C.   (v.) Add   1   ml   phenol/chloroform/isoamyl   alcohol   and   mix   by   vortexing.   Centrifuge   at   14,000   g,   23°C,  4  min  and  transfer  aqueous  (top)  layer  to  new  2  ml  eppendorf  tube.   CAUTION:  Phenol  and  chloroform  are  toxic.  Handle  these  chemicals  in  a  fume  hood.   (vi.) Add  2   µl  (40   µg)   glycogen   and   700  µl  isopropanol  and  mix  by  vortexing.  Centrifuge  at  14,000   g,  4°C,  30  min.   (vii.)

Remove  supernatant  carefully,  wash  pellet  with  500  µl  70%  ethanol  and  centrifuge  at  

14,000  g,  4°C,  5  min.   (viii.)

Remove   supernatant,   air-­‐dry   pellet   and   dissolve   DNA   in   100   µl   molecular   biology-­‐

grade  water.   (B)  e4C  without  ChIP  

15    

(i.) Add  50  µl  20%  SDS  (1.6%  final  concentration)  to  the  digested  chromatin  (from  step  11)  and   incubate  for  30  min  at  65°C,  950  rpm  on  a  thermal  mixer.   (ii.) Transfer  chromatin  to  a  15  ml  falcon  tube  and  add  7  ml  1.1  x  T4  DNA  ligase  buffer  and  400  µl   20%   Triton-­‐X100   (1%   final   concentration),   making   a   final   DNA   concentration   of   ~10   ng   µl-­‐1.   Incubate  for  1  h  at  37°C.   CRITICAL   STEP:   When   thawing   10   x   T4   DNA   ligase   buffer   to   make   working   solution,   vortex   thoroughly  to  ensure  all  DTT  is  dissolved.   (iii.) Add  2   µl  (800  U)  T4  DNA  ligase  (400,000  U  ml-­‐1)  and  incubate  for  4  h  at  16°C,  then  30  min  at   23°C.   If   testing   for   restriction   digestion   efficiency   (Box   2),   omit   T4   DNA   ligase   from   one   aliquot  (‘no  ligase  control’)  and  process  with  the  rest  of  the  e4C  samples  to  step  24.   (iv.) Add  70  µl  10  mg  ml-­‐1  proteinase  K  (100  µg  ml-­‐1  final  concentration)  and  incubate  overnight  at   65°C.   (v.) Add  14  µl  20  mg  ml-­‐1  RNase  A(40  µg  ml-­‐1  final  concentration)  and  incubate  for  1  h  at  37°C.   (vi.) Transfer   solution   to   a   new   50   ml   falcon   tube   and   add   10   ml   phenol,   pH   8.   Mix   thoroughly   by   vortexing  and  centrifuge  at  2900  g,  23°C,  15  min.  Transfer  aqueous  (top)  layer  to  a  new  50  ml   falcon  tube.   CAUTION:  Phenol  is  toxic;  handle  in  a  fume  hood.   (vii.)

Add  10  ml  chloroform  and  mix  thoroughly  by  vortexing.  Centrifuge  at  2900  g,  23°C,  

15  min.  Transfer  aqueous  (top)  layer  to  a  new  50  ml  falcon  tube.   CAUTION:  Chloroform  is  toxic;  handle  in  a  fume  hood.   (viii.)

Add  700  µl  3  M  sodium  acetate,  pH  5.2,  and  17.5  ml  100%  ethanol.  Mix  vigorously  by  

vortexing  and  incubate  at  -­‐20°C  for  1  h.   (ix.) Centrifuge   at   2900   g,   4°C,   1   h.   Remove   supernatant   and   vortex   pellet   with   10   ml   70%   ethanol.   (x.) Centrifuge   at   2900   g,   4°C,   30   min.   Remove   supernatant,   then   air-­‐dry   pellet   at   37°C   for   5   min.   Dissolve   pellet   by   pipetting   vigorously   with   100   µl   molecular   biology-­‐grade   water   and   incubate  at  37°C  for  1  h.  Transfer  DNA  to  a  new  1.5  ml  eppendorf  tube.   TROUBLESHOOTING   24  Quantify  3C  DNA  with  Quant-­‐iT  PicoGreen  dsDNA  or  Qubit  dsDNA  BR  assay.  Approximately  10  µg   DNA  is  obtained  from  one  3C  experiment  (taken  from  one  digestion  reaction  of  107  nuclei);  the  yields   from  ChIP-­‐e4C  experiments  will  vary  according  to  antibody  efficiency.  DNA  at  this  stage  can  be  used   for  quality  controls,  such  as  qPCR  assessment  of  ChIP  efficiency  and  detection  of  known  3C  products   (see   Anticipated   Results).   ‘No   ligase   control’   aliquots   can   be   used   to   assess   restriction   digestion   efficiency  (Box  2;  see  Supplementary  Table  1  for  primer  sequences).   16    

CRITICAL  STEP:  Standard  A260  measurements  are  not  reliable  for  quantification  of  3C  material.  These   fluorimetric  assays  are  preferred.   TROUBLESHOOTING   PAUSE  POINT:  3C  DNA  can  be  stored  at  -­‐20°C  for  several  weeks.     Primer  extension  Timing:  14-­‐18  h   25  Mix  primer  extension  reaction  components  on  ice  in  PCR  tubes,  in  50  µl  reaction  volumes:   Component  

Amount  per  reaction  (µl)  

Final  

10  x  ThermoPol  buffer  

5  

1  x  

2  mM  dNTPs  

5  

200  nM  

10  µM  biotinylated  Hbb-­‐b1  

0.5  

5  pmol  

38.5  (total)  

100  ng  DNA  if  ChIP  step  is  

primer   Molecular  biology-­‐grade  water   plus  3C  DNA  from  step  24  

included;  500  ng  DNA  if  ChIP   step  is  omitted  

Vent  (exo-­‐)  DNA  polymerase  

1  

2  U  

  CRITICAL  STEP:  12-­‐15  primer  extension  reactions  are  routinely  required  to  generate  enough  e4C   material  for  one  microarray  hybridization  reaction.   26  Run  the  primer  extension  reaction  in  a  thermal  cycler:   Cycle  number  

Denature  

Anneal  

Extend  

1  

95°C,  4  min  

60°C,  2  min  

72°C,  10  min  

Place  the  reactions  on  ice  immediately  and  leave  on  ice  for  5  min.   CRITICAL   STEP:   The   fidelity   of   the   primer   extension   reaction   is   crucial   for   e4C.   The   melting   temperature   needs   to   be   optimized   for   each   primer   (Box   3).   Furthermore,   to   prevent   primer   mis-­‐ annealing,  the  reactions  should  be  kept  on  ice  until  the  thermal  cycler  has  reached  the  denaturation   temperature,  and  the  reactions  should  be  put  on  ice  immediately  once  the  program  has  completed,   without  allowing  it  to  cool  slowly.   27  Add  2  µl  (20  U)  NlaIII  and  incubate  overnight  at  37°C.   17    

