Fertilizer Best Management Practices in Argentina ...

5 downloads 0 Views 454KB Size Report
2EEA INTA Oliveros (Santa Fe, Argentina), [email protected]. Abstract. Crop production and fertilizer use has steadily increased in Argentina in the ...
Fertilizer Best Management Practices in Argentina with Emphasis in Cropping Systems Fernando O. Garcia1 and Fernando Salvagiotti2 IPNI Latin America Southern Cone Program, [email protected] 2 EEA INTA Oliveros (Santa Fe, Argentina), [email protected] 1

Abstract Crop production and fertilizer use has steadily increased in Argentina in the last 18 years; however, nutrient balances are still negative. Best management practices for fertilizer use (FBMP) include the selection of the right source to be applied, using the right rate at the right time, and in the right place. This paper summarizes the main FBMP in cropping systems of annual crop rotations in the Pampas region of Argentina. Soil testing is the main tool to determine right rates of nitrogen (N) and phosphorus (P) in wheat, maize, soybean, and sunflower. Sulfur (S) responses are predicted mainly from field history and management. Urea, CAN or UAN, on surface-before planting, at planting or at tillering have shown similar efficiencies in wheat, however in maize, differences in N use efficiency among N fertilizers have been observed under surface applications, especially at V5-6 as compared to planting applications. Phosphorus fertilization is generally carried out at planting, banding the fertilizer, and the most common P fertilizers (DAP, MAP, TSP or SSP) present similar P use efficiencies. Sulfur fertilizer sources have shown similar S use efficiencies. Gypsum is the most common S source, and its efficiency highly depends on particle size. Research in the Pampas has shown high residual effects of P and S applications. These residual effects may be managed to improve and/or maintain soil fertility conditions, and to design BMPs not only for a current particular crop but also for the rotation. Balanced NPS management not only increased yields but also enhanced several functional indicators such as net return, farmer’s income, nutrient balances, yield stability, ecosystem services (less land to produce similar amount of grain), water and energy use efficiencies , and, finally, the whole system effectiveness. Nutrient management based on scientific principles, the FBMPs, would contribute to social, economic and ecological sustainability of the whole society by making cropping systems more efficient and effective in reaching its main goals of providing food, feed, fiber, and energy, without harm for the environment.

Introduction Crop production in Argentina has steadily increased in the last 18 years from approximately 40 million ton in 1990 to 95 million ton in 2007 (Fig. 1). This rise in crop production is explained by a 60 to70% increase in planting area, and also by a 20 to 30% increase in grain yield per unit area. Soybean has the largest increase rate in both variables among the four main crops (soybean, wheat, maize and sunflower); especially since 1996 when glyphosate-resistant (GR) varieties were adopted. Currently soybean occupies ca. 51% of the total cropped area. Crop production is mainly under no-tillage systems. Recent estimations indicated that more than 65% of the cropping area is under NT in Argentina (AAPRESID, 2007). Approximately 50% of the total cropped land is under annual leasing conditions, a factor that induces soybean monoculture, a low risk option. These conditions restrict the possibilities of the rational management of crop rotations and soil fertility in the long term. Grain yields increases have been attributed to improvements in: i) genetics (new hybrids and varieties, GR soybean, Bt maize, and others), ii) crop management (planting dates, populations, disease and insect management), iii) no-tillage adoption, and iv) fertilizer use.

Production (thousand t)

100000 90000

Other grains Wheat Soybean

Sunflower Maize

80000 70000 60000 50000 40000 30000 20000 10000 0

1990

1992

1994

1996

1998

2000

2002

2004

2006

Fig. 1. Grain production in Argentina, 1990-2007. Source: Secretary of Agriculture (SAGPyA). http://www.sagpya.mecon.gov.ar/. The Pampas region, located at the east-central plains of Argentina, the main grain producing area of the country, includes approximately 70% of grain crops harvested area (Fig. 2). Climate is temperate subhumid with average annual temperature varying from 14 to 18 ºC, and average annual precipitation increasing from the Southwest (300 mm) to the Northeast (1100 mm). Mollisols constitute the dominant soils. The humid and semiarid subregions are characterized by Udolls and Ustolls, respectively, with minor occurrence of Aquolls in flat areas (Moscatelli and Pazos, 2000). In general, soils of the Pampas are deficient in N and P, but well provided with potassium (K), calcium (Ca), and magnesium (Mg) under native conditions. In recent years, S responses have been observed in several crops, mainly in areas under intensive cropping (high grain yields and long periods under row crops agriculture). Fertilizer use Fertilizer consumption in Argentina is close to 1.75 million metric tons N+P2O5+K2O (Fig. 3). The N:P2O5:K2O ratio is of 9:7:1. Grain crops (wheat, maize, soybean, and sunflower) explain 75% of total nutrient fertilizer consumption (Melgar, 2005). Current estimations indicate that 95%, 90%, 50%, and 60% of the wheat, maize, soybean, and sunflower areas, respectively, receive some kind of fertilization (Table 1). Urea and UAN are the main fertilizer N sources. Ammonium nitrate, calcareous ammonium nitrate (CAN), and ammonium sulfate are also used, but to a lesser extent. Among P fertilizers, diammonium phosphate (DAP), monoammonium phosphate (MAP), triple superphosphate (TSP) and single superphosphate (SSP) are the most common sources. In the last years, bulk blending has become a common practice in the Pampas. NP fertilizers and blends are commonly applied at planting, and N fertilization is commonly performed at planting, but sometimes is carried out pre-plant, or top-dressed at wheat tillering or surface-banded at V5-6 maize stage. Sulfur is applied as calcium sulfate (gypsum), single superphosphate, UAN-ATS liquid solution, or ammonium sulfate among other alternatives. Applications of S are done in bulk blends at planting, broadcasting at pre-plant, or topdressing.

28°

Santa Fe 32°

Córdoba

Entre Ríos

36°

Buenos Aires

La Pampa

40°

Map developed with ArcView - ESRI Fig. 2. Location of the main provinces that include the Pampas region of Argentina.

