Estimation of aqueous solubility of organic ...

5 downloads 0 Views 230KB Size Report
298-02-2. А43. 3.84. 3.83. А4.11. А3.34. Pindone. 83-26-1. 110. 2.05. А4.11. А2.40. Siduron. 1982-49-6. 137. 3.65. 3.80. А4.11. А4.27. Ethyl caprinate. 110-38-3.
Chemosphere 48 (2002) 487–509 www.elsevier.com/locate/chemosphere

Estimation of aqueous solubility of organic compounds by using the general solubility equation Yingqing Ran *, Yan He, Gang Yang, Jennifer L.H. Johnson, Samuel H. Yalkowsky Department of Pharmaceutical Sciences, College of Pharmacy, The University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, USA Received 24 October 2001; received in revised form 20 February 2002; accepted 26 February 2002

Abstract The general solubility equation (GSE) proposed by Jain and Yalkowsky was used to estimate aqueous solubility of 1026 non-electrolytes. The only parameters used in the GSE are melting points (MP) and octanol–water partition coefficients (Kow ). No fitted parameters and no training set are employed in the GSE. The experimental solubility values were taken from the AQUASOL dATAbASE. The average absolute error and the root-mean-square error in the solubility estimates are 0.38 and 0:53 log units, respectively. Thus, with an observed MP and calculated Kow ; the users can obtain a reasonable estimation of the aqueous solubility of any organic non-electrolyte. Ó 2002 Elsevier Science Ltd. All rights reserved. Keywords: Aqueous solubility; General solubility equation; Melting point; Octanol–water partition coefficient; Solubility estimation

1. Introduction The aqueous solubility of organic compounds plays an important role in their industrial, pharmaceutical, and environmental applications. With the development of high throughput screening techniques, there is an increasing need for a fast and reliable method to estimate the solubilities of organic compounds, especially for drug design and modeling of environmental fate. Many methods have recently been proposed and developed to more efficiently estimate aqueous solubility. Unfortunately, most of these methods require a large training set to generate an equation, and the training set used may not always represent the compounds to be evaluated. In contrast, the general solubility equation (GSE) proposed by Jain and Yalkowsky (2000) requires no training set. The GSE is based on sound theoretical

*

Corresponding author. Tel.: +1-520-626-3847; fax: +1-520626-4063. E-mail address: [email protected] (Y. Ran).

principles, is easy to use, and requires only two parameters: melting point (MP) and octanol–water partition coefficient (Kow ). It is well known that solubility is determined by two factors: The crystallinity of the solute and the interaction between solute and solvent. The GSE of Jain and Yalkowsky (2000) relates these two factors to solubility by: log Sw ¼ 0:5  0:01ðMP  25Þ  log Kow

ð1Þ

where Sw is the molar aqueous solubility, MP is the Celsius melting point, and Kow is the octanol–water partition coefficient of the solute. If the solute has a melting point lower than 25 °C, i.e., if it is a liquid, the term (MP  25) is set to zero. The GSE is based on the following assumptions: 1. The ideal solubility (or the crystal–liquid solubility ratio) of a solid solute is described by the van’t Hoff equation, with entropy of melting being described by Walden’s rule. Walden’s rule states that the entropy

0045-6535/02/$ - see front matter Ó 2002 Elsevier Science Ltd. All rights reserved. PII: S 0 0 4 5 - 6 5 3 5 ( 0 2 ) 0 0 1 1 8 - 2

