Evaluation of hard rock tunnelling data - Institutionen för ...

55 downloads 112 Views 3MB Size Report
För detta har ett flertal företag med stöd av Europeiska Unionen gått samman och bildat Tunconstruct, ...... 39700 39705 GLS. 50 6 1,5. 1. 1 2,5. 5,00. 4124,00.
Institutionen för Geovetenskap Box 460 405 30 Göteborg

Evaluation of hard rock tunnelling data: a compilation of geological parameters Jonas Olsson

Master thesis in Geology and Petrology Mineralogy and Petrology, 160p Instructor: Sid Patel, Jimmy Stigh Examiner: Lennart Björklund Date: 2007 12

Evaluation of hard rock tunnelling data: a compilation of geological parameters Jonas Olsson, Göteborg University, Department of Earth Sciences, Geology, Box 460, SE-405 30 Göteborg

ABSTRACT In tunnel construction, follow-ups and knowledge feedback for tunnel project is of large interest. For this a number of companies with support from the European Union have gone together and formed the project Tunconstruct. It is a four year research project which aims to investigate and develop the future in tunnel construction. The goal with this master thesis was to study the Tunconstruct reference database (UCIS), and to suggest changes usable for drill and blast tunnels and not only for tunnels constructing using Tunnel Boring Machine are given. Collected data from the different projects were also added to the UCIS data base. The data collected generated other questions. Was there a connection between geology/grouting and geology/overbreak? By collecting data from the different projects and tabulate these, the parameters that were available and which were of importance were sorted out. The data collected were later compared to UCIS and a suggestion to what was to be added and what to change for the database to be able to handle drill and blast tunnels. Parameters added to UCIS were grouting, overbreak, rock reinforcement data, and customize drifting data. In the case study between geology/grouting and geology/overbreak it turned out to be harder to find correlations. The statistical evaluation of the tunnels showed that the collected data was too deficient to give any reliable results and only weak connections between geology/grouting and geology/overbreak were to be found. The reason could be bad resolution and hard to correlate the length measurements for the data accounted for. Keywords: Tunnel construction, drill and blast, tunnelling data, grouting, overbreak, hard rock ISSN 1400-3821

B528

2008

i

Evaluation of hard rock tunnelling data: a compilation of geological parameters Jonas Olsson, Göteborg University, Department of Earth Sciences, Geology, Box 460, SE-405 30 Göteborg

SAMMANFATTNING I tunnelbyggnation är det av intresse att kunna göra uppföljning samt kunskapsåterföring på genomförda projekt. För detta har ett flertal företag med stöd av Europeiska Unionen gått samman och bildat Tunconstruct, ett fyraårigt forskningsprojekt med uppgift att undersöka och utveckla framtidens tunnelbyggande. Målet med examensarbetet var att studera Tunconstructs referensdatabas (UCIS) och att ge förslag på ändringar för att den skulle bli användbar även för sprängda tunnlar och inte bara för borrade tunnlar. Dessutom var syftet att komplettera UCIS med den insamlade data från de tunnlar som undersöktes. All insamlad data gav upphov till ytterligare frågeställningar. Fanns det något samband mellan geologi/injektering och geologi/överutfall? Genom att samla in all data tillgänglig från de olika projekten och sammanställa dessa framkom en bild av vilka data parametrar som fanns tillgängliga samt vilka som var relevanta. Detta jämfördes sedan med vad som fanns i UCIS och förslag gavs på vilka parametrar som behövdes läggas till och vad som behövde anpassas i databasen för att kunna hantera sprängda tunnlar. Parametrar som behövdes läggas till i UCIS var injektering, överutfall, bergförstärknings data samt anpassa drivningsdata. I jämförelsestudien mellan geologi/injektering och geologi/överutfall visade det sig vara svårare att hitta något samband. Den statistiska undersökningen av tunnlarna visade att insamlad data hade för många brister för att undersökningarna skulle ge några tillförlitliga resultat. Vid statistiska körningar av insamlade data gick det bara att se svaga samband mellan geologi/injektering och geologi/överutfall. Anledning till detta kan vara alltför dålig upplösning och svårt att korrelera längdmätningarna för respektive datamängd. Nyckelord: Tunnel construction, drill and blast, tunnelling data, grouting, overbreak, hard rock ISSN 1400-3821

B528

2008

ii

TABLE OF CONTENTS ABSTRACT

I

SAMMANFATTNING

II

TABLE OF APPENDIX

IV

1 INTRODUCTION

1

1.1 Background

1

1.2 Purpose and performance

1

1.3 Disposition and limitation of work

2

2 BACKGROUND

2

2.1 Ground investigation

2

2.2 Excavation 2.2.1 Drill and blast 2.2.2 Tunnel boring machine

2 3 3

2.3 Rock tunnel support systems

4

2.4 Methods of calculating rock quality

5

2.5 Survey of systems and methods available today for data registration and analysis 2.5.1 Software 2.5.2 Databases using Tunconstruct, UCIS as initial point

7 7 7

2.6 Geology of Sweden

8

3 METHOD AND RESULTS

9

3.1 Compilation of data for a number of rock tunnels 3.1.1 Löttingetunneln 3.1.2 Trollhättetunnel 3.1.3 Arlandabanan

9 10 14 18

3.2 Statistics 3.2.1 Histogram 3.2.2 Mean value, Standard deviation and Variance 3.2.3 Regression analysis

22 22 22 23

4 DISCUSSION 4.1 Analysis of data from case studies 4.1.1 Löttinge

24 24 25

iii

4.1.2 Trollhättetunnel 4.1.3 Arlanda

27 29

4.2 Establish relationships 4.2.1 Geology/grouting 4.2.2 Geology/overbreak

32 32 32

4.3 Important parameters in the Q-equation

33

4.4 Evaluation of database structure for use in tunnels driven in hard rock 4.4.1 General comments on the UCIS database structure 4.4.2 Additional data fields needed in UCIS

34 34 35

5 CONCLUSION

37

6 ACKNOWLEDGMENT

38

7 REFERENCES

38

TABLE OF APPENDIX Appendix A. Data from Löttinge Appendix B. Data from Trollhättetunnel Appendix C. Data from Arlanda

iv

1 INTRODUCTION 1.1 Background This master thesis was written at the Department of Geology, Göteborg University in collaboration with NCC Construction. TunConstruct is a four year multi-disciplinary research project that aims to develop the edge technology in underground construction. The project has 41 partners from 11 European countries and they are all some of Europe´s best recognized names in the underground engineering industry. The project is financed by the European Commission and its 41 partners. The European Commission provides 54% of its 26 million Euro budget. For coordination of the project stands The Graz University of Technology in Austria. Within the TunConstruct research project, NCC construction participates in building up the Underground Construction Information System database (UCIS). The database was created to store data from different tunnel projects. The idea is to improve tunnel construction processes using an integrated platform for process optimization and shorten the time from innovation to practice. The aim of the web-based data system is to illustrate relevant and reliable information throughout the lifetime of an underground facility, also to work as monitoring instrument during the construction and visualisation of geological data. The UCIS so far is a database best applicable to European ground conditions. In Europe the most common way to build tunnels is to use a tunnel boring machine (TBM). In Sweden and the rest of the Nordic countries, drill and blast (D&B) is used in larger extent. This is probably because of differences in geology. South of the Halland Ridge the bedrock is mainly comprised of sedimentary rocks which are harder to build in using D&B. While in Sweden most of the rock is crystalline basement were TBM from the beginning was harder to use. This is now more a matter of culture and TBM can be used in soft rock as well in hard rock. That makes it necessary to compare D&B with TBM in order to try to propose changes to the UCIS structure for it to apply to Nordic geologic conditions and practice.

1.2 Purpose and performance The work started with comprehensive literature studies in database structure, different tunnel construction methods and how the data should be edited into the database. Also two field trips were included. The Löttinge tunnel in Stockholm, Sweden and Gothard base tunnel in Switzerland were studied to get an impression of the different tunnel construction methods.

1

1.3 Disposition and limitation of work This thesis is limited to differences between D&B project data and data stored in UCIS. Also the preferences which are key features for databases regarding geology were studied. The report covers the two major methods for tunnel construction, TBM and D&B. It describes and evaluates the different types of methods. For the database the focus is on D&B, and suggesting changes that need to be entered in UCIS, to be utilizable for D&B tunnels. As stated above the idea was from the beginning to compare D&B with TBM and Road Header (RH). But due to lack of data from both TBM- and RH this project had to be changed into a project where only D&B data was studied and give suggestions on what needed to be added for a D&B project in the Tunconstruct database. The second idea was to follow up on all the data collected from the D&B projects, to try and make correlations between; o o o o

Geology and grouting Geology and overbreak Geology and rock support Geology and drifting parameters

2 BACKGROUND Constructing tunnels have always challenged engineers, from the early basic drill and blast tunnels to modern TBM tunnels that are more like a gigantic tunnel factory. When constructing tunnels you always follow some basic steps; a) Ground investigation, b) Excavation and c) Support and maintenance.

2.1 Ground investigation When starting a tunnel project, ground investigation is the first stage of the process. A thorough ground investigation could be the difference between success and disaster. Missing fracture zones and areas of weaker rock could cost lots of time and money during the construction. Methods of doing ground investigations include; seismic geophysics, rock testing, core drilling and mapping the area where the tunnel passes through, this to get a good visualisation of what to expect during construction (Waltham. 2002).

2.2 Excavation Tunnel excavation can be done in three different ways; a) Drill and Blast, b) Tunnel Boring Machine and c) Road Header. In this report only the two first will be covered,

2

because road header projects are not that common within Sweden. The City tunnel consortium did use it when constructing the City tunnel in Malmö, but the data from that project could not be accessed until after the project was completed. 2.2.1 Drill and blast Drill and Blast is the oldest technique used in tunnel construction and has been refined over time, it started for real when dynamite was invented. Gunpowder first used was very unsafe and hard to control and led to numerous accidents in the beginning. D&B is used in shorter tunnels where the use of TBM would not be economical or where the geology is too complicated, as for mixed face or squeezing ground. The way of constructing tunnels can be broken down in to stages. First inject grouting as a screen, drill for explosives, blast out a section or a gable in the tunnel, removing the spoil and line the tunnel. This is also referred to as cycle time and will be discussed later in this report. When constructing larger tunnels it is common to divide the tunnel in two sections, upper and lower. That means first excavating the upper bench and then continue with the lower bench of the tunnel (Waltham. 2002). 2.2.2 Tunnel boring machine Tunnel construction with TBM started as early as in the 1850´s. The machine was quite simple, a large rotating shield with drag bits on. The construction was weak and only made it 10 ft into the rock before braking down (Hapgood. 2004). In the mid 1950´s an engineer came up with the idea of putting rotating disks as cutters on the shield. That made it possible to bore everything from sand to hard rock. This was the big boom in underground tunnel engineering which led to many spectacular tunnel projects. The TBM is like a large train, shown in figure 2.1, with a shield in the front and cutters that dig its way into the tunnel wall. The material that is being dug out is then transported backwards on the train and mixed with water to something called slurry. This is to keep it from giving off the finer particles. The slurry is loaded on to a tunnel train or conveyor belt and transported out of the tunnel. There are sometimes problems getting the right mix of the slurry. If it is to dry it starts to dust and if it is to wet it will not stay on the conveyer belt that transports the slurry backwards on the TBM. The best is if the consistence is like toothpaste. The tunnel can then be left unlined, lined or cased with precast concrete sections that are mounted on to the walls as the TBM moves forward. The TBM is mounted on travelling rail and prevented from moving backwards by large hydraulic jacks holding the TBM in place. When drilling under high pressure, either because of the ground water level or because the ground is too soft and will fail, it is sometimes necessary to use an Earth Pressure Balance Machine, (EPBM) to put the rig under pressure. By putting a large collar behind the rotating shield and pressurize, water will stop from leaking and ground from collapsing. TBM can be used in all types of ground material from soft soil to hard rock. The configuration of the TBM changes depending on what ground conditions that are to be expected. What type of cutters, if there need to be an overpressure in front, lined or

3

unlined tunnel are all examples of different applications and modifications that need to be made to the TBM before putting it to use. This is why most TMB´s are custom made for a specific tunnel (Bougard 1984).