Nutrient consumption (thousand ton)

1750 1500

N

P

S

K

1250 1000 750 500

250 0

1993

1995

1997

1999

2001

2003

2005

2007

Fig. 3. Nutrient consumption in Argentina (1993-2007). Ellaborated from data of SAGPyA and Fertilizar AC.

Table 1. Estimated nutrient use for the main four field grain crops of Argentina in 2007. Crop N P Wheat Maize Soybean Sunflower

S

kg/ha

46

15

10

% fertilized area

95

95

50

kg/ha

57

14

7

% fertilized area

90

90

40

kg/ha

-

15

10

% fertilized area

-

50

50

kg/ha

15

9

5

% fertilized area

60

40

10

The application/removal ratios for N, P, K, and S have improved during the last years (Fig. 4), but nutrient balances are still negative. Estimations for 2007 indicate that 48%, 59%, 42%, and less than 2% of the N, P, S, and K, respectively, removed in grains were applied as fertilizer in field crops.

Application/Removal Ratio

This paper summarizes the main best management practices for fertilizer use (FBMP) in cropping systems of annual crop rotations in the Pampas region of Argentina. More information on FBMPs in cropping systems of Argentina are available in Alvarez (2005), Echeverria and Garcia (2005), Garcia and Daverede (2007), and Bianchini et al. (2008), and the proceedings edited by Garcia and Ciampitti (2009).

0.7 0.6

N

P

K

S

0.5 0.4 0.3 0.2 0.1 0 1993

1995

1997

1999

2001

2003

Fig. 4. Application/removal ratios for N, P, K, and S in Argentina. 1993-2007.

2005

2007

Fertilizer Best management practices in Argentina FBMPs are based on scientific principles, and can be described as the selection of the right source to be applied, using the right rate at the right time, and in the right place (Roberts, 2007; Bruulsema et al., 2008). Fertilizer source, rate, timing and placement are interdependent, and are also interlinked with a set of best agronomic management practices applied in the cropping system. 1. Right rate Many supporting tools have been evaluated in Argentina for deciding the right nutrient rate in maize, wheat and soybean. As an example, Fig. 5 presents the main tools utilized and/or evaluated for deciding the right N, P and S fertilization rates in wheat. Equivalent tools have been evaluated in maize, soybean, and sunflower. 1.1. Nitrogen 1.1.1. Nitrogen Balance Nitrogen balances are used as a first approximation to determine N fertilization needs in wheat and maize in the region (Barberis et al., 1983; Berardo, 1994; Melchiori, 2002). Simplified N balances are based in the following equation: Nf = [(Nc + Nr) – ((Ni/ei) + (Nmin/emin))]/ef where Nf = Fertilizer N Nc = Crop N demand Nr = residual inorganic N at harvest Ni = inorganic N at planting time Nmin = mineralized N ei, emin and ef = use efficiencies of Ni, Nmin, and Nf, respectively The yield goal for a particular site and N requirement per unit yield are used to estimate Nc; Nr is generally considered 0 or as a fraction of Ni; Ni is usually determined at 60-cm depth at pre-planting; Nmin is estimated by using a fixed percentage N mineralization from organic N , or referenced values obtained from laboratory incubations or field experiments (Echeverría and Bergonzi, 1995; Gonzalez Montaner et al., 1997, Alvarez, 1999; Melchiori, 2002). Efficiency factors are highly variable according to crop, soil, climate, and management conditions and might vary between 0.4-0.8.

1.1.2. Crop simulation models (CSM) CSM constitute a promissory tool to manage N efficiently since they integrate soil, plant, and climatic variables for deciding among different management strategies. Researchers from the University of Buenos Aires and AACREA validated and calibrated CERES-Wheat and CERES-Maize in the Pampas region (Satorre et al., 2001; Satorre et al. 2005), and released the software Triguero and Maicero (FAUBA-AACREA, 2005) for decision- support in wheat and maize, respectively. Both software include modules that simulate crop growth, water and N dynamics in the soil-plant system.

Wheat crop stage

Planting

Tillering

Anthesis

Grain filling

Harvest

Soil testing • P (0-20 cm) • Nitrate-N (0-60 cm) • Sulfate-S (0-20 cm) • Other nutrients: Mg, B, Cu, Zn (0-20 cm)

Remote sensing, Chlorophyllmeter readings (Minolta SPAD 502)

Pre-planting

N balances N simulation models

Sap nitrate concentration

Foliar analysis

Grain nutrient concentration

Fig. 5. Diagnosis tools for wheat fertilization evaluated and/or used at the Pampas region of Argentina (Garcia and Berardo, 2005).

1.1.3. Soil available N at planting or during the growing season The evaluation of available (inorganic) N at planting time has been a useful tool to determine fertilizer N needs in sub humid and semiarid regions of the world. In a particular area, the level of available N at planting (NO3-N at 0-60 cm at planting + N fertilizer) above which no response to fertilizer N is expected can be estimated (critical level). This methodology has been calibrated with success in several areas of the Pampas region of Argentina for wheat and maize, Different critical N levels have been obtained according to the crop (wheat or maize), yield goal and soil and climate conditions of the area (Table 2). Nitrogen fertilizer rates (Nf) are then estimated from the difference between the critical level and the amount of NO3--N determined before planting: Nf = CL – X where Nf is the amount of fertilizer N to be applied, CL is the critical level, and X is the amount of NO 3-N in the soil at 0-60 cm depth. Soil N determinations during the growing season have been also calibrated to estimate N fertilization needs for wheat and maize. In wheat, Barbieri et al. (2008) have estimated a critical level of 126 kg/ha nitrate-N, 0-40 cm at tillering for grain yields of ca. 5000-5500 kgha-1 in southeastern Buenos Aires. In maize, several researchers evaluated the pre-sidedress nitrate test developed by Magdoff et al. (1984) in the US. Depending on grain yield and water availability, critical levels above which grain yield response to N is low or nil were 15 to 27 mg/kg nitrate-N at a 0-30 cm depth (Garcia et al., 1997; Sainz Rozas et al., 2000, Salvagiotti, 2004). Recent research has shown that N mineralization determined in short-term anaerobic incubations might contribute to improve the reliability of planting or pre-sidedress soil N tests in maize (Sainz Rozas et al., 2008).

