Ferroelectricity in Doped Hafnium Oxide

28 downloads 0 Views 3MB Size Report
8,00. 7,80. 1. Ferroelectricity in. Doped Hafnium Oxide. ISAF, State College. May 15th, 2014. U. Schroeder1 .... tris(methylcyclopentadienyl)-yttrium (Y(MeCp). 3. ).
Ferroelectricity in Doped Hafnium Oxide

U. Schroeder1, E. Yurchuk1, J. Müller2, D. Martin1, T. Schenk1, C. Richter1 C. Adelmann3, S. Kalinin5, U. Boettger6, A. Kersch7, and T. Mikolajick1,4 ISAF, State College May 15th, 2014 2 1

3

5

6

7

1

Outline

1. Motivation: Ferroelectricity in HfO2 2. Stabilization of the Ferroelectric HfO2 Phase 3. Ferroelectric Switching Behavior 4. Device Application: 1T FeFET

5. Summary

2

U. Schroeder et al. ISAF 05/2014

Outline

1. Motivation: Ferroelectricity in HfO2 2. Stabilization of the Ferroelectric HfO2 Phase 3. Ferroelectric Switching Behavior 4. Device Application: 1T FeFET

5. Summary

3

U. Schroeder et al. ISAF 05/2014

Motivation: Ferroelectric HfO2 Ferroelectrics enable

130nm FRAM

fast low power non-volatile memories

e.g. FRAM: -

current scaling limit: 130 nm due to material properties

TI & Ramtron

 new material necessary A lot of industry experience

CMOS

integrating HfO2 / ZrO2:

-

CMOS compatible

-

scalability below 50nm

-

ALD process available

-

ferroelectric properties

(IEDM 2011 / VLSI 2012 / IEDM 2013)

4

U. Schroeder et al. ISAF 05/2014

chipworks

sub 30 nm

DRAM

Outline

1. Motivation: Ferroelectricity in HfO2 2. Stabilization of the Ferroelectric HfO2 Phase 3. Ferroelectric Switching Behavior 4. Device Application:1T FeFET

5. Summary

5

U. Schroeder et al. ISAF 05/2014

Capacitor Route Route

Layer depositi on

Anneal + Pt dots

Electrode Deposition

Silicon

Wet Etch

HfO2 deposition

Platinum dots S. Mueller

Simple capacitor processing

7

U. Schroeder et al. ISAF 05/2014

ALD Process: doped HfO2 Other precursors used for dopant supercycles: • tetrakis(ethylmethylamino)hafnium (TEMAHf) • hafnium tetrachloride (HfCl4) • silicon tetrachloride (SiCl4)

• tetrakis(dimethylamino)silane (4DMAS) • tris(dimethylamino)silane (3DMAS) • tris(isopropylcyclopentadienyl)gadolinium (Gd(iPrCp)3)

• tris(methylcyclopentadienyl)-yttrium (Y(MeCp)3) • strontium di-tert-butylcyclopentadienyl (Sr(tBu3Cp)2) • and trimethylaluminium (TMA) + water, ozon or O2-plasma 8

U. Schroeder et al. ISAF 05/2014

Pt

Pt

Ti

Ti

TiN

TiN HfO2

SiO2

TiN Native SiO2 Si- wafer

Electric Displacement [C/cm2]

Effect of Si -Doping 60 40

Capacitance [F/cm2]

Si-substrate

Electric Field [MV/cm]

Para  FE

AFE



20

Increase of Si content

0

concentration

-20 -40 -60

4.5

→ Change of electrical SiO2 0 mol %

4.4 mol %

5.6 mol %

6.6 mol %

8.5 mol %

-3

-3

-3

-3

-3

0

3

0

3

0

3

0

3

0

properties :

3

4.0

Effect was confirmed by

3.5

polarisation and

3.0

capacitance -voltage

2.5 2.0 1.5

measurements

0 mo %

SiO2

9 nm Si:HfO after 800oC8,5 Anneal 5,6 mol % 2 6,6 mol % mol %

4,4 mol % -3

0

3

-3

0

3

-3

0

3

-3

Electric Field [MV/cm]