488

Y. Ran et al. / Chemosphere 48 (2002) 487–509

of fusion is equal to 56.5 J/deg mol for non-associating compounds. 2. The octanol–water partition coefficient is equal to the octanol–water solubility ratio, (i.e., it is independent of the solute concentration and mutual saturation of the octanol and water phases). 3. The complete miscibility of a solute and octanol corresponds to a mole fractional solubility in octanol of 0.5 (i.e., a molar solubility of 3.15). The logarithm of 3.15 is approximately 0.5, which is the intercept in the GSE. 4. The melting point of the solute does not change in the presence of water. 2. Methods A test set containing 1026 non-electrolytes with a wide range of solubility values (12:95 < log Sobs < 1:58) was used in this study. These compounds were used by the following workers to evaluate their methods of solubility estimation: Klopman et al. (1992), K€ uhne et al. (1995), Meylan et al. (1996), Mitchell and Jurs (1998), Huuskonen (2000), Jain and Yalkowsky (2000), Jorgensen and Duffy (2000) and Klopman and Zhu (2001). The experimental aqueous solubility values were obtained from the AQUASOL dATAbASE (Yalkowsky and He, 2002). Melting points were obtained from the Merck Index, ChemFinder, and Beilstein. Measured and calculated partition coefficients (MLOGP and CLOGP, respectively) were obtained from CLOGP version 4. Even though it can be calculated by group contributions, the octanol–water partition coefficient is considered as a single input since it was obtained from CLOGP software instead of regression. The values of CAS RN, MP, Clog P , Mlog P , and log Sobs are given in Appendix A. Calculated solubilities were determined from CLOGP by the GSE (1). The average absolute error (AAE) for each calculation was determined by P j log Scal  log Sobs j ð2Þ AAE ¼ N and the root-mean-square error (RMSE) by sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P ðlog Scal  log Sobs Þ2 RMSE ¼ N

Fig. 1. Calculated ClogP versus measured MlogP , n ¼ 699.

trolytes includes 497 liquids and 529 solids. Also 699 of these compounds have measured partition coefficient values; Fig. 1 shows that the Clog P and Mlog P values are in a good agreement with each other. However, the advantage of using Clog P instead of Mlog P is that the former can be obtained easily from commercial software, while the latter values are not available for all organic compounds. As can be seen from Fig. 2, the GSE gives good prediction of the experimental solubilities, which range over nearly 15 orders of magnitude. (For reference, Fig. 2 contains the line of identity.) Table 1 summarizes the statistical relationship between the observed solubilities and GSE calculations for liquids, solids and all of the compounds. It shows that the GSE provides a slightly

ð3Þ

where log Scal and log Sobs are the logrithims of molar solubility, calculated and experimental, respectively, and N is the number of organic compounds used. 3. Results and discussion 3.1. Solubility prediction by the GSE The observed and calculated solubility values are shown in Appendix A. This test of over 1000 non-elec-

Fig. 2. Predicted log S using the GSE versus experimental log S, n ¼ 1026.

Y. Ran et al. / Chemosphere 48 (2002) 487–509 Table 1 Statistical analysis of calculated solubilities by using the GSE Physical state

Number

AAE

RMSE

Liquids Solids Liquids and solids

497 529 1026

0.33 0.43 0.38

0.47 0.59 0.53

489

sky (2000) using 580 non-electrolytes. Since AAE of Eq. (4) is quite close to the value calculated without regression and since the regression equation can change with the addition of the new data, the GSE is prefered over Eq. (4). 3.3. Comparison of the GSE with other modeling methods

better prediction for liquids than for solids. This is mainly because the solubility of liquids is not affected by crystallinity, and thus is not subject to polymorphism and hydration formation. In fact, three of the major outliers (hexachloroethane, gentisin, and borneol) form plastic crystals that have much lower entropies of fusion than the 56.5 J/deg mole assumed by Walden’s rule. Since these roughly spherical compounds can rotate in the crystal, they have little or no rotational entropy of melting.

We have compared the GSE with other modeling methods in previous publications (Peterson and Yalkowsky, 2001; Ran and Yalkowsky, 2001; Ran et al., 2001; Yang et al., 2002). Table 2 summarizes those comparisons. It shows that the GSE gives better prediction than most of the other methods for the same test sets. Only Huuskonen’s (2000) artificial neural network gives significantly better estimation than the GSE. However, this approach requires a large training set to obtain the relatively accurate coefficients. These coefficients, like those in Eq. (4) can change as the training set changes.

3.2. Regression analysis The following equation was obtained from regression analysis using Clog P and MP  25 as inputs: log Sw ¼ 0:3814  0:00961ðMP  25Þ  1:0223 log Kow ð4Þ where n ¼ 1026, R2 ¼ 0:96, AAE ¼ 0:4957. This equation is strikingly similar to the GSE: the coefficients of MP  25 and log Kow are close to 0.01 and 1.00, respectively; and the intercept 0.38 is only 0:12 log units different from 0.5 in the GSE. A similar regression equation was obtained by Jain and Yalkow-

4. Conclusions This study supports the claim of Jain and Yalkowsky (2000) that the GSE is a simple and reliable method for predicting the aqueous solubility for non-electrolytes. It has the advantage of requiring no training set and only two inputs (melting point and octanol–water partition coefficient). The validity of the GSE is supported by multiple regression analysis. Because of its simplicity and accuracy, the GSE should be considered to predict aqueous solubility for all non-electrolytes that have melting point data available.