Figure 2.1 Tunnel boring machine (Kawasaki Precision Machinery Ltd 2007)

2.3 Rock tunnel support systems There are different support systems when building tunnels, passive support, active support, shotcrete and rockbolts or dowels are all types of support. Passive support is steel ribbed precast concrete segments that are used as liner on the inside of the tunnel, often used in TBM tunnels where the TBM places the segment. Active support is shotcret and rockbolts together forming a self supporting arch within the rock mass, often used to support rock mass over tunnel openings. It works better then passive support for all types of ground conditions except weak soils. Rockbolts or dowels are used as support in jointed rocks to secure lose bolts or reinforce the material where the stress level makes the excavation area collapse if not supported. Rockbolts are steel rods that either has an expansion shell in the end or is fixed with grouting. It can be tensioned or non-tensioned and used where urgent support is needed. Dowels are cables or rebars that are fixed in shotcrete and more of a long term support. Dowels are not pre-tensioned but it uses the rock mass natural tension to tighten it. Rock grouting in tunnels is a way to prevent groundwater from leaking into tunnels. Groundwater transports through joints in the rock mass and by filling these with grout, the rock mass is made impermeable. It is important to prevent groundwater level lowering since it affects wells and can also cause subsidence of structures situated above the underground opening. Grouting can be performed either before or after excavation. Pre-grouting is injected as a screen in front of the face, see Figure 2.2. If this procedure turned out to be unsuccessful, the tunnel is post-grouted in order to seal off the residual inflow (Waltham. 2002).

4

Figure 2.2 Pre-grouting of a rock tunnel

2.4 Methods of calculating rock quality The degree of fracturing is estimated with RQD, which is defined as the percentage obtained by dividing the summed lengths of all core pieces equal or greater than 100 mm by the total core length (Edelbro 2003). The rock quality expressed as RQD is presented in Table 2.1. Table 2.1 Rock quality according to the RQD-method RQD 90 – 100 75 – 90 50 – 75 25 – 50 0 – 25

Rock Quality Very good Good Fair Poor Very poor

The RQD-value is a parameter in another rock classification, called the Q-method The Qmethod considers the number of joint sets (Jn), joint roughness (Jr), joint alteration (Ja), the water conditions (Jw), and the Stress Reduction Factor( SRF), (Edelbro 2003). The rock mass quality is calculated from the formula:

Q=

RQD J r J w ⋅ ⋅ J n J a SRF

The rock quality expressed as the Q-method is presented in Table 2.2. Table 2.2 Rock quality according to the Q-method Q 40 – 100 10 – 40 4 – 10 1–4 0.1 – 1

Rock Quality Very good Good Fair Poor Very poor

Rock mass rating (RMR) is another way to define the rock mass quality using case histories from tunnels, chambers, mines, slopes and rock caverns. The following six parameters are used to classify a rock mass using the RMR system (Edelbro 2003).

5

1. 2. 3. 4. 5. 6.

Unaxial compressive strength of intact rock material Rock quality designation (RQD) Joint or discontinuity spacing Joint condition Groundwater conditions Joint orientation

Each of the six parameters is assigned a value corresponding to the characteristics of the bedrock. These values are derived from field surveys. The sum of the six parameters is the "RMR value", which lies between 0 and 100 (Waltham, 2002). The rock quality expressed as the RMR-method is presented in Table 2.3. Table 2.3 Rock quality according to the RMR RMR 80 – 100 60 – 80 40 – 60 20 – 40 5000 m/s. No low velocity zone has been registered.

11

-

Hydraulic properties o Hydraulic properties of the rock mass in the tunnel were investigated by water loss in core holes to get and approximation of the fracture frequency.

-

Rock types o The rock mass is dominated by granodiorite with inclusions of younger granite, pegmatite and amphibolites. Drifting data -

Fractures/fissures o Fracture orientation plotted in a rose diagram see figure 3.3 o Fissure fillings in the area is mainly calcite, occasional fissures with chlorite and clay fillings can be found

Figure 3.3 Rose diagram for Löttinge tunnel.

-

Rock Quality Designation (RQD) presented in table 3.2 Table 3.1 RQD presented in % of total tunnel length. RQD-value tunnel 90-100 75-90 50-75 25-50 0-25

Proportion in % of tunnel length 65 (660m) 26 (268m) 8 (81m) 0 0

12

-

The joint roughness, joint alteration and number of joint sets presented in table 3.2 as mean values. Table 3.2 Mean value of Jn, Jr and Ja 3,2 Joint roughness (Jr) ( x ) 2,6 Joint alteration (Ja) ( x ) Number of joint sets (Jn) ( x ) 3,5

-

Q-value from the project is presented as a histogram, figure 3.5.

Variable Q

Observations 64

Minimum 3,421

Maximum 95,000

Mean 32,833

Std. deviation 23,983

Histogram Q 0,6

Relative frequency %

0,5

0,4

0,3

0,2

0,1

0 0

20

40

60

80

100

120

Q

Figure 3.5 Histogram over Q-values from the Löttinge project Table 3.3 Q presented in % of total tunnel length Q-value Proportion in % of tunnel tunnel length >100 0 40-100 46 (482m) 10-40 50 (515m)* 4-10 4 (42m)** 1-4 0 *depression, **tunnel face

-

Production report o Weekly reports on advance rate, ~15 m per week.

13

Production data

-

Grouting Table 3.4 Data table over grouting at Löttinge Total number Total Mean Number of of holes in amount of distance grouting the screen grout between screens sections [m] [l] 67 20 m 368141 l 2002 st

Grout per meters of drill hole [l/m] 9,4 l/m

3.1.2 Trollhättetunnel

Trollhättetunnel is a 3.8 km single tube double track railway tunnel situated in Trollhättan 50 km north of Göteborg, see figure 3.6. It was built from 2003-2005 using conventional Drill and Blast. It has a cross sectional area ~ 120 m2. The tunnel passes through two ridges with a large depression in the centre at Björndalen, see figure 3.6. The depression is overbuilt with a concrete tunnel to connect the two rock tunnels

3.1.2.1 Geological background

The rock mass is built up of two major rock types, a week foliated granite from Båberg in the north to Björndalen with large megacrysts and gneiss with dominantly granodioritic composition in the south of the tunnel. Dykes of granite, granodiorite, pegmatite and aplite can occur, as well as discs or lenses of mafic rocks. Analysis of the core-drillings has shown some occurrence of pegmatite. These have not been observed on the rock surface. The weak foliation of the granite decreases from north to south and the direction of the foliation are easterly striking and diping towards the west. Investigations in the area included eight core holes, BIPS-logging of the core holes, surface mapping, seismic refraction and hydraulic properties (NCC 2007, project documentation).

14

Figure 3.6 Bedrock map over Trollhättetunnel (Lundqvist 1997) 3.1.2.2 Data from Trollhättetunnel Data from feasibility study

-

-

-

Surface mapping o Geologic mapping of the area using SGU Serie Ae, Trollhättan , skala 1:50 000, 1964 and drawing of the tunnel Plane, profile och normal section. Seismic investigations o Six seismic refraction profiles over the tunnel have been done with 1 -5m spread and shot range that varies from 14- 25 m. The rock quality is over all good with velocity of propagation >5000 m/s. Two low velocity zones has been registered one close to Björndalen, chainage 400/850 and one further to the south, chainage 402/400. Rock types o The tunnel is built up of two rock types, granite with large megacrysts from Båberg to Björndalen and gneiss with foremost granodioritic composition in the south of the tunnel. Dykes of granite, granodiorite, pegmatite and aplite can occur, as well as discs or lenses of mafic rock.

Drifting data

-

Fissure fillings o Fissure filling is either chlorite or clay. In the contact between greenstone and gneiss, the rock can be totally or partly converted into clay. Fracture orientation 15

The most common fracture orientations in the tunnel is as plotted in the rose diagram, figure 3.7.

Figure 3.7 Rose diagram for Trollhättetunnel

-

Rock Quality Designation (RQD) Table 3.5 RQD presented in % of total tunnel length RQD-value tunnel 90-100 75-90 50-75 25-50 0-25

-

Proportion in % of tunnel length 65 (1024m) 29 (465m) 5 (85m) 0 0

The joint roughness, joint alteration and number of joint sets presented in table 3.6 as histogram. Table 3.6 Mean value of Jn, Jr and Ja Number of joint sets (Jn) ( x ) 3,5 3,2 Joint roughness (Jr) ( x ) 1,2 Joint alteration (Ja) ( x )

-

Q-value from the project is presented in table 3.5 and as a histogram, figure 3.8 Variable Q

Observations 331

Minimum Maximum Mean Std. deviation 0,667 40,000 17,337 9,610

16

Histogram (Q) 0,7

Relative frequency

0,6

0,5

0,4

0,3

0,2

0,1

0 0

5

10

15

20

25

30

35

40

45

50

Q

Figure 3.8 Histogram over Q-values from the Trollhättetunnel Table 3.7 Q presented in % of total tunnel length Q-value tunnel >100 40-100 10-40 4-10 1-4 0,1- 1

-

Proportion in % of tunnel length 32 (335m) 44 (465m) 20 (215m) 1 (18m) 2 (25m) 1 (20m)

Stuff report o Weekly reports on advance rate, ~9 m per week.

Production data

-

Grouting o Data from the grouting of Trollhättetunnel is not complete and therefore a table with total use is not presented. The data that have been collected will be used in the relationship study.

17

3.1.3 Arlandabanan

3.1.3.1 Geological background

Arlanda tunnel is part of the fast track rail link Arlandabanan that was built to connect Arlanda airport with central Stockholm see figure 3.9. The tunnel is 8,6 km, has a crosssectional area of ~ 100 m2 and was constructed between 1996 and 1997 (Dalmalm, 2004). The rock mass in the Arlanda tunnel is built up of two main geological rock types, see figure 3.9. Granodiorite north and south and a zone in the middle built up of mica schists and mica gneiss. The mica zone is strongly fractured along a vertical stratification with foliation planes (N40oØ/70oV) partly affected by clay mineralogy. Between the foliation planes the rock mass is massive and is characterized as gneissic. The granodiorite in the Arlanda area is influenced by horizontal fracturing and is not as strong and massive as normal. In the area large horizontal stresses have been measured to between 2- 10 MPa. This could be a possible reason for either the generation of horizontal fractures, or tensile open state. Investigations in the area included eight core holes, BIPS-logging of the core holes, surface mapping, seismic refraction and hydraulic properties (NCC 2007, project documentation).