9

Pt TiN Si:HfO2 TiN

U. Schroeder et al. ISAF 05/2014

0

3

-3

0

3

Pr~∫C(V)dV E. Yurchuk et al., Thin Solid Films 2012 A. Toriumi at al. APL 86, 2006

HfO2 phase stabilization

Anneal + Doping 2

Amorphous HfO2

High-symmetry / high-k phases

+ Doping

Anneal 1

Non-centrosym. / FE phase

Non-centrosym. / ‚AFE‘ phase

Low-symmetry / lower-k phase

Cubic Fm3m or Tetragonal P42/nmc

Orthorhombic Pbc21 Monoclinic P21/c 1 Tetragonal/Cubic 13

Tetragonal*

14 Si

39 Y

40 Zr

14 Si

38 Sr

13 Al

64 Gd

13 Al

U. Schroeder et al. ISAF 05/2014

depending on dopant

S. Müller AVS-ALD conference 2012

HfO2 phase

C. Richter BALD 2014

Ferroelectricity observed when orthorhombic phase dominant 14

U. Schroeder et al. ISAF 05/2014

Polarization forms

Crystallographic lattices monoclinic

orthorhombic

tetragonal C. Richter BALD 2014 15

mono

orth

U. Schroeder et al. ISAF 05/2014

orth

HfO2-Phase: TEM Y: HfO2 Grain size ~30nm

TEM

Y: HfO2 Clear assignment ongoing: - no monoclinic grains found - difference cubic/tetrag./orthorh. not detectable within TEM resolution - XRD + TEM: phase different to monoclinic phase  orthorhombic

18

U. Schroeder et al. ISAF 05/2014

Polarization vs. Piezoelectricity FE

Dielectrics Piezoelectrics

‚AFE‘

Piezoelectric (for FE) or Electrostrictive

Pyroelectrics

(for ‘AFE’) behavior visible

Ferroelectrics

T. Boescke et al., APL 99, 102903 (2011) by Laser Interferometer 19

U. Schroeder et al. ISAF 05/2014

Piezo Force Microscopy

Ref.: http://en.wikipedia.org/wiki/ Piezoresponse_Force_Microscopy

- Local distribution

- Phase: Polarization direction detectable

D. Martin @ Oak Ridge Nat. Labs

20

U. Schroeder et al. ISAF 05/2014

Piezo Force Measurements

3 nm nm

180°

a.u.

+4.2 V

2



-4.2 V

1 0

-180°

Topography

Piezo responce polarization value visible

Phase  two polarization direction

- Most HfO2 grains switchable - Rough edges likely caused by domains overlapping the scan area

23

U. Schroeder et al. ISAF 05/2014

D. Martin et al., Adv. Mat 2014 U. Schroeder et al., IWDTF 2013/ JJAP 2014

Piezo Force Measurements

3 nm nm

180°

a.u.

2



1 0

Topography

-180°

Piezo responce polarization value visible

Phase  two polarization direction

- Most HfO2 grains switchable -  field induced phase change - - similar effect known in literature*

24

U. Schroeder et al. ISAF 05/2014

* X.Tan et al. Phys. Rev. Lett 105, 2010 AFE  FE

Phase change barrier height (K. Rabe) First-principles calculations (squares) and LandauDevonshire model (solid line) S. E. Reyes-Lilli et al. arXiv:1403.3878 (2014)



Energy profile between tetragonal and orthorhombic phases

 ZrO2 barrier height: 35meV/f.u.  Ec~1.2MV/cm  field induced phase change possible



HfZrO: polar orthorhombic structure is favored over the nonpolar tetragonal phase by ~23 meV/f.u.

