experimental & clinical cardiology

2 downloads 0 Views 2MB Size Report
Av. Vasco de Quiroga 4871, Col. Santa Fe, Del. Cuajimalpa, México, D.F., C.P. 05348,. México. *Corresponding autor. E-mail: [email protected].
EXPERIMENTAL & CLINICAL CARDIOLOGY

Volume 20, Issue 8, 2014

Title: "Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Challenges"

Authors: Nohra E. Beltran, Angelica Reyes and Alvaro R. Lara

How to reference: Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Challenges/Nohra E. Beltran, Angelica Reyes and Alvaro R. Lara/Exp Clin Cardiol Vol 20 Issue8 pages 3375-3388 / 2014

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

Experimental & Clinical Cardiology

Cardiac tissue engineering as an alternative to current therapies: economical and technical challenges Review Article

Nohra E. Beltran, Angélica Reyes, Alvaro R. Lara Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa Av. Vasco de Quiroga 4871, Col. Santa Fe, Del. Cuajimalpa, México, D.F., C.P. 05348, México. *Corresponding autor. E-mail: [email protected]

Abstract     Cardiovascular   disease   is   the   most   common   cause   of   mortality   worldwide,   and   ischemic   heart   disease   with   an   episode   of   acute   myocardial  infarction  is  the  most  common  cause   of   left-­‐‑sided   cardiac   failure.   Current   therapies   for   cardiac   failure   in   general   provide   limited   improvements   in   cardiac   output   and   related   symptoms,   and   cardiac   transplantation   is   restricted   by   the   lack   of   donor   organs   available   and  the  high  risk  of  tissue  rejection.  In  this  paper   we   evaluate   the   cost-­‐‑effectiveness   of   total   artificial   heart,   organ   transplant,   cellular   therapy,  and  cardiac  tissue  therapy.  To  obtain  a   functional   cardiac   tissue,   regeneration   of   3D   tissue  using  bioreactors  is  crucial  to  provide  the   right  mechanical  and  physiological  properties  to   grow   constructs   of   myocardial   tissue.     We   reviewed   current   advances   in   cardiac   tissue   generation   using   bioreactors,   and   analyze   the   technical   challenges   for   cardiomyocytes   cultivation   for   tissue   engineering.   Such  

information   is   illustrated   in   the   layout   of   the   basic   requirements   that   needed   for   a   suitable   bioreactor  for  cardiomyocytes  culture.  A  market   analysis   of   current   therapies   showed   the   viability   of   cardiac   tissue   engineering   as   a   treatment  strategy  for  myocardial  infarction.       Keyword     Cardiomyocytes  culture,  cardiovascular  disease,   heart   failure,   heart   transplantation,   market   analysis     Need   of   cardiomyocytes   cultivation   for   tissue   engineering     Cardiovascular   disease   (CVD)   is   the   most   common   cause   of   mortality   in   the   developed   world   [1],   and   the   leading   cause   of   death   and   disability   in   both   industrialized   nations   and   the   developing   world,   with   approximately   40%   of   deaths   by   heart   failures   and   congenital   cardiovascular  defects  [2],  [3].  In  2008,  17  million   deaths   were   associated   with   CVDs   [WHO].   The  

1    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3375

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

vast   majority   of   studies   concerning   CVDs   are   carried   out   in   “developed”   regions   such   as   the   United  States  and  Western  Europe;  however,  13   million   of   these   CVD   deaths   occurred   in   low-­‐‑ income  and  middle-­‐‑income  countries,  compared   with   3   million   in   high-­‐‑income   countries   [4].   Diseases   of   the   heart   are   currently   the   leading   cause   of   death   across   the   entire   American   population,   accounting   for   a   third   of   all   deaths   [5].Indeed,   by   2020,   CVDs   are   predicted   to   be   the   major   causes   of   morbidity   and   mortality   in   most   developing   nations   around   the   world   [6].   Most   CVDs   in   the   world   are   due   to   aterosclerosis   (coronary   heart   disease,   and   ischemic  strokes).  Mexico,  a  developing  country   with  a  landmass  of  almost  2  million  km2,  the  14th   larger   country   in   the   world,   and   5th   larger   country   in   America,   has   a   population   of   more   than   112   million.   In   2012,   Mexico   had   109,309   deaths   associated   with   CVDs   (first   cause   of   mortality),   and   67%   of   them   were   due   to   ischemic  strokes  [7].     Many   pathological   states   of   the   heart   are   associated   with   cardiac   myocyte   cell   death   and   apoptosis   [8],especially   by   abrupt   occlusion   of   one   or   more   of   the   blood   vessels   (coronary   arteries)   supplying   blood   to   heart   (myocardial   infarction).  Patients  who  survive  the  acute  event   may   eventually   develop   heart   failure   (HF),   which  is  a  condition  reflecting  impairment  of  the   pumping  efficiency  of  the  heart,  and  it  is  caused   by   a   variety   of   underlying   diseases,   including   ischemic   heart   disease   with   or   without   an   episode   of   acute   myocardial   infarction,   hypertensive   heart   disease,   valvular   heart   disease,  and  primary  myocardial  disease  [9].  The   most  common  cause  of  left-­‐‑sided  cardiac  failure   is   ischemic   heart   disease   or   coronary   artery   disease,   with   an   episode   of   acute   myocardial   infarction[9].  

cannot   pump   a   sufficient   amount   of   blood   to   meet  body’s  metabolic  requirements  [12].   Current   therapies   for   cardiac   failure   (with   the   exception   of   cardiac   transplantation)   in   general   provide  limited  improvements  in  cardiac  output   and   related   symptoms   [13].   Pharmacological   therapy   focuses   on   work   load   reduction   and   toxic  humoral  factors  protection,  which  are  over   activated   in   HF   [14].   The   best   interventional   therapy  for  cardiac  failure  (cardiac  transplant)  is   restricted   by   the   lack   of   donor   organs   available   for   transplantation   and   the   high   risk   of   tissue   rejection   due   to   complications   associated   with   immune   suppressive   treatments   [10].   Implantation   of   total   artificial   heart   (or   ventricular   assist   devices)   for   work   load   reduction  and  cardiac  output  increase  are  a  high   cost   interventional   alternative,   with   complications   associated   with   immune   suppressive   treatments.   Both   pharmacological   and   interventional   therapies   cannot   adequately   control  disease  progression  to  the  end  stage  [15].   Recently,   tissue-­‐‑based   and   cell-­‐‑based   strategies   have   come   as   viable   alternatives   for   the   treatment   of   heart   disease.   In   the   cell-­‐‑   based   therapy   isolated   cells   are   injected   to   the   infarct   region   via   the   pericardium,   endocardium   or   coronary   arteries.   The   main   feasibility   of   cell   transplantation   in   the   heart   was   confirmed   almost   13   years   ago   [16].   Even   if   most   studies   support   the   notion   that   cell   engraftment   in   animal   models   of   myocardial   infarction   can   improve   contractile   function,   the   efficacy   of   cell   engraftment   is   very   low,   as   more   than   90%   of   the   cell   suspension   injected   is   lost   and   does   not   engraft  [17].Embryonic  stem  cells  emerged  in  the   late   1990s   as   promising   candidates   for   cardiac   repair.  However,  there  is  a  technical  difficulty  of   growing   them   and   keeping   undifferentiated,   low   efficiency   of   spontaneous   cardiac   differentiation,  and  difficulty  of  cardiomyocytes   purification   from   other   cell   types   that   form   during   spontaneous   differentiation   [18].   Stem   cells  seem  to  be  the  only  meaningful  cell  source   to   allocate   enough   cardiomyocytes   for   clinical   applications   [19].   Some   other   studies   showed   that   fetal   and   neonatal   cardiomyocytes   developed  massive  cell  death,  coupled  with  only   limited   cell   proliferation   after   transplantation,   and   only   replace   a   tiny   fraction   of   an   infarct   [20].It   is   important   to   remember   that   1   gram   of   adult  myocardium  contains  approximately  20-­‐‑40   million   myocytes   [21],   and   a   typical   myocardial  