Table 2 Comparison of the GSE and other modeling methods Method

References

Test set

AAE

RMSE

GSE GSE

Jain and Yalkowsky (2000) This work

580 1026

Training set 0 0

0.44 0.38

0.61 0.53

GSE Artificial neural network

Ran and Yalkowsky (2001) Huuskonen (2000)

380 380

0 884

0.55 0.43

0.76 0.57

GSE Artifitial neural network Multilinear regression Multilinear regression Multilinear regression

Ran et al. (2001) Huuskonen (2000) Huuskonen (2000) Klopman et al. (1992) K€ uhne et al. (1995)

21 21 19 19 19

0 884 884 483 694

0.53 0.51 0.74 0.78 0.88

0.72 0.72 1.01 1.00 1.09

GSE Monte Carlo simulation

Ran and Yalkowsky (2001) Jorgensen and Duffy (2000)

150 150

0 150

0.45 0.56

0.62 0.70

GSE

120

0

0.64

0.86

Group contribution

Peterson and Yalkowsky (2001) Klopman and Zhu (2001)

120

1168

0.71

0.92

GSE Amended solvation energy

Yang et al. (2002) Abraham and Le (1999)

662 662

0 873

0.45 0.43

0.62 0.62

490

Y. Ran et al. / Chemosphere 48 (2002) 487–509

Appendix A. Test set for the general solubility equation

Name

CAS RN

Decachlorodiphenyl ether Octachlorodibenzo-p-dioxin Decachlorobiphenyl Octachlorodibenzofuran 1,2,3,4,6,7,8-Heptachlorodibenzofuran 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin 1,2,3,4,7,8-Hexachlorodibenzofuran 2,20 ,3,30 ,4,40 ,5,50 60 -Nanochlorodiphenyl ether 2,20 ,3,30 ,4,5,50 ,6,60 -Nanochlorobiphenyl 1,2,3,6,7,8-Hexachlorodibenzofuran 2,20 ,3,30 ,4,40 ,5,50 ,6-Nanochlorobiphenyl 2,3,7,8-Tetrachlorodibenzo-p-dioxin 2,20 ,3,4,40 ,5,50 6-Octachlorodiphenyl ether 2,20 ,3,30 ,4,40 ,5,50 -Octachlorodiphenyl ether 2,20 ,3,30 ,4,5,50 60 -Octachlorodiphenyl ether 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 2,20 ,3,4,40 ,5,50 -Heptachlorodiphenyl ether 1,2,3,4,7-Pentachlorodibenzo-p-dioxin 2,20 ,3,30 ,4,40 ,5,50 -Octachlorobiphenyl 2,3,30 ,4,40 ,5,6-Heptachlorodiphenyl ether Coronene 2,3,4,7,8-Pentachlorodibenzofuran 2,20 ,3,30 ,5,50 ,6,60 -Octachlorobiphenyl 2,20 ,3,30 ,4,40 ,5-Heptachlorodiphenyl ether 2,20 ,3,30 ,40 ,5,6-Heptachlorodiphenyl ether 2,20 ,3,40 ,5,50 ,6-Heptachlorodiphenyl ether Benzo(g,h,i)perylene 1,3,6,8-Tetrachlorodibenzo-p-dioxin 2,20 ,3,4,5,50 ,6-Heptachlorobiphenyl 2,20 ,3,40 ,5,50 ,6-Heptachlorobiphenyl 2,3,4,40 ,5,6-Hexachlorodiphenyl ether 2,3,7,8-Tetrachlorodibenzofuran Perylene 2,3,30 ,4,40 ,5-Hexachlorodiphenyl ether 1,2,3,4-Tetrachlorodibenzo-p-dioxin Dibenzo(a,h)anthracene 2,30 ,4,40 ,5,50 -Hexachlorodiphenyl ether 3,30 ,4,40 -Tetrachlorobiphenyl 1,2,3,7-Tetrachlorodibenzo-p-dioxin Etofenprox 3,30 ,5,50 -Tetrachlorobiphenyl Benzo(k)fluoranthene 2,20 ,30 ,4,40 ,5-Hexachlorodiphenyl ether 1-Octadecanol Hexadecane 2,20 ,4,40 ,5,50 -Hexachlorodiphenyl ether 2,20 ,3,4,40 ,50 -Hexachlorodiphenyl ether 2,20 ,3,30 ,4,40 ,6-Heptachlorobiphenyl Benzo(a)pyrene 2,20 ,4,40 ,6,60 -Hexachlorobiphenyl Naphthacene