25

U. Schroeder et al. ISAF 05/2014

Polarization reversal barrier height



Polarization by displacement of four O ions in the orthorhombic unit cell



Maximum saturation polarization: 53 µC/cm2



Correlation between coercive field and barrier height Clima et al., Appl. Phys. Lett. 104, 092906 (2014)

26

U. Schroeder et al. ISAF 05/2014

Different HfO2 dopants paraelectric

‚antiferroelectric‘

( )

ferroelectric

P

paraelectric

0 0

E



Ferroelectricity visible for dopands with different crystal radius



‚Antiferroelectricity‘ only for dopands with radius smaller than HfO2



Dopant range larger for higher crystal radius Schroeder et al., JSS 2012/JJAP 2014

28

U. Schroeder et al. ISAF 05/2014

Different HfO2 dopants paraelectric

‚antiferroelectric‘

( )

ferroelectric

P

paraelectric

0 0

Si, Al

E

(FE/AFE)

monoclinic  orthorhombic  tetragonal  cubic ? field induced phase change

Y, Gd, La, Sr (FE)

monoclinic  orthorhombic  cubic Schroeder et al., JSS 2012/JJAP 2014

29

U. Schroeder et al. ISAF 05/2014

Different HfO2 dopants

Maximum polarisation typically at about 3-6 mol% dopant concentration Schroeder et al., JJAP 2014 accepted 30

U. Schroeder et al. ISAF 05/2014

Different HfO2 dopants

Si

Al

Y Gd

Sr

Crystal Radius (pm)

Coercive field seems to increase for larger ionic radius of dopant atom

Schroeder et al., JSS 2012

31

U. Schroeder et al. ISAF 05/2014

Outline

1. Motivation: Ferroelectricity in HfO2 2. Stabilization of the Ferroelectric Phase 3. Ferroelectric Switching Behavior 4. Device Application: 1T/1C FRAM – 1T FeFET

5. Summary

32

U. Schroeder et al. ISAF 05/2014

Switching Behavior: Speed

Pt TiN Si:HfO2 TiN Si-substrate

S. Mueller et al., IEEE TDRM 2012 J. Müller et al. APL (2011) U. Schroeder et al., JSS 2012

2Pr (µC/cm2)

40 30

-0.6 V -0.8 V -1 V -1.2 V -1.8 V -3 V

RC Delay

20 10

Pulse width (s)

50 1E+11

pos. bias

1E+07

neg. bias

1E+03 1E-01

1E-05

0 1E-8

1E-6 1E-4 1E-2 Pulse Width (s)

1E+0

RC Delay

1E-09 0.5

1.5

2.5

Programming bias (V)

Enhanced domain switching with increasing E-field

Pos/neg differences caused by asymmetry in film stack 34

U. Schroeder et al. ISAF 05/2014

3.5

Switching Behavior: Wake-up

Pt TiN Si:HfO2 TiN

9.9 mol% SrO

Remanent Polarization (μA)

Si-substrate

Electric Field (MV/cm)

Initial current peaks merge during cycling De-aging of polarization hysteresis

Activation energy for wake-up: ~100meV

35

U. Schroeder et al. ISAF 05/2014

T. Schenk, ESSDERC 2013 and ECAPD 2014

Switching Behavior: Wake-up

Pt TiN Si:HfO2 TiN Si-substrate

Sense

Cycling

Sense

Time

20

1 kHz

100 kHz

1 kHz

-20 -40

2

0

PRrel (C/cm )

2

Polarisation (C/cm )

40

Voltage

2

PR (C/cm )

Si concentration: 4.4 mol%

initial 100 cycles 1000 cycles 10000 cycles 80000 cycles

-4 -3 -2 -1 0 1 2 Voltage (V)

3

4

5.6 mol% 30 Cycling 3.5 V @ 100 kHz

6.6 mol%

15 0 -15 PR+

-30 30

PR-

60%

15

90% PR 50% PR

0 -15 PRrel+

-30 -1

10

PRrel1

10

3

5

10 10 Number of cycles

7

10

E. Yurchuk, PhD thesis Schroeder et al, JJAP 2014

De-aging of polarization hysteresis Less relaxation with cycling  Retention improved