Figure 3.9 Map over Arlandabanan 3.1.3.2 Data from Arlandabanan Data from feasibility study

-

Surface mapping

18

-

o Geologic mapping of the area using SGU Serie Ae, Stockholm NO, skala 1:50 000, 1964 and drawing of the tunnel Plane, profile och normal section. Seismic investigations o Seismic refraction Hydraulic properties o Hydraulic properties of the rock mass in the tunnel were investigated by water loss in core holes Rock types o The rock mass is dominated by granodiorite with inclusions of younger granite, pegmatite and amphibolites. Fracture zones o Homogeneous area low on fracture zones Fissure fillings o Fissures in the area is mainly calcite, occasional fissures with chlorite and clay fillings can be found

Drifting data

-

Fracture orientation o Fractures plotted in a rose diagram in Figure 3.10

Figure 3.10 Rose diagram from tunnel U1

19

-

Rock Quality Designation (RQD) Rock Quality Very poor Poor Fair Good Very good

RQD 0-25

Meter of tunnel

Length % of tunnel

0

25-50 50-75 75-90 90-100

356 8,524904 1 210

28,9751

2 090 50,04789 520 12,45211 4176 100

Table 3.8 RQD presented in % of total tunnel length U1

-

The joint roughness, joint alteration and number of joint sets presented in table 3.9 as histogram Table 3.9 Mean value of Jn, Jr and Ja in tunnel U1 Number of joint sets (Jn) ( x ) 3,5 3,2 Joint roughness (Jr) ( x ) 1,2 Joint alteration (Ja) ( x )

-

Q-value o Q-value data plotted as a histogram, figure 3.11. Variable Observations Q 232

Minimum Maximum 1,333 40,000

Mean 9,003

Std. deviation 7,595

20

Histogram (Q) 0,6

R e la t iv e f re q u e n c y %

0,5

0,4

0,3

0,2

0,1

0 0

20

40

60

80

100

120

Q

Figure 3.11 Histogram over Q-values from Arlanda tunnel U1 Table 3.10 Q presented in % of total tunnel U1 length Q-value tunnel >100 40-100 10-40 4-10 1-4 0,1- 1

-

Proportion in % of tunnel length 0 (0m) 0 (0m) 26 (1077m) 45 (1917m) 28 (1182m) -

Stuff report o Data is missing

Production data

-

Grouting Table 3.11 Data table over grouting in tunnel U1 at Arlanda Grout per Total Total amount Mean Number of number of meters of of grout distance grouting drill hole holes in [l] between screens the screen [l/m] sections [m] 289 15 m 1 517 443 l 4 950 st 15 l/m

21

3.2 Statistics When analysing large amounts of data it is hard to see patterns and similarities between different data sets without using statistical tools. This chapter covers the statistical topics that have been used in this report such as histogram, mean value, standard deviation, variance, probability distribution, and confidence interval. 3.2.1 Histogram

When a large number of results are available, the data can sometimes be hard to evaluate in a regular diagram. To better appreciate the data, constructing a frequency diagram, also called histogram can be useful. This is accomplished by dividing the x axis into intervals of appropriate size and constructing a rectangle over the ith interval with the area proportional to ni, the number (frequency) of observations in that interval (Hunter and Hunter 1978). 3.2.2 Mean value, Standard deviation and Variance

When describing data using mathematic- and statistic- implements, mean value, standard deviation and variance are good statistical tools. The mean value is often used when replicating test to get an average of the population. This is commonly referred to as arithmetic mean. Hunter and Hunter (1978) defined the arithmetic mean value as:

x=

1 n ∑ xi n i =1

where n is the number of samples. When describing data the mean value or the expected value only give part of the information needed to describe a distribution. Data from two experimental series can have the same mean value, but the spread among the values may vary. This is illustrated in Figure 3.12.

Figure 3.12 Spread in a population (Hunter and Hunter (1978)

22

To describe a distribution also variance and standard deviation is needed to get the spread of the samples. The variance according to Davis (2002): s2 =

1 n ∑ ( xi − x ) 2 n − 1 i =1

and the standard deviation as: s = s2 =

1 n ( xi − x ) 2 ∑ n − 1 i =1

A small standard deviation indicates a tight spread around the centre value. In opposite, a large standard deviation indicates a wide spread. 3.2.3 Regression analysis

In statistics, regression analysis examines the relationship between responsible variables and the independent variables. In this report simple linear regression using the standard formula below has been used to see how two sets of data fits to each other. Simple linear regression assuming that data can be adapted to a straight line the equation for regression is: y = a + bx + c Where a is the restriction, b is the slope and c is the error term. The x and y terms are the data quantities from the population in question, a and b are the unknown constants that is to be estimated from the data. To derive the a and b values least square method can be used. It is done by minimizing the sum of square error for the given data set. When plotting regression data R2 value is a measurement on how well the data fit each other. The value R2 is a fraction between 0.0 and 1.0, and has no unit. An R2 value of 0.0 means that knowing x does not help you predict y. There is no linear relationship between x and y, and the best-fit line is a horizontal line going through the mean of all y values. When R2 equals 1.0, all points lie exactly on a straight line with no spread. That means knowing x lets you predict y perfectly.

23

4 DISCUSSION Data collected at a normal D&B project, are rock type, section length, rock quality (Q), RQD, grouting, jointing for example. In TBM projects such parameters as torque, rotation speed and cutter head power consumption are the typical parameters registered. As mentioned earlier the data is from three different projects that have been evaluated. The data of most interest in the study will be presented for each project below. In appendix 1 all the data collected from the different projects are available. This discussion can be divided in two parts. Case studies on three of NCCs tunnels and trying to correlate geology with overbreak, and grouting. Evaluation of the Tunconstruct database (UCIS) and to propose changes to be applicable to hard rock geology, especially for D&B tunnels.

4.1 Analysis of data from case studies For all the projects the main idea has been to find relationships between geology/grouting and geology/overbreak. From the beginning geology/advance rate and geology/rock support where to be part of the study but due to lack of data this was not possible. Advance rate parameters in a D&B projects compared with TBM are different. In TBM projects time is a factor that is easy to measure. The TBM itself keeps track of time, how much it have advanced under a certain time. How long the stops has been and often a logbook over what caused the stops. In D&B projects that are covered in this report the cyclical time is not so well documented, stops are not accounted for and not what caused the stops either. When the time factor is poor, relationship between geology/advance rate is almost impossible to find. In this report none of the projects have any good time relations that can be used to run any analysis on what relationship geology has with advance rate. When comparing rock support with geology the three projects are less suited. Rock support in these projects are all based on what Q classification the rock mass gets when mapping the tunnel. Meaning that from the feasibility study the rock mass quality is divided into classes, where for every rock mass class a given Q-value results in a rock mass support class. One way to be able to establish relationship between geology and rock support is to use another rock classification system e.g. the New Austrian Tunnel Method, NATM. NATM requires more comprehensive geotechnical data and the rock support is more based on a number of factors then merely on the one single parameter as in the Q-system. The data from all the projects were compared using regression, where the R2 value is a measurement on how well the figures converge with each other. The geological parameters that have been used are Jn and RQD. They are parameters in the Q-equation that have the largest effects of the outcome of the Q value. This is

24

discussed later in chapter 4.3. The relationships are presented in chapter 4.2 and the data is presented as graphs for each project.

4.1.1 Löttinge

The Löttinge project is the most recent one and includes the most data. The parameters are also more correlatable to length compared to the other two projects. At Löttinge the best R2 values were found for RQD (figure 4.1) and Jn (figure 4.2) by grouting with 0.151 respectively 0.149. These correlations are quite poor and do not indicate a strong connection between the geologic parameters and grouting although the weak connection indicates that for higher RQD less amount of grout is needed. In figure 4.2 it indicates that with higher Jn more grout is needed. Regression of RQD by Grouting per meter drill hole [l/m] (R²=0,151) 110 105 100

RQD

95 90 85 80 75 70 65 60 0

5

10

15

20

25

Grouting per m eter drill hole [l/m ] Active

Model

Conf . interval (Mean 95%)

Conf . interval (Obs. 95%)

Figure 4.1 Plot with grouting per meter drill hole against RQD in a regression diagram

25

Regression of Jn by Grouting per meter drill hole [l/m] (R²=0,149) 5,5 5 4,5

Jn

4 3,5 3 2,5 2 1,5 0

5

10

15

20

25

Grouting per m ete r drill hole [l/m ] Active

Model

Conf . interval (Mean 95%)

Conf . interval (Obs. 95%)

Figure 4.2 Plot with grouting per meter drill hole against Jn in a regression diagram

When plotting RQD and Jn against overbreak the fitting of data in the regression diagram is none or neglectable, with R2 =0.002 for RQD (figure 4.3) and Jn =0.009 (figure 4.4) the values are too scattered to give any indication of the data being connected. Regression of Jn by Overbreak % (R²=0,002) 5,5 5 4,5 4

Jn 3,5 3 2,5 2 1,5 5

10

15

20

25

30

35

Overbreak % Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.3 Regression diagram presenting Jn plotted by overbreak

26

Regression ofl RQD by Overbreak % (R²=0,009) 120 110 100

RQD 90 80 70 60 5

10

15

20

25

30

35

Overbreak % Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.4 Regression diagram presenting RQD plotted by overbreak

4.1.2 Trollhättetunnel

From the Trollhättetunnel project the data have been hard to acquire because follow up on the geology in the project have not been done and data have not been stored in one place. Some of the data is missing or not digitalized. The grouting data is therefore hard to draw any conclusions from because only about 15 percent of the data is available. The diagrams 4.5 and 4.6 have too few data points to draw any conclusions.

27

Regression of RQD by Grouting per meter drill hole [l/m] (R²=0,155) 120 110

RQD

100 90 80 70 60 50 2

4

6

8

10

12

14

Grouting per m eter drill hole [l/m ] Active

Model

Conf . interval (Mean 95%)

Conf . interval (Obs. 95%)

Figure 4.5 Plot with grouting per meter drill hole against RQD in a regression diagram Regression of Jn by Grouting per meter drill hole [l/m] (R²=0,011) 9 8 7 6

Jn

5 4 3 2 1 0 -1 2

4

6

8

10

12

14

Grouting per m eter drill hole [l/m ] Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.6 Plot with grouting per meter drill hole against Jn in a regression diagram

The regression analysis for overbreak does not give any indications of the data having a linear relationship. With R2 of 0.002 for both RQD and Jn, figure 4.7 and 4.8 the data is too scattered to indicate any correlation.

28

Regression of RQD by Overbreak (R²=0,002) 120 110 100

RQD 90 80 70 60 5

10

15

20

25

Overbreak Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.7 Regression diagram presenting RQD plotted by overbreak

Regression of Jn by Overbreak (R²=0,002) 10 9 8 7

Jn

6 5 4 3 2 1 0 5

10

15

20

25

Overbreak Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.8 Regression diagram presenting RQD plotted by overbreak 4.1.3 Arlanda

The largest set of data was collected at Arlanda. The problem was to correlate the length of the geological mapping with both the grouting screens and the length of the overbreak 29

sections. The geological mapping of the rock mass depends on the length of section available at that time when the grouting was performed. When working with the data it needs to be interpolated so the length of both the geologic mapping and the grouting is the same. Dividing the data after rock type were also done to try and see if this would give any better results using regression analysis. This turned out to show no different results and the diagrams 4.9, 4.10, 4.11 and 4.12 all show the whole set of data without dividing it after rock type. Regression of RQD by Grouting per meter drill hole [l/m] (R²=0,000) 110 100

RQ D

90 80 70 60 50 40 0

10

20

30

40

50

Grouting per m eter drill hole [l/m ] Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.9 Plot with grouting per meter drill hole against RQD in a regression diagram Regression of Jn by Grouting per meter drill hole [l/m] (R²=0,003) 10 9 8

Jn

7 6 5 4 3 2 1 0

10

20

30

40

50

Grouting per m eter drill hole [l/m ] Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.10 Plot with grouting per meter drill hole against Jn in a regression diagram

30

Regression of Jn by Overbreak % (R²=0,005) 10 9 8 7

Jn 6 5 4 3 2 0

20

10

30

40

50

60

70

Overbreak % Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.11 Regression diagram presenting Jn plotted by overbreak Regression of RQD by Overbreak % (R²=0,109) 120 100

RQD

80 60 40 20 0 0

10

20

30

40

50

60

Overbreak % Active

Model

Conf. interval (Mean 95%)

Conf. interval (Obs. 95%)

Figure 4.12 Regression diagram presenting RQD plotted by overbreak

31

4.2 Establish relationships When trying to establish relationships between the geology and different parameters the results have not turned as clear as initially. Logically, between geology/overbreak and geology/grouting there should be correlations but when applying statistical analyses there seem to be weak or no correlation, se table 4.1 for all R2 values. The data will be discussed for below. Tunnel RQD/grouting Löttinge 0,151 Trollhättetunnel 0,155 Arlanda 0,000 Table 4.1 R2 values for all tunnels.