CRITICAL   STEP:   NlaIII   is   an   unstable   enzyme   and   should   be   stored   at   -­‐80°C.   If   using   a   different   secondary  enzyme  to  NlaIII,  check  that  it  is  active  in  the  ThermoPol  buffer  of  the  primer  extension   reaction.  If  not,  the  material  will  need  to  first  be  diluted  in  the  compatible  buffer.     Purification  on  streptavidin  beads  Timing:  3-­‐4  h   28   Remove   excess   biotinylated   primer   by   purifying   the   DNA   with   a   QiaQuick   PCR   purification   kit,   following   the   manufacturer’s   instructions.   Elute   the   DNA   with   50   µl   EB   buffer   (elution   buffer;   10   mM   Tris-­‐HCl;  provided  with  the  kit).   29   Mix   Dynabeads   M-­‐280   streptavidin-­‐coated   magnetic   beads   stock   thoroughly   and   transfer   20   µl   beads  (200  µg)  to  a  new  1.5  ml  eppendorf  tube  (one  tube  per  primer  extension  reaction).  Remove   storage  solution  with  a  magnet  and  wash  twice  with  50  µl  binding  buffer  provided  in  the  Dynabeads   kilobaseBINDER  kit.  Resuspend  beads  in  50  µl  kilobaseBINDER  binding  buffer.   CRITICAL   STEP:   Time   between   removing   supernatant   and   adding   the   new   solution   should   be   minimized  to  prevent  the  beads  from  drying  out.  This  is  true  for  every  step  involving  the  streptavidin-­‐ coated   beads.   The   kilobaseBINDER   binding   buffer   contains   detergent.   To   optimize   binding,   pipette   solutions  very  carefully  to  keep  air  bubbles  to  a  minimum.   30   Add   50   µl   purified   primer   extension   products   from   step   28   to   the   50   µl   of   streptavidin-­‐coated   beads  suspension  and  incubate  for  3  h  at  23°C,  1200  rpm  on  a  thermal  shaker.   31  Wash  beads  twice  with  100  µl  SBWB1  (streptavidin  beads  wash  buffer  1),  then  once  with  100  µl   SBWB2  (streptavidin  beads  wash  buffer  2),  using  the  magnet  to  remove  the  solutions  at  each  wash.   Aliquots  of  material  at  this  stage  can  be  used  to  assess  bait  enrichment  (Box  1).     Re-­‐digestion  Timing:  14-­‐18  hr   32   Use   magnet   to   remove   SBWB2   and   resuspend   beads   in   50   µl   freshly   prepared   NlaIII   reaction   solution.  Incubate  overnight  at  37°C,  1200  rpm  on  thermal  shaker.   CRITICAL   STEP:   Make   NlaIII   reaction   solution   fresh   on   the   day   of   the   experiment.  When   thawing   10   x   NEB4  buffer  to  make  working  solution,  vortex  thoroughly  to  ensure  DTT  is  fully  dissolved.    

18    

Adapter  ligation  Timing:  3-­‐4  h   33   Wash   beads   twice   with   100  µl  SBWB1  then  once  with  100   µl  SBWB2,  using  the  magnet  to  remove   the  solutions  at  each  wash.   34  Use  magnet  to  remove  SBWB2  and  resuspend  beads  in  40  µl  1  x  T4  DNA  ligase  buffer.  Incubate  at   50°C   for   5   min,   then   immediately   place   on   ice   for   5   min.   In   parallel,   do   the   same   heating   and   chilling   treatment  to  the  100  µM  e4C  adapter  stock.   CRITICAL   STEP:   This   treatment   denatures   the   NlaIII   cohesive   ends   for   more   efficient   ligation   of   adapter.   Too   high   temperatures   or   incubation   times   may   completely   denature   the   e4C   adapter.   CRITICAL  STEP:  When  thawing  10  x  T4  DNA  ligase  buffer  to  make  working  solution,  vortex  thoroughly   to  ensure  DTT  is  fully  dissolved.   35  Use  magnet  to  remove  DNA  ligase  buffer  and  resuspend  beads  in  40  µl  freshly  prepared  adapter   ligation  reaction  solution.  Incubate  for  4  hr  at  37°C,  750  rpm  on  a  thermal  shaker.   CRITICAL   STEP:   Make   adapter   ligation   reaction   solution   fresh   on   the   day   of   the   experiment.   When   thawing   10   x   T4   DNA   ligase   buffer   to   make   working   solution,   vortex   thoroughly   to   ensure   DTT   is   fully   dissolved.   36   Wash   beads   twice   with   100  µl  SBWB1  then  once  with  100   µl  SBWB2,   using  the   magnet  to   remove   the  solutions  at  each  wash.     PCR  amplification  Timing:  2-­‐4  h   37   Use   magnet   to   remove   SBWB2   and   resuspend   beads   in   50   µl   freshly   prepared   PCR   reaction   solution,  as  tabulated  below.  Transfer  each  50  µl  reaction  solution  to  individual  PCR  tubes.   Component  

Amount  per  reaction  (µl)  

Final  

Molecular  biology-­‐grade  water  

35  

 

10  µM  e4C  adapter-­‐specific  

2  

400  nM  

2  

400  nM  

2  mM  dNTPs  

5  

200  µM  

10  x  HotStar  buffer  

5  

1x  

primer   10  µM  bait-­‐specific  primer  (e.g.   nested  Hbb-­‐b1  primer)  

19    

5  U  µl-­‐1  HotStar  Taq  DNA  

1  

5U  

polymerase     CRITICAL  STEP:  Make  PCR  reaction  solution  fresh  on  the  day  of  the  experiment.   38  Run  the  reaction  in  a  thermal  cycler,  using  the  program  tabulated  below:   Cycle  number  

Denature  

Anneal  

Extend  

1  

95°C,  15  min  

 

 

2-­‐36  

94°C,  30  s  

55°C,  30  s  

72°C,  1  min  

37  

 

 

72°C,  10  min  

  CRITICAL  STEP:  The  melting  temperatures  need  to  be  optimized  for  each  bait-­‐specific  primer  (Box  3).   39   Transfer   reaction   solutions   to   new   1.5   ml   eppendorf   tubes   and   use   a   magnet   to   separate   the   beads  from  the  supernatant.  Pool  the  supernatants  from  four  PCR  reactions  to  new  1.5  ml  eppendorf   tubes.   40   Purify   the   DNA   with   a   QiaQuick   PCR   purification   kit,   following   the   manufacturer’s   instructions.   Elute  the  DNA  with  50  µl  EB  buffer  (elution  buffer;  10  mM  Tris-­‐HCl;  provided  with  the  kit).   41   Assess   e4C   product   yield   and   quality   by   measurement   of   A260,   A280   and   A230   with   a   NanoDrop   spectrometer.  Expected  yield  from  12-­‐15  pooled  primer  extension  reactions  is  ~5  µg  DNA.   TROUBLESHOOTING   PAUSE  POINT:  e4C  products  can  be  stored  at  -­‐20°C  for  several  weeks.     BglII/NlaIII  digestion  Timing:  6-­‐7  h   42   Pool   all   purified   e4C   products   to   one   1.5   ml   eppendorf   tube   (~150-­‐250   µl   total   volume)   and   make   up  to  300  µl  in  1  x  NEB4  buffer,  100  µg  ml-­‐1  BSA  and  50  U  NlaIII.  Incubate  at  37°C  for  2  h.  To  make   control  material  for  competitive  hybridization  with  the  e4C  products,  perform  the  same  reaction  in   parallel  using  ~20  µg  mouse  genomic  DNA  and  perform  the  same  steps  (steps  42-­‐47)  on  this  control   material.  