The   adult   human   heart   is   unable   to   self-­‐‑ regenerate   to   a   significant   degree.   Myocardial   infarction   typically   results   in   fibrotic   scar   formation   and   permanent   cardiac   failure   because,   after   a   massive   cell   loss   due   to   ischemia,  the  myocardial  tissue  lacks  significant   intrinsic   regenerative   capability   to   replace   the   lost   cells   [10].   Also   an   impairment   of   the   heart   wall  muscle  occurs  as  a  consequence  of  collagen   extracellular   matrix   weakening,   with   wall   thinning   and   ventricular   dilation.   The   increase   in   ventricular   volume   leads   to   progressive   structural   and   functional   changes   in   association   with   mechanical   pumping   inefficiency,   predisposing   towards   the   end   stage   of   congestive  HF  [11];  condition  in  which  the  heart  

2    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3376

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

infarction   generates   a   loss   of   around   50   g   of   heart   muscle     [22].   In   order   to   compensate   that   loss   1-­‐‑2   billion   myocytes   will   be   necessary.   For   this  reason,  much  effort  is  now  conveyed  to  the   development   of   tissue-­‐‑engineering   strategies   to   generate   constructs   to   engraft   successfully   new   cells  into  the  cardiac  muscle.  

transported   to   the   cells   by   molecular   diffusion,   which   provided   enough   oxygen   for   an   approximately   100   µμm   thick   outer   layer   of   functional  tissue  but  not  to  the  construct  interior   which   remained   relatively   acellular   [31],   [32],   [28].   Bioreactors   may   provide   the   right   mechanical  and  physiological  properties  to  grow   constructs  of  myocardial  tissue  [3].     Viability   of   the   cultivation   of   cardiomyocytes   for  tissue  engineering     The   incidence   and   prevalence   of   HF   has   increased  during  recent  decades  as  a  result  of  an   aging   population   and   improvements   in   treatment  and  survival  of  cardiovascular  disease   [33].   Morbidity   and   mortality   for   HF   are   substantial,   with   more   than   1.1   million   hospital   discharges   in   2006   and   almost   3.5   million   out   patient   visits   in   2007.   The   estimated   direct   and   indirect  costs  related  to  HF  increased  from  $22.5   billion   in   2001   [34]   to   almost   $40   billion   in   2010   [35].It  has  been  reported  that  HF  is  an  expensive   disease,   and   still   the   most   costly   cardiovascular   illness  in  the  United  States  [36],  [37],  [38].   Cardiovascular  diseases  accounted  for  34%  of  all   deaths   in   the   United   States   (US)   with   an   associated   cost   of   $503.2   billion   in   2010   alone   [35].  It  is  estimated  that  5  million  Americans,  1.8   million   Britons,   and   25   million   people   worldwide   suffer   from   HF,   with   approximately   700,000   and   120,000   new   cases   diagnosed   each   year   in   the   US   and   the   United   Kingdom   (UK),   respectively  [39],  [9].  Prognosis  is  poor  with  40%   mortality   within   12   months   of   diagnosis,   and   a   10%   annual   mortality   rate   thereafter   [40].   In   2013,  HF  cost  health-­‐‑care  system  over  $32  billion   and  is  expected  to  double  by  2030  [41].  

Cardiac   tissue   engineering   is   an   emerging   field   for   the   development   of   innovative   treatment   strategies   for   heart   diseases   that   offers   the   promise   of   creating   functional   tissue   replacements   for   use   in   the   failing   heart   [23].   A   great   progress   in   this   field   has   occurred   in   the   last   decade,   with   new   advances   in   interdisciplinary   areas   such   as   developmental   biology,   genetic   engineering,   biomaterials,   polymer   science,   bioreactor   engineering,   and   stem  cell  biology  [23].   Most   of   the   cardiac   tissues   engineering   approaches   have   been   focused   on   the   use   of   synthetic   or   biological   matrix   materials   and   heart   cells   to   generate   constructs   that   might   be   utilized   for   replacement   of   diseased   myocardium  in  vivo.  However,  in  the  absence  of   true   vascularization,   in   vitro   engineering   approaches  face  the  problem  of  critical  thickness   because   mass   transportation   into   tissue   is   difficult   beyond   a   thin   peripheral   layer   of   an   engineered   tissue   constructs   with   nutrients   and   oxygen  supply  [24].   It   has   been   widely   recognized   that   bioreactors   are   essential   for   the   research   in   tissue   engineering.   Cells   into   the   body   are   always   stimulated   by   mechanical,   electrical   and   chemical   signals   that   influence   their   biological   behavior   [3].   If   the   signals   are   not   present   or   inadequate,   cells   may   die.   In   fact,   biological   tissues  adapt  their  composition  and  structure  to   surrounding  functional  demands  [25].  To  obtain   a   functional   cardiac   tissue,   regeneration   of   complex  3D  tissue  using  bioreactors  is  crucial.  

The   cost   of   a   heart   transplant,   including   preliminary   testing   (30   days   pre-­‐‑transplant),   surgery   (procurement,   hospital   transplant   admission,  physician  during  transplant)  and  180   days   post-­‐‑operative   recovery,   estimated   in   U.S   in   2011   is   around   $997,700   [42].   In   2008   the   estimated   cost   was   $787,700   [43].   The   cost   in   2011  was  almost  twice  the  cost  in  2005  ($478,900)   [44].   From   these   numbers   we   can   calculate   an   annual   increment   cost   of   $86,467   for   heart   transplant.   Moreover,   long-­‐‑term   costs   of   post-­‐‑ transplant   care   can   be   around   $70,000   a   year   [1].The   US   cost   of   hospitalizations   alone   for   orthotopic   heart   transplantation   and   Left-­‐‑

Three-­‐‑dimensional  tissue  constructs  that  express   structural   and   physiological   features   characteristic   of   native   myocardium   have   been   engineered   using   collagen   gels   [26],   [27],   [28],   collagen   fibers   [29],or   collagen   sponges   [30]   in   conjunction   with   fetal   or   neonatal   rat   cardiac   myocytes.   In   all   cases   cells   were   seeded   on   scaffolds   and   cultivated   in   dishes   [30],   [31],   spinner   flasks   [31],   [32],   or   rotating   vessels   [29],[31],  [32].  Oxygen  dissolved  in  medium  was  

3    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3377

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

Ventricular   Assist   Device   (LVAD)   implantation   approached   $1   billion   in   2009   [45].   Although   around  1,800  LVADs  were  implanted  in  the  U.S.   in  2012;  patients  who  undergo  implantation  as  a   bridge   to   transplant   obtain   only   1-­‐‑year   survival   rates   [1].   In   the   UK,   CVD   causes   approximately   200,000   deaths   per   year.   Across   Europe,   1.9   million   people   die   from   CVDs,   about   half   of   all   deaths.   Moreover,   CVDs   are   estimated   to   cost   the   European   Union   economy   €196   billion   annually   in   informal   patient   care,   direct   healthcare  and  productivity  losses.  In  the  US,  83   million   adults,   more   than   a   third   of   the   population,   live   with   a   CVD.   Diseases   of   the   heart   in   American   population   cost   the   economy   over   $400   billion   per   year   [5].   LVADs   have   an   initial  hospitalization  cost  of  $198,000  with  a  first   year  survival  of  51.6%  [46].  