Jn/Grouting 0,149 0,011 0,003

RQD/Overbreak 0,002 0,002 0,005

Jn/Overbreak 0,009 0,002 0,109

4.2.1 Geology/grouting

When comparing RQD and Jn with grouting many parameters such as grout hole pattern, grout sequence, grout pressure, flow and volume effected the outcome of the study. In this comparing study that’s been made no obvious correlation was found between geology/grouting. However at Löttinge weak correlations between RQD/grouting and Jn/grouting were found. Indicating that with stronger rock mass less grout is needed. Reasons that it was only at Löttinge these correlations were found could depend on the parameters mentioned above or the fact that there is hard to find statistical correlation between the geological parameters and grouting. Things that could affect the result are; the length reference of the tunnel is not the same for the geological mapping as for the grouting. The parameter Jn that has been used for the statistical analysis does not distinguish between if a joint is open, filled or tight. When grouting a section there may be only one set of joint that has been mapped, but if that joint is open it can be filled with more grout then what should be indicated in the geologic mapping. Recent researches on joints show that water discharge is commonly located to only a few separate joints (Gustafson, 2007). Also the risk of hydraulic fracturing by grouting over pressure needs to be taken into consideration. The phenomenon occurs when the rock mass is deforming due to high pressure. An indication of hydraulic fracturing is an over-proportionally increase of grout take, or water take, if the pressure exceeds a critical value. In hard rock this is not that common whereas soft rock tends to be more sensitive for over pressure. 4.2.2 Geology/overbreak

The analysis of RQD/overbreak and Jn/overbreak gives results that indicate in very poor correlation. Only figure 4.12, RQD/overbreak give indication of a connection where high RQD shows little overbreak. The reason for this weak correlation could be the amount of explosives used was not enough or too much. Too little explosives results in underbreak that has to be removed, giving a false image on how much the overbreak would be. Too much explosives results in a larger overbreak giving a false image of the rock mass. It could also depend on the size of the tunnel which is illustrated in figure 4.13.

32

Problems with tunnel profile size in jointed or strongly foliated rock masses could affect the relationships between geology/overbreak. The small tunnel is located in a single block, indicating intact rock conditions. For the large tunnel profile the rock mass is closely jointed and because the individual rock pieces are small in relation to the overall size of the tunnel it can be evaluated the same as the small tunnel. The midsize tunnel is likely to have problems with overbreak because the joints/foliation are discontinuous resulting in larger overbreaks. However it can be assumed that for the major part of the tunnel lengths in this study the joint pattern would have been similar.

Figure 4.13 Different tunnel profiles in the same kind of rock mass (Edelbro 2003).

4.3 Important parameters in the Q-equation In the statistical analyses of data, Jn and RQD were used as the main contributing geological parameter. The reasons for that was that in the Q-equation it is the RQD and Jn that have the largest effect on the equation. Another reason is that in theory Jn should have the closest geological connection to overbreak. Because depending on the joints and its orientation the overbreak should be directly affected. The Q-equation is built up from RQD, the number of joint sets (Jn), joint roughness (Jr), joint alteration (Ja), the water conditions (Jw), and the Stress Reduction Factor (SRF), according to the formula: Q=

RQD J r J w ⋅ ⋅ J n J a SRF

In table 4.1 the relations between the parameters are given. Table 4.1 typical minima and maxima over the Q index. RQD/Jn Jr/Ja Jw/SRF Min 10/20 0.5/0.4 0.05/2 Max 100/0.5 4/0.75 1/0.5

Q index ≈0.001 >2000

33

Given the min Q-value = 0.5 * 1,25 * 0.025 and the max Q-value = 200 * 5.3333 * 2. This tells us that for small values the ratios between the parameters are not that important but for larger RQD/Jn the resulting Q-value changes radically. From the project data the RQD is often closer to 100. This is because all of the projects is situated in bedrock with strong little fracture rock. The joint numbers in the projects are often between 4 and 10, giving high values of the RQD/Jn and that is hardly affected by Jr/Ja and Jw/SRF.

4.4 Evaluation of database structure for use in tunnels driven in hard rock 4.4.1 General comments on the UCIS database structure

The database is under construction and the current version is only a beta version where field and expert rules need to be added to make it more complete. The database so far mainly applicable on TBM tunnels and needs to be modified for D&B. Figure 4.14 illustrates what parameters that are in UCIS and what needs to be added based on results presented.

34

Surface mapping Data from feasibility study

Seismic investigations Hydraulic properties Rock types

Fractures/fissures Rock Quality Designation (RQD) Tunnel data

Drifting data

Joint roughness, joint alteration and number of joint Q-value Stuff report Advance rate Cycle time

Production data

Grouting Overbreak Rock support

Figure 4.14 Data available in the three projects, where UCIS and boxes like is data that is already in UCIS.

box is data that is not in

4.4.2 Additional data fields needed in UCIS

-

Grouting data

When grouting a tunnel a large number of factors such as grout hole pattern, grout sequence, grout pressure, flow and volume are of importance, although not all are registered during construction projects. The data from grouting in tunnel projects is either processed using a data logger or registered in a protocol for each section. The data can be after-treated in for example excel to obtain the relationship that is inquired (Dalmalm, 2004). In the projects that have been studied grouting data have been stored from the following

35

parameters; grout pressure, amount of grout (liter and in grams), number of drill holes, and distance between the sections. From this data you calculate the parameter; amount of grout per meter drill hole. From that parameter relation RQD/grouting and Jn/grouting can be evaluated. -

Overbreak

Overbreak is a problem in D&B tunnels where the amount of overbreak is a measurement on how the joints/foliation is affecting the tunnel construction. It can also give indications on how the blasting has been performed. To much overbreak results in more rock waste that needs to be transported out of the tunnel and deposited. Overbreak is measured after the tunnels have been blasted, and is the amount of rock in percent as area that have over excavated the given profile of the tunnel. This is done by using a laser, see figure 4.14 In the three different tunnels all overbreak data have been stored as AutoCad files where the given profile and the profile for the overbreak is plotted in a section profile.

Figure 4.14. Exaggerated figure showing overbreak as the filled area around the shown profile.

-

Drifting data

Drifting data is all drift related information gathered during excavation, such as advance rate, cycle time and mapping data. Advance rate is the speed of progress in the tunnel measured as meter of new tunnel driven per unit of time. In D&B excavation time is often measured in cycles. The advance rate is continuous until the TBM reaches the limit of extension and the maximum of the thrust arms is reached, then the excavation is stopped. The rear of the TBM is supported and the front of the machine is moved forward as the thrust arms are retracted. The time it takes from arms fully retracted until back to fully retract again is the cycle time for the TBM (Bickel et. al. 1996). Cycle time is also measured for D&B tunnels and the steps are illustrated in figure 4.15. From the projects that have been studied no cycle time was 36

available. At Löttinge weekly reports on advance rate was available but to inaccurate to be usable as parameter when comparing with geology. For it to be useful the time parameter needs to be in days, most preferably in cycle time. Otherwise it is hard to relate it to geology. Injection

Drilling

Blasting

Excavation

Lining

Figure 4.15 Principal drawing of cycle time for D&B

Mapping data is all the geological parameters that can be viewed in appendix 1. Mapping in underground constructions, where drill and blast is used as a method is done by hand. One person classifies and put together drawings of rock type, structures, number of joint sets, water bearing joints, joint orientations and joint minerals. Also leakage, and drip mapping after lining are referred to as mapping data. In UCIS there are some mapping data referred to as geological data. What needs to be added is the Q-system, its parameters and cycle time. -

Rock support data

In tunnel construction rock support is determined by classifying the rock mass. This is done when mapping the tunnel. As described earlier rock support consists of; shotcrete, cement, rock bolts or dowels. When gathering data from tunnel projects the data collected from rock support is; length of bolts, bolt spacing, extra bolts and rock reinforcement class also thickness of shotcrete can be specified but is most common by included in the rock reinforcement class. Rock reinforcement in the projects mentioned are based on what Q-value is determined for the tunnel. In rock mass classification it is common to set, for example three classes, where for each class thickness of shotcrete, distance between bolts and length of bolts are decided.

5 CONCLUSION The UCIS database is mainly based on TBM tunnels, but the UCIS should be applicable for both TBM and D&B. Many of the data parameters are available in UCIS but needs to be modified to fit the D&B projects. The following parameters are missing or needs to be modified to work in UCIS • • •

Grouting (Grouting per meter of drill hole) Overbreak (% overbreak) Rock support data (Rock support class, shotcrete, dowels and rock bolts)

37



Mapping data ( Q-system, and cycle time. Advance rate is already accounted for in UCIS but needs to be modified to cycle time in order to work for D&B projects)

There are some changes that could be made in a D&B project to make it easier to compare with TBM projects, for example machine data from the drill rig and grouting equipment. This would easily improve the parameters. The results from the case study, were trying to establish relationship between geology and under ground construction parameter. This was not that successful. The data from Löttinge gave weak indications on a correlation between RQD/grouting and Jn/grouting. Indicating that for stronger less fractured rock less amount of grout was needed. All the rest of the analyses where regression was used as a tool did not to give any or weak relationships between geology/overbreak and geology/grouting The conclusion is that the relationship between geology/overbreak is dependent on how much explosives that are used, how closely the rock is jointed/foliated and the size of the tunnel profile. In the comparisons between geology/grouting the conclusion is that the relationship is dependent on grout hole pattern, grout sequence, grout pressure, flow and volume. Also the parameter Jn that has been used for the statistical analysis do not distinguish between if a joint is open, filled or tight.

6 Acknowledgment I am very grateful to my supervisor Sid Patel, NCC, Prof. Jimmy Stigh, and Dr. LarsOlof Dahlström, NCC, who have guided me through the process and helped me whenever I needed. I would also like to thank Mattias Roslin, NCC for guiding me at Löttinge tunnel and Monika Kontturi, NCC for the interesting and usable visit to Liljeholmen. Great thanks Helge Ahlberg for help with providing data from the different projects. Finally, I would like to thank the staff at NCC Teknik in Göteborg for interesting and rewarding discussions, for their generosity, and for their great breakfast.

7 REFERENCES Hapgood, Fred. 2004. “The Underground Cutting Edge: The innovators who made digging tunnels high-tech”. Invention & Technology v.20, n.2, pp. 42-49.

38

Kawasaki Precision Machinery Ltd. http://www.khi.co.jp/kpm/products/indust_use/boki/tunnel_e.html 2007-06-05. Bougard, I. F.1984. “Different Underground Tunnelling Methods”. Advances in Tunnelling and Subsurface Use, Vol. 4, Nr. 4, pp. 289-315. Waltham, Tony. 2002. “Foundations of engineering geology” 110 pp. Edelbro C. 2003. “Rock Mass Strength – A Review”. Department of Civil and Mining Engineering Division of Rock Mechanics. ISSN: 1402 – 1536. Lindström. M., Lundqvist. J., Lundqvist. T., 2000. ”Sveriges geologi från urtid till nutid”, 530 pp. Dalmalm T., 2004. ”Choice of Grouting Method for Jointed Hard Rock based on Sealing Time Predictions”. KTH Civil and Architectural Engineering, PHD 1006, ISSN 16509501. John O. Bickel, Thomas R. Kuesel, Elwyn H. King, 1996. “Tunnel Engineering Handbook”, 528 pp. John C. Davis, 2002. “Statistics and Data Analysis in Geology”, 656 pp. William G. Hunter, J. Stuart Hunter, 1978 “Statistics for Experiments” An Introduction to Design, Data Analysis, and Model Building, 672 pp. Gustafson, G., (2007) Hydraulic properties in hard rock. (In prep Chalmers University of Technology. NCC AB, (2007), Project documentations, Trollhättan, Arlanda and Löttinge (In Swedish). Lundqvist., I., 1997: rock map Vänersborg SO. 104 pp. Goel, R. K., Jethwa, J. L. and Paithankar A.G. (1995). “Correlation between Barton´s Q and Bieniawski´s RMR an new approach, Technical note, Int J. Jock Mech Min., 33., 1 (2) pp. 179-181 Hoek, E. and Brown, E.T. (1988) “The Hoek-Brown failure criterion” – a 1988 update. In: Proc 15th Can Rock Mech Symp. University of Toronto pp. 31-38 Moreno Tallon E., “Application de las classificaciones geomechnicas a los tuneles de parjares. II Cursode Sostenimientos Activosen Galeriasy Tunnels”. , Foundation GomezParto, Madrid (1980).