20    

CRITICAL  STEP:  This  step  is  only  required  if  the  e4C  products  are  going  to  be  analyzed  by  microarray   hybridization.  Efficient  BglII  and  NlaIII  digestion  is  necessary  to  cleave  unknown  3C-­‐ligated  sequences   from   constant   bait   and   adapter   sequences   before   microarray   hybridization.   As   these   constant   bait   and   adapter   sequences   are   present   on   every   e4C   product,   cross-­‐hybridization   between   e4C   products   which   maintain   the   constant   sequences   may   reduce   efficiency   of   their   hybridization   to   the   microarray  probes.  Sequential  NlaIII  then  BglII  digestion  is  required  to  provide  compatible  buffers  for   digestion.   If   using   different   enzymes   to   BglII   and   NlaIII,   use   the   correct   buffer   for   efficient   double   digestion  in  one  step,  or  perform  sequential  digestion  in  appropriate  buffers.   43   Add   235   µl   molecular   biology-­‐grade   water,   60   µl   10x   NEB3   buffer   and   5   µl   (250   U)   BglII,   and   incubate  at  37°C  for  2  h.   CRITICAL   STEP:   When   thawing   10   x   NEB3   buffer   to   make   working   solution,   vortex   thoroughly   to   ensure  DTT  is  fully  dissolved.   44   Add   600   µl   phenol/chloroform   and   mix   by   vortexing.   Centrifuge   at   14,000   g,   23°C,   4   min   and   transfer  aqueous  (top)  layer  to  new  2  ml  eppendorf  tube.   CAUTION:  Phenol  and  chloroform  are  toxic;  handle  in  a  fume  hood.   45  Add  60  µl  3  M  sodium  acetate,  pH  5.2,  and  1300  µl  100%  ethanol  and  mix  by  vortexing.  Incubate   at  -­‐20°C  for  1  h,  then  centrifuge  at  14,000  g,  4°C,  30  min.   46   Carefully   remove   supernatant   and   wash   DNA   pellet   by   vortexing   with   300   µl   70%   ethanol.   Centrifuge  at  14,000  g,  4°C,  5  min.  Remove  supernatant  and  air-­‐dry  pellet,  before  dissolving  in  30  µl   molecular  biology-­‐grade  water.   47   Assess   e4C   product   and   control-­‐digested   genomic   DNA   yields   and   qualities   by   measurement   of   A260,  A280  and  A230  with  a  NanoDrop  spectrophotometer.  Material  is  now  ready  for  in-­‐house  labeling   and  microarray  hybridization  by  NimbleGen  Systems.   CRITICAL   STEP:   All   microarray   data   should   be   compliant   with   the   MIAME   (minimal   information   for   microarray  experiments)  guidelines  when  deposited  in  public  databases18.  Ensure  that  all  background   information  on  probe  and  experimental  design  is  recorded  and  organized  accordingly.     TIMING  

21    

The  exact  timings  of  the  e4C  steps  depend  on  whether  a  ChIP  step  is  incorporated  or  omitted,  and   which   controls   are   included.   Overall,   3C   takes   three   days   and   ChIP-­‐3C   takes   four   days   to   perform,   respectively.   Once   the   3C   or   ChIP-­‐3C   DNA   has   been   validated,   the   e4C   procedure   takes   an   additional   three  days  to  perform,  with  an  extra  day  required  for  digestion  of  the  material,  prior  to  processing   for  microarray  hybridization.  Downstream  hybridization  and  analysis  step  timings  will  vary.  See  Fig.  2   for  more  details.   Steps  1-­‐5:  Single-­‐cell  preparation  and  fixation:  30  min-­‐1  h   Steps  6-­‐7:  Cell  permeabilisation:  30-­‐40  min   Steps  8-­‐11:  Restriction  digestion:  18-­‐20  h   Steps  12-­‐13:  ChIP  preparation  steps:  18-­‐20  h   Steps  14-­‐18:  Chromatin  immunoprecipitation:  14-­‐18  h   Steps  19-­‐22:  ChIP  washes  and  elution:  90  min-­‐2  h   Steps  23-­‐24:  Ligation  and  DNA  purification:  20-­‐24  h   Steps  25-­‐27:  Primer  extension:  14-­‐18  h   Steps  28-­‐31:  Purification  on  streptavidin  beads:  3-­‐4  h   Step  32:  Re-­‐digestion:  14-­‐18  h   Steps  33-­‐36:  Adapter  ligation:  3-­‐4  h   Steps  37-­‐41:  PCR  amplification:  2-­‐4  h   Steps  42-­‐47:  BglII/NlaIII  digestion:  6-­‐7  h   Box  1:  Assessing  bait  enrichment  by  e4C:  4-­‐6  h   Box  2:  Assessment  of  3C  restriction  digestion  efficiency:  2-­‐3  h   Box  3:  e4C  primer  testing  and  optimization:  3  days   Box  4:  Quantification  of  ChIP  input  DNA:  18-­‐20  h   Box  5:  Quantifying  ChIP-­‐e4C  non-­‐specific  ligation  events:  7  days     22    

TROUBLESHOOTING   The   efficiency   of   the   3C   and   ChIP   steps   are   best   assessed   by   PCR   for   known   positive   and   negative   controls  (see  Anticipated  Results).  See  Table  1  for  troubleshooting  details.  Troubleshooting  of  3C  (ref   3)  and  ChIP  (ref  25)  experiments  are  also  outlined  in  other  published  protocols.     ANTICIPATED  RESULTS   Some   expected   e4C   results   can   be   demonstrated   by   following   the   example   of   the   mouse   beta-­‐globin   gene,  Hbb-­‐b1,  in  fetal  liver  nuclei1.  3C  DNA  (at  step  24),  with  or  without  incorporation  of  a  ChIP  step   using   an   antibody   recognizing   the   active   form   of   RNA   polymerase   II,   is   validated   by   two   means.   First,   the   known   distal   intrachromosomal   co-­‐associations   between   Hbb-­‐b1   and   the   erythroid-­‐expressed   genes   Ahsp   (alpha-­‐globin   stabilizing   protein,   formerly   called   Eraf)   and   Uros   (uroporphyrinogen   III   synthase),   are   qualitatively   confirmed   by   PCR26   (Fig.   3a;   primers   given   in   Supplementary   Table   2).   These   products   are   observed   in   fetal   liver   tissue   but   not   kidney,   and   an   interaction   with   the   non-­‐ expressed   gene,   P2ry6   (pyrimidinergic   receptor   P2Y6),   which   is   closer   in   chromosomal   distance   to   Hbb-­‐b1  than  Eraf  or  Uros,  is  not  detected  in  either  tissue.  Ligation  products  between  two  adjacent   BglII   fragments   within   the   Calr   (calreticulin)   gene   serve   as   a   positive   control   for   the   digestion   and   ligation  steps  of  3C,  and  are  detected  in  both  fetal  liver  and  kidney  tissues  (Fig.  3b;  primers  given  in   Supplementary   Table   2).As   the   second   quality   control,   the   enrichment   of   actively   expressed   genes   by  the  ChIP  procedure  is  assessed  by  qPCR1  (Fig.  3c;  primers  given  in  Supplementary  Table  3).  The   promoter/first   exon   regions   of   the   expressed   genes   Hba-­‐a1   (alpha-­‐globin),   Slc4a1   (Band   III   anion   exchange   protein)   and   Ahsp   are   highly   enriched   compared   to   the   non-­‐expressed   region   within   the   immunoglobulin  heavy-­‐chain  locus  (VH16).    

Having   established   the   quality   of   the   3C   or   ChIP-­‐3C   material,   two   controls   are   then  

performed  to  assess  the  efficiency  and  fidelity  of  the  e4C  primers  and  reagents.  Firstly,  the  amount   of  Hbb-­‐b1  bait  sequence  is  quantified  by  qPCR  on  3C  material  before  and  after  e4C  primer  extension,   streptavidin   pull-­‐down   and   elution   by   BfaI   digestion   (Fig.   3d;   see   Box   1   for   details   and   Supplementary   Table   4   for   primer   sequences).   Three   different   picogram   quantities   of   3C   and   e4C-­‐ processed   material   were   used   as   templates   for   qPCR,   with   quantification   compared   to   a   standard   curve  of  genomic  DNA  of  known  concentrations,  and  at  least  100-­‐fold  bait  enrichment  was  detected   each  time  for  the  e4C-­‐processed  material.  The  final  control  of  the  e4C  primers  is  to  perform  e4C  on  a   genomic   DNA   template,   instead   of   3C   or   ChIP-­‐3C   material   (Fig.   3e;   see   Box   3   for   details).   e4C   normally  produces  a  smear  of  products  corresponding  to  multiple  different  3C  ligation  partners  with   23    

the  Hbb-­‐b1  bait  fragment,  but  e4C  with  genomic  DNA  template  produces  a  single  band,  confirmed  by   cloning  and  sequencing  to  correspond  to  the  expected  239  bp  product  (72  bp  nested  e4C  primer  to   BglII  site  +  130  bp  BglII-­‐NlaIII  fragment  directly  downstream  of  the  bait  in  the  contiguous  sequence  +   37   bp   adapter   sequence;   Fig.   1b   and   Fig.   3e).   Importantly,   no   products   are   obtained   from   the   e4C   PCR   step   using   only   the   adapter-­‐specific   primer   and   omitting   the   nested   bait-­‐specific   primer,   indicating   that   the   e4C   material   is   not   contaminated   with   spurious   genomic   NlaIII   fragments   that   have  obtained  adapter  sequences  on  both  ends.    