because   the   life-­‐‑years   gained   and   the   patient   utility   of   those   years   are   low   compared   to   the   alternatives.   The   QALY   is   lower   for   heart   transplantation   ($35,290/year)  compared  to  total   artificial  heart  ($113,750/year)  [49].   Any   new   treatment   that   reduces   cost   without   compromising   efficacy   is   cost-­‐‑effective.   Goldman   et   al   have   suggested   that   an   incremental   cost-­‐‑effectiveness   ratio   of   less   than   $20,000   per   QALY   is   very   attractive,   a   ratio   of   $20,000   to   $60,000   per   QALY   is   acceptable,   and   over  $100,000  per  QALY  is  unattractive  [38].   The   number   of   heart   donors   has   reached   a   plateau   despite   an   increasing   number   of   potential   recipients.   More   than   5,000   cardiac   transplants   occur   each   year   around   the   world,   although  it  is  estimated  that  up  to  50,000  people   are   candidates   for   transplantation   [50].   Approximately   85   to   90   %   of   heart   transplant   patients   are   living   one   year   after   their   surgery,   with  an  annual  death  rate  of  approximately  4  %   thereafter.   The   three-­‐‑year   survival   approaches   75  %  [51].  Cardiac  transplant  recipients  have  an   average   of   one   to   three   episodes   of   rejection   in   the   first   year   after   transplantation.   Between   50   and   80   %   of   people   experience   at   least   one   rejection   episode.   Acute   rejection   is   most   likely   to  occur  in  the  first  three  to  six  months,  with  the   incidence   declining   significantly   after   this   time   [52].  In  the  first  year,  most  deaths  are  due  either   to   acute   rejection   (18   %)   or   infections   (22   %).   Infections   often   develop   as   a   result   of   the   anti-­‐‑ rejection   medications   and   weakened   immune   system  that  are  required  to  prevent  rejection.  

Cost-­‐‑effectiveness  analysis  is  important  to  make   a  decision  of  which  therapy  will  make  a  patient   live   longer   and/or   live   better.   The   most   commonly   used   metric   is   “quality-­‐‑adjusted   life   years”  (QALY),  a  composite  of  the  extra  years  of   life   gained   with   a   treatment   and   the   quality   of   that  life  as  measured  by  utility  [47].  The  utility  is   a  scale  of  0  to  1,  where  0  represents  death  and  1   represents   ideal   health.   This   utility   number   is   then   multiplied   by   the   additional   survival   to   obtain   QALY.   The   utility   score   is   an   empiric   measurement  obtained  from  patients  (interviews   or   quality   of   life   questions).   Although   QALY   is   the   most   commonly   used   metric   to   compare   cost-­‐‑effectiveness,   it   is   subjective   and   may   not   always   match   the   wishes   of   individual   patients   [48].   According   to   Goodman   (2004),   QALY   provide   the   ability   to   estimate   the   overall   burden   of   disease;   compare   the   relevant   impact   of  specific  diseases,  condition,  and  syndromes  as   they   relate   to   medical   technology   intervention;   and  conceive  economic  correlations,  such  as  cost   effectiveness  and  cost  utility  of  different  medical   technologies   [49].   Survival   is   generally   discounted,   which   means   that   patients   value   a   year  of  survival  at  the  present  time  more  than  a   year  of  survival  in  the  future.  Although  the  true   discount  rate  for  survival  is  unknown,  3%  is  the   most   popular   [34].   The   cost   of   conventional   treatment   for   CVDs   is   the   lowest   ($28,500)   compared   with   the   cost   of   heart   transplantation   ($298,200)   and   total   artificial   heart   ($327,600).   However,   the   cost   per   QALY   is   the   highest   in   conventional   medical   treatment   ($950,000/year)  

In   Mexico,   according   to   Cenatra   (National   Center   of   Transplants)   during   this   year,   55   patients   are   waiting   for   a   heart   transplant,   and   only   4   (7%)   have   been   occurred   this   year   [53].   Figure   1   shows   historical   data   of   number   of   heart   transplants   from   1988   to   2014   in   Mexico,   with  a  waitlist  time  of  30  months  approximately.   According   with   National   Health   Secretary,   in   2001   the   cost   of   a   heart   transplant   was   between   $40,000  and  $50,000.  But  there  is  not  information   about   total   hospitalization   cost   or   QALYs.   It   is   well   know   that   post-­‐‑implant   treatment   is   more   expensive   than   the   transplant   itself   because   immunosuppressive   therapy,   rejection,   morbidity   or   mortality.   Specifically,   tissue   engineering   of   heart   muscle   may   be   used   to   restore  or  enhance  contractile  function  of  failing  

4    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3378

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

myocardium   in   vivo,   must   develop   systolic   force,   withstand   diastolic   load   with   appropriate  

compliance,  forming  an  electrical  and  functional   syncytium  [19].  

 

  Figure  1.  Historical  data  of  number  of  heart  transplants  in  Mexico.     Because   the   costs   per   QALY   in   conventional   have   not   approved   more   new   cellular   therapies   medical   treatment,   heart   transplantation   and   than   Europe   [56].   The   National   Institutes   of   total   artificial   heart   are   greater   than   $20,000   per   Health   (NIH)   support   regenerative   medicine   QALY,   and   some   of   the   are   over$100,000   per   research   to   translate   science   into   clinical   QALY  which  is  unattractive;  a  new  treatment  for   practice,   and   invested   approximately   1   billion   heart   failure   is   based   on   cellular   therapy   has   dollars   a   year   into   stem   cell   research   [57].   The   been   proposed.   However,   there   is   only   little   global   cell   therapy   industry   is   a   billion   dollar   information  about  total  cost  of  this  alternative.  It   global   business   with   unlimited   potential   [58].   has   been   reported   an   estimation   cost   of   cellular   This  is  an  emerging  field,  but  more  clinical  trials   production   for   cardiac   regeneration   after   and   regulation   will   be   necessary   in   order   to   get   infarction  is  around  $10,000  [54].  Recently,  some   more   cost-­‐‑   effective   strategies   for   clinical   reports   showed   the   potential   of   regenerative   practice.   medicine   to   treat   and   cure   diseases   in   UK,   A   critical   issue   with   cell   transplantation   to   improving   the   quality   of   live   and   also   cardiovascular   tissue   is   the   decision   of   which   demonstrate   the   significant   economic   benefits   cell  type  to  use.  Human  embryonic  stem  cells  or   [55].   It   has   been   estimated   that   between   2004   fetal   cardiomyocytes   are   impractical   for   clinical   and   2010,   318   regenerative   medicine   clinical   use   because   of   ethical   concerns   and   trials  were  initiated  in  Europe,  78  %  of  which  are   inmunorejection  [59].  Future  studies  of  stem  cell   relative   to   cell-­‐‑based   medicinal   products;   transplantation   to   cardiac   muscle   will   need   to   however,   only   two   regenerative   medicine   focus   on   differentiation   of   the   stem   cell   into   a   products   obtained   marketing   authorization   as   functional   cardiomyocyte   lineage,   as   well   as   advanced   therapy   medicinal   products   [56].   gene   therapy   techniques   for   improving   Other   countries   such   as   US,   Canada,   and   Japan  

5    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3379

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

regeneration  and  limiting  fibrotic  scar  formation   [60].  