31710-30-2 3268-87-9 2051-24-3 39001-02-0 67562-39-4 35822-46-9 70648-26-9 83992-73-8 52663-77-1 57117-44-9 40186-72-9 1746-01-6 83992-75-0 57379-40-5 85918-38-3 39227-28-6 83992-69-2 39227-61-7 35694-08-7 83992-70-5 191-07-1 57117-31-4 2136-99-4 71585-40-5 83992-71-6 109828-23-1 191-24-2 33423-92-6 52712-05-7 52663-68-0 63646-56-0 51207-31-9 198-55-0 109828-22-0 30746-58-8 53-70-3 131138-20-0 32598-13-3 67028-18-6 80844-07-1 33284-52-5 207-08-9 71585-38-1 112-92-5 544-76-3 71859-30-8 71585-36-9 52663-71-5 50-32-8 33979-03-2 92-24-0

MP 221 322 304 258 236 265 226 158 204 233 205 305 168 126 205 273 89 195 156 169 438 196 160 104 81 118 278 219 147 147 146 227 278 135 185 266 84 180 175 37 164 216 79 61 18 114 69 122 178 113 341

Clog P 10.93 9.26 9.92 9.31 8.60 9.21 7.88 10.26 9.21 7.88 9.34 7.31 8.83 9.00 8.89 8.61 8.91 8.02 8.99 8.99 7.04 7.29 8.73 8.29 8.83 8.83 6.58 7.55 8.27 8.27 7.34 6.70 6.12 8.32 7.31 6.84 8.20 6.64 7.05 7.36 6.88 6.12 7.82 8.43 9.16 8.16 7.70 7.91 6.12 7.31 5.66

Mlog P 9.22 8.27

9.14 6.42

7.79 7.40

6.92 7.73

6.63 6.29 7.00 7.00 6.53 5.82 7.18 6.50 6.63 7.05 6.85 6.11

6.13 7.00 5.90

log Sobs

log Scal

12.95 12.79 11.89 11.59 11.48 11.25 10.66 10.55 10.41 10.33 10.26 10.22 10.14 10.13 10.10 9.95 9.50 9.48 9.47 9.46 9.38 9.16 9.15 9.12 9.09 9.05 9.02 9.00 8.94 8.94 8.94 8.86 8.80 8.78 8.77 8.74 8.72 8.68 8.65 8.60 8.54 8.49 8.44 8.40 8.40 8.36 8.31 8.30 8.25 8.20 8.19

12.39 11.73 12.21 11.14 10.21 11.11 9.39 11.09 10.50 9.46 10.64 9.61 9.76 9.51 10.19 10.59 9.05 9.22 9.80 9.93 10.67 8.50 9.58 8.58 8.89 9.26 8.61 8.99 8.99 8.99 8.05 8.22 8.15 8.92 8.41 8.75 8.29 7.69 8.05 6.98 7.77 7.53 7.86 8.29 8.66 8.55 7.64 8.38 7.15 7.69 8.32