39

Rutledge, J.C., Preston, R.L., (1978). “Experience with engineering classifications of rock for the prediction of tunnel support”. In: Proceedings of the International Tunneling Symposium, Tokyo. p. A-3-1: 7. Recommended reading

Bieniawski, Z. T. 1976. “Engineering classification in rock engineering”. Proceedings of the Symposium on Exploation for Rock Engineering, Johannesburg, 97-106. Norwegian soil and rock engineering association. 1998. “Norwegian TBM tunnelling” publication No. 11, 1998. Tarkoy, Peter J. 1995. “Comparing TBMs with drill+bast excavation, Tunnels and Tunnelling” Tunnels and Tunnelling, October 1995. Byram, James E. and Tarkoy, Peter J. 1991.”The advantages of tunnel boring: a qualitative/ quantitative comparison of D&B and TBM excavation”. Hong Kong Engineering, January 1991. Liu, Ya Ching and Shen, Chao-shi. 2006. “A Methodology for evaluating and classification of rock mass quality on tunnel engineering”. Tunnelling and Underground Space Technology 22, 2007, 377-387. Alm, Per-Gunnar and Bjelm, Leif. “The use of a geological model in a cavern construction in limestone”. Geotechnology, Lund University, http://lib.hpu.edu.cn/comp_meeting/ 3/PAPERS/UW/UW0909.PDF. Brewer. T., Daly. S., Åhäll., K-I., 1998. ”Contrasting magmatic arcs in the Palaeoproterozoic of the south-western Baltic Shield”. Precambrian Research. 92, 297315.

40

Appendix A. Data from Löttinge From

To

3190 3205 3215 3240 3250 3260 3265 3300 3325 3340 3350 3353 3385 3425 3465 3485 3545 3550 3565 3600 3655 3695 3722 3729

3205 3215 3240 3250 3260 3265 3300 3325 3340 3350 3353 3385 3425 3465 3485 3545 3550 3565 3600 3655 3695 3722 3729 3742

Rock type

RQD

Gnejsgranit 90,00 Gnejsgranit 95,00 Gnejsgranit 95,00 Gnejsgranit 95,00 Gnejsgranit 95,00 Gnejsgranit 95,00 Gnejsgranit 100,00 Gnejsgranit 100,00 Gnejsgranit 85,00 Gnejsgranit 95,00 Gnejsgranit 95,00 Gnejsgranit 95,00 Gnejsgranit 90,00 Gnejsgranit 95,00 Gnejsgranit 80,00 Gnejsgranit 95,00 Gnejsgranit 85,00 Gnejsgranit 90,00 Gnejsgranit 90,00 Gnejsgranit 95,00 Gnejsgranit 90,00 Gnejs 90,00 Gnejs 83,33 Gnejs 83,33

Jn

Jr

3,00 3,00 3,00 3,00 4,00 3,00 3,00 3,00 3,33 3,00 3,00 3,00 3,00 3,00 3,00 2,00 2,67 2,00 2,00 3,00 3,00 3,00 3,33 4,00

3,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00 3,17 4,00 4,00 4,00 4,00 4,00 4,00 4,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00

Ja

Jw

2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 1,33 1,00 1,00 1,00 1,00 1,00 1,33 1,67

1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

SFR

1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50

Q

45,00 63,33 63,33 63,33 47,50 63,33 66,67 66,67 40,38 63,33 63,33 63,33 60,00 63,33 53,33 95,00 28,69 54,00 54,00 38,00 36,00 36,00 22,50 15,00

Total Number Liter grout amount of for each injection (l) holes hole (l/hole) 6827,00 2167,00 2458,00 2715,00 7005,00 2605,00 2391,00 2783,00 3425,00 2428,00 2940,00 1778,00 2559,00 3230,00 3106,00 3185,00 2666,00 2923,00 3546,00 4349,00 4049,00 10317,00 8669,00 3220,00

35,00 26,00 20,00 30,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 27,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 27,00 26,00 26,00 26,00

195,06 83,35 122,90 90,50 269,42 100,19 91,96 107,04 131,73 93,38 113,08 65,85 98,42 124,23 119,46 122,50 102,54 112,42 136,38 167,27 149,96 396,81 333,42 123,85

Amount of grout/ meter tunnel (l/m) 341,35 98,50 111,73 246,82 350,25 130,25 119,55 139,15 171,25 134,89 147,00 59,27 134,68 161,50 155,30 159,25 148,11 132,86 186,63 217,45 213,11 332,81 433,45 201,25

Grouting/ meter drillhole [l/m] 9,75 4,17 6,15 4,53 13,47 5,01 4,60 5,35 6,59 4,67 5,65 3,29 4,92 6,21 5,97 6,13 5,13 5,62 6,82 8,36 7,50 19,84 16,67 6,19

Area overbrake overbrake %

14,00 15,00 15,40 44,70 16,40 18,50 19,70 19,00 20,70 24,60 17,80 22,80 20,30 21,30 20,50 13,80 22,30 15,30 18,30 15,30 16,60 16,00 17,00 17,00

10,21 10,94 11,23 32,59 11,96 13,49 14,36 13,85 15,09 17,93 12,98 16,62 14,80 15,53 14,94 10,06 16,26 11,15 13,34 11,15 12,10 11,66 12,39 12,39

1

From

To

Rock type

RQD

Jn

Jr

3742 3752 3760 3785 3805 3812 3834 3849 3855 3860 3865 3874 3890 3915 3940 3950 3960 3983 4005 4015 4020 4022 4025 4032 4040 4050

3752 3760 3785 3805 3812 3834 3849 3855 3860 3865 3874 3890 3915 3940 3950 3960 3983 4005 4015 4020 4022 4025 4032 4040 4050 4065

Gnejs Gnejs Gnejsgranit Gnejsgranit Gnejsgranit gnejs Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit

71,67 80,00 75,00 85,00 83,33 83,33 81,67 75,00 73,33 71,67 71,67 78,33 78,33 75,00 85,00 85,00 95,00 90,00 90,00 76,67 76,67 83,33 90,00 90,00 91,67 95,00

5,00 4,33 5,00 4,00 4,00 3,33 4,00 3,67 4,00 4,00 4,33 3,67 3,67 3,67 3,00 4,00 3,00 3,00 3,00 4,00 3,67 3,33 3,00 3,00 2,67 2,00

2,00 2,33 2,00 2,00 2,67 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,33 4,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00

Ja

Jw

3,33 2,67 3,00 2,00 2,67 2,67 2,33 2,67 3,00 3,33 3,33 3,33 2,67 2,67 2,00 2,00 2,00 2,00 4,00 6,00 7,33 5,00 3,00 2,00 2,00 2,00

1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

SFR

1,00 1,00 1,00 1,00 1,00 1,50 1,50 2,00 2,83 2,83 3,67 1,00 2,00 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,00 1,00

Q

8,60 16,15 10,00 21,25 20,83 18,75 17,50 11,51 6,47 5,69 4,06 19,23 12,02 10,23 22,67 12,75 19,00 18,00 9,00 3,83 3,42 6,00 12,00 18,00 25,78 71,25

Total Number Liter grout amount of for each injection (l) holes hole (l/hole) 6374,00 6877,00 9241,00 2792,00 6671,00 3133,00 2135,00 4321,00 10885,00 7967,00 5425,00 8024,00 7387,00 7198,00 5440,00 5122,00 4763,00 7032,00 4461,00 4709,00 3668,00 3243,00 2476,00 4498,00 6741,00 10807,00

26,00 26,00 36,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 28,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 65,00

245,15 264,50 256,69 107,38 256,58 120,50 82,12 166,19 418,65 306,42 208,65 308,62 284,12 257,07 209,23 197,00 183,19 270,46 171,58 181,12 141,08 124,73 95,23 173,00 259,27 166,26

Amount of grout/ meter tunnel (l/m) 303,52 343,85 462,05 139,60 370,61 156,65 106,75 216,05 518,33 398,35 285,53 422,32 369,35 359,90 247,27 256,10 238,15 370,11 223,05 235,45 183,40 162,15 123,80 249,89 337,05 491,23

Grouting/ meter drillhole [l/m] 12,26 13,23 12,83 5,37 12,83 6,03 4,11 8,31 20,93 15,32 10,43 15,43 14,21 12,85 10,46 9,85 9,16 13,52 8,58 9,06 7,05 6,24 4,76 8,65 12,96 8,31

Area overbrake overbrake %

15,40 14,90 16,00 23,20 18,80 23,70 14,90 23,70 19,90 24,00 13,90 17,00 16,30 18,60 17,40 16,30 19,00 14,30 18,30 13,80 18,20 17,70 21,10 16,70 14,10 16,20

11,23 10,86 11,66 16,91 13,71 17,28 10,86 17,28 14,51 17,50 10,13 12,39 11,88 13,56 12,68 11,88 13,85 10,43 13,34 10,06 13,27 12,90 15,38 12,17 10,28 11,81

2

From

To

Rock type

RQD

Jn

Jr

4065 4085 4098 4102 4112 4125 4140 4145 4152 4155 4175 4195

4085 4098 4102 4112 4125 4140 4145 4152 4155 4175 4195 4205

Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit Gnejsgranit

90,00 90,00 90,00 76,67 73,33 73,33 71,67 80,00 85,00 85,00 90,00 90,00

3,00 2,67 2,33 3,33 4,00 4,00 4,00 4,00 4,00 4,00 4,00 4,00

4,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00

Ja

Jw

2,00 1,67 1,33 5,00 5,33 5,33 5,33 5,33 2,00 2,00 2,00 2,00

1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

SFR

1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

Q

60,00 60,75 86,79 13,80 10,31 10,31 10,08 11,25 31,88 31,88 33,75 33,75

Total Number Liter grout amount of for each injection (l) holes hole (l/hole) 1826,00 6570,00 5940,00 6648,00 6597,00 8507,00 9104,00 3916,00 4755,00 9882,00 13952,00 12131,00

6,00 35,00 35,00 35,00 31,00 47,00 44,00 26,00 26,00 35,00 36,00 65,00

304,33 187,71 169,71 189,94 212,81 181,00 206,91 150,62 182,88 282,34 387,56 186,63

Amount of grout/ meter tunnel (l/m) 182,60 547,50 297,00 332,40 329,85 425,35 433,52 186,48 237,75 494,10 697,60 638,47

Grouting/ meter drillhole [l/m] 15,22 9,39 8,49 9,50 10,64 9,05 10,35 7,53 9,14 14,12 19,38 9,33

Area overbrake overbrake %

20,90 17,60 13,00 16,00 16,40 19,50 19,00 19,50 16,10 17,60 15,60 21,80

15,24 12,83 9,48 11,66 11,96 14,22 13,85 14,22 11,74 12,83 11,37 15,89

3

Appendix B. Data from Trollhättetunnel From

To

Rock type

Color

RQD Jn Jr Ja

Jw

SRF

Q

Total amount injection (l)

Number Liter grout of for each holes hole (l/hole)

Amount of grout/ meter tunnel (l/m)