using   a   volume/mass   ratio   of   0.8   mL/g   determined  at  the  end  of  diastole  [71].  Therefore,   approximately  13.64  cm3  of  cardiac  tissue  will  be   necessary   after   heart   infarction,   with   an   estimated   cost   of   $1243.   If   we   include   the   transplant   surgery   cost   of   $53,492,   the   total   cost   for  an  infarct  treatment  will  be  less  than  $55,000.   Optimizing   cell   growth,   enhancing   cardiomyocyte   production,   and   improving   cost-­‐‑ effectiveness   of   tissue   engineering   treatment,   this  strategy  might  be  utilized  for  replacement  of   diseased  myocardium  in  vivo  if  we  consider  the   market  size  and  the  potential  profitability.     Bioreactor  systems  in  tissue  engineering     Cultivation  of  cells  for  tissue  engineering  require   strict   control   of   environmental   conditions   in   order   to   mimic   the   physiological   characteristics   needed   for   the   development   of   the   desired   cellular   functions.   The   bioreactors   used   for   tissue   cultivation   are   diverse,   ranging   from   simple   petri   dishes   and   spinner   flasks   to   perfusion   bioreactors   and   bioreactor   systems   that   can   apply   well   defined   mechanical   forces   [72].   The   bioreactor   should   provide   means   for   proper   nutrients   supply   and   also   the   physical   stimulus   required   to   achieve   a   defined   phenotype.   Moreover,   the   hydrodynamics   characteristics   created   during   the   operation   should  cause  any  damage  to  the  cells.  Therefore,   each   bioreactor   is   designed   taking   into   account   the  particular  characteristics  of  the  cells  or  tissue   to   be   cultivated.   The   design   is   not   straightforward,   since   the   exact   influence   of   physical  factors  on  the  tissue  development  is  not   always   well   described,   and   there   is   a   frequent   lack  of  detailed  kinetic  characteristics  of  the  cells   during   in   vitro   growth.   Furthermore,   the   small   bioreactor   size   and   the   need   for   scaffolds   often   difficult   the   mass   (oxygen)   transfer   and   the   instrumentation  of  the  bioreactor,  which  should   be  non-­‐‑invasive.       There   are   several   options   for   the   cultivation   of   cardiomyocytes   for   laboratory   studies.   However,   for   therapeutic   purposes,   the   cultivation   system   should   provide   sufficient   amounts   of   cardiomyocytes   with   the   proper   contractile   activity.   Furthermore,   the   bioreactor   system   should   be   suitable   for   scaling-­‐‑up   to   clinical   scales   while   allowing   predictable   and   reproducible   results.   Factors   like   cost-­‐‑effective  

The  mean  total  cost  for  the  initial  hospitalization   and  1  year  of  follow  up  after  transplantation  for   peripheral   blood   stem   cell   therapy   was   around   $430,000   during   2008   and   $436,000   for   bone   marrow   transplantation   [61].   Some   studies   found   that   stem   cell   therapy   for   bone   marrow   transplantation   was   cost-­‐‑effective,   with   the   intervention   cost   less   than   $50,000   per   QALY   [62].   Tissue   engineering   techniques   are   being   employed   with   aims   of   repopulating   a   diseased   tissue   for   improving   clinical   outcomes.   Tissue   engineering   broadly   involves   the   use   of   three   components:   cell   source,   biomaterial/membranes,   and/or   growth   stimulators,   either   alone   or   in   any   combination.   There   have   been   reported   the   cost-­‐‑effectiveness   analysis   of   bladder   and   urethra   based   on   tissue   engineering   [63];   however,   current   literature   fails  to  support  a  clinical  benefit  of  cardiac  tissue   engineering  over  other  techniques  such  as  heart   transplant,   conventional   treatment   for   CVDs,   or   ventricular   assist   devices.   Moreover,   many   of   the  advancements  in  tissue  engineering  have  yet   to   be   applied   in   a   clinical   setting.   While   basic   science   (studies   in   rodents,   large   animals,   and   even   humans)   has   demonstrated   successful   cell   transplantation  to  diseased  heart  tissue  [64],  [65],   [66],   available   evidence   does   not   conclude   the   superiority   of   modern   tissue   engineering   methods   over   other   techniques   in   improving   clinical   symptoms   or   restoring   native   heart   muscle.   There   is   not   information   about   cardiac   tissue   cost;   however,   we   made   an   estimation   based   on   some   epithelial   commercial   tissues.   In   Mexico,   8   cm3   of   epithelial   tissue   cost   $729   [67].   Cardiac   tissue   development   should   be   more   difficult   and   complex   than   epithelial   tissue,   because   we   need   to   be   stimulated   by   mechanical,   electrical   and   chemical   signals   that   influence  their  biological  behavior;  also  we  need   more  efficient  nutrients  and  oxygen  supply.  We   estimated   an   increment   of   50%   over   epithelial   tissue   cost   approximately.   Using   a   cell   density   between   0.16X108   to   24.6X108   to   heart   infarction   treatment,   it   has   been   reported   a   6%   LVEF   increase  [68].  In  terms  of  cost/benefit  ratio,  a  6%   improvement  in  the  LVEF  will  cost  $19,000  [69].   It  we  consider  a  median  infarct  size  around  11%   of   LV   mass   [70],   the   volume   will   be   124   cm3,  

6    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3380

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

manufacturing   and   the   capability   to   complain   with   Good   Manufacturing   Practice   (GMP)   and   robust   quality   control   are   key   for   the   successful   application   of   cardiomyocytes   in   order   to   compete  with  other  medical  treatments  [73]  like   transplants,   which   have   been   discussed   above.   The   specific   requirements   for   the   cultivation   of   cardiomyocytes   intended   for   clinical   applications  are  addressed  below.     Technical   challenges   for   cardiomyocytes   cultivation  for  tissue  engineering     The  goal  of  bioreactor  culture  of  cardiomyocytes   for   clinical   application   is   to   obtain   sufficient   amounts  of  cells  that  retain  the  desired  function.   This   goal   define   the   main   constrains   for   bioreactor  design  and  operation.  The  amount  of   cells   to   be   obtained   is   relatively   large,   being   108cells/cm3   (similar   to   the   cell   density   found   in   heart)   a   frequently   mentioned   target   [74],[75],[76].   This   is   a   central   challenge,   since   the  growth  capacity  of  cardiomyocytes  during  in   vitro  culture  has  been  very  limited  [77].  Another   feature   is   that   the   size   of   the   cardiac   patch   area   such   be   as   large   as   50   cm2  and   have   a   thickness   of  several  mm  [76].  All  these  factors  point  to  the  

possibility  of  oxygen  limitations,  which  is  highly   undesirable.   The   oxygen   uptake   rate   of   cardiomyocytes   can   be   high   (see   Table   1)   and   since   air   bubbles   for   oxygen   transfer   are   not   an   option,  high  enough  oxygen  transfer  rates  to  the   medium  are  difficult  to  achieve.  This  also  limits   the  achievable  thickness  of  the  cell  film.     The  most  effective  bioreactor  operation  mode  for   cardiomyocytes   cultivation   is   perfusion   [19],   [74].   This   provides   means   to   overcome   mass   transfer  limitations  and  to  continuously  provide   nutrients   to   the   cells   [78].   Since   the   culture   medium  is  continuously  circulated  to  a  chamber   where  cells  are  attached  to  a  scaffold,  an  external   bubble-­‐‑free  mass  transfer  device  can  be  installed   previous   to   medium   delivery   to   the   culture   chamber.   This   would   allow   to   saturate   the   medium   with   oxygen   and   thus   avoid   any   limitation  to  the  cells.  Nevertheless,  the  scaffold   material   also   plays   a   role   for   the   transport   of   oxygen  (and  other  nutrients)  to  the  cells  that  are   not  in  contact  with  the  medium  [79].  A  variety  of   materials   have   been   used   as   scaffold   in   cardiomyocytes   cultures,   including   hyaluronic   acid  [80],  collagen  [19],  poly-­‐‑lactate  and  [32]  and   polylactones  [81].  