The   e4C   material   generated   (at   step   41)   can   then   be   processed   by   cloning   and   sequencing  

(Fig.   4a)   or   BglII/NlaIII   digestion   (steps   42-­‐47)   and   microarray   hybridization   (Fig.   4b-­‐e),   depending   on   the  desired  information.  4847  out  of  8377  (58%)  sequenced  and  uniquely  mapped  e4C  clones  located   within  80  kb  of  the  Hbb  locus;  the  remainder  were  sparsely  distributed  throughout  the  genome  and   gave   little   information.   However,   known   looped   interactions   between   Hbb-­‐b1   and   upstream   hypersensitive   sites   within   the   locus   control   region   (LCR)27,28   are   apparent   when   looking   at   e4C   sequences   within   the   Hbb   locus   (Fig.   4a).   Conversely,   signals   are   saturated   within   a   few   hundred   kilobases  of  the  Hbb  locus  when  e4C  material  is  hybridized  to  a  microarray,  and  such  local  chromatin   loops  are  not  observed  (Fig.  4b).  We  note  that  sequencing  thousands  of  clones  is  not  a  cost-­‐effective   way   to   analyze   chromatin   topology,   and   modifications   of   the   e4C   protocol   allowing   compatibility   with   high-­‐throughput   Illumina   sequencing   have   recently   been   reported17.   However,   insufficient   sequencing   depth   was   obtained   in   this   study   to   assess   chromatin   interactions   genome-­‐wide.   For   long-­‐range   cis   (Fig.   4c)   and   interchromosomal   (Fig.   4d-­‐e)   chromatin   interactions,   microarrays   typically   reveal   clusters   of   interacting   sequences,   spanning   a   few   tens   to   a   few   hundred   kilobases.   These   clusters   are   easier   to   visualize   when   running   means   of   the   e4C   hybridization   signal   are   plotted   (Fig.   4c-­‐e),   but   are   also   apparent   when   looking   at   the   raw   data   (Supplementary   Fig.   1).   The   genes   highlighted   in   Fig.   4   have   been   shown   to   significantly   co-­‐associate   with   the   Hbb-­‐b1   gene   by   RNA   FISH1,26,   and   can   be   systematically   identified   by   a   variety   of   statistical   analyses.   e4C   and   ChIP-­‐e4C   microarray  profiles  appear  quite  similar  in  this  particular  study  (Fig.  4);  by  inspection,  incorporation   of   the   ChIP   step   for   active   RNA   polymerase   II   appears   to   slightly   boost   hybridization   signals   within   the  interacting  clusters  of  microarray  probes.  However,  the  globin  genes  are  very  highly  transcribed   in   erythroid   tissues   and   may   be   predicted   to   constantly   be   in   an   RNA   polymerase   II-­‐associated   nuclear   environment.   e4C   and   ChIP-­‐e4C   profiles   may   be   considerably   more   different   for   other   bait   sequences  or  antibodies  used  in  the  ChIP  step.  Overall,  e4C  affords  sensitive  bait-­‐specific  detection  of   chromatin  interaction  partners.  The  use  of  sequencing  versus  microarrays,  or  the  incorporation  of  a   ChIP  step,  allows  different  aspects  of  these  interactions  to  be  further  explored.     24    

ACKNOWLEDGEMENTS   This  work  was  supported  by  the  Medical  Research  Council,  the  Biotechnology  and  Biological  Sciences   Research  Council,  and  by  a  long-­‐term  EMBO  fellowship  to  D.U.     AUTHOR  CONTRIBUTIONS   T.S.,   S.K.   and   P.F.   designed   the   experiments,   T.S.   and   S.K.   developed   the   method,   J.A.M.   and   D.U.   optimized  the  chromatin  immunoprecipitation  steps,  T.N.  developed  primers  for  restriction  digestion   efficiency  tests,  and  T.S.  and  P.F.  wrote  the  manuscript.     COMPETING  FINANCIAL  INTERESTS   The  authors  declare  no  competing  financial  interests.     BOXES   Box  1.  Assessing  bait  enrichment  by  e4C  Timing:  4-­‐6  h   The   amount   of   bait   sequence   is   quantified   by   qPCR,   before   and   after   enrichment   by   biotinylated   primer   extension   and   streptavidin   pull-­‐down.   A   qPCR   primer   pair   needs   to   be   designed   within   the   bait  fragment,  between  the  biotinylated  primer  sequence  and  the  downstream  3C  restriction  site.  A   restriction   enzyme   also   needs   to   be   found   which   cuts   just   once   within   this   region,   between   the   biotinylated  primer  sequence  and  the  qPCR  primers  (see  Fig  1b).  For  the  Hbb-­‐b1  bait  described  in  this   protocol,  the  primers  are  given  in  Supplementary  Table  4  and  the  eluting  enzyme  is  BfaI.   (i.) Take   one   eppendorf   tube   at   step   31   (one   aliquot   of   3C   or   ChIP-­‐3C   material   that   has   undergone   the   primer   extension   and   streptavidin   purification   steps   of   e4C),   remove   supernatant  with  magnet  and  resuspend  in  50  µl  elution  digestion  mixture  (20  U  BfaI  in  1  x   NEB4  buffer;  New  England  Biolabs).  Incubate  for  2  h  at  37°C,  1200  rpm  on  a  thermal  mixer.   (ii.) Remove   the   eluted   DNA   from   the   beads   with   magnet   and   add   50   µl   molecular   biology-­‐grade   water  and  100  µl  phenol/chloroform.  Mix  by  vortexing.  Centrifuge  at  14,000  g,  23°C,  4  min   and  transfer  aqueous  (top)  layer  to  a  new  1.5  ml  eppendorf  tube.   CAUTION:  Phenol  and  chloroform  are  toxic.  Handle  chemicals  in  a  fume  hood.  

25    

(iii.) Add   10   µl   3   M   sodium   acetate,   pH   5.2,   and   250   µl   100%   ethanol   and   mix   by   vortexing.   Incubate  at  -­‐20°C  for  1  h,  then  centrifuge  at  14,000  g,  4°C,  30  min.   (iv.) Carefully   remove   supernatant   and   wash   DNA   pellet   by   vortexing   with   300   µl   70%   ethanol.   Centrifuge  at  14,000  g,  4°C,  5  min.  Remove  supernatant  and  air-­‐dry  pellet,  before  dissolving   in  20  µl  molecular  biology-­‐grade  water.   (v.) Quantify   DNA   with   the   Quant-­‐iT   PicoGreen   dsDNA   or   Qubit   dsDNA   BR   assay,   following   the   manufacturer’s  instructions.   (vi.) With   compatible   SYBR   Green   master   mixes   to   the   qPCR   machine   being   used,   make   up   triplicate   qPCR   reaction   volumes   containing   200   nM   each   primer.   As   DNA   templates,   use   a   serial  dilution  of  100  pg  to  4  pg  eluted  e4C  material,  and  the  same  picogram  quantities  of  the   3C  input  material  (from  step  24).  Serial  dilutions  of  known  amounts  of  genomic  material  can   also  be  used  to  generate  standard  curves.   (vii.)