Table 2. Critical levels of available N at planting (NO3--N, 0-60 cm depth) for wheat and maize in different areas of the Pampas with different expected yields. Critical level Expected Area (NO3--N, 0-60 cm Reference yield + fertilizer) -------- kg ha-1 -------Wheat Southeastern Buenos Aires Southeastern Buenos Aires Central and South Santa Fe Southern Santa Fe and Córdoba

125

3500

González Montaner et al., 1991

175

5000-5500

González Montaner et al., 2003

92

3500-4000

Salvagiotti et al., 2004

100-150

3200-4400

García et al., 2006

Maize Northern Buenos Aires

150

9000

Ruiz et al., 2001

Northern Buenos Aires Central and South Santa Fe Southern Santa Fe and Córdoba

150-170 135 162

10000 < 9500 > 9500

Alvarez et al., 2003

150-200

10000-11000

Salvagiotti et al., 2004 Nutrition network CREA Southern Santa Fe, 2009

1.1.4. Plant analysis Total N concentration in plant is not frequently used as a diagnostic tool for deciding N fertilization in wheat or maize in Argentina. Sap NO3- concentration in stems of wheat (González Montaner et al., 1987) and maize (González Montaner and Di Napoli 1997; Sainz Rozas et al., 2001) has been evaluated in different sites in the Pampas region for recommendation purposes, but some difficulties (sample handling and the requirement of local calibrations ) constrain its use as a routine procedure. 1.1.5. Chlorophyll meter Determinations of greenness index (GI) using the chlorophyll meter Minolta SPAD 502 ® have been carried out to determine N status in wheat and maize. The GI varies according to genotype, growth stage, water availability, and soil and climate conditions, as was shown in numerous studies around the world. In order to avoid this variability, a sufficiency index (SI) (SI=GI of the test field/GI of a non-nitrogen limited field) is used. The best correlations of SI and grain yield response to N fertilization are obtained during late stages in crop development (after jointing in wheat, after V10 in maize). Therefore, the potential use of this tool for recommending N fertilization is limited (Sainz Rozas and Echeverría, 1998; León et al., 2001; Gandrup et al., 2004). Likewise, some studies showed strong correlations between SI and grain protein content in wheat, suggesting that chlorophyll meter determinations may be a useful tool for determining late foliar N applications to improve protein levels (Bergh et al., 2001; Bergh et al., 2004). 1.1.5. Remote sensing Crop canopy sensors should sense a large area and integrates the amount of living plant biomass in this area into reflectance reading, which is subsequently transformed in vegetation index values (NDVI). NDVI values obtained in the field must be compared with NDVI values from an adequately fertilized area to determine the relative N status of the crop (Schepers, 2002). In order to make N fertilizer

recommendations algorithms must be derived from N fertilization experiments to predict crop N response. Several algorithms have been derived that calculate N fertilizer application rates based on crop yield potential and the response to additional fertilizer (Raun et al., 2004). On-going research is validating the performance of the sensors/applicators in Argentina, and developing algorithms for its use in wheat and corn (Melchiori, 2007; see http://nue.okstate.edu/Argentina_Wheat_Algorithm.htm).

1.2. Phosphorus The diagnosis of P fertilization is based on soil P-Bray 1 at 0-20 cm determined before planting. Calibrated critical levels vary according to the crop (Table 3). Rates of P fertilization depend on the criteria of the farmer/consultant: i) build-up and maintenance, or ii) sufficiency levels (Echeverría and García, 1998; Ciampitti et al., 2009). Studies in different soils in Argentina indicated rates of 3 to 10 kg P/ha in order to increase soil P-Bray 1 by 1 mg/kg (Rubio et al., 2007; Ciampitti et al., 2009), depending on the initial soil P-Bray 1 level, soil texture, grain or forage P removal, and time from fertilization. Table 3. Critical levels of soil PBray 1 (0-20 cm) for wheat, soybean, sunflower and maize in the Pampas region of Argentina. Critical level Crop Reference (mg/kg) Wheat

15-20

Echeverría and García, 1998; García, 2007

Soybean

9-14

Echeverría and García, 1998; Gutiérrez Boem et al., 2002; Díaz Zorita et al., 2002; Fontanetto, 2004

Sunflower

10-15

Díaz Zorita, 2004

Maize

13-18

García et al., 1997; Ferrari et al., 2000; Berardo et al., 2001; Garcia et al., 2006

1.3. Sulfur Sulfur deficiencies have been detected in the mid 90’s in several areas of the Pampas region. Responses were observed in soils with decreased soil organic matter content, under long cropping history, high soybean frequency, no-tillage management and adequate N and P fertilization (Martínez and Cordone, 2005). These are the best indicators to distinguish responding from non-responding sites since there has been low correlation between soil sulfate-S test and crop S response. In general, S deficiencies for the main crops are moderate. Some studies have shown no yield increases when S fertilizer rates were above 10 kg S ha-1 in maize and soybean (Ferraris et al, 2005; Salvagiotti, 2004) In wheat, recent work has shown that S concentration and N/S ratio in grain and in plant could be used to characterize S deficient fields (Reussi Calvo and Echeverria, 2009). A critical 0.15%S concentration and, a 13.3:1 N/S ratio in grain, and a 15.5:1 N/S ratio in plant have been estimated as predictors of crops responsive to S fertilization (Reussi Calvo et al., 2009). Nutrient use efficiency is a desired goal for fertilizer best management. Studies in wheat indicated that S fertilization improves nitrogen use efficiency by increasing N uptake, and thus reducing the risk of N loss when fertilization is balanced (Table 4) (Salvagiotti et al, 2009).