Grouting/ meter drillhole [l/m]

overbrake %

990 1040 Gnejs

Röd-svart

100

3

2

1

1

2,5

20

6604

25

264,16

132,08

12,57904762

20,97

1080 1120 Gnejs

Svart-röd

90

3

2

1

1

2,5

18

3786

25

151,44

94,65

7,211428571

15,82

4313

1170 1204 Gnejs

Svart-röd

100

2

2

1

1

2,5

30

25

172,52

126,8529412

8,215238095

13,85

1260 1300 Gnejs

Svart-röd

100

3

2

1

1

2,5

27

25

0

0

0

10,7

1300 1320 Granit

Svart-röd

100

3

2

2

1

2,5

10

25

0

0

0

15,16

1320 1345 Gnejs

Röd-svart

90

4

2

1

1

2,5 13,5

25

0

0

0

12,93

1345 1365 Granit

Svart-röd

100

3

3

1

1

2,5

40

25

0

0

0

18,14

1365 1390 Granit

Svart-röd

100

2

2

1

1

2,5

40

25

0

0

0

12,74

1390 1420 Gnejs

Svart-röd

100

3

2

1

1

2,5

20

25

0

0

0

11,95

1440 1480 Granit

Svart-röd

80

6

2

2

1

2,5

4

25

0

0

0

13,03

1530 1560 Gnejs

Svart-röd

100

3

3

1

1

2,5

33

25

0

0

0

14

1560 1600 Gnejs

Röd-svart

100

3

2

1

1

2,5

20

25

0

0

0

12,8

1665 1740 Gnejs

Röd-svart

95

3

2

1

1

2,5

19

25

0

0

0

9,4

1740 1770 Gnejs

Röd-svart

100

2

2

1

1

2,5

30

25

0

0

0

13,98

2000 2030 Gnejs

Svart-röd

100

2

2

1

1

2,5

30

25

0

0

0

15,43

2030 2080 Granit

Röd-svart

80

4

2

1

1

2,5

12

25

0

0

0

12

2080 2130 Granit

Röd-svart

100

4

2

1

1

2,5

20

25

0

0

0

14,23

2130 2175 Granit

Röd

100

4

2

1

1

2,5

15

25

0

0

0

13,58

2175 2220 Granit

Röd-svart

100

4

2

1

1

2,5

15

25

0

0

0

18,87

2220 2260 Granit

Röd-svart

100

6

3

1

1

2,5

20

25

0

0

0

17,15

2290 2320 Granit

Röd-svart

100

4

2

2

1

2,5

7,5

25

0

0

0

16,64

2320 2350 Granit

Röd-svart

80

9

2

2

1

2,5

3

25

0

0

0

14,16

2420 2435 Granit

Röd

75

3

2

4

1

2,5

4

25

0

0

0

12,41

2480 2500 Granit

Röd

95

3

2

1

1

2,5

19

25

0

0

0

14,4

4

From

To

Rock type

2505 2535 Granit

Color

RQD Jn Jr Ja

2

2

1

Jw

1

SRF

2,5

Q

Total amount injection (l)

30

Number Liter grout of for each holes hole (l/hole) 25

0

Amount of grout/ meter tunnel (l/m) 0

Grouting/ meter drillhole [l/m]

overbrake %

100

2535 2540 Granit

Röd Röd till rödgrå

0

15,72

95

3

2

1

1

2,5

19

25

0

0

0

19,32

2580 2630 Granit

svart-röd

100

3

2

1

1

2,5

20

25

0

0

0

17,63

2655 2665 Granit

Röd

95

3

2

1

1

2,5

19

25

0

0

0

20,15

2665 2685 Granit

Röd

95

4

2

1

1

2,5 14,3

25

0

0

0

19,18

2685 2700 Granit

Svart-röd

93

6

2

1

1

2,5

9,3

25

0

0

0

13,33

2700 2715 Granit

Grå-röd

90

6

2

3

1

2,5

3

25

0

0

0

15,2

2715 2725 Granit

Röd-grå

100

3

2

1

1

2,5

20

25

0

0

0

13,62

2725 2760 Granit

Röd-grå

90

6

2

1

1

2,5

9

1744

25

69,76

49,82857143

3,321904762

15,45

2760 2790 Granit

röd-grå

85

3

2

1

1

2,5

17

5993

25

239,72

199,7666667

11,4152381

17

2790 2820 Granit

röd-grå

90

3

2

1

1

2,5

18

2612

25

104,48

87,06666667

4,975238095

11,48

2820 2845 Granit

rödgrå

95

3

2

1 0,67

2,5

13

4118

25

164,72

164,72

7,843809524

12,63

2845 2870 Granit

rödgrå

90

6

2

1

1

2,5

9

6518

25

260,72

260,72

12,4152381

14,65

2870 2900 Granit

röd-grå

95

3

2

1

1

2,5

19

5852

25

234,08

195,0666667

11,14666667

11,55

3105 3120 Gnejs

90

6

2

1

1

2,5

9

2226

25

89,04

148,4

4,24

13,71

3120 3165 Gnejs

svartröd Svart/mörk till svartröd

95

6

2

1

1

2,5

10

6672

25

266,88

148,2666667

12,70857143

15,78

3220 3250 Gnejs

Svart-röd

60

4

2

1

1

2,5

9

2623

25

104,92

87,43333333

4,996190476

15,6

3250 3270 Gnejs

Röd-svart

85

3

2

1

1

2,5

23

25

0

0

0

19,98

3270 3300 Granit

Röd

90

2

2

1

1

2,5

36

25

0

0

0

11,9

3415 3460 Gnejs

Svart-röd

90

4

3

1

1

2,5

27

25

0

0

0

18,71

3490 3510 Gnejs

Svart-röd

60

9

2

6

1

2,5

1

25

0

0

0

14,2

3565 3595 Gnejs

Röd-svart

80

6

2

1

1

2,5

8

25

0

0

0

12,96

3595 3615 Gnejs

Svart-röd

70

6

2

1

1

2,5

7

25

0

0

0

18,86

3615 3635 Gnejs

Svart

80

4

2

1

1

2,5

16

25

0

0

0

12,7

3635 3680 Granit

Röd

80

9

2

1

1

2,5

5

25

0

0

0

15,65

3850 3925 Gnejs

Svart-röd

95

3

2

1

1

2,5

19

25

0

0

0

12,41

5

Appendix C. Data from Arlanda Från

Till

36875 36880 37039 37065 37071 37077 37102 37112 37144 37158 37285 37290 37295 37317 37322 37328 37333 37338 37350 37355 37360 37366 37387 37419 37424

36880 37000 37065 37071 37077 37102 37107 37144 37158 37163 37290 37295 37300 37322 37328 37333 37338 37350 37355 37360 37366 37387 37419 37424 37430

Ba

GLG GLG GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD

RQD Jn Jr

85 85 90 85 80 80 80 80 80 90 80 90 90 80 85 90 80 80 80 90 90 80 80 90 70

4 6 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 6

1,5 2 1,5 2 2 2 1,5 1,5 1,5 2 2 2 2 2 1,5 1,5 1,5 2 2 1,5 2 1,5 1,5 1,5 1,5

Ja

Jw

1 0,67 1 1 1 1 2 1 2 1 2 1 1,5 1 1 1 1,5 1 1 1 1 1 1 1 1 1 1,5 1 1,5 1 1,5 1 1,5 1 2 1 2 1 1,5 1 2 1 1 1 1,5 1 1,5 1 2 1

SRF

Q

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

8,54 11,33 9,00 8,50 8,00 8,00 5,33 8,00 5,33 12,00 10,67 12,00 12,00 7,11 5,67 6,00 5,33 5,33 5,33 6,00 6,00 8,00 5,33 9,00 3,50

Total amount injection (l) -

Number of holes -

3682,51 755,16 2975,78 702,24 -

20,00 18,00 22,00 22,00

2284,30 3976,68 6680,72 4642,15 4671,75 4700,45 5134,53 3260,99 3393,72 2227,80 1964,13 782,96 1804,48

Grouting/ meter drillhole [l/m]

9,21 2,10 6,76 1,60

21,00 20,00 22,00 22,00 21,00 21,00 18,00 20,00 20,00 20,00 19,00 17,00 22,00

Amount of Area grout/ meter overbrake tunnel (l/m)

368,25 94,39 212,56 63,84 -

5,44 9,94 15,18 10,55 11,12 11,19 14,26 8,15 8,48 5,57 5,17 2,30 4,10

28,00 568,10 334,04 244,32 291,98 361,57 302,03 191,82 188,54 171,37 115,54 52,20 90,22

21,54 15,44 0,00 0,00 26,02 13,07 9,27 14,05 15,18 13,72 12,99 9,38 15,15 35,88 14,56 15,99 17,56

6

Från

Till

37430 37435 37440 37445 37450 37456 37461 37466 37472 37477 37482 37520 37882 37887 37895 37899 37904 37913 37918 37923 37927 37932 37938 37942 38240 38245 38257

37435 37440 37445 37450 37456 37461 37466 37472 37477 37482 37520 37525 37870 37882 37887 37895 37899 37904 37913 37919 37923 37927 37932 37938 38245 38257 38263

Ba

GRD GLS GRD GRD GRD GRD GLS GLG GLG GLG GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GLS GLS GLS

RQD Jn Jr

80 80 80 85 80 80 70 70 70 70 80 80 40 40 50 70 70 75 70 70 90 90 90 95 80 80 70

6 6 6 6 6 9 6 6 6 6 6 6 6 9 6 6 6 6 6 6 6 4 6 4 4 4 4

1,5 1,5 1,5 1,5 1,5 2 1,5 1,5 1,5 1,5 1,5 1,5 2 1,5 2 2 2 2 2 2 2 1,5 1,5 1,5 1,5 1,5 1

Ja

2 1,5 1,5 1,5 2 2 2 2 2 1,5 1,5 1 4 2 2 2 2 2 1 1 1 1 1 1 1,5 1 1

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

Q

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

4,00 5,33 5,33 5,67 4,00 3,56 3,50 3,50 3,50 4,67 5,33 8,00 1,33 1,33 3,33 4,67 4,67 5,00 9,33 9,33 12,00 13,50 9,00 14,25 8,00 12,00 7,00

Total amount injection (l)

Number of holes

382,96 453,81 4348,88 7528,25 12191,03 5116,59 1767,71 1690,58 2750,67 2252,91 2163,23 -

18,00 19,00 20,00 24,00 19,00 22,00 20,00 14,00 22,00 22,00 20,00 -

6980,27 2604,48 2669,96 2076,23 1237,67 3441,26 1519,28 3019,73 1217,94

Grouting/ meter drillhole [l/m]

18,00 18,00 19,00 18,00 18,00 19,00 18,00 18,00 18,00

Amount of Area grout/ meter overbrake tunnel (l/m)

1,06 1,19 10,87 15,68 32,08 11,63 4,42 6,04 6,25 5,12 5,41 19,39 7,23 7,03 5,77 3,44 9,06 4,22 8,39 3,38

25,53 30,25 289,93 376,41 1741,58 284,26 353,54 169,06 161,80 112,65

410,60 153,20 205,38 138,42 68,76 245,80 108,52 94,37 87,00

11,32 8,47 11,50 18,40 23,51 15,37 38,58 43,14 14,89 13,80 0,00 0,00 24,09 21,57 19,97 24,27 15,59 23,00 15,95 15,91 15,95 21,79 20,00 15,22 24,60 24,89 25,00

7

Från

Till

38263 38267 38270 38277 38281 38285 38290 38294 38298 38303 38309 38314 38318 38323 38348 38352 38357 38370 38397 38402 38407 38421 38426 38450 38517 38522 38527

38267 38270 38277 38281 38285 38290 38294 38298 38303 38309 38314 38319 38323 38348 38352 38357 38370 38397 38402 38407 38421 38426 38450 38517 38522 38527 38531