Run   the   qPCR   reactions,   according   to   the   manufacturer’s   instructions.   The   fold  

enrichment   from   e4C   purification   can   be   estimated   by   comparing   the   amount   of   bait   sequence   in   equivalent   picogram   quantities   of   DNA   before   and   after   the   enrichment   (see   Anticipated  Results).     Box  2.  Assessment  of  3C  restriction  digestion  efficiency  Timing:  2-­‐3  h   Restriction   digestion   efficiency   is   assessed   by   qPCR   quantitation   of   genomic   regions   spanning   sites   for   the   restriction   enzyme   used   in   the   3C   reaction.   One   genomic   region   that   does   not   span   a   restriction   site   is   also   used   to   normalize   the   reaction   inputs.   Example   primers   for   assessing   BglII   digestion  in  mouse  tissues  are  given  in  Supplementary  Table  1.   (i.) With   compatible   SYBR   Green   master   mixes   to   the   qPCR   machine   being   used,   make   up   triplicate   qPCR   reaction   volumes   containing   2   ng   ‘no   ligase   control’   3C   DNA   aliquots   (see   steps   23   and   24)   and   200   nM   each   primer.   Serial   dilutions   of   known   amounts   of   genomic   material  (typically  10  to  0.01  ng  per  reaction)  can  also  be  used  to  generate  standard  curves.   (ii.) Run  the  qPCR  reactions,  according  to  the  manufacturer’s  instructions.  The  amount  of  input   DNA,  I,  is  derived  from  the  quantitation  of  the  genomic  region  not  spanning  a  restriction  site.   (iii.) For   each   restriction   site   tested,   the   quantitation   of   the   amplicon,   U,   derives   from   undigested   DNA.  The  percentage  of  digestion  from  this  site,  D,  is  thus  given  as:   D  =  100  x  (1  -­‐  (U/I))     Digestion  efficiencies  should  typically  be  more  than  70%.   26    

  Box  3.  e4C  primer  testing  and  optimization  Timing:  3  days   If  the  e4C  primers  work  specifically,  then  performing  steps  25-­‐41  of  the  main  Procedure  on  genomic   DNA   template   instead   of   3C   material   should   generate   only   one   kind   of   product:   the   BglII-­‐NlaIII   fragment  directly  downstream  of  the  bait  fragment  in  the  contiguous  genomic  sequence,  flanked  by   the   bait   fragment   and   the   adapter   sequence   (see   Anticipated   Results).   Before   using   new   e4C   primers,   they   should   thus   be   tested   in   trial   reactions   on   genomic   DNA   templates,   trialing   different   annealing   temperatures   for   the   primer   extension   (step   26)   and   PCR   (step   38)   steps.   The   products   should  then  yield  single  bands  in  agarose  gel  electrophoresis,  as  opposed  to  the  smears  of  product   produced   in   real   e4C   experiments   (see  Anticipated   Results).   These   single   bands   should   be   excised,   cloned  and  sequenced  to  verify  that  they  correspond  to  expected  sequences.     Box  4.  Quantification  of  ChIP  input  DNA  Timing:  18-­‐20  h   Total   DNA   from   an   aliquot   of   chromatin   after   2   h   of   digestion   (step   11)   is   purified   for   quantitation   of   input  material.  This  is  necessary  to  ensure  that  controlled  amounts  of  input  chromatin  are  used  for   the  immunoprecipitations  (step  15).   (i.) Add   1   µl   2   mg   ml-­‐1   RNase   A   (diluted   from   20   mg   ml-­‐1   stock;   40   µg   ml-­‐1   final   concentration)   to   the  chromatin  aliquot  (from  step  11)  and  incubate  for  1  h  at  37°C.   (ii.) Add   48.5   µl   molecular   biology-­‐grade   water   and   100   µl   phenol/chloroform/isoamyl   alcohol   and  mix  by  vortexing.  Centrifuge  at  14,000   g,  23°C,  4  min  and  transfer  aqueous  (top)  layer  to   a  new  1.5  ml  eppendorf  tube.   CAUTION:  Phenol  and  chloroform  are  toxic.  Handle  these  chemicals  in  a  fume  hood.   (iii.) Add   10   µl   3   M   sodium   acetate,   pH   5.2,   and   250   µl   100%   ethanol   and   mix   by   vortexing.   Incubate  at  -­‐20°C  for  1  h,  then  centrifuge  at  14,000  g,  4°C,  30  min.   (iv.) Carefully   remove   supernatant   and   wash   DNA   pellet   by   vortexing   with   300   µl   70%   ethanol.   Centrifuge  at  14,000  g,  4°C,  5  min.  Remove  supernatant  and  air-­‐dry  pellet,  before  dissolving   in  50  µl  molecular  biology-­‐grade  water.   (v.) Quantify   DNA   with   the   Quant-­‐iT   PicoGreen   dsDNA   or   Qubit   dsDNA   BR   assay,   following   the   manufacturer’s  instructions.  Assume  that  the  total  amount  of  BglII-­‐digested  chromatin  (from   step  11)  contains  nine  times  the  amount  of  DNA  calculated  to  be  present  in  the  aliquot.   CRITICAL   STEP:   Standard   A260   measurements   are   not   reliable   for   quantification   of   3C   material.  These  fluorimetric  assays  are  preferred.   27    

  Box  5.  Quantifying  ChIP-­‐e4C  non-­‐specific  ligation  events  TIMING:  7  days   Non-­‐specific   ligation   events   between   chromatin   fragments   that   are   not   covalently   linked   during   formaldehyde  fixation  will  increase  noise  in  e4C  experiments  and  should  be  avoided.  To  assess  such   spurious  ligation,  perform  the  3C  digestion  procedure  (steps  1-­‐17)  separately  with  equal  numbers  of   nuclei  of  the  tissue  used  in  the  experiment  (e.g.  mouse  fetal  liver),  and  with  an  unrelated  tissue   in  a   different  species,  whose  genome  sequence  is  available  and  for  which  the  antibody  has  comparable   efficiency   (e.g.   human   U2OS   cells).   At   step   18   of   the   main   Procedure,   mix   equal   volumes   (500   µl   each)   of   the   two   digested   samples   and   combine   in   the   same   immunoprecipitation.   Proceed   with   e4C   (steps   18-­‐41)   and   clone   and   sequence   ~100   e4C   products.   Non-­‐specific   ligation   frequency   can   be   gauged   by   the   number   of   ligation   products   detected   between   the   e4C   bait   and   sequences   derived   from  the  heterologous  species,  and  was  found  to  be  ~1%  in  a  previous  study1.     FIGURE  LEGENDS   Figure   1.   Overview   of   the   e4C   procedure.   (a)   The   e4C   protocol.   (i)   3C   or   ChIP-­‐3C   material   containing   a   pool   of   hybrid   DNA   sequences   ligated   at   BglII   (B)   sites   undergoes   primer   extension   with   a   biotinylated  primer  (red  arrow)  complementary  to  sequence  on  a  specific  bait  fragment  (red).  (ii)  Bait   sequences  tagged  by  biotin  (red  circle)  are  specifically  captured  on  streptavidin  beads  (grey  sphere).   In  the  illustrated  example,  the  black  bar  denotes  an  uncharacterized  BglII  fragment  which  is  ligated   to   the   bait   fragment.   (iii)   Bead-­‐captured   bait   sequences   are   digested   with  NlaIII  and  an  adapter  with   a  complementary  cohesive  end  (cyan  bar)  is  ligated  to  the  NlaIII  (N)  site,  before  PCR  using  a  nested   bait-­‐specific   primer   (red   arrow)   and   an   adapter-­‐specific   primer   (cyan   arrow).   (iv)   The   PCR   products   are  digested  with  BglII  and  NlaIII,  generating  a  pool  of  bait  fragments  (red  bars),  adapter  fragments   (cyan  bars)  and  uncharacterized  fragments  which  formed  3C  ligation  products  with  the  bait  sequence   (black   bars).   This   e4C   library   is   then   hybridized   to   a   custom-­‐made   microarray.   (b)   Schematic   of   the   Hbb-­‐b1   e4C   bait   fragment   (red)   and   surrounding   sequences   (black),   as   used   in   a   previous   study1,   shown  to  scale.  The  biotinylated  and  nested  primers  (black  arrows)  are  contained  on  the  same  bait   BglII-­‐NlaIII  fragment.  The  red  arrows  denote  the  positions  of  the  qPCR  primers  when  measuring  bait   enrichment  after  elution  of  e4C  material  by  digesting  with  BfaI,  which  cuts  uniquely  within  the  bait   fragment   at   the   denoted   position   (see   Box   1).   The   adjacent   BglII-­‐NlaIII   fragment   in   the   contiguous   genomic  sequence  is  sufficiently  large  to  allow  unambiguous  mapping  when  sequenced  during  trials   of  e4C  primer  fidelity  (see  Box  3).   28    