Table 4. Nitrogen use efficiency (NUE), N Recovery efficiency (RE) and N Internal efficiency (IE) of wheat crops fertilized only with N (N100) and N + S (N100+ S20). Each value is the average of 2 genotypes in 3 experimental sites (Salvagiotti et al, 2009). Variable

Units

NUE

kg grain per kg applied N

RE

kg N uptake per kg applied N

IE

kg grain per kg N uptake

N100

N100 +S20

8.4

10.7

0.35

0.47

22.7

22.5

1.4. Other nutrients Potassium, calcium, magnesium and micronutrient are not generally deficient in field crops systems of Argentina. However, in the last years, some field trials have shown responses to boron in alfalfa, sunflower, soybean and maize, calcium in alfalfa and soybean, chloride (Cl) in wheat, cobalt and molybdenum in soybean, and zinc in maize (Melgar et al., 2001; Montoya et al, 2003; Ferraris et al., 2005; Garcia, 2008; Fontanetto et al., 2009).

2. Right source, timing, and placement 2.1. Nitrogen 2.1.1. Wheat Research in wheat has shown similar efficiencies when N was applied as urea, CAN or UAN, on surfacebefore planting, at planting or at tillering (Fig. 6). Some reports in the Pampas region showed that ammonia volatilization losses from surface-applied urea or dribbled UAN were less than 10% (Garcia et al., 1999; Fontanetto et al., 2006). The period from planting to the end of tillering is usually dry for most of the wheat producing area of Argentina. Therefore, early N applications usually result in high N use efficiencies (Melchiori and Paparotti, 1996; Díaz Zorita, 2000). However, in areas in the southeast of the Pampas, winter precipitation may increase nitrate leaching, and in several years N use efficiency would be improved by N topdressing at tillering compared to pre-plant or planting applications (Barbieri et al., 2008) (Fig. 7). Late N applications, at pre-anthesis or anthesis, may increase grain protein concentration. Applications of 22 kg N/ha, using low biuret urea solution, has increased grain protein concentration by 1% (Loewy et al., 2004).

2500

Urea

3236 3344 3389

3300 3422

3000

3322

3611 3722 3844

3500

2759

Wheat grain yield (kg/ha)

4000

CAN

2000

UAN

1500 1000 500 0 Check

Planting

Split

Tillering

Wheat grain yield (kg/ha)

Fig. 6. Wheat grain yield for different N sources and timing of application. Split indicates half rate at planting and half rate at tillering. All applications were broadcast at an equivalent N rate of 60 kg N/ha. Source: Baumer, Divito and Gonzalez, EEA INTA Pergamino, Argentina.

9000 8000 7000 6000 5000 4000 3000 2000 1000 0

*

FP FT

*

MdP MdP 02 03

*

*

*

MdP MdP Balc 04 05 02

Balc 04

*

Balc Tand Tand Tand 05 02 03 04

Location and year Fig. 7. Wheat grain yield for different N application times (FP, at planting: and FT, at tillering) at 10 locations in four growing seasons in the southeastern Buenos Aires province, Argentina. The stars indicate significant differences between FP and FT at each location/year. (Barbieri et al., 2008).

2.1.2. Maize Nitrogen applications to maize are carried out before planting, at planting, or up to V5-6 stage. Research has shown that fertilization around V5-6 usually have greater N use efficiency than early applications (Sainz Rozas et al., 1999). Differences in N use efficiency among N fertilizers have been observed under surface applications, especially at V5-6, because of NH3-N volatilization losses from surface-applied urea (García et al., 1999; Sainz Rozas et al., 1999; Salvagiotti and Vernizzi, 2006). Ammonia-N losses are lower with dribble UAN than surface-applied urea improving N use efficiency. However, all N fertilizer sources show similar efficiencies when they are incorporated in the soil (Fig. 8) (Fontanetto, 2004).

2.2. Phosphorus

8950 8960 8944

7902 7995 8000

8000

7110 7650 7642

Maize yield (kg/ha)

10000

7840 8525 8560

Phosphorus fertilization is generally carried out at planting, banding the fertilizer with or close to the seed (2-5 cm below and/or to the side), depending on planting equipment. In recent years, research has shown that pre-plant broadcast of P fertilizers would be an efficient alternative under no-tillage systems (Bianchini, 2003; Echeverría et al., 2004) (Fig. 9). This pre-plant broadcast applications should follow some considerations : i) System under no-tillage for more than 5 years, ii) Broadcast at least 45 days before planting, iii) P rates of 25 kg P/ha or more and iv) Precipitation greater of 50 mm between application and planting.The most common P fertilizers used by farmers (DAP, MAP, TSP or SSP), present similar P use efficiencies (Ciampitti et al., 2009).

6000 4000

Urea

2000

Broadcast

CAN

UAN Incorporated

0

40

80 40 N Rate (kg/ha)

80

Fig. 8. Effect of N source and application method on maize yield at San Carlos (Santa Fe, Argentina). Applications were carried out at V5 stage. Yield without N was 6720 kg/ha (Fontanetto, 2004).

6687

6337

6391

6428

5934

5224

5068

4856

4694

4459

Wheat grain yield (kg/ha)

6000

4000

2000 Check

P25 Bd

P25 Br

P50 Bd

P50 Br

0 Tandil 2002/03

Necochea 2003/04

Fig. 9. Wheat grain yield for different P placement methods under no-tillage at two field experiments of the southern pampas of Argentina. Rates are indicated as kg P/ha. Bd indicates banded at planting, and Br broadcasted 45-60 days before planting (Echeverria et al., 2004).

2.3. Sulfur Sulfur fertilizer sources such as ammonium sulfate, single superphosphate, magnesium-potassium sulfate (sulpomag), ammonium tiosulfate (ATS), magnesium sulfate, have shown similar S use efficiencies. These sources are applied before planting or at planting in a single application or blended with P or N fertilizers. Gypsum is the most common source and its efficiency highly depends on particle size. Prilled or standard (2-4 mm) gypsum has shown similar S efficiency as other sulfate sources, but when applied in large particles, the low solubility of calcium sulfate results in a low S use efficiency. These sources are suitable for long-term S fertilization programs.