36

U. Schroeder et al. ISAF 05/2014

Switching Behavior: Fatique

Pt TiN Si:HfO2 TiN

-3 2 -1 0 1 2 3 voltage

fatigue signal (10kHz)

Rem. Polarization (μC/cm²)

±20

1E+6

2.5V

1E+7

1E+8

2.25V

1E+9

Si-substrate

2 -1 0 1 2 3

2V

time

hysteresis signal

20

10

10 - 0

0

0

-10

-3 -2 -1 0 1 2 3 -10 10-10

-20

Field [MV/cm] -20 20 -20-Electric 1E+9 9 1E+10 10 10 10 -Electric 3 -2 -1Field 0 (MV/cm) 1 2 3

1E+55 10 1E+66 10 1E+7 7 10 1E+8 8 10

Fatigue Cycles No Imprint

-

With cycling: more domains are switching at higher fields

 Fatique causes mentioned for SBT/PZT:

37

[µC/cm P

S. Mueller et al., IEEE TDMR 2012

-

-

Domain wall pinning by mobile charged defects

-

Growth of domain nuclei inhibited

-

Origin: oxygen vacancies or free injected charges U. Schroeder et al. ISAF 05/2014

2]

40

20 20 0

-4

40 -20 -40

-4 -2 0 2 4

4080 K 140 K 20200 K 00 260 K 320 K --20380 K 470 K --40

Electric Field [MV/cm]

0 -

Polarization (µC/cm2)

Polarization (µC/cm2)

2040

-4 -2 0 2 44

Si content

Polarization: Temperature dependence

Pt TiN Si:HfO2 TiN Si-substrate

20 10

Si

0

-10 -20 80

270 K 450 K

170 260 350 Temperature (K)

440

T. Boescke at al., APL 2011 S. Mueller et al., IEEE TDMR 2012 U. Schroeder et al., JSS 2012

- Polarization stable up to 400K - Transformation to AFE phase reduces polarization > 400K - Transformation stronger for higher Si content 38

U. Schroeder et al. ISAF 05/2014

Outline

1. Motivation: Ferroelectricity in HfO2 2. Stabilization of the Ferroelectric Phase 3. Ferroelectric Switching Behavior 4. Device Application: 1T FeFET

5. Summary

41

U. Schroeder et al. ISAF 05/2014

Device Application: 1T FeFET Metal-Gate Ferroelectric

Performance advantages: • non-volatility • non-destructive readout • low power consumption • switching speed in ns-time range • low operation voltages

Semiconductor n+

- -+ -+ - - -

+

n+

p-Substrate

Idrain

„1“ low Vth

no polarization

„0“ high Vth

Vgate

44

U. Schroeder et al. ISAF 05/2014

Device Application: 1T FeFET Metal-Gate Ferroelectric

Performance advantages: • non-volatility • non-destructive readout • low power consumption • switching speed in ns-time range • low operation voltages

+

+ +

- - -

Semiconductor n+ + + + n+ p-Substrate

Idrain

„0“ high Vth

Vgate

45

U. Schroeder et al. ISAF 05/2014

Device Application: 1T FeFET Metal-Gate Ferroelectric

Performance advantages: • non-volatility • non-destructive readout • low power consumption • switching speed in ns-time range • low operation voltages

Semiconductor n+

-+ -+ -+ - - -

n+

p-Substrate

Idrain

„1“ low Vth

Vgate

46

U. Schroeder et al. ISAF 05/2014

Ferroelectric Field Effect 1T Transistor Device Application: FeFET Memory Window

28nm N-channel MFIS-FET 60 50

+4 V 100 ns

-6 V 100 ns

ID (A)

40 30 20

MW ~1.2 V

10 0

-1

0 VG (V)

1

• World‘s first 28nm FeFET • Memory window ~1.2V • >90% yield on a 300mm wafer for single transistor devices E. Yurchuk et al., IMW 2012 51