  Figure  2.  Flowchart  of  e4C  timings.  Rectangular  boxes  denote  the  steps  in  the  e4C  procedure  which   take   one   day   to   perform.   Red   text   denotes   extra   steps   if   ChIP   is   incorporated   into   the   procedure.   Hexagons   show   the   time-­‐points   for   control   and   validation   steps;   further   details   are   given   in   the   denoted  Boxes.     Figure  3.  Examples  of  quality  controls  for  e4C.  a)  Gel  showing  specific  3C  ligation  products  between   the   Hbb-­‐b1   gene   and   the   genes   Ahsp  or   Uros   when   PCR   is   performed   on   3C   (E)   or   ChIP-­‐3C   (Ch;   using   an  antibody  for  active  RNA  polymerase  II)  material  generated  from  erythroid  tissue.  These  erythroid-­‐ specific  interactions  are  not  observed  when  3C  is  performed  on  kidney  (K);  an  interaction  between   the  genes  Hbb-­‐b1  and  P2ry6  is  not  observed  in  either  tissue.  The  no-­‐template  control  for  the  PCR  is   denoted   (H2O).   b)   The   orientations   of   the   3C   control   Calr   primers   (mapping   to   adjacent   BglII   fragments)   are   shown   above   a   gel,   which   shows   the   corresponding   ligation   products   when   PCR   is   performed   on   3C   material   generated   from   erythroid   (E)   or   kidney   (K)   tissue.   The   no-­‐template   control   for   the   PCR   is   denoted   (H2O).   c)   qPCR   results   for   ChIP   enrichments   of   specific   erythroid-­‐expressed   genes  (Hba-­‐a1,  Slc4a1,  Ahsp)  and  a  negative  control  (VH16)  when  ChIP-­‐3C  is  performed  on  erythroid   tissue,  using  an  antibody  for  active  RNA  polymerase  II.  RNA  polymerase  II  binding  is  scored  as  fold-­‐ enrichment   over   VH16.   d)   qPCR   quantification,   in   arbitrary   units,   of   bait   sequence   before   (black   bars)   and   after   (white   bars)   3C   material   has   undergone   the   primer   extension   and   streptavidin   pull-­‐down   steps  of  e4C.  Three  different  qPCR  template  quantities  are  shown,  and  in  each  case,  ~100-­‐fold  bait   enrichment   is   observed.   Error   bars   denote   the   standard   error   of   the   mean   from   triplicate   qPCR   reactions.   e)   Gel   of   e4C   products   when   the   procedure   is   applied   on   3C   material   (3C)   or   genomic   DNA   (G)  as  template.  The  lane  marked  A  shows  the  lack  of  product  when  the  nested  bait-­‐specific  primer  is   omitted  from  the  final  e4C  PCR  step  and  only  the  adapter  primer  is  used.  The  no-­‐template  control  for   the  PCR  is  denoted  (H2O).     Figure   4.   Typical   e4C   and   ChIP-­‐e4C   results,   using   Hbb-­‐b1   sequence   as   bait.   a)   Profile   of   the   Hbb   locus   revealed   by   cloning   and   sequencing   of   e4C   material.   Bars   indicate   numbers   of   e4C   clones   mapping  to  each  BglII  fragment,  drawn  to  scale;  black  bar  represents  the  BglII  fragment  containing   the   Hbb-­‐b1   bait   primer   (position   indicated   by   arrow   under   the   profile).   Schematic   of   the   Hbb   locus   is   shown   underneath   the   profile,   with   DNase-­‐hypersensitive   sites   (vertical   arrows),   expressed   globin   genes  (red  rectangles),  silent  embryonic  globin  genes  (grey  rectangles)  and  olfactory  receptor  genes   29    

(black   rectangles).   b)   e4C   microarray   profile   showing   e4C   enrichments   over   genomic   control   for   probes   within   a   ~365   kb   window   spanning   the   Hbb   locus.   The   arrow   denotes   the   position   of   the   e4C   bait  primer;  the  genomic  orientation  has  been  flipped  for  easier  comparison  with  the  results  in  (a).   Black  bars  underneath  denote  the  positions  of  genes,  and  the  positions  of  the  LCR  and  some  of  the   Hbb  genes  are  marked.  c-­‐e)  e4C  (red)  and  ChIP-­‐e4C  (blue;  using  an  antibody  for  the  active  form  of   RNA   polymerase   II)   microarray   profiles,   showing   the   running   means   of   e4C   hybridization   signal   enrichment   over   genomic   control   for   100   kb   windows,   centered   on   c)   the   intrachromosomal   co-­‐ association   with   Uros   (~650   kb   window);   d)   the   interchromosomal   co-­‐association   with   Epb4.9   and   Xpo7   (~510   kb   window);   e)   the   interchromosomal   co-­‐association   with   Epb4.1   (~470   kb   window).   Black  bars  underneath  denote  the  positions  of  genes;  marked  are  the  genes  whose  co-­‐associations   with  Hbb-­‐b1  have  been  characterized  by  RNA  FISH1.     TABLES   Table  1:  Troubleshooting   Step  

Problem  

Possible  cause  

6  

Nuclei  are  aggregated  

7  

No  visible  pellet  

23  

DNA  precipitate  does   not  resuspend  

24  

Inefficient  digestion   from  test  (Box  2)  

24  

Low  ChIP-­‐3C  DNA  yield  

Sub-­‐optimal  resuspension   Pipette  up  and  down  more  vigorously   conditions   while  trying  to  avoid  air  bubbles.  If   the  cells  are  very  difficult  to  handle,   consider  using  a  different  lysis  buffer   or  including  a  douncing  step   Insufficient  numbers  of   Start  from  step  1  with  more  tissue   nuclei   Pellets  over-­‐dried   Dissolve  DNA  by  incubating  at  37°C,   950  rpm  for  30  min  on  a  thermal   shaker   Sub-­‐optimal  conditions   Ensure  restriction  buffer  is  compatible   for  the  restriction  enzyme   with  the  enzyme  being  used.  Try   varying  the  SDS/Triton  X-­‐100   concentrations  before  digestion   and/or  reducing  the  formaldehyde   percentage  at  fixation.  Many  enzymes   are  not  suitable  for  3C,  so  the  choice   of  enzyme  may  also  need  to  be   reconsidered   Antibody  is  of  low  affinity   Increase  antibody  concentration  in   to  antigen   immunoprecipitation,  or  consider   changing  antibody  supplier  or  batch.   Reduce  the  stringency  of  washing   steps  by  reducing  salt  concentrations   of  ChIP  wash  buffers  I  and  II  

30    

Solution  

 

 

Antibody  is  of  low  affinity   to  protein  A   Washes  not  stringent   enough  

24  

High  qPCR  signal  from   ChIP  negative  control  

 

 

41  

Non-­‐specific  e4C   products  from  test  (Box   3)  

 

 

Sub-­‐optimal  PCR   conditions  

41  

Low  e4C  or  ChIP-­‐e4C   DNA  yields  

Poor  binding  of  primer-­‐ extended  material  to   streptavidin  beads  

 

 

Inefficient  adapter   ligation  

‘Negative’  control   actually  bound  by   immunoprecipitated   protein   Sub-­‐optimal  primer   extension  conditions  