    Bioreactor  mode  

Cell  type  

O2  conc.   (µμmol/L)  

O2  uptake  rate   nmol/(min*106cell)  

Reference  

Perfusion  

Neonatal  rat  cardiomyocyte  

100  

2.2  ±  0.2  

[82]  

Closed-­‐‑cell   chamber  

Neonatal  rat  cardiomyocyte  

100  

1.5±0.1  

[82]  

Perfusion  

Neonatal  rat  cardiomyocyte  

220  

3.6  

[75]  

Table   1.   O2   uptake   rates   of   cardiomyocytes   under   different   dissolved   O2   concentrations   and   bioreactor   operation  modes.   The   flow   rate   in   a   perfusion   system   should   be   determined   taken   into   account   the   demand   of   nutrients   by   the   cells   and   the   possibility   of   damage   by   shear   stresses.   Nevertheless,   metabolic   and   kinetic   information   is   scarce   and   often   very   variable.   For   instance,   Table   2   shows   the   glucose   uptake   rates   reported   for   neonatal   cardiomyocytes   under   different   experimental   conditions.   The   uptake   values   are   300   %   different.   Therefore,   a   precise   and   informed  

perfusion   design   based   on   metabolic   information   is   not   yet   doable.   Progress   in   the   study   of   the   metabolism   of   cardiomyocytes   in   perfusion   cultures   using   for   instance,   isotopomer  analysis  and  network  modelling  [83]   will  be  useful  not  only  for  perfusion  and  culture   media  design.  Recent  developments  on  the  non-­‐‑ invasive   monitoring   of   metabolic   activity   of   the   constructs   [84]   represent   a   potential   improvement   toward   perfusion   culture   control  

7    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3381

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

and   scaling-­‐‑up.   Regarding   the   hydrodynamics   effects,  a  practical  limit  for  perfusion  rate  can  be   estimated  by  the  shear  rate  at  which  apoptosis  is     Bioreactor  mode  

Cell  type  

O2  conc.   (µμmol/L)  

triggered   in   cardiomyocytes,   which   has   been   reported  to  be  equal  to  2.4  din/cm2  [85].  

Glucose  conc.   (µμmol/L)  

Glucose  uptake  rate   (nmol/min*106cell)  

Reference  

Closed-­‐‑cell   chamber  

Neonatal  rat   cardiomyocyte  

100  

5,500  

2.1  ±  1.3  

[82]  

Perfusion  

Neonatal  rat   cardiomyocyte  

220  

25,000  

0.7  ±  0.4  

[75]  

Table   2.   Glucose   uptake   rates   of   cardiomyocytes   under   different   glucose   concentrations   and   bioreactor   operation  modes.   Cultured   cardiomyocytes   should   display   some   physiological   functions   in   order   to   be   used   in   clinical   treatments,   mainly   contractile   activity.   To   enhance   the   contractile   capacity   of   the   cultured  cardiomyocytes,  physical  stimulation  is   frequently   used   in   the   form   of   electrical   pulses   [86],[87]   or   mechanical   stretch   [88].   Both   methods   have   yielded   positive   results,   but   are   not   directly   comparable   due   to   different   experimental   settings.   Electrical   pulses   using   carbon   electrodes   is   probably   the   most   widely   applied  stimulation.  It  has  been  reported  that  for   neonatal   cardiomyocytes,   the   optimal   setting   of   electrical   pulses   at   3   V/cm   amplitude   and   3   Hz   frequency   resulted   in   the   highest   tissue   density   and   the   best   contractile   behavior   under   the   conditions   used   [87].   This   information   is   valuable   for   the   design   and   start-­‐‑up   of   the   bioreactor   for   cardiomyocytes   cultivation.   Nevertheless,   similar   studies   should   have   to   be   performed  using  human  cells.  

In   principle,   as   shown   in   Figure   2A,   the   bioreactor   should   meet   essential   requirements   for  the  cardiomyocytes  culture,  like  the  efficient   supply   of   oxygen   and   other   nutrients   and   removal   of   by-­‐‑products   without   generating   hydrodynamic   conditions   negative   to   the   cells.   Also,   the   culture   system   should   provide   adequate   electrical   stimulation   in   order   to   produce   contractile   cells   suitable   for   clinical   applications.   For   such   application,   perfusion   mode   has   proven   to   be   the   best   option   (Figure   2B),   in   which   mass   transfer   can   be   performed   outside   the   perfusion   chamber,   preferably   without   bubbles   using   bubbles.   The   perfusion   chamber   contains   the   construct   and   the   carbon   electrodes   for   pulsatile   stimulation.   The   culture   medium   could   be   recirculated   or   discarded,   depending   on   the   nutrients   consumption   or   by-­‐‑ products   accumulation.   Recent   advances   in   construct   monitoring   represent   an   important   step   towards   the   highly   needed   process   control   and   documentation   as   well   as   improved   operation.  

  The   above   mentioned   information   serves   as   basis  for  the  conceptual  design  of  the  bioreactor.  

8    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3382

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

Figure   2.   A)   Essential   requirements   for   the   cardiomyocytes   culture.   B)   Conceptual   design   of   a   perfusion   bioreactor.     Conclusions   approach   will   strongly   depend   on   the     technological   advances   focused   on   the   The   estimation   of   costs   for   cardiomyocytes   reproducible   and   informed   operation   of   the   culture   presented   in   this   work   is   yet   bioprocess.   As   the   knowledge   about   the   preliminary,   since   it   is   based   on   the   scarce   cardiomyocytes   (quantitave)   physiology   information   of   other   tissues.   However,   the   advances,  particularly  for  human  cardiomyocyte   calculations   allow   to   predict   that   cardiac   tissue   culture,  more  robust  and  reproducible  processes   engineering  is  potentially  a  viable  alternative  for   will  be  implemented.   heart   failure   treatment.   The   success   of   this     References     1.  Williams  ML,  Trivedi  JR,  McCants  KC,  et  al.   assist  device  in  heart  transplant-­‐‑eligible   Heart  transplant  vs  left  ventricular   patients.  Ann  Thorac  Surg  

9    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3383

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

2011;91(5):1330-­‐‑3;  discussion  33-­‐‑4  doi:   10.1016/j.athoracsur.2011.01.062[publis hed  Online  First:  Epub  Date]|.   2.  Prabhakaran  MP,  Venugopal  J,  Kai  D,  et  al.   Biomimetic  material  strategies  for   cardiac  tissue  engineering.  Materials   Science  and  Engineering:  C   2011;31(3):503-­‐‑13  doi:   http://dx.doi.org/10.1016/j.msec.2010.12 .017[published  Online  First:  Epub   Date]|.   3.  Jawad  H,  Ali  NN,  Lyon  AR,  et  al.  Myocardial   tissue  engineering:  a  review.  J  Tissue   Eng  Regen  Med  2007;1(5):327-­‐‑42  doi:   10.1002/term.46[published  Online  First:   Epub  Date]|.   4.  Lopez  AD,  Mathers  CD,  Ezzati  M,  et  al.  Global   Burden  of  Disease  and  Risk  Factors.  New   York:  World  Bank,  2006.   5.  Alzaid  F,  Patel  VB,  Preedy  VR.  Cardiovascular   Disease  in  Aging  and  the  Role  of   Oxidative  Stress.  In:  Preedy  VR,  ed.   Aging:  Oxidative  Stress  and  Dietary   Antioxidants:  Elsevier  Science,  2014:23-­‐‑ 38.   6.  Celermajer  DS,  Chow  CK,  Marijon  E,  et  al.   Cardiovascular  disease  in  the   developing  world:  prevalences,   patterns,  and  the  potential  of  early   disease  detection.  J  Am  Coll  Cardiol   2012;60(14):1207-­‐‑16  doi:   10.1016/j.jacc.2012.03.074[published   Online  First:  Epub  Date]|.   7.  Informe  2012  Actividades  y  Resultados.   México:  Instituto  Nacional  de   Estadística  y  Geografía,  2013.   8.  Van  Empel  VPM,  Bertrand  ATA,  Hofstra  L,  et   al.  Myocyte  apoptosis  in  heart  failure.   Cardiovascular  Research  2005;67(1):21-­‐‑ 29  doi:   10.1016/j.cardiores.2005.04.012[publishe d  Online  First:  Epub  Date]|.   9.  Dai  W,  Dong  J,  Chen  G,  et  al.  Application  of   low-­‐‑pressure  cell  seeding  system  in   tissue  engineering.  Biosci  Trends   2009;3(6):216-­‐‑9     10.  Zammaretti  P,  Jaconi  M.  Cardiac  tissue   engineering:  regeneration  of  the   wounded  heart.  Curr  Opin  Biotechnol   2004;15(5):430-­‐‑4  doi:   10.1016/j.copbio.2004.08.007[published   Online  First:  Epub  Date]|.   11.  Baig  MK,  Mahon  N,  McKenna  WJ,  et  al.  The   pathophysiology  of  advanced  heart   failure.  Heart  Lung  1999;28(2):87-­‐‑101   doi:  