Managing crop and soil nutrition for the rotation Research in the Pampas has shown high residual effects of P and S applications. These residual effects may be managed to improve and/or maintain soil fertility conditions, and to design BMPs not only for current particular crop but also for the rotation. As an example, application of P and S for both, wheat and soybean, when wheat is planted results in similar P and S use efficiency as if both nutrients are applied for each crop (Salvagiotti et al., 2004) (Fig. 10). Long-term research has also showed the effects of nutrient management for different crop rotations in the Pampas The case of the CREA Nutrition Network The CREA Nutrition Network in Southern Santa Fe includes eleven on-farm experiments established in 2000, following a common protocol which includes N, P, and S fertilizer applications which are repeated in the same plots every year, either under a maize-wheat/soybean or a maize-soybean-wheat/soybean rotation (Garcia et al., 2006). Rates of P and S are equivalent to grain P and S removal + 10%, to enhance soil P and S levels. N rates are applied according to local recommendations for high-yielding wheat and maize crops. Results from this network showed an improvement in soil fertility indicators such as residue cover, soil organic matter, and soil Bray P under balanced NPS fertilization. This cumulative fertilization effect

Grain yield (kg/ha)

results in grain yield improvements along the years (Fig. 11). Relative differences between the NPS and the Check increased from 43% to 87%, 58% to 208%, and 6% to 89% for maize, wheat, and double cropped soybean, respectively.

2935

3000

2285

2925

2508 2240

2010 2000

1000

Check NPS Wheat + PS Soybean NPS Wheat+Soybean

0

Wheat

Soybean

Fig. 10. Double crop wheat and soybean yield with different timing of PS applications: all PS requires for both crops at wheat planting, or PS for wheat at wheat planting, and PS for soybean at soybean planting. Averages of seven field experiments at the northern Pampas of Argentina (Salvagiotti et al., 2004).

At the end of this network, the significant residual effects of balanced fertilization have been observed in different sites. For example, the trial at El Fortin site was terminated in 2003/04, and the residual effects of the treatments were evaluated in the following two years (2004/05-2006/07). Similarly, the trial at El Pilarcito site terminated on 2006/07, and the residual effects were determined on the crops in 2007/08 and 2008/09. In both cases, NPS fertilization in the previous NPS and Check treatments followed farmer’s decision after the termination of the experiment. The first two crops that followed after the experience ended showed grain yields 21% to74% greater in the plots that used to be under NPS treatment than in the plots that use to be the Check, despite the fact that these crop received fertilization (Fig. 12). The residual effects decreased in the third and fourth crop at El Fortin (difference of ca. 7 to 14%). The third and fourth crop at El Pilarcito did not show residual effects probably because of the low yields as result of a severe drought. The improved soil fertility condition as result of balanced NPS management not only increased yields but also enhanced several functional indicators such as net return, farmer’s income, nutrient balances, yield stability, ecosystem services (less land to produce similar amount of grain), water and energy use efficiencies , and, finally, the whole system effectiveness. Nutrient management based on scientific principles, the FBMPs, would contribute to social, economic and ecological sustainability of the whole society by making cropping systems more efficient and effective in reaching its main goals of providing food, feed, fiber, and energy, without harm for the environment.

200

Maize Relative yield (%)

180

160

PS

NS NP

140

NPS 120

100 2000

2002

2004

2006

2008

340

Wheat Relative yield (%)

300 260 PS

NS

220

NP 180

NPS

140 100 2001

2003

2005

2007

200

Soybean

Relative yield (%)

180 160 PS 140

NS NP

120

NPS

100 80 2001

2003

2005

2007

Fig. 11. Evolution of relative grain yields of maize, wheat and soybean for different NPS fertilization treatments in a cornwheat/ soybean rotation. Averages for five sites of the Nutrition Network CREA Southern Santa Fe (Argentina), 2000-2008. Relative yields relative to the Check as 100.

El Pilarcito

El Fortin

144 140

174 160 121

120

114

107

Relative yield (%)

Relative yield (%)

200

127 120 101

102

Barley 2008

Soybean 2008/09

100 80

80 Wheat 2004

Soybean 2004/05

Maize 2005/06

Soybean 2006/07

Wheat 2007

Soybean 207/08

Fig. 12. Relative yields (original NPS treatment/original Check treatment) of the crops immediately after termination of the field trials at El Fortin and El Pilarcito sites of the Nutrition Network CREA Southern Santa Fe (Argentina). See text for explanation. References AAPRESID. 2007. No-tillage evolution in Argentina. AAPRESID. Rosario, Santa Fe, Argentina. Available at www.aapresid.org.ar. Accessed February 1, 2007. Alvarez R. 1999. Uso de modelos de balance para estimar los requerimientos de fertilizante nitrogenado de trigo y maíz. EUDEBA. Buenos Aires, Argentina. 58 pp. Alvarez R. (ed.). 2005. Fertilización de cultivos de granos y pasturas. Diagnóstico y recomendación en la Región Pampeana. Ed. Facultad de Agronomía. Universidad de Buenos Aires. Buenos Aires, Argentina. 174 pp. Alvarez R., H. Steinbach, C. Alvarez y S. Grigera. 2003. Recomendaciones para la fertilización nitrogenada de trigo y maíz en la pampa ondulada. Informaciones Agronómicas 18:14-19. INPOFOS Cono Sur. Acassuso, Buenos Aires, Argentina. Barberis L., A. Nervi, H. del Campo, S. Urricariet, J. Sierra, P. Daniel, M. Vazquez and D. Zourarakis. 1983. Análisis de la respuesta del trigo a la fertilización nitrogenada en la Pampa Ondulada y su predicción. Ciencia del suelo 1:51-64. Barbieri P. A., H. E. Echeverría, y H. R. Sainz Rozas. 2008. Nitratos en el suelo a la siembra o al macollaje como diagnostico de la nutrición nitrogenada en trigo en el sudeste bonaerense. Actas CD XXI Congreso Argentino de la Ciencia del Suelo. San Luis. AACS. Berardo A. 1994. Aspectos generales de fertilización y manejo de trigo en el área de influencia de la Estación Experimental INTA-Balcarce. Boletín Técnico No. 128. EEA INTA Balcarce. Argentina. Berardo A., S. Ehrt, F. Grattone y F. García. 2001. Corn yield response to phosphorus fertilization in the southern Pampas. Better Crops International 15(1): 3-5. Bergh R.G., M.S. Zamora, M. L. Seghezzo, and E.R. Molfese. 2001. Nutrición nitrogenada y proteína de trigo candeal. In Proceedings V National Congress of Wheat. Villa Carlos Paz, Córdoba. 26-28 September. Bergh R., T. Loewy and H. Echeverría. 2004. Nitrógeno en trigo: rendimiento y calidad panadera. III. Aplicaciones de las lecturas del índice de verdor. Actas VI Congreso Nacional de Trigo. Bahía Blanca, Buenos Aires.