Check  that  antibody  should  not  be   used  with  protein  G  beads  instead   Increase  stringency  of  washes  by   increasing  salt  concentrations  of  ChIP   wash  buffers  I  and  II   Design  new  qPCR  primers  for  different   negative  control  regions  

Alter  primer  extension  annealing   temperature.  Ensure  reaction   mixtures  are  kept  on  ice  until  thermal   cycler  has  reached  denaturation   temperature,  and  are  placed  on  ice   immediately  once  the  reaction  is   completed.  Consider  designing  new   biotinylated  primers   Alter  PCR  annealing  temperature.   Consider  designing  new  bait-­‐specific   PCR  primers   Ensure  there  are  no  air  bubbles  in   bead  binding  solutions.  Consider   changing  batch  of  Dynabeads  M-­‐280   Streptavidin  beads   Ensure  that  adapter  is  not  denatured   by  excessive  temperatures  or  by   repeated  freeze-­‐thawing  

  SUPPLEMENTARY  INFORMATION   Supplementary  Figure  1.  Typical  raw  e4C  and  ChIP-­‐e4C  results,  using  Hbb-­‐b1  sequence  as  bait.   Supplementary  Table  1.  List  of  primers  used  for  assessing  BglII  restriction  digestion  efficiency  in   mouse  tissues.   Supplementary  Table  2.  List  of  3C  primers  used  in  Anticipated  Results  section.   Supplementary  Table  3.  List  of  ChIP  primers  used  in  Anticipated  Results  section.   Supplementary  Table  4.  List  of  primers  used  for  assessing  e4C  bait  enrichment  in  Anticipated  Results   section.       REFERENCES   31    

1.   2.   3.   4.   5.   6.   7.   8.  

9.   10.   11.   12.  

13.   14.   15.   16.   17.   18.   19.   20.   21.   22.   23.  

Schoenfelder,  S.  et  al.  Preferential  associations  between  co-­‐regulated  genes  reveal  a   transcriptional  interactome  in  erythroid  cells.  Nat  Genet  42,  53-­‐61  (2010).   Dekker,  J.,  Rippe,  K.,  Dekker,  M.  &  Kleckner,  N.  Capturing  chromosome  conformation.  Science   295,  1306-­‐11  (2002).   Hagege,  H.  et  al.  Quantitative  analysis  of  chromosome  conformation  capture  assays  (3C-­‐ qPCR).  Nat  Protoc  2,  1722-­‐33  (2007).   Sexton,  T.,  Bantignies,  F.  &  Cavalli,  G.  Genomic  interactions:  chromatin  loops  and  gene   meeting  points  in  transcriptional  regulation.  Semin  Cell  Dev  Biol  20,  849-­‐55  (2009).   Lomvardas,  S.  et  al.  Interchromosomal  interactions  and  olfactory  receptor  choice.  Cell  126,   403-­‐13  (2006).   Simonis,  M.  et  al.  Nuclear  organization  of  active  and  inactive  chromatin  domains  uncovered   by  chromosome  conformation  capture-­‐on-­‐chip  (4C).  Nat  Genet  38,  1348-­‐54  (2006).   Wurtele,  H.  &  Chartrand,  P.  Genome-­‐wide  scanning  of  HoxB1-­‐associated  loci  in  mouse  ES   cells  using  an  open-­‐ended  Chromosome  Conformation  Capture  methodology.  Chromosome   Res  14,  477-­‐95  (2006).   Zhao,  Z.  et  al.  Circular  chromosome  conformation  capture  (4C)  uncovers  extensive  networks   of  epigenetically  regulated  intra-­‐  and  interchromosomal  interactions.  Nat  Genet  38,  1341-­‐7   (2006).   Ohlsson,  R.  &  Gondor,  A.  The  4C  technique:  the  'Rosetta  stone'  for  genome  biology  in  3D?   Curr  Opin  Cell  Biol  19,  321-­‐5  (2007).   Hakim,  O.  et  al.  Diverse  gene  reprogramming  events  occur  in  the  same  spatial  clusters  of   distal  regulatory  elements.  Genome  Res  21,  697-­‐706  (2011).   Noordermeer,  D.  et  al.  Variegated  gene  expression  caused  by  cell-­‐specific  long-­‐range  DNA   interactions.  Nat  Cell  Biol  13,  944-­‐51  (2011).   Dostie,  J.  et  al.  Chromosome  Conformation  Capture  Carbon  Copy  (5C):  a  massively  parallel   solution  for  mapping  interactions  between  genomic  elements.  Genome  Res  16,  1299-­‐309   (2006).   Lieberman-­‐Aiden,  E.  et  al.  Comprehensive  mapping  of  long-­‐range  interactions  reveals  folding   principles  of  the  human  genome.  Science  326,  289-­‐93  (2009).   Fullwood,  M.J.  et  al.  An  oestrogen-­‐receptor-­‐alpha-­‐bound  human  chromatin  interactome.   Nature  462,  58-­‐64  (2009).   Horike,  S.,  Cai,  S.,  Miyano,  M.,  Cheng,  J.F.  &  Kohwi-­‐Shigematsu,  T.  Loss  of  silent-­‐chromatin   looping  and  impaired  imprinting  of  DLX5  in  Rett  syndrome.  Nat  Genet  37,  31-­‐40  (2005).   Louwers,  M.,  Splinter,  E.,  van  Driel,  R.,  de  Laat,  W.  &  Stam,  M.  Studying  physical  chromatin   interactions  in  plants  using  Chromosome  Conformation  Capture  (3C).  Nat  Protoc  4,  1216-­‐29   (2009).   Raab,  J.R.  et  al.  Human  tRNA  genes  function  as  chromatin  insulators.  Embo  J  (2011).   Brazma,  A.  et  al.  Minimum  information  about  a  microarray  experiment  (MIAME)-­‐toward   standards  for  microarray  data.  Nat  Genet  29,  365-­‐71  (2001).   de  Wit,  E.,  Braunschweig,  U.,  Greil,  F.,  Bussemaker,  H.J.  &  van  Steensel,  B.  Global  chromatin   domain  organization  of  the  Drosophila  genome.  PLoS  Genet  4,  e1000045  (2008).   Bantignies,  F.  et  al.  Polycomb-­‐Dependent  Regulatory  Contacts  between  Distant  Hox  Loci  in   Drosophila.  Cell  144,  214-­‐26  (2011).   Noordermeer,  D.  et  al.  Variegated  gene  expression  caused  by  cell-­‐specific  long-­‐range  DNA   interactions.  Nat  Cell  Biol  (2011).   Tolhuis,  B.  et  al.  Interactions  among  Polycomb  Domains  Are  Guided  by  Chromosome   Architecture.  PLoS  Genet  7,  e1001343  (2011).   Kilkenny,  C.,  Browne,  W.J.,  Cuthill,  I.C.,  Emerson,  M.  &  Altman,  D.G.  Improving  bioscience   research  reporting:  the  ARRIVE  guidelines  for  reporting  animal  research.  PLoS  Biol  8,   e1000412  (2010).  

32    

24.  

25.  

26.   27.   28.  

Comet,  I.,  Schuettengruber,  B.,  Sexton,  T.  &  Cavalli,  G.  A  chromatin  insulator  driving  three-­‐ dimensional  Polycomb  response  element  (PRE)  contacts  and  Polycomb  association  with  the   chromatin  fiber.  Proc  Natl  Acad  Sci  U  S  A  108,  2294-­‐9  (2011).   Sandmann,  T.,  Jakobsen,  J.S.  &  Furlong,  E.E.  ChIP-­‐on-­‐chip  protocol  for  genome-­‐wide  analysis   of  transcription  factor  binding  in  Drosophila  melanogaster  embryos.  Nat  Protoc  1,  2839-­‐55   (2006).   Osborne,  C.S.  et  al.  Active  genes  dynamically  colocalize  to  shared  sites  of  ongoing   transcription.  Nat  Genet  36,  1065-­‐71  (2004).   Carter,  D.,  Chakalova,  L.,  Osborne,  C.S.,  Dai,  Y.F.  &  Fraser,  P.  Long-­‐range  chromatin  regulatory   interactions  in  vivo.  Nat  Genet  32,  623-­‐6  (2002).   Tolhuis,  B.,  Palstra,  R.J.,  Splinter,  E.,  Grosveld,  F.  &  de  Laat,  W.  Looping  and  interaction   between  hypersensitive  sites  in  the  active  beta-­‐globin  locus.  Mol  Cell  10,  1453-­‐65  (2002).  