Ba

GLS GLS GLS GLS GLG GLS GLG GLS GLS GLS GLS GLG GLG GLG GLG GLG GLG KvGneis GLG GLG GLG GLG GLG GLG GLS GLS GLG

RQD Jn Jr

80 80 80 70 70 70 60 70 60 80 80 80 80 80 85 80 80 85 90 90 90 90 85 80 70 70 70

6 6 6 6 6 6 6 6 6 6 6 6 6 9 6 4 4 4 4 4 6 6 6 6 6 6 6

1,5 1,5 1,5 1,5 1,5 1,5 2 2 2 2 2 1,5 1,5 1,5 1,5 1,5 1,5 2 2 2 1,5 2 1,5 2 1,5 1,5 1,5

Ja

Jw

SRF

Q

1 1 1 2 2 2 1,5 1,5 1,5 1,5 1,5 2 1,5 1,5 1,5 1 1 1 1 1 1 1 1 1 1 1 1

1 0,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

8,00 4,80 8,00 3,50 3,50 3,50 5,33 6,22 5,33 7,11 7,11 4,00 5,33 3,56 5,67 12,00 12,00 17,00 18,00 18,00 9,00 12,00 8,50 10,67 7,00 7,00 7,00

Total amount injection (l)

Number of holes

2150,67 1532,74 2822,42 5098,65 1458,30 6949,78 8200,00 1260,09 7222,42 -

18,00 18,00 17,00 18,00 20,00 18,00 13,00 13,00 29,00 -

4115,70 3599,10 965,02 -

21,00 22,00 21,00

134,42 85,15 217,11 339,91 91,14 408,81 630,77 84,01 656,58 -

9,80 8,18 2,30 -

23,00

Amount of Area grout/ meter overbrake tunnel (l/m)

5,97 4,26 8,30 14,16 3,65 19,30 31,54 4,85 12,45 -

5409,87

Grouting/ meter drillhole [l/m]

293,98 239,94 53,61 -

11,76

540,99

15,22 14,86 14,13 21,61 17,45 13,14 18,91 10,26 25,73 17,52 0,00 21,32 26,57 19,97 19,78 21,13 16,21 34,46 21,86 15,29 14,53 15,33 12,92 17,23 37,16 19,31 11,50

8

Från

Till

38531 38536 38541 38546 38572 38575 38606 38611 38617 38626 38688 38695 38798 38800 38812 38840 38845 38850 38855 38860 38865 38870 38875 38880 38885 38890 38895

38536 38541 38546 38572 38575 38606 38611 38617 38622 38688 38693 38799 38800 38812 38840 38845 38850 38855 38860 38865 38870 38875 38880 38885 38890 38895 38900

Ba

GLG GLG GLS GLS GLG GLG GLS GLS GLS GRD GLG GLS GLS GLS GLS GLG GLG GLG GLS GLS GLS GLS GLS GLS GLS GLS GLG

RQD Jn Jr

60 60 60 50 80 70 70 70 70 60 70 60 70 70 70 80 75 70 70 70 75 70 70 80 80 70 80

4 9 9 6 4 6 9 9 9 6 4 6 4 6 9 6 4 4 9 6 6 6 6 4 4 4 4

Ja

2 1 1,5 1 2 1 2 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1,5 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1 1,5 1

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

Q

12,00 4,00 5,33 6,67 12,00 7,00 4,67 4,67 4,67 6,00 10,50 6,00 10,50 7,00 4,67 8,00 11,25 10,50 4,67 7,00 5,00 7,00 7,00 12,00 12,00 10,50 12,00 -

Total amount injection (l)

Number of holes

6353,36 6922,87 4487,00 4597,31 2623,32 2131,84 3777,58 6678,03 9910,31 3043,95 6534,53 7451,12 1600,00 6963,23 1752,47 3002,69 2563,23 3504,93 3504,93 1726,46 1687,00 4333,63 5820,63 1183,86 1556,95 1629,60

Grouting/ meter drillhole [l/m]

21,00 22,00 22,00 18,00 9,00 11,00 18,00 17,00 18,00 11,00 12,00 12,00 14,00 14,00 15,00 18,00 18,00 14,00 14,00 14,00 13,00 14,00 15,00 14,00 18,00 13,00 -

-

Amount of Area grout/ meter overbrake tunnel (l/m)

15,13 15,73 10,20 12,77 14,57 9,69 10,49 19,64 27,53 13,84 27,23 31,05 5,71 24,87 5,84 8,34 7,12 12,52 12,52 6,17 6,49 15,48 19,40 4,23 4,32 6,27 -

276,23 532,53 263,94 255,41 145,74 133,24 269,83 445,20 660,69 169,11 544,54 496,74 100,00 535,63 146,04 142,99 1281,61 152,39 175,25 345,29 153,36 228,09 447,74 69,64 155,70

26,13 15,91 16,06 14,89 58,87 18,87 18,72 15,33 15,04 24,64 20,08 28,36 26,50 27,45 30,48 16,24 11,17 0,00 13,03 10,73 9,27 15,70 9,89 8,18 9,56 13,91 0,00

9

Från

Till

38911 38900 38924 38937 38991 39016 39019 39025 39030 39034 39039 39044 39060 39064 39103 39108 39112 39117 39122 39127 39132 39137 39142 39247 39285 39312 39351

38900 38905 38911 38991 39006 39011 39016 39019 39025 39030 39034 39049 39054 39094 39099 39103 39108 39112 39117 39122 39127 39132 39238 39278 39297 39336 39341

Ba

GLS GLG GLS GLG GLS GLS PEG GLS PEG PEG GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLG GRD GLS GLS GLS

RQD Jn Jr

75 75 75 80 80 80 80 80 50 70 80 70 70 70 60 60 70 70 70 60 60 60 80 50 50 40 70

4 6 4 4 4 6 6 6 6 6 6 6 9 9 6 6 6 6 6 6 6 6 6 6 4 4 6

1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 2 1,5 2

Ja

1 1,5 1,5 1 1 1 1 1,5 1 1,5 1 1 1 1,5 2 1 1,5 1,5 1 1 1 1 1 1 1 1,5 1

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

Q

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

11,25 5,00 7,50 12,00 12,00 8,00 8,00 5,33 5,00 4,67 8,00 7,00 4,67 3,11 3,00 6,00 4,67 4,67 7,00 6,00 6,00 6,00 8,00 5,00 10,00 4,00 9,33

Total amount injection (l) 1530,00 1824,00 2519,00 3658,00 3179,00 1328,00 3141,00 2426,00 2800,00 3130,00 2840,00 2322,00 1400,00 2610,00 4829,00 2574,00 1881,00 1849,00 3343,00 2874,00 2121,00 2887,00 2801,00 3637,00 3798,00 5313,00 3819,00

Number of holes 11,00 11,00 8,00 12,00 12,00 11,00 13,00 12,00 12,00 12,00 12,00 13,00 13,00 11,00 13,00 12,00 13,00 13,00 13,00 14,00 14,00 15,00 13,00 15,00 15,00 16,00 14,00

Grouting/ meter drillhole [l/m] 6,95 8,29 15,74 15,24 13,25 6,04 12,08 10,11 11,67 13,04 11,83 8,93 5,38 11,86 18,57 10,73 7,23 7,11 12,86 10,26 7,58 9,62 10,77 12,12 12,66 16,60 13,64

Amount of Area grout/ meter overbrake tunnel (l/m) 102,00 152,00 1259,50 281,38 227,07 102,15 209,40 134,78 233,33 195,63 258,18 165,86 107,69 174,00 344,93 160,88 134,36 132,07 222,87 221,08 141,40 222,08 164,76 259,79 271,29 354,20 293,77

25,70 25,26 23,03 26,13 28,11 25,22 21,54 23,69 33,76 24,97 20,33 17,37 24,27 20,26 19,97 22,12 26,17 22,23 27,34 23,65 22,89 21,72 18,62 23,14 30,66 28,47 32,08

10

Från

Till

39360 39370 39370 39385 39389 39393 39397 39401 39406 39433 39438 39443 39452 39464 39476 39507 39506 39658 39663 39669 39672 39677 39682 39687 39692 39697 39700

39351 39360 39385 39389 39393 39397 39401 39406 39429 39438 39443 39448 39464 39476 39507 39510 39658 39663 39669 39672 39677 39682 39687 39692 39697 39700 39705

Ba

GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS GLS

RQD Jn Jr

70 50 70 70 40 40 40 40 40 60 40 40 40 40 60 70 70 70 70 70 70 60 70 70 60 50 50

6 6 6 6 6 6 6 6 4 4 4 4 6 9 6 4 6 4 6 9 9 9 9 6 6 6 6

1,5 1,5 2 2 2 1,5 1,5 1,5 1,5 2 2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5

Ja

1 1,5 1 1 1,5 1,5 3 1,5 1,5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

Q

2,5 7,00 2,5 3,33 2,5 9,33 2,5 9,33 2,5 3,56 2,5 2,67 2,5 1,33 2,5 2,67 2,5 4,00 2,5 12,00 2,5 8,00 2,5 6,00 2,5 4,00 2,5 2,67 2,5 6,00 2,5 10,50 2,5 7,00 2,5 10,50 2,5 7,00 2,5 4,67 2,5 4,67 2,5 4,00 2,5 4,67 2,5 7,00 2,5 6,00 2,5 5,00 2,5 5,00

Total amount injection (l) 3124,00 1443,00 3292,00 3470,00 6310,00 5100,00 7052,00 3519,00 4547,00 2942,00 2622,00 4547,00 4521,00 982,00 6803,00 6255,00 5037,00 5600,00 3244,00 1960,00 3729,00 4130,00 4398,00 4173,00 3972,00 3780,00 4124,00

Number of holes 16,00 16,00 14,00 16,00 17,00 16,00 18,00 14,00 16,00 15,00 15,00 16,00 14,00 14,00 30,00 27,00 29,00 25,00 26,00 26,00 23,00 24,00 30,00 21,00 21,00 19,00 20,00

Grouting/ meter drillhole [l/m] 9,76 4,51 11,76 10,84 18,56 15,94 19,59 12,57 14,21 9,81 8,74 14,21 16,15 3,51 11,34 11,58 8,68 11,20 6,24 3,77 8,11 8,60 7,33 9,94 9,46 9,95 10,31

Amount of Area grout/ meter overbrake tunnel (l/m) 223,14 96,20 253,23 192,78 315,50 212,50 587,67 439,88 303,13 210,14 154,24 324,79 347,77 89,27 485,93 521,25 359,79 430,77 231,71 103,16 286,85 295,00 314,14 321,00 283,71 252,00 343,67

17,45 24,53 22,27 16,97 28,07 31,50 28,58 29,89 30,11 21,64 26,13 37,30 21,39 30,44 22,56 27,16 19,71 17,59 24,89 26,83 11,28 26,02 24,38 18,18 30,26 25,66 22,63

11

Från

Till

Ba

39705 39710 39715 39719 39742 39762 39767 39772 39777 39780 39785 39797 39801 39811 39872 39885 39900 39911 39927 39931 39938 39994 39999 40004 40009 40020 40035

39710 39715 39719 39742 39762 39767 39772 39777 39780 39785 39797 39801 39811 39872 39876 39880 39885 39906 39911 39927 39985 39989 39994 39999 40004 40009 40020

GLS GLS GLS GLS GLS GLS GLS GLG GLS GLS GLS GLS GLS GLS/GLG GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD

RQD Jn Jr

60 60 50 50 50 70 70 60 65 70 60 75 80 75 100 100 100 100 100 100 100 90 90 90 90 90 90

6 6 6 6 9 6 4 9 9 9 9 6 6 9 6 6 9 6 4 3 6 4 6 6 9 9 6

1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 2 2 2 2 2 2 1,5 1,5 1,5 2 2 2