10.1053/hl.1999.v28.a97762[published   Online  First:  Epub  Date]|.   12.  Kumar  V,  Cotran  RS,  Robbins  SL.  Robbins   Basic  Pathology.  7  ed.  Philadelphia:   Elsevier,  2003.   13.  Hidalgo-­‐‑Bastida  LA,  Barry  JJ,  Everitt  NM,  et   al.  Cell  adhesion  and  mechanical   properties  of  a  flexible  scaffold  for   cardiac  tissue  engineering.  Acta   Biomater  2007;3(4):457-­‐‑62  doi:   10.1016/j.actbio.2006.12.006[published   Online  First:  Epub  Date]|.   14.  Young  JB,  Mills  RM.  Clinical  Management  of   Heart  Failure.  2  ed.  United  States  of   America:  Professional   Communications,  2004.   15.  Packer  M.  The  impossible  task  of  developing   a  new  treatment  for  heart  failure.  J   Card  Fail.  United  States,  2002:193-­‐‑6.   16.  Zimmermann  WH,  Melnychenko  I,   Eschenhagen  T.  Engineered  heart  tissue   for  regeneration  of  diseased  hearts.   Biomaterials  2004;25(9):1639-­‐‑47     17.  Giusti  P,  D'ʹAcunto  M,  Ciardelli  G,  et  al.  New   Bioartificial  Systems  and  Biodegradable   Synthetic  Polymers  for  Cardiac  Tissue   Engineering:A  Preliminary  Screening.   Biomedical  Engineering:  Applications,   Basis  and  Communications   2010;22(06):497-­‐‑507  doi:   doi:10.4015/S1016237210002249[publish ed  Online  First:  Epub  Date]|.   18.  Murry  CE,  Field  LJ,  Menasche  P.  Cell-­‐‑based   cardiac  repair:  reflections  at  the  10-­‐‑year   point.  Circulation  2005;112(20):3174-­‐‑83   doi:   10.1161/circulationaha.105.546218[publi shed  Online  First:  Epub  Date]|.   19.  Eschenhagen  T,  Zimmermann  WH,  Kleber   AG.  Electrical  coupling  of  cardiac   myocyte  cell  sheets  to  the  heart.  Circ   Res.  United  States,  2006:573-­‐‑5.   20.  Zhang  M,  Methot  D,  Poppa  V,  et  al.   Cardiomyocyte  grafting  for  cardiac   repair:  graft  cell  death  and  anti-­‐‑death   strategies.  J  Mol  Cell  Cardiol   2001;33(5):907-­‐‑21  doi:   10.1006/jmcc.2001.1367[published   Online  First:  Epub  Date]|.   21.  Beltrami  CA,  Finato  N,  Rocco  M,  et  al.   Structural  basis  of  end-­‐‑stage  failure  in   ischemic  cardiomyopathy  in  humans.   Circulation  1994;89(1):151-­‐‑63     22.  Gepstein  L.  Derivation  and  potential   applications  of  human  embryonic  stem   cells.  Circ  Res  2002;91(10):866-­‐‑76    

10    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3384

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

23.  Iyer  RK,  Chiu  LLY,  Reis  LA,  et  al.   Engineered  cardiac  tissues.  Curr  Opin   Biotechnol  2011;22(5):706-­‐‑14  doi:   10.1016/j.copbio.2011.04.004[published   Online  First:  Epub  Date]|.   24.  Radisic  M,  Deen  W,  Langer  R,  et  al.   Mathematical  model  of  oxygen   distribution  in  engineered  cardiac   tissue  with  parallel  channel  array   perfused  with  culture  medium   containing  oxygen  carriers.  Am  J   Physiol  Heart  Circ  Physiol   2005;288(3):H1278-­‐‑89  doi:   10.1152/ajpheart.00787.2004[published   Online  First:  Epub  Date]|.   25.  Bilodeau  K,  Mantovani  D.  Bioreactors  for   tissue  engineering:  focus  on  mechanical   constraints.  A  comparative  review.   Tissue  Eng  2006;12(8):2367-­‐‑83  doi:   10.1089/ten.2006.12.2367[published   Online  First:  Epub  Date]|.   26.  Eschenhagen  T,  Fink  C,  Remmers  U,  et  al.   Three-­‐‑dimensional  reconstitution  of   embryonic  cardiomyocytes  in  a   collagen  matrix:  a  new  heart  muscle   model  system.  Faseb  j  1997;11(8):683-­‐‑94     27.  Fink  C,  Ergun  S,  Kralisch  D,  et  al.  Chronic   stretch  of  engineered  heart  tissue   induces  hypertrophy  and  functional   improvement.  Faseb  j  2000;14(5):669-­‐‑79     28.  Zimmermann  WH,  Fink  C,  Kralisch  D,  et  al.   Three-­‐‑dimensional  engineered  heart   tissue  from  neonatal  rat  cardiac   myocytes.  Biotechnol  Bioeng   2000;68(1):106-­‐‑14     29.  Akins  RE,  Boyce  RA,  Madonna  ML,  et  al.   Cardiac  organogenesis  in  vitro:   reestablishment  of  three-­‐‑dimensional   tissue  architecture  by  dissociated   neonatal  rat  ventricular  cells.  Tissue   Eng  1999;5(2):103-­‐‑18     30.  Li  RK,  Jia  ZQ,  Weisel  RD,  et  al.  Survival  and   function  of  bioengineered  cardiac   grafts.  Circulation  1999;100(19   Suppl):Ii63-­‐‑9     31.  Papadaki  M,  Bursac  N,  Langer  R,  et  al.  Tissue   engineering  of  functional  cardiac   muscle:  molecular,  structural,  and   electrophysiological  studies.  Am  J   Physiol  Heart  Circ  Physiol   2001;280(1):H168-­‐‑78     32.  Carrier  RL,  Papadaki  M,  Rupnick  M,  et  al.   Cardiac  tissue  engineering:  cell   seeding,  cultivation  parameters,  and   tissue  construct  characterization.   Biotechnol  Bioeng  1999;64(5):580-­‐‑9    

33.  Shah  RU,  Chang  TI,  Fonarow  GC.   Comparative  effectiveness  research  in   heart  failure  therapies:  women,  elderly   patients,  and  patients  with  kidney   disease.  Heart  Fail  Clin  2013;9(1):79-­‐‑92   doi:  10.1016/j.hfc.2012.09.003[published   Online  First:  Epub  Date]|.   34.  Weintraub  WS,  Cole  J,  Tooley  JF.  Cost  and   cost-­‐‑effectiveness  studies  in  heart   failure  research.  Am  Heart  J   2002;143(4):565-­‐‑76     35.  Lloyd-­‐‑Jones  D,  Adams  RJ,  Brown  TM,  et  al.   Heart  disease  and  stroke  statistics-­‐‑-­‐‑2010   update:  a  report  from  the  American   Heart  Association.  Circulation   2010;121(7):e46-­‐‑e215  doi:   10.1161/circulationaha.109.192667[publi shed  Online  First:  Epub  Date]|.   36.  Kazi  DS,  Mark  DB.  The  economics  of  heart   failure.  Heart  Fail  Clin  2013;9(1):93-­‐‑106   doi:  10.1016/j.hfc.2012.09.005[published   Online  First:  Epub  Date]|.   37.  Roger  VL,  Go  AS,  Lloyd-­‐‑Jones  DM,  et  al.   Heart  disease  and  stroke  statistics-­‐‑-­‐‑2011   update:  a  report  from  the  American   Heart  Association.  Circulation   2011;123(4):e18-­‐‑e209  doi:   10.1161/CIR.0b013e3182009701[publish ed  Online  First:  Epub  Date]|.   38.  Rich  MW,  Nease  RF.  Cost-­‐‑effectiveness   analysis  in  clinical  practice:  The  case  of   heart  failure.  Archives  of  Internal   Medicine  1999;159(15):1690-­‐‑700  doi:   10.1001/archinte.159.15.1690[published   Online  First:  Epub  Date]|.   39.  Long  EF,  Swain  GW,  Mangi  AA.   Comparative  Survival  and  Cost   Effectiveness  of  Advanced  Therapies   for  End-­‐‑stage  Heart  Failure.  Circ  Heart   Fail  2014  doi:   10.1161/circheartfailure.113.000807[pub lished  Online  First:  Epub  Date]|.   40.  Cowie  MR,  Wood  DA,  Coats  AJ,  et  al.   Survival  of  patients  with  a  new   diagnosis  of  heart  failure:  a  population   based  study.  Heart  2000;83(5):505-­‐‑10     41.  Go  AS,  Mozaffarian  D,  Roger  VL,  et  al.  Heart   disease  and  stroke  statistics-­‐‑-­‐‑2013   update:  a  report  from  the  American   Heart  Association.  Circulation   2013;127(1):e6-­‐‑e245  doi:   10.1161/CIR.0b013e31828124ad[publish ed  Online  First:  Epub  Date]|.   42.  Bentley  TS,  Hanson  SG,  Hauboldt  RH.  2011   U.S.  organ  and  tissue  transplant  cost   estimates  and  discussion:  Milliman,   2011.  