Y. Ran et al. / Chemosphere 48 (2002) 487–509

Name

CAS RN

2,20 ,3,30 ,4,40 -Hexachlorodiphenyl ether 2,20 ,3,4,40 ,60 -Hexachlorodiphenyl ether 2,20 ,3,30 ,6,60 -Hexachlorobiphenyl 2,20 ,5,50 -Tetrabromobiphenyl Picene 2,20 ,4,40 ,5,60 -Hexachlorodiphenyl ether Benzo(j)fluoranthene Tetradecane 2,20 ,3,4,40 ,50 ,6-Heptachlorobiphenyl 3-Methylcholanthrene 2,20 ,3,30 ,50 ,6-Hexachlorobiphenyl Cholanthrene 2,3,30 ,40 ,5,6-Hexachlorobiphenyl 2,7-Dichlorodibenzo-p-dioxin 2,3,30 ,4,40 ,5-Hexachlorobiphenyl Benzo(e)pyrene 2,20 ,3,30 ,4,40 -Hexachlorobiphenyl 2,20 ,3,30 ,4,5-Hexachlorobiphenyl Benzo(b)fluoranthene 2,3,4,5,6-Pentachlorobiphenyl 4,40 -Dibromobiphenyl 2,3-Benzofluorene 2,20 ,3,4,40 ,50 -Hexachlorobiphenyl 2,20 ,3,4,5,50 -Hexachlorobiphenyl 2,3,30 ,4,40 -Pentachlorodiphenyl ether Dodecane 2,3,30 ,4,40 ,6-Hexachlorobiphenyl 2,20 ,4,40 ,5,50 -Hexachlorobiphenyl Undecane Chrysene Hexachlorobenzene 1,2,4-Trichlorodibenzo-p-dioxin 2,20 ,3,4,40 -Pentachlorodiphenyl ether 3,4-Dichlorobiphenyl 2,20 ,3,4,6-Pentachlorobiphenyl 2,20 ,3,5,50 ,6-Hexachlorobiphenyl 13H-dibenzo(a,i)carbazole 2,20 ,6,60 -Tetrachlorobiphenyl 2,30 ,4,40 ,5-Pentachlorobiphenyl 2,20 ,4,6,60 -Pentachlorobiphenyl Diosgenin 2,4,6-Tribromobiphenyl 2,20 ,3,30 -Tetrachlorobiphenyl 2,30 ,40 ,5-Tetrachlorobiphenyl 2,3-Dichlorodibenzo-p-dioxin 2,8-Dichlorodibenzofuran 2,20 ,3,4,5-Pentachlorobiphenyl 1,2-Benzanthracene 2,8-Dichlorodibenzo-p-dioxin 2,3,4,5-Tetrachlorobiphenyl Dichlorodiphenyltrichloroethane p-Terphenyl 3,4,40 -Trichlorobiphenyl

71585-39-2 106220-83-1 38411-22-2 59080-37-4 213-46-7 106220-81-9 205-82-3 629-59-4 52663-69-1 56-49-5 52704-70-8 479-23-2 74472-44-9 33857-26-0 38380-08-4 192-97-2 38380-07-3 55215-18-4 205-99-2 18259-05-7 92-86-4 243-17-4 35065-28-2 52712-04-6 85918-31-6 112-40-3 74472-42-7 35065-27-1 1120-21-4 218-01-9 118-74-1 39227-58-2 71585-37-0 2974-92-7 55215-17-3 52663-63-5 239-64-5 15968-05-5 31508-00-6 56558-16-8 512-04-9 59080-33-0 38444-93-8 32598-11-1 29446-15-9 5409-83-6 55312-69-1 56-55-3 38964-22-6 33284-53-6 50-29-3 92-94-4 38444-90-5

MP 138 121 114 143 366 95 165 6 83 179 132 173 122 201 129 178 152 101 167 124 170 208 80 85 65 10 107 103 26 256 227 129 66 50 100 100 216 198 109 85 195 66 121 104 160 184 100 160 151 91 109 213 88

Clog P 7.58 7.59 7.07 6.88 6.84 7.71 6.12 8.10 8.27 6.62 7.32 6.12 7.57 5.86 7.82 6.12 7.33 7.45 6.12 7.09 5.76 5.25 7.69 7.69 7.45 7.04 7.69 7.69 6.51 5.66 6.06 6.71 7.11 5.34 6.84 7.56 5.51 5.88 7.10 6.59 5.91 6.02 6.26 6.51 5.74 5.51 6.97 5.66 5.86 6.51 6.76 5.92 6.05

491

Mlog P

7.12 7.11

8.00 7.30 6.42 7.25

7.57 6.44 7.32 7.32 6.74 5.72 5.77 7.25 7.19 6.10 7.25 6.90 6.54 5.81 5.73 7.47 5.29 6.85 5.94 7.12 5.81

5.60 6.39 5.65 5.44 6.38 6.41 6.91 6.03 5.90

log Sobs

log Scal

8.14 8.10 8.09 8.06 8.05 8.04 8.00 7.96 7.92 7.92 7.90 7.85 7.83 7.83 7.82 7.80 7.79 7.79 7.79 7.78 7.74 7.73 7.69 7.68 7.67 7.67 7.66 7.63 7.59 7.58 7.56 7.53 7.44 7.44 7.43 7.42 7.41 7.39 7.39 7.32 7.32 7.30 7.28 7.25 7.23 7.21 7.21 7.19 7.18 7.16 7.15 7.11 7.06