   

33    

Sexton et al., Figure 1 a (i) B

B B

(ii) B B

N B

(iii) B

N

(iv)

b

Hbb-b1 Biotin primer

NlaIII

Nested primer

BfaI 100 bp

BglII

NlaIII

Sexton et al., Figure 2 Steps 1-11 Single-cell preparation and fixation Cell permeabilization Restriction digestion Steps 12-13 ChIP preparation steps

Tissue from different species for assessment of non-specific ligation (Box 5)

Steps 14-18 Quantitation of ChIP input (Box 4) Chromatin immunoprecipitation

Steps 19-22 ChIP washes and elution Step 23 Ligation Cross-link reversal

Steps 23-24 DNA purification

Genomic DNA for e4C primer test (Box 3)

Steps 25-27 Primer extension

Steps 28-32 Streptavidin pull-down Re-digestion Gel to assess primer fidelity (Box 3) Clone and sequence to assess non-specific ligation (Box 5)

3C validation ChIP validation Assessment of digestion efficiency (Box 2)

Steps 33-41 Adapter ligation PCR amplification

Steps 42-47 BglII/NlaIII digestion

Assessment of bait enrichment (Box 1)

Sexton et al., Figure 3

a

b H2O K

E

Calr

Ch

Hbb-b1/P2ry6 BglII

Hbb-b1/Ahsp

BglII H2O K

E

Hbb-b1/Uros

d Hbb-b1 sequence

30

20

10

100

146-fold 115-fold

10

102-fold

1 0.1 0.01 0.001

4 pg

V

H

16

sp Ah

1 4a Slc

a-

a1

0

Hb

Fold enrichment over VH16

c

20 pg

100 pg

Amount of PCR template

e 1 kb 500 bp 300 bp 200 bp

H2O

G

A

3C

Sexton et al., Figure 4 2800

a

b log2(e4C enrichment)

No. e4C clones

1600 60

40

20

8

Chr. 7

0 103.9

0 -80

-60

-40 LCR

-20 y

0 kb

bh1

b1

20 b2

40

Chr. 7

log2(e4C enrichment)

ChIP-e4C

0 133.5

133.7

y

b1

3

b2

e4C

Chr. 14

0 3

ChIP-e4C

0

133.9 Mb

69.1

69.3

Uros

69.5 Mb

Epb4.9

e log2(e4C enrichment)

133.3

log2(e4C enrichment)

e4C

log2(e4C enrichment)

log2(e4C enrichment) log2(e4C enrichment)

LCR

103.6 Mb

d

0 4

103.7

3’HS1

c 4

103.8

3

e4C

Chr. 4

0 3

ChIP-e4C

0 131.1

131.25

Epb4.1

131.4 Mb

Xpo7

Sexton et al., Supplementary Figure 1

e4C

Chr. 7

7

log2(e4C enrichment)

0

ChIP-e4C

0 133.5

133.7

133.9 Mb

7

e4C

Chr. 14

0 7

ChIP-e4C

0 69.1

69.3

Uros

69.5 Mb

Epb4.9

c log2(e4C enrichment)

133.3

log2(e4C enrichment)

7

b

log2(e4C enrichment)

log2(e4C enrichment)

log2(e4C enrichment)

a

6

e4C

Xpo7

Chr. 4

0 6

ChIP-e4C

0 131.1

131.25

131.4 Mb

Epb4.1

Supplementary Figure 1. Typical raw e4C and ChIP-e4C results, using Hbb-b1 sequence as bait. a-c) e4C (red) and ChIP-e4C (blue; using an antibody for the active form of RNA polymerase II) microarray profiles, showing the e4C hybridization signal enrichment over genomic control, centered on a) the intrachromosomal co-association with Uros (~650 kb window); b) the interchromosomal coassociation with Epb4.9 and Xpo7 (~510 kb window); c) the interchromosomal co-association with Epb4.1 (~470 kb window). Black bars underneath denote the positions of genes; marked are the genes whose co-associations with Hbb-b1 have been characterized by RNA FISH.

Supplementary  Table  1.  List  of  primers  used  for  assessing  BglII  restriction  digestion  efficiency  in   mouse  tissues  (see  Box  2).  These  primers  assess  the  digestion  efficiency  at  two  BglII  sites  on  mouse   chromosome  17;  the  region  amplified  by  the  ‘no  site’  primers  is  also  nearby  on  chromosome  17  and   is  used  to  normalize  DNA  inputs  in  the  qPCR.   Name  

Sequence  

No  BglII  site  forward  

5’  GTCACCATCCTCATCAATGCTATC  3’  

No  BglII  site  reverse  

5’  ACCAGTCCCTGTAGAAATCGAAAC  3’  

BglII  site  I  forward  

5’  CTCATCCAACTTTACGTGAACAGC  3’  

BglII  site  I  reverse  

5’  GAAGAGGAGGCAGTGTCCATTAC  3’  

BglII  site  II  forward  

5’  AGACAGTAACGAGGGCTTTCTCT  3’  

BglII  site  II  reverse  

5’  CTATGGAAACTAACCCAGGAGGTA  3’  

    Supplementary  Table  2.  List  of  3C  primers  used  in  Anticipated  Results  section.   Name  

Sequence  

Hbb-­‐b1  first  

5’  CTCAGAGCAGTATCTTTTGTTTGC  3’  

Hbb-­‐b1  nested  

5’  AGGATGAGCAATTCTTTTTGC  3’  

Ahsp  first  

5’  TGTATCACTTGCCAAATCTGACT  3’  

Ahsp  nested  

5’  TGCCAAATCTGACTTAGACTGC  3’  

Uros  first  

5’  TCCAGGCCTTATAGGACTTCAA  3’  

Uros  nested  

5’  CCCAGGCCTTATAGGACTTCA  3’  

P2ry6  first  

5’  CAGACTCTCCGAGCATAGGAA  3’  

P2ry6  nested  

5’  CGTCTACCGTGAGGATTTCAA  3’  

Calr1  

5’  CCCTTGTCTTTCCTATGTCTCACCTG  3’  

Calr2  

5’  GATGAGGGCTGAAGGAGAATTAAAG  3’  

     

Supplementary  Table  3.  List  of  ChIP  primers  used  in  Anticipated  Results  section.   Name  

Sequence  

Hba-­‐a1  forward  

5’  TTCTGACAGACTCAGGAAGAAACCA  3’  

Hba-­‐a1  reverse  

5’  AGCACCATGGCCACCAATCT  3’  

Slc4a1  forward  

5’  TGGGAGCTCAGCCAGTCACA  3’  

Slc4a1  reverse  

5’  CGGGACAGATGCCAAAGGAC  3’  

Ahsp  forward  

5’  GTGAAAATGTAACTTCAGAGCAGAGCGG  3’  

Ahsp  reverse  

5’  CCACCACCCCTGTTAAACATCCTTC  3’  

VH16  forward  

5’  GGAGGGTCCACTAAACTCTCTTG  3’  

VH16  reverse  

5’  GCATAGCCTTTTCCACTCTCATC  3’  

    Supplementary  Table  4.  List  of  primers  used  for  assessing  e4C  bait  enrichment  in  Anticipated  Results   section.   Name  

Sequence  

Hbb-­‐b1  bait  forward  

5’  CCATAAAGATAGGATGAGCAA  3’  

Hbb-­‐b1  bait  reverse  

5’  ATTACTGATCTTCATTAAGTCAAG  3’