11    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3385

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

43.  Hauboldt  RH,  Hanson  SG,  Bernstein  GR.   2008  U.S.  organ  and  tissue  transplant   cost  estimates  and  discussion:   Milliman,  2008:20.   44.  Ortner  NJ.  2005  US  Organ  and  Tissue   Transplant  Cost  Estimates  and   Discussion:  Milliman,  2005:36.   45.  Mulloy  DP,  Bhamidipati  CM,  Stone  ML,  et  al.   Orthotopic  heart  transplant  versus  left   ventricular  assist  device:  a  national   comparison  of  cost  and  survival.  J   Thorac  Cardiovasc  Surg   2013;145(2):566-­‐‑73;  discussion  73-­‐‑4  doi:   10.1016/j.jtcvs.2012.10.034[published   Online  First:  Epub  Date]|.   46.  Hlatky  M.  Comparative-­‐‑Effectiveness  Research   in  Heart  Failure:  Elsevier  Health   Sciences,  2013.   47.  Torrance  GW,  Feeny  D.  Utilities  and  quality-­‐‑ adjusted  life  years.  Int  J  Technol  Assess   Health  Care  1989;5(4):559-­‐‑75     48.  Reardon  MJ.  Cost-­‐‑effectiveness  analysis  of   TAVR.  Methodist  Debakey  Cardiovasc   J  2012;8(2):26-­‐‑8     49.  Lyons  JP,  Healy-­‐‑Karabell  K.  Quality  of  Care   in  Geriatric  Health  Services.  In:   McDonnell  A,  ed.  Managing  Geriatric   Health  Services.  United  States  of   America:  Jones  &  Bartlett  Learning,   2013.   50.  Taylor  DO,  Edwards  LB,  Boucek  MM,  et  al.   Registry  of  the  International  Society  for   Heart  and  Lung  Transplantation:   twenty-­‐‑fourth  official  adult  heart   transplant  report-­‐‑-­‐‑2007.  J  Heart  Lung   Transplant  2007;26(8):769-­‐‑81  doi:   10.1016/j.healun.2007.06.004[published   Online  First:  Epub  Date]|.   51.  Pham  MX.  Prognosis  after  cardiac   transplantation.  Secondary  Prognosis   after  cardiac  transplantation    2013.   http://www.uptodate.com/contents/pro gnosis-­‐‑after-­‐‑cardiac-­‐‑transpla.   52.  Eisen  HJ.  Patient  information:  Heart   transplantation  (Beyond  the  Basics).   Secondary  Patient  information:  Heart   transplantation  (Beyond  the  Basics)     2014.   http://www.uptodate.com/contents/hea rt-­‐‑transplantation-­‐‑beyond-­‐‑the-­‐‑ basics#references.   53.  Estado  Actual  de  Donación  y  Trasplantes  en   México  Anual  2013.  Secondary  Estado   Actual  de  Donación  y  Trasplantes  en   México  Anual  2013    2013.   http://www.cenatra.salud.gob.mx/desc

argas/contenido/trasplante/estadisticas 2013.pdf.   54.  McAllister  TN,  Dusserre  N,  Maruszewski  M,   et  al.  Cell-­‐‑based  therapeutics  from  an   economic  perspective:  primed  for  a   commercial  success  or  a  research   sinkhole?  Regen  Med  2008;3(6):925-­‐‑37   doi:  10.2217/17460751.3.6.925[published   Online  First:  Epub  Date]|.   55.  Thompson  K,  Foster  EP.  The  Cell  Therapy   Catapult:  growing  a  U.K.  cell  therapy   industry  generating  health  and  wealth.   Stem  Cells  Dev  2013;22  Suppl  1:35-­‐‑9   doi:  10.1089/scd.2013.0401[published   Online  First:  Epub  Date]|.   56.  Blasimme  A,  Rial-­‐‑Sebbag  E.  Regulation  of   cell-­‐‑based  therapies  in  Europe:  current   challenges  and  emerging  issues.  Stem   Cells  Dev  2013;22  Suppl  1:14-­‐‑9  doi:   10.1089/scd.2013.0352[published  Online   First:  Epub  Date]|.   57.  Rao  M.  National  Institutes  of  Health  Center   for  Regenerative  Medicine:  putting   science  into  practice.  Stem  Cells  Dev   2013;22  Suppl  1:4-­‐‑7  doi:   10.1089/scd.2013.0437[published  Online   First:  Epub  Date]|.   58.  Mason  C,  McCall  MJ,  Culme-­‐‑Seymour  EJ,  et   al.  The  global  cell  therapy  industry   continues  to  rise  during  the  second  and   third  quarters  of  2012.  Cell  Stem  Cell   2012;11(6):735-­‐‑9  doi:   10.1016/j.stem.2012.11.013[published   Online  First:  Epub  Date]|.   59.  Li  RK,  Mickle  DA,  Weisel  RD,  et  al.  Natural   history  of  fetal  rat  cardiomyocytes   transplanted  into  adult  rat  myocardial   scar  tissue.  Circulation  1997;96(9   Suppl):II-­‐‑179-­‐‑86;  discussion  86-­‐‑7     60.  Prisk  V,  Huard  J.  Stem  Cells  in  Tissue   Engineering.  In:  Ma  PX,  Elisseeff  J,  eds.   Scaffolding  in  Tissue  Engineering:  CRC   Press,  2005.   61.  Lin  YF,  Lairson  DR,  Chan  W,  et  al.  The  costs   and  cost-­‐‑effectiveness  of  allogeneic   peripheral  blood  stem  cell   transplantation  versus  bone  marrow   transplantation  in  pediatric  patients   with  acute  leukemia.  Biol  Blood   Marrow  Transplant  2010;16(9):1272-­‐‑81   doi:   10.1016/j.bbmt.2010.03.016[published   Online  First:  Epub  Date]|.   62.  Messori  A,  Bonistalli  L,  Costantini  M,  et  al.   Cost-­‐‑effectiveness  of  autologous  bone   marrow  transplantation  in  patients   with  relapsed  non-­‐‑Hodgkin'ʹs  