Bianchini A. 2003. Localizacion de fosforo en siembra directa. Actas XI Congreso Nacional de AAPRESID. Rosario, Santa Fe. Pp. 309-314. Bianchini A., F. Garcia, and R. Melchiori. 2008. Nitrogen management in field crops of the Southern Cone of Latin America. A. Nitrogen management in the Pampas of Argentina. In Nitrogen in the environment: Sources, problems, and management. J. Hatfield and R. Follet (ed.). ElsevierAcademic Press. San Diego, CA, USA. pp. 105-124. Bruulsema T., C. Witt, F. Garcia, S. Li, T.N. Rao, F. Chen and S. Ivanova. 2008. A Global Framework for Fertilizer BMPs. Better Crops 92 (2): 13-15. IPNI. Norcross, GA. USA. Ciampitti I., G. Rubio, L. Picone y F. Garcia. 2009. El fosforo en la agricultura: Mejores practicas de manejo. In F. Garcia e I. Ciampitti (ed.). Simposio Fertilidad 2009: Mejores prácticas de manejo para una mayor eficiencia en la nutrición de cultivos. IPNI Cono Sur. Acassuso, Buenos Aires, Argentina. pag. 35-51. ISBN 978-987-24977-1-2. Diaz-Zorita, M. 2000. Urea fertilization timing effect on wheat grain yields in Drabble, Buenos Aires, Argentina. Ciencia del Suelo 18[2], 125-131... Díaz Zorita M. 2004. Importancia del fósforo en la nutrición mineral del girasol. En: www.fertilizar.org Díaz Zorita M., F. García and R. Melgar. 2002. Fertilización en soja y trigo-soja: Respuesta de la fertilización en la región pampeana. Boletín Proyecto Fertilizar. EEA INTA Pergamino. 44 pág. Echeverría, H. and R. Bergonzi. 1995. Estimación de la mineralización de nitrógeno en suelos del sudeste bonaerense. Tech. Bull. 135. EEA INTA Balcarce, Balcarce, Buenos Aires, Argentina. Echeverría H. and F. Garcia. 1998. Guía para la fertilización fosfatada de trigo, maíz, girasol y soja. Boletín Técnico No.149. EEA INTA Balcarce. Echeverría H. and F. García. 2005 . Fertilidad de Suelos y Fertilización de Cultivos. Editorial INTA. Buenos Aires. 525 pp. Echeverría H., H. Sainz Rozas, A. Bianchini y F. García. 2004. Utilización y residualidad de fósforo bajo siembra directa en la región pampeana. Actas XIX Congreso Nacional de la Ciencia del Suelo. Paraná, Entre Ríos. AACS. FAUBA-AACREA. 2005. Software Triguero (CD). Facultad de Agronomía (UBA)-AACREA. Buenos Aires, Argentina. Available at www.aacrea.org.ar. Accessed January 22, 2007. Ferrari M., J. Ostojic, L. Ventimiglia, H. Carta y G. Ferraris. 2000. Fertilización de maíz: buscando una mayor eficiencia en el manejo del nitrógeno y el fósforo. Actas: “Fertilidad 2000” (IPNI Cono Sur) Rosario, pp. 23-37. Ferraris G., L. Couretot y J. Ponsa. 2005. Utilización de molibdeno, cobalto, boro y otros nutrientes. Agromercado, SOJA. Nº 107: 16-18. Ferraris, G., Gutierrez Boem, F., Prystupa, P., Salvagiotti, F., Couretot, L., and Dignani, D..2005. Fertilización azufrada en maíz. Actas VIII Congreso Argentino de Maíz. Rosario, Sante fe , Argentina Fontanetto H. 2004. Nutrición de los cultivos y manejo de la fertilidad del suelo en la región central de Santa Fe. In Actas Fertilidad de Suelos para una Agricultura Sustentable. INPOFOS Cono Sur. Pag. 19-25. Fontanetto H., O. Keller, C. Negro y L. Belotti. 2006. Perdidas por volatilización de amoníaco de diferentes fuentes nitrogenadas en trigo bajo siembra directa. Actas CD XX Congreso Argentino de la Ciencia del Suelo. Salta-Jujuy. AACS. Fontanetto H., O. Keller, J. Albrecht, D. Giailevra, C. Negro and L. Belotti. 2009. Manejo de la Fertilización de la Soja en la Región Pampeana Norte y en el NOA Argentino. In F. Garcia e I. Ciampitti (ed.). Simposio Fertilidad 2009: Mejores prácticas de manejo para una mayor eficiencia en la nutrición de cultivos. IPNI Cono Sur. Acassuso, Buenos Aires, Argentina. pag. 35-51. ISBN 978-987-24977-1-2. Gandrup, M.E., F. García, K. Fabrizzi and H. Echeverría. 2004. Evolución de un índice de verdor en hoja para evaluar el status nitrogenado en trigo. Rev. Inv. Agropecuarias 33 (3):101-117.