8.21 8.05 7.46 7.56 9.75 7.91 7.02 7.60 8.35 7.66 7.89 7.10 8.04 7.12 8.36 7.15 8.10 7.71 7.04 7.58 6.71 6.58 7.74 7.79 7.35 6.54 8.01 7.97 6.01 7.47 7.58 7.25 7.02 5.09 7.09 7.81 6.92 7.11 7.44 6.69 7.11 5.93 6.72 6.80 6.59 6.60 7.22 6.51 6.62 6.67 7.10 7.30 6.18

492

Y. Ran et al. / Chemosphere 48 (2002) 487–509

Name

CAS RN

2,20 ,3,30 ,4-Pentachlorobiphenyl Perthane 5,6-Dimethylchrysene 1-Hexadecanol 1,2,4,5-Tetrabromobenzene 3,30 ,4,40 -Tetrachlorodiphenyl ether 2,20 ,3,4,50 -Hexachlorobiphenyl 2,20 ,3,30 ,5,50 -Hexachlorobiphenyl Di(2-ethylhexyl)-phthalate 2,4,40 ,6-Tetrachlorobiphenyl Dichlorodiphenyldichloroethylene 2,30 ,4,40 -Tetrachlorobiphenyl 2-Ethylanthracene 9,10-Dimethyl-1,2-benzanthracene 2,20 ,4,40 -Tetrachlorodiphenyl ether 2,20 ,5,60 -Tetrachlorobiphenyl 2,2,2,o,p0 -Pentachloroethylidenebisbenzene 2,20 ,4,5,50 -Pentachlorobiphenyl 3,4,5-Trichlorodiphenyl ether Triphenylene 2-Methylanthracene Benzo(a)fluorene 5-Methylchrysene 2,4,5-Trichlorodiphenyl ether 2,20 ,4,50 -Tetrachlorobiphenyl 6-Methylchrysene 9,10-Dimethylanthracene 4,40 -Dichlorobiphenyl Dichlorodiphenyldichloroethane Methoxychlor 2,20 ,4,40 -Tetrachlorobiphenyl o,p0 -Dichlorodiphenyldichloroethane 2,20 ,3,50 -Tetrachlorobiphenyl Decane 1,10 -Ethylidenebis(4-chloro-benzene) 1-Pentadecanol Anthracene Heptachlor Aldrin Permethrin 20 ,3,4-Trichlorobiphenyl 2,3,6-Trichlorobiphenyl Dieldrin 2,4,5-Trichlorobiphenyl 2,3,40 -Trichlorobiphenyl 2,40 ,5-Trichlorobiphenyl 2,20 ,5,50 -Tetrachlorobiphenyl 2,4,40 -Trichlorodiphenyl ether 2,4,40 -Trichlorobiphenyl Pyrene Endosulfan Bromophos Beta-endosulfan

52663-62-4 72-56-0 3697-27-6 124-29-8 636-28-2 56348-72-2 38380-02-8 35694-04-3 117-81-7 32598-12-2 72-55-9 32598-10-0 52251-71-5 56-56-4 28076-73-5 41464-41-9 789-02-6 37680-73-2 63646-53-7 217-59-4 613-12-7 238-84-6 3697-24-3 52322-80-2 41464-40-8 1705-85-7 781-43-1 2050-68-2 72-54-8 72-43-5 2437-79-8 53-19-0 41464-39-5 124-18-5 3424-82-6 629-76-5 120-12-7 76-44-8 309-00-2 52645-53-1 38444-86-9 55702-45-9 60-57-1 15862-07-4 38444-85-8 16606-02-3 35693-99-3 59039-21-3 7012-37-5 129-00-0 115-29-7 2104-96-3 33213-65-9

MP 119 60 128 56 182 70 112 65 50 93 89 128 150 123 69 103 74 77 54 199 205 187 117 61 64 160 183 149 110 78 83 76 47 30 80 46 216 95 104 36 60 56 175 76 69 67 87 50 57 156 209 51 209