Ja

1 1 1 1 1 1,5 1,5 1,5 1 1,5 1,5 1,5 1 1,5 1,5 1 1,5 1 1 1 1 2 2 2 2 2 1,5

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

Q

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

6,00 6,00 5,00 5,00 3,33 4,67 7,00 2,67 4,33 3,11 2,67 5,00 8,00 3,33 6,67 13,33 5,93 13,33 20,00 26,67 13,33 6,75 4,50 4,50 4,00 4,00 8,00

Total amount injection (l) 2891,00 6334,00 3765,00 3743,00 5048,00 5138,00 3950,00 3409,00 3916,00 8341,00 5008,00 3582,00 3986,00 2205,00 3449,00 6504,04 6644,84 5695,07 2373,09 1041,26 3342,60 3591,93 3860,99 1423,32 3572,20 7635,87 5600,00

Number of holes 20,00 22,00 19,00 18,00 20,00 18,00 17,00 17,00 21,00 20,00 21,00 18,00 24,00 19,00 20,00 24,00 22,00 22,00 22,00 22,00 22,00 18,00 22,00 22,00 22,00 22,00 22,00

Grouting/ meter drillhole [l/m]

Amount of Area grout/ meter overbrake tunnel (l/m)

7,23 14,40 9,91 10,40 12,62 14,27 11,62 10,03 9,32 20,85 11,92 9,95 8,30 5,80 8,62 13,55 15,10 12,94 5,39 2,37 7,60 9,98 8,77 3,23 8,12 17,35 12,73

192,73 452,43 251,00 267,36 360,57 395,23 263,33 340,90 150,62 320,81 357,71 255,86 249,13 169,62 433,60 442,99 379,67 169,51 69,42 477,51 448,99 257,40 88,96 238,15 509,06 400,00

13,54 16,10 9,16 28,62 21,32 32,08 13,69 18,65 20,44 14,42 15,15 12,99 17,70 18,65 13,83 15,66 14,27 14,60 15,59 20,59 11,83 15,62 14,89 12,48 15,40 22,34 9,60

12

Från

Till

40047 40051 40055 40193 40196 40199 40203 40206 40209 40215 40220 40225 40230 40233 40260 40331 40341 40346 40361 40366 40373 40378 40383 40388 40445 40479 40484

40035 40047 40051 40189 40193 40196 40199 40203 40206 40209 40215 40220 40225 40248 40314 40326 40331 40351 40356 40361 40366 40373 40378 40435 40470 40475 40479

Ba

GLG GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD

RQD Jn Jr

80 90 90 40 40 40 70 70 60 60 70 70 60 50 80 80 80 80 70 70 70 70 80 90 90 80 40

6 9 9 6 6 6 6 6 9 6 6 4 4 6 6 6 6 6 9 6 6 6 6 6 6 6 9

2 2 2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 2 1,5

Ja

Jw

SRF

1,5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1,5 2 2 2 2 2 1,5 1,5 1 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0,8 1 1 1 1 1 1 1 1

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

Q

Total amount injection (l)

7,11 8,00 8,00 2,00 2,00 2,00 3,50 3,50 2,00 3,00 3,50 5,25 4,50 2,50 4,00 8,00 5,33 4,00 1,87 3,50 3,50 3,50 5,33 6,00 9,00 5,33 1,33

7902,24 3521,08 5670,85 7396,41 12352,47 10813,45 15918,39 13183,86 17399,10 15161,43 12865,47 14972,20 15318,39 14582,96 15772,20 19230,49 12827,80 15696,86 21409,87 17363,23 18989,24 9377,58 15433,18 12570,40 14865,47 15026,01 11487,00

Number of holes 34,00 21,00 15,00 21,00 22,00 22,00 22,00 22,00 22,00 20,00 20,00 22,00 22,00 22,00 22,00 22,00 22,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00 26,00

Grouting/ meter drillhole [l/m] 11,62 8,38 18,90 17,61 28,07 24,58 36,18 29,96 39,54 37,90 32,16 34,03 34,81 33,14 35,85 43,71 29,15 30,19 41,17 33,39 36,52 18,03 29,68 24,17 28,59 28,90 22,09

Amount of Area grout/ meter overbrake tunnel (l/m) 493,89 440,13 630,09 462,28 882,32 636,09 994,90 941,70 1338,39 3790,36 2144,25 1663,58 1392,58 1620,33 1433,84 1131,21 712,66 981,05 1338,12 1240,23 1186,83 625,17 857,40 966,95 929,09 1001,73 547,00

21,43 15,95 4,23 0,00 0,00 0,00 0,00 0,00 0,00 5,88 7,34 20,70 16,68 11,32 10,80 11,46 13,32 16,10 11,13 15,91 16,46 10,07 18,62 27,34 15,33 17,59 16,13

13

Från

Till

40489 40496 40501 40511 40518 40534 40539 40545 40549 40572 40601 40604 40609 40616 40622 40632 40637 40656 40701 40706 40711 40746 40756 40761 40766 40771 40781

40484 40489 40496 40501 40523 40528 40534 40539 40562 40591 40596 40601 40609 40609 40622 40627 40647 40691 40696 40701 40736 40741 40746 40756 40761 40766 40786

Ba

GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD

RQD Jn Jr

40 50 60 70 70 70 70 80 80 70 70 80 40 85 40 60 70 80 65 90 100 100 90 100 100 100 100

9 9 6 6 6 4 4 6 6 6 4 6 6 6 6 4 6 4 4 3 4 3 3 3 3 3 3

1,5 1,5 2 2 2 2 2 1,5 2 2 2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 2 2 2 3 3 3 2 2 3

Ja

2 1,5 1,5 2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1 1,5 1 1,5 1,5 3 1,5 1 1 1 1 1,5 1 1

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

Q

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

1,33 2,22 5,33 4,67 6,22 9,33 9,33 5,33 7,11 6,22 9,33 5,33 2,67 8,50 2,67 9,00 4,67 8,00 4,33 16,00 20,00 40,00 36,00 40,00 17,78 26,67 40,00

Total amount injection (l) 10467,26 8539,91 14798,21 13029,60 12434,08 12278,92 16660,09 14765,02 10653,81 10195,52 6026,91 8762,33 10225,11 11913,00 8356,05 9408,97 9121,08 406,28 7495,07 6928,25 10520,18 10293,27 59,19 156,95 11384,75 10075,34 11127,35

Number of holes 26,00 29,00 29,00 26,00 26,00 26,00 41,00 22,00 22,00 23,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 2,00 22,00 22,00 22,00 22,00 2,00 1,00 22,00 22,00 22,00

Grouting/ meter drillhole [l/m]

Amount of Area grout/ meter overbrake tunnel (l/m)

20,13 14,72 25,51 25,06 23,91 23,61 20,32 33,56 24,21 22,16 13,70 19,91 23,24 27,08 18,99 21,38 20,73 10,16 17,03 15,75 23,91 23,39 1,48 7,85 25,87 22,90 25,29

872,27 569,33 924,89 868,64 777,13 818,59 1110,67 984,33 710,25 679,70 430,49 461,18 852,09 916,38 557,07 627,26 27,09 468,44 494,88 701,35 5,92 7,47 758,98 719,67 654,55

18,18 18,36 18,83 14,67 19,31 17,37 13,69 29,57 22,34 15,15 15,37 13,61 14,86 11,97 13,58 11,10 33,36 0,00 16,57 15,18 13,58 20,48 0,00 12,92 18,54 7,37 16,21

14

Från

Till

40791 40806 40816 40826 40831 40836 40855 40924 40934 40989 41003 41012 41015 41020 41065 41070 41076 41080 41090 41094 41101 41112 41117 41130 41146 41150 41161

40791 40801 40806 40816 40826 40846 40914 40919 40969 40993 40998 41003 41012 41015 41070 41076 41080 41090 41094 41095 41112 41117 41130 41146 41150 41161 41166

Ba

GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD

RQD Jn Jr

100 100 100 95 95 95 100 95 90 100 100 100 95 95 100 95 95 100 100 65 80 70 80 90 95 95 95

3 3 4 4 4 3 3 4 4 3 3 3 3 3 3 3 3 3 3 6 6 4 4 6 4 4 3

3 3 2 2 2 2 3 2,5 2,5 2,5 1,5 1,5 1,5 1,5 2 1,5 1,5 2 1,5 2 3 3 3 3 3 2 3

Ja

1,5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,5 1 1 2 1 1 1 1,5 1 1 1,5

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

Q

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

26,67 40,00 20,00 19,00 19,00 25,33 40,00 23,75 22,50 33,33 20,00 20,00 19,00 19,00 26,67 19,00 12,67 26,67 20,00 4,33 16,00 21,00 24,00 12,00 28,50 19,00 25,33

Total amount injection (l)

Number of holes

6991,93 7653,81 17955,16 8114,80 17406,28 15760,00 4008,97 6808,97 6947,09 4729,15 14933,63 5859,19 8640,36 6659,19 5403,59 2038,57 12227,80 11755,16

Grouting/ meter drillhole [l/m]

22,00 22,00 22,00 22,00 22,00

Amount of Area grout/ meter overbrake tunnel (l/m)

15,89 17,40 40,81 18,44 39,56 -

20,00 22,00 25,00 27,00 23,00 41,00 24,00 26,00 22,00 22,00 21,00 21,00 22,00

499,42 510,25 1496,26 540,99 1160,42 -

10,02 15,47 13,89 8,76 32,46

250,56 523,77 408,65 363,78 1244,47 -

12,21 16,62 15,13 12,28

450,71 617,17 416,20 337,72 -

4,85 29,11 26,72

127,41 873,41 783,68

14,89 17,59 16,72 9,82 27,41 0,00 0,00 0,00 0,00 0,00 0,00 18,21 24,13 23,87 19,60 0,00 27,67 17,67 20,08 22,63 0,00 0,00 0,00 0,00 21,24 15,80 12,12

15

Från

Till

41166 41222 41230 41237 41242 41247 41274 41341 41346 41351 41355 41365 41402 41677 41682 41687 41692 41696 41702 41707 41712 41717

41222 41231 41237 41242 41247 41274 41341 41346 41351 41355 41365 41402 41443 41672 41677 41682 41687 41692 41696 41702 41707 41738

Ba

GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD GRD

RQD Jn Jr

85 100 100 100 100 90 95 100 85 85 85 85 85 80 70 85 80 90 60 90 90 90

3 3 3 3 3 4 3 4 4 4 4 4 4 9 6 4 6 6 4 4 4 6

3 2 2 2 3 3 3 3 2 2 2 2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5

Ja

1,5 1,5 1,5 1,5 1 1 2 1,5 2 2 1 1,5 3 1,5 1,5 1,5 1,5 1,5 2 2 1,5 2

Jw

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SRF

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

Q

Total amount injection (l)

Number of holes

22,67 10148,88 17,78 13627,80 17,78 9268,16 17,78 8200,00 40,00 3590,13 27,00 5961,43 19,00 1594,62 20,00 6535,43 8,50 7978,48 8,50 6881,61 17,00 8459,19 11,33 8250,00 4,25 13217,94 3,56 10019,73 4,67 4609,87 8,50 5,33 2210,76 6,00 5238,57 4,50 3443,05 6,75 1672,65 9,00 12672,65 4,50 2386,55

Grouting/ meter drillhole [l/m]

22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00 22,00

Amount of Area grout/ meter overbrake tunnel (l/m)

23,07 30,97 21,06 18,64 8,16 13,55 3,62 14,85 18,13 15,64 19,23 18,75 30,04 22,77 10,48 5,02 11,91 7,83 3,80 28,80 5,42

676,59 973,41 662,01 546,67 239,34 397,43 106,31 408,46 569,89 458,77 367,79 687,50 826,12 589,40

138,17 327,41 229,54 111,51 792,04 216,96

19,56 15,73 18,18 8,36 14,05 12,96 10,55 11,02 16,53 12,70 11,90 9,60 12,52 11,17 0,00 0,00 11,53 11,68 19,93 19,02 14,60 16,24

16