U. Schroeder et al. ISAF 05/2014

Endurance

Retention programmed -6V 100ns Memory Window(V)

0.5

0.0

1.0

0.5 1

Experimental data Extrapolation

~ 0.9V

0 0

100

0.0

200

-0.5

erased +4V 100ns 0

10

1

10

2

10

3

10

10 years

Temperature (°C)

10 days

~ 0.9V

[ V] @ t4e-5A VtV (Volts)

1.0

4

10

5

10

6

10

7

10

-0.5

8

10

time [s]

K. Khullar Master Thesis

E. Yurchuk et al., IMW 2012

 Memory window after 105 cycles: ~0.9V  Accumulation of asymmetric charge injection closes MW  Detrap pulse can recover memory window  Memory window after 10 years: ~0.9V

57

U. Schroeder et al. ISAF 05/2014

Endurance 1.2

Vt (Volts)

0.8 0.4

Program

Erase

~ 0.9V

0 -0.4 1

10

100

1000

10000 100000

Number of cycle K. Khullar Master Thesis

58

K. Yurchuk PhD Thesis



Cycling in capacitor limited by breakdown



Cycling in transistor limited by charge trapping



Optimized operation conditions can significantly improve cycling U. Schroeder et al. ISAF 05/2014

Outline

1. Motivation: Ferroelectricity in HfO2 2. Stabilization of the Ferroelectric HfO2 Phase 3. Ferroelectric Switching Behavior 4. Device Application: 1T FeFET

5. Summary

74

U. Schroeder et al. ISAF 05/2014

Comparison: HfO2 vs. SBT/PZT SrBiTa*

Si:HfO2

Thickn. [nm]

200

10

Pr [µC/cm²]

10-20

25

Emax [MV/cm]

0.06

2.3

Ec [MV/cm]

0.04

>1

k

300

30

0.6 (PZT)

0.1

Memory Window [V]

0.4

1.2

Endurance [cyl]

109

105

Retention

0.2V @10 yr

0.9V @10 yr

FeFET

Ea

75

Wake-up

[eV]

U. Schroeder et al. ISAF 05/2014

* Sakai et al., NVMTS 2012 I. Stolichnov et al. APL 2003

Summary Material: 

A ferroelectric phase in HfO2 thin films can be stabilized



Ferroelectric phase  most likely orthorhombic phase



Several stabilizing dopants have been identified



Field induced phase change likely



Simulation results available: barrier heights

Ferroelectric Devices:

76



1T/1C: fe-HfO2 adds the 3rd dimension to FRAM scaling



World‘s first 28nm FeFET device - unmatched retention/scalability



HfO2-based FeFET added to ITRS roadmap in 2014

U. Schroeder et al. ISAF 05/2014

Thank you for your attention This work was supported by funding of the Deutsche Forschungs Gemeinschaft (DFG) (Project: Inferox) and by the EFRE fund of the European Commission within the scope of technology development and in part by the Free State of Saxony (Project: Cool Memory, Heiko, Merlin)

77

U. Schroeder et al. ISAF 05/2014

and

Thanks to the FeFET – TEAM: 2 5

4

3 6

7

8

9

and many more:

E. Yurchuk1, J. Mueller2, S. Mueller1, S. Slesazeck1, T. Mikolajick1 T. Boescke4, D. Martin1, D. Zhou1, J. Sundqvist2, P. Polakowski2, T. Schenk1, U. Boettger5, D. Braeuhaus5, S. Starschich5, C. Adelmann6, M. Popovici6, T. Schloesser3, M. Trentzsch3 , M. Goldbach3, R.v. Bentum3, S. Knebel1, T. Olsen1, R. Hoffmann2, J. Paul2, R. Boschke3, A. Kumar7, T.M. Arruda7, S.V. Kalinin7, M. Alexe8, A. Morelli8, A.Kersch9, R. Maverick9

78

U. Schroeder et al. ISAF 05/2014

1