García F.O. 2007. Requerimientos nutricionales del cultivo: Respuestas a la fertilización. In E. Satorre (ed.). Producción de trigo. 1a. edición. AACREA. Buenos Aires, Argentina. pp. 37-42. ISBN 978987-22576-8-2. Garcia F. 2008. Cloro en trigo: Resultados de las experiencias en la región pampeana argentina. Años 2001 a 2006. Informaciones Agronómicas 38: 17-21. IPNI Cono Sur. Acassuso, Buenos Aires, Argentina. García F. and A. Berardo. 2005. Trigo. In H. Echeverría and F. García (ed.). Fertilidad de Suelos y Fertilización de Cultivos. Editorial INTA. Buenos Aires. pp. 233-253. García F., M. Boxler, J. Minteguiaga, R. Pozzi, L. Firpo, G. Deza Marin and A. Berardo. 2006. La Red de Nutrición de la Región CREA Sur de Santa Fe: Resultados y conclusiones de los primeros seis años 2000-2005. AACREA. 32 pp. Buenos Aires, Argentina. Garcia F. e I. Ciampitti. 2009. Simposio Fertilidad 2009: Mejores prácticas de manejo para una mayor eficiencia en la nutrición de cultivos. IPNI Cono Sur-Fertilizar AC. Acassuso, Buenos Aires, Argentina.. García F. e I. Daverede. 2007. Diagnóstico para recomendación de fertilización nitrogenada en cultivos de interés económico. In T. Yamada, S. Abadía y G. Vitti (ed.). Nitrogenio e enxofre na agricultura brasileira. IPNI Brasil. Piracicaba, Sao Paulo, Brasil. pp. 277-320. García F., K. Fabrizzi, L. Picone y F. Justel. 1999. Volatilización de amoniaco a partir de fertilizantes nitrogenados aplicados superficialmente bajo siembra directa y labranza convencional. 14º. Latinamerican Congress of Soil Science. Pucón, Chile. 8-12 November 1999. García F., K. Fabrizzi, M. Ruffo y P. Scarabicchi. 1997. Fertilización nitrogenada y fosfatada de maíz en el sudeste de Buenos Aires. Actas VI Congreso Nacional de Maíz. AIANBA. Pergamino, Buenos Aires, Argentina. González Montaner, J., J.M. Meynard and B. Mary. 1987. Contrôle de la nutrition azote du blé par l´analyse des teneurs en nitrates dans la plante. C.R. Acad. Agric. Fr. 73(3):105-115. González Montaner J., y M. Di Napoli. 1997. Respuestas a nitrógeno del cultivo de maíz en el sur de la provincia de Santa Fe. Actas VI Congreso Nacional de Maíz. AIANBA. Pergamino, Buenos Aires, Argentina. González Montaner, J., G. Maddonni, N. Mailland and M. Porsborg. 1991. Optimización de la respuesta a la fertilización nitrogenada en el cultivo de trigo a partir de un modelo de decisión para la Subregión IV (Sudeste de la Provincia de Buenos Aires). Ciencia del Suelo 9:41-51. González Montaner, J., G. Maddoni and M.R. Di Napoli. 1997. Modeling grain yield and grain yield response to nitrogen in spring wheat crops in the Argentinean Southern Pampa. Field Crops Res. 51:241-252. González Montaner, J., M. Di Nápoli, P. Calviño, N. Mailland, M. Posborg, F. Dodorico and J. Andenoche. 2003. Nitrógeno en trigo. CREA Magazine. 272:56-59. Gutiérrez Boem F.H., J.S. Scheiner, J. Moyano y R.S. Lavado. 2002. Cambio en la disponibilidad de fósforo del suelo por el agregado de fertilizante. Actas XVIII Congreso Argentino de la Ciencia del Suelo. Puerto Madryn. Versión CD. León, M., M.F. Dreccer and D. Rodríguez. 2001. Estimación del N foliar utilizando el SPAD en trigo creciendo con deficiencia de agua y de nitrógeno. In Proceedings V National Congress of Wheat. Villa Carlos Paz, Córdoba. Argentina. Loewy T., H. Echeverría, and R. Bergh. 2004. Nitrógeno en trigo: rendimiento y calidad panadera. II. Fertilización complementaria. In Proceedings VI National Congress of Wheat. Bahía Blanca, Argentina. Ed. INTA. pp. 153-154. Magdoff F., D. Ross y J. Amadon. 1984. A soil test for nitrogen availability to corn. Soil Sci. Soc. Am. J. 48:1301-1304. Martínez F. y G. Cordone. 2005. Avances en el manejo de la fertilización de cultivos y fertilidad de suelos en el sur de Santa Fe. Simposio “Fertilidad 2005: Nutrición, Producción y Ambiente”. Rosario, 27-28 Abril. INPOFOS Cono Sur-Fertilizar A.C. pp. 3-11.