Clog P 6.73 6.69 6.61 7.17 5.19 6.85 6.85 7.69 8.71 6.38 6.74 6.51 5.52 6.66 6.97 6.13 6.76 6.97 5.91 5.66 4.99 5.25 6.16 6.29 6.38 6.16 5.49 5.46 6.06 5.17 6.38 6.06 6.26 5.98 6.74 6.64 4.49 4.92 5.41 7.38 5.80 5.67 3.70 5.92 5.80 5.92 6.38 6.41 5.92 4.95 3.95 5.09 3.65

Mlog P

5.13 6.85 7.07 7.45 6.96 5.90 5.85

5.50 6.85 5.49 5.68

6.10 5.69 5.30 6.22 5.08 6.29 6.00

4.45 6.10 6.50 6.50 5.87 5.67 4.55 5.90 5.42 5.79 6.26 5.62 4.88 3.83 5.21 3.83

log Sobs

log Scal

7.05 7.04 7.01 7.00 6.98 6.98 6.97 6.96 6.96 6.94 6.90 6.89 6.89 6.83 6.82 6.80 6.80 6.77 6.77 6.74 6.69 6.68 6.59 6.58 6.57 6.57 6.57 6.56 6.55 6.54 6.51 6.51 6.47 6.44 6.36 6.35 6.35 6.32 6.31 6.29 6.29 6.29 6.29 6.27 6.26 6.25 6.23 6.22 6.21 6.18 6.15 6.09 6.08

7.17 6.54 7.14 6.98 6.26 6.80 7.22 7.59 8.21 6.56 6.88 7.04 6.27 7.14 6.91 6.41 6.75 6.99 5.70 6.90 6.29 6.37 6.58 6.15 6.27 7.01 6.57 6.20 6.41 5.20 6.46 6.07 5.98 5.48 6.79 6.35 5.90 5.12 5.70 6.99 5.65 5.48 4.70 5.93 5.74 5.84 6.50 6.16 5.74 5.76 5.29 4.85 4.99

Y. Ran et al. / Chemosphere 48 (2002) 487–509

Name

CAS RN

MP

Pentylcyclopentane 4-Methyloctane Heptachlor-epoxide Difluron 2,30 ,5-Trichlorobiphenyl Tricresyl-phosphate 2,4,6-Trichlorobiphenyl 1,2,3,6,7,8-Hexahydropyrene 9-Methylanthracene a-Endosulfan Fluoranthene Nonane 1-Methylphenanthrene 1-Tetradecanol 2-Methylphenanthrene Quintozene 2-Chlorodibenzo-p-dioxin 3,30 -Dichlorobiphenyl Carbophenothion 1-Chlorodibenzo-p-dioxin Androstane-17-one Oxadiazon Ethisterone Leptophos Pentachlorobenzene 2,20 ,5-Trichlorobiphenyl Benzyl butylphthalate Chlorothalonil 1,3,5-Tribromobenzene Ethion Benfluralin Estrone 2,40 -Dichlorodiphenyl ether 1-Decene Hydrocortisone tebutate Danazol 1,2,4,5-Tetrachlorobenzene Amitraz 1-Hydroxychlordene Chlorquinox Epitiostanol Chlordene Coumaphos 1,4-Diiodobenzene Testosterone propionate Chlordane Megestrol acetate Methoprene Dibenzo-p-dioxin Iodofenphos 2,40 -Dichlorobiphenyl Digitoxin 2,20 -Dichlorobiphenyl

3741-00-2 2216-34-4 1024-57-3 35367-38-5 38444-81-4 1330-78-5 35693-92-6 1732-13-4 779-02-2 959-98-8 206-44-0 111-84-2 832-69-9 112-72-1 2531-84-2 82-68-8 39227-54-8 2050-67-1 786-19-6 39227-53-7 36378-49-1 19666-30-9 434-03-7 21609-90-5 608-93-5 37680-65-2 85-68-7 1897-45-6 626-39-1 563-12-2 1861-40-1 53-16-7 6903-65-7 872-05-9 508-96-3 17230-88-5 95-94-3 33089-61-1 2597-11-7 3495-42-9 2363-58-8 3734-48-3 56-72-4 624-38-4 57-85-2 57-74-9 595-33-5 40596-69-8 262-12-4 18181-70-9 34883-43-7 71-63-6 13029-08-8

83 113 160 231 40 33 63 133 79 109 110 53 123 40 57 144 89 29