12    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3386

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

lymphoma.  Bone  Marrow  Transplant   1997;19(3):275-­‐‑81  doi:   10.1038/sj.bmt.1700642[published   Online  First:  Epub  Date]|.   63.  McAteer  H,  Cosh  E,  Freeman  G,  et  al.  Cost-­‐‑ effectiveness  analysis  at  the   development  phase  of  a  potential   health  technology:  examples  based  on   tissue  engineering  of  bladder  and   urethra.  J  Tissue  Eng  Regen  Med   2007;1(5):343-­‐‑9  doi:   10.1002/term.36[published  Online  First:   Epub  Date]|.   64.  Li  RK,  Jia  ZQ,  Weisel  RD,  et  al.   Cardiomyocyte  transplantation   improves  heart  function.  Ann  Thorac   Surg  1996;62(3):654-­‐‑60;  discussion  60-­‐‑1     65.  Taylor  DA,  Atkins  BZ,  Hungspreugs  P,  et  al.   Regenerating  functional  myocardium:   improved  performance  after  skeletal   myoblast  transplantation.  Nat  Med   1998;4(8):929-­‐‑33     66.  Menasche  P,  Hagege  AA,  Scorsin  M,  et  al.   Myoblast  transplantation  for  heart   failure.  Lancet.  England,  2001:279-­‐‑80.   67.  García  S.  Alista  salud  cultivo  de  piel.  Reforma   2013.   68.  Reejhsinghani  R,  Shi  HHJ,  Lofti  AS.  Stem   Cell  Therapy  in  Acute  Myocardial   Infarction.  J  Clin  Exp  Cardiolog   2012;4(3)  doi:  10.4172/2155-­‐‑9880.S11-­‐‑ 004[published  Online  First:  Epub   Date]|.   69.  Bersenev  A.  Regenerative  medicine  and  cell   therapy  industry  in  2011.  Secondary   Regenerative  medicine  and  cell  therapy   industry  in  2011.   http://stemcellassays.com/2011/12/indu stry-­‐‑2011/.   70.  Pride  YB,  Giuseffi  JL,  Mohanavelu  S,  et  al.   Relation  between  infarct  size  in  ST-­‐‑ segment  elevation  myocardial   infarction  treated  successfully  by   percutaneous  coronary  intervention   and  left  ventricular  ejection  fraction   three  months  after  the  infarct.  Am  J   Cardiol  2010;106(5):635-­‐‑40  doi:   10.1016/j.amjcard.2010.04.012[published   Online  First:  Epub  Date]|.   71.  Byrd  BF,  3rd,  Wahr  D,  Wang  YS,  et  al.  Left   ventricular  mass  and  volume/mass   ratio  determined  by  two-­‐‑dimensional   echocardiography  in  normal  adults.  J   Am  Coll  Cardiol  1985;6(5):1021-­‐‑5     72.  Martin  I,  Wendt  D,  Heberer  M.  The  role  of   bioreactors  in  tissue  engineering.   Trends  Biotechnol  2004;22(2):80-­‐‑6  doi:  

10.1016/j.tibtech.2003.12.001[published   Online  First:  Epub  Date]|.   73.  Wendt  D,  Timmins  N,  Malda  J,  et  al.   Bioreactors  for  Tissue  Engineering.  In:   De  Boer  J,  Van  Blitterswijk  C,  Thomsen   P,  et  al.,  eds.  Tissue  Engineering.  1  ed.   Canada:  Elsevier  Science,  2008:483-­‐‑506.   74.  Maidhof  R,  Marsano  A,  Lee  EJ,  et  al.   Perfusion  seeding  of  channeled   elastomeric  scaffolds  with  myocytes   and  endothelial  cells  for  cardiac  tissue   engineering.  Biotechnol  Prog   2010;26(2):565-­‐‑72  doi:   10.1002/btpr.337[published  Online   First:  Epub  Date]|.   75.  Radisic  M,  Euloth  M,  Yang  L,  et  al.  High-­‐‑ density  seeding  of  myocyte  cells  for   cardiac  tissue  engineering.  Biotechnol   Bioeng  2003;82(4):403-­‐‑14  doi:   10.1002/bit.10594[published  Online   First:  Epub  Date]|.   76.  Vunjak-­‐‑Novakovic  G,  Tandon  N,  Godier  A,   et  al.  Challenges  in  cardiac  tissue   engineering.  Tissue  Eng  Part  B  Rev   2010;16(2):169-­‐‑87  doi:   10.1089/ten.TEB.2009.0352[published   Online  First:  Epub  Date]|.   77.  Evans  HJ,  Sweet  JK,  Price  RL,  et  al.  Novel  3D   culture  system  for  study  of  cardiac   myocyte  development.  Am  J  Physiol   Heart  Circ  Physiol  2003;285(2):H570-­‐‑8   doi:   10.1152/ajpheart.01027.2002[published   Online  First:  Epub  Date]|.   78.  Li  Z,  Cui  Z.  Three-­‐‑dimensional  perfused  cell   culture.  Biotechnol  Adv  2014;32(2):243-­‐‑ 54  doi:   10.1016/j.biotechadv.2013.10.006[publis hed  Online  First:  Epub  Date]|.   79.  Vunjak  Novakovic  G,  Eschenhagen  T,   Mummery  C.  Myocardial  tissue   engineering:  in  vitro  models.  Cold   Spring  Harb  Perspect  Med  2014;4(3)   doi:   10.1101/cshperspect.a014076[published   Online  First:  Epub  Date]|.   80.  Khademhosseini  A,  Eng  G,  Yeh  J,  et  al.   Microfluidic  patterning  for  fabrication   of  contractile  cardiac  organoids.   Biomed  Microdevices  2007;9(2):149-­‐‑57   doi:  10.1007/s10544-­‐‑006-­‐‑9013-­‐‑ 7[published  Online  First:  Epub  Date]|.   81.  Ishii  O,  Shin  M,  Sueda  T,  et  al.  In  vitro  tissue   engineering  of  a  cardiac  graft  using  a   degradable  scaffold  with  an   extracellular  matrix-­‐‑like  topography.  J   Thorac  Cardiovasc  Surg  

13    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3387

Cardiac Tissue Engineering As an Alternative to Current Therapies: Economical and Technical Cha...

2005;130(5):1358-­‐‑63  doi:   10.1016/j.jtcvs.2005.05.048[published   Online  First:  Epub  Date]|.   82.  Casey  TM,  Arthur  PG.  Hibernation  in   noncontracting  mammalian   cardiomyocytes.  Circulation   2000;102(25):3124-­‐‑9     83.  Vo  TD,  Palsson  BO.  Isotopomer  analysis  of   myocardial  substrate  metabolism:  a   systems  biology  approach.  Biotechnol   Bioeng  2006;95(5):972-­‐‑83  doi:   10.1002/bit.21063[published  Online   First:  Epub  Date]|.   84.  Lambrechts  T,  Papantoniou  I,  Sonnaert  M,  et   al.  Model-­‐‑based  cell  number   quantification  using  online  single-­‐‑ oxygen  sensor  data  for  tissue   engineering  perfusion  bioreactors.   Biotechnology  and  Bioengineering   2014:n/a-­‐‑n/a  doi:   10.1002/bit.25274[published  Online   First:  Epub  Date]|.  

85.  Radisic  M,  Marsano  A,  Maidhof  R,  et  al.   Cardiac  tissue  engineering  using   perfusion  bioreactor  systems.  Nat   Protoc  2008;3(4):719-­‐‑38  doi:   10.1038/nprot.2008.40[published  Online   First:  Epub  Date]|.   86.  Kofidis  T,  Lenz  A,  Boublik  J,  et  al.  Pulsatile   perfusion  and  cardiomyocyte  viability   in  a  solid  three-­‐‑dimensional  matrix.   Biomaterials  2003;24(27):5009-­‐‑14     87.  Tandon  N,  Marsano  A,  Maidhof  R,  et  al.   Optimization  of  electrical  stimulation   parameters  for  cardiac  tissue   engineering.  J  Tissue  Eng  Regen  Med   2011;5(6):e115-­‐‑25  doi:   10.1002/term.377[published  Online   First:  Epub  Date]|.   88.  Zimmermann  WH,  Schneiderbanger  K,   Schubert  P,  et  al.  Tissue  engineering  of   a  differentiated  cardiac  muscle   construct.  Circ  Res  2002;90(2):223-­‐‑30    

 

14    

Exp Clin Cardiol, Volume 20, Issue 8, 2014 - Page 3388