Melchiori R. 2002. Fertilización de trigo, soja y maíz en Entre Ríos. Proceedings “Fertility 2002”. PPIPPIC Southern Cone. Acassuso, Buenos Aires, Argentina. pp. 24-30. Melchiori R. y O. Paparotti. 1996. Fertilización nitrogenada en trigo, evaluación de dosis y momento de aplicación. Jornada de Actualización Técnica en el cultivo de Trigo. Serie Extensión Nº9. EEA INTA Paraná. Melchiori R.. 2007. Estado actual del manejo sitio específico de nitrógeno en Argentina. Proceedings “Fertility 2007”. IPNI Cono Sur-Fertilizar A.C. pp. 74-78. Melgar R. 2005. El mercado de fertilizantes en la Argentina y su relación con el sector agropecuario. In H. Echeverría and F. García (ed.). Fertilidad de suelos y fertilización de cultivos. Ed. INTA. Buenos Aires, Argentina. pp. 489-502. Melgar R., J. Lavandera, M. Torres Duggan and L. Ventimiglia. 2001. Respuesta a la fertilización con boro y zinc en sistemas intensivos de producción de maíz. Ciencia del Suelo 19(2): 109-114. Montoya, J., Bono, A., Barraco, M., Díaz Zorita, M. Boron, a nutrient which creates uncertainty: experiences of fertilization in the Pampeana region. Boletín de Divulgación Técnica, INTA [No.78], 30. 2003. Moscatelli, G. and M.S. Pazos. 2000. Soils of Argentina: Nature and Use. In: I. Kheoruenromne and S. Theerawong (Eds.).. Proceedings of the International Symposium on Soil Science: Accomplishments and Changing Paradigm towards the 21st Century, and IUSS Extraordinary Council Meeting 81-92. Raun, W.R., J.B. Solie, M.L. Stone, K.W. Freeman, K.L. Martin, R. Teal, B. Arnall, B. Tubana, C. Byungkyun, K.B. Morris, K. Girma, S. Moges, and C. Mack. 2004. Increasing Cereal Nitrogen Use Efficiency Using Sensor Based Technology. In: Proceedings of the XII National Congress of AAPRESID. pp. 365-371. Reussi Calvo N.I., and H.E. Echeverría. 2009. Azufre: Marco conceptual para definir las mejores prácticas de manejo en los cultivos. In F. Garcia e I. Ciampitti (ed.). Simposio Fertilidad 2009: Mejores prácticas de manejo para una mayor eficiencia en la nutrición de cultivos. IPNI Cono Sur. Acassuso, Buenos Aires, Argentina. ISBN 978-987-24977-1-2. Reussi Calvo N.I., H.E. Echeverría and H. Sainz Rozas. 2008. Usefulness of Foliar Nitrogen-Sulphur Ratio in Spring Red Wheat. J. Plant Nutr. 31 : 1612-1623. Roberts, T.L. 2007. Right product, right rate, right time, and right place…the foundation of best management practices for fertilizer. pp. 29-32. In Fertilizer Best Management Practices. IFA International Workshop on Fertilizer Best Management Practices (FBMPs). 7-9 March, 2007. Brussels, Belgium. Rubio G., M.J. Cabello, y F. Gutierrez Boem. 2007. ¿Cuanto fósforo hay que aplicar para alcanzar el umbral crítico de fósforo disponible en el suelo? II. Cálculos para las zonas Sur y Norte de la Región Pampeana. Informaciones Agronómicas 35: 6-10. IPNI Cono Sur. Acassuso, Buenos Aires, Argentina. Ruiz R., E. Satorre, G. Maddoni, J. Carcova y M. Otegui. 2001. Umbrales de decisión para la fertilización nitrogenada en maíz. VII Congreso Nacional de Maíz. AIANBA. Pergamino, Buenos Aires, Argentina. Sainz Rozas H. y H. Echeverría. 1998. Relación entre las lecturas del medidor de clorofila (Minolta SPAD 502) en distintos estadios del ciclo del cultivo de maíz y el rendimiento en grano. Rev. Fac. Agron. La Plata 103 (1):37-44. Sainz Rozas H., H. Echeverría, G. Studdert y F. Andrade.1999. No-till maize nitrogen uptake and yield: Effect of urease inhibitor and application time. Agron. J. 91:950-955. Sainz Rozas H., H. Echeverría, E. Herfurt y G. Studdert. 2001. Nitrato en la base del tallo de maíz. II. Diagnóstico de la nutrición nitrogenada. Ciencia del Suelo 19(2):125-135. Sainz Rozas H., H. Echeverría, G. Studdert y G. Dominguez. 2000. Evaluation of the presidedress soil nitrogen test for no-tillage maize fertilized at planting. Agron. J. 92:1176-1183.

Saínz Rozas H, Calviño P, Echeverría H, Redolatti M and Barbieri P. 2008. Contribution of anaerobically mineralized nitrogen to reliability of planting or presidedress soil nitrogen test in maize. Agronomy Journal 100:1020-1025. Salvagiotti, F..2004. Estrategias en el manejo de nutrientes en el sur de Santa Fe. Actas Simposio Fertilidad 2004. Rosario, Argentina Salvagiotti, F. Análisis de la respuesta a la fertilización con azufre en soja de primera. Para mejorar la produccion - INTA Oliveros 27[SOJA], 80-83. 2004. Salvagiotti, F., Cordone G., Castellarín, J.M., Bacigaluppo S., Capurro, J., Pedrol, H.M., Gerster G., Martínez F., Méndez J., Trentino, N. 2004. Diagnóstico de la fertilización nitrogenada en trigo utilizando un umbral de disponibilidad de nitrógeno a la siembra. Para mejorar la produccion INTA Oliveros 25[TRIGO], 50-52. Salvagiotti, F., Pedrol, H.M., Castellarín, J.M., Cordone G., Capurro, J., Felizia, J.C., Gargicevich, A., Gentile, O., Martínez F., Méndez J., Prieto G., Trentino, N. 2004. Umbrales de nitrógeno a la siembra para el diagnóstico de la fertilización nitrogenada en maíz según el potencial de rendimiento. Para mejorar la producción - INTA Oliveros 26[MAIZ], 84-88. Salvagiotti, F. Vernizzi, A. 2006. Pérdidas de nitrógeno por volatilización y su efecto en el rendimiento del cultivo de maíz. Para mejorar la produccion - INTA Oliveros 32[MAIZ], 96-102. Salvagiotti F., G. Gerster, S. Bacigaluppo, J. Castellarín, C. Galarza, N. González, V. Gudelj, O. Novello, H. Pedrol, y P. Vallote. 2004. Efectos residuales y directos de fósforo y azufre en el rendimiento de soja de segunda. Ciencia del Suelo 22(2):92-101. Salvagiotti, F., Castellarin, J.M., Miralles, D.J., Pedrol, H.M., 2009. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Research 113, 170-177. Satorre E., F. Menéndez and G. Tinghitella. 2005. El modelo Triguero: Recomendaciones de fertilización nitrogenada en trigo. Proceedings “Fertility 2005”. Rosario, 27-28 April. INPOFOS Cono SurFertilizar A.C. pp. 3-11. Satorre, E., R. Ruiz, D. Miralles, D. Calderini and G. Maddoni. 2001. Bases de decisión para la fertilización nitrogenada en las zonas Norte de Buenos Aires, Sur de Santa Fe y Centro de AACREA. Pp. 30-38. In Wheat Tech. Bull. AACREA. Buenos Aires, Argentina. Schepers, J.S. 2002. Nitrogen management: New technologies for management and diagnosis of nitrogen fertilization. In: Proceedings of the X National Congress of AAPRESID, Book I. pp. 141-155.