Final Draft part2

1 downloads 0 Views 1MB Size Report
first half of the second millennium and the late Western Zhou period. Its area of ..... towards the early Dynastic period (see Figure 4-‐2). In the Longshan culture ...
    CHANGES  IN  NUTRITIONAL  AND  OCCUPATIONAL  STRESS  OVER  TIME:       THE  DIETARY  IMPACT  ON  POPULATION  HEALTH  DURING  THE  TRANSITION  FROM   INCIPIENT  TO  INTENSIVE  AGRICULTURE  IN  NORTHEAST  CHINA     by     Mauricio  Hernandez             Submitted  in  partial  fulfillment  of  the   Requirements  for  the  degree  of  Master  of   Arts  in  Anthropology,  Hunter  College,   The  City  University  of  New  York.           2009             Thesis  Sponsor:     ___________________________              _______________________________________   Date                                                                                                                    Signature                                    Thomas  L.  McGovern,  Professor  Anthropology               ___________________________                ______________________________________   Date                                                                                                                    Signature                                                                                                                                      Ignasi  Clemente,  Assistant  Professor  Anthropology        

          I  dedicate  this  thesis  to  my     grandmother,  Juana  Concepcion,  who  witnessed     every  milestone  in  my  life  until  this  year,  and  whom    I  will  never  stop  making  proud.                                

ii  

AKNOWLEDGEMENTS      

Many  people  have  been  involved  in  the  completion  of  this  thesis  in  one  way  

or  another.  First,  I  would  like  to  extend  my  gratitude  to  the  Anthropology  faculty  of   the  Research  Center  for  Chinese  Frontier  Archaeology  in  Jilin  University,  Changchun.   Prof.  Zhu  Hong  was  kind  enough  to  provide  me  access  to  all  the  skeletal  material,   the  most  important  facet  from  which  I  developed  my  project.  Prof.  Wei  Dong  was  my   initial  contact  at  Jilin  University  whom  I  was  able  to  correspond  with,  arranging  my   trip  and  the  outline  of  my  research  proposal.  Once  I  arrived,  he  was  able  to  answer   all  my  questions,  facilitated  archaeological  site  reports  and  pinpointed  where  the   collections  were  located.  Zeng  Wen  also  helped  me  to  communicate  my  ideas  to   Prof.  Wei  and  was  critical  during  my  stay  at  the  institute.    

To  the  Department  of  Anthropology  at  CUNY  Hunter  College,  I  take  a  bow.  BY  

placing  their  trust  in  admitting  me  to  their  program  and  the  quality  education  I  have   received  while  being  a  student  there,  I  would  not  have  had  the  chance  to  develop  my   research  interests,  and  this  thesis  would  not  exist  today.  Within  the  faculty,  I  would   like  to  thank  Prof.  Thomas  McGovern  who  provided  all  documentation  and  support   for  me  to  carry  out  my  research  in  the  other  side  of  the  world  and  who  gladly   accepted  to  become  my  thesis  supervisor.  In  a  big  way,  he  is  responsible  for   everything  contained  within  this  manuscript.  Prof.  Ignasi  Clemente  is  my  writing   guru.  His  advise  has  been  very  useful  while  drafting  my  research  proposal  and,  later,   my  thesis.  Profs.  Michael  Steiper  and  Jessica  Manser  helped  me  figure  out  several   statistical  analyses,  which  allowed  me  to  put  my  ideas  together  in  a  more    

iii  

 meaningful  way.  The  rest  of  the  faculty  and  students  from  the  program,  I  thank   them  from  the  bottom  of  my  heart.  By  sharing  three  semesters  of  laughter  and   sorrows,  they  made  me  realize  that  we  really  are  all  in  this  together.    

I  also  must  express  my  humble  gratitude  to  Gisselle  Garcia-­‐Pack,  curator  at  

the  Department  of  Anthropology  at  the  American  Museum  of  Natural  History  in  New   York  City.  She  allowed  me  to  access  several  East  Asian  individuals  and  medical   school  collections  within  the  stacks  that  I  was  able  to  use  as  the  control  sample   within  my  study.  Also,  Dr.  David  Hunt,  curator  at  the  Department  of  Anthropology  at   the  Smithsonian  National  Museum  of  Natural  History  in  Washington,  D.C..  He  was   extremely  helpful  in  allowing  me  access  to  a  large  and  well-­‐preserved  Asian   collection,  which  made  up  the  large  portion  of  my  control  sample.    

Within  Changchun,  China,  several  people  kept  me  from  becoming  too  

overwhelmed  with  my  data  collections  and  welcomed  me  as  if  I  was  one  of  their   own,  from  the  very  first  hours  after  arriving.  Rocio  Dones,  Spanish  professor  at  Jilin   University  and  her  husband  Ivan  Wang  were  there  for  me  from  day  one,  as   promised,  and  have  shown  me  how  friendship  can  make  all  the  difference  in  an   unfamiliar  land.  Anabel  Garcia  Ugrotte,  also  Spanish  professor  at  Jilin  University  has   provided  countless  hours  of  academic  stimulation  through  deadly  honest  opinions   and  discussions  in  our  many,  sometimes  hurried  chats  over  coffee  or  mate  at  her   flat,  and  her  determination  continues  to  leave  me  in  awe.  I  truly  believe  she  shares  a   nonverbal  connection  with  some  of  the  greatest  minds,  whilst  her  humility  does  not   allow  her  to  confirm  this  to  me.  To  Changchun  Friends,  the  great  club  of  ex-­‐pats  and   Chinese  nationals  in  Changchun,  I  owe  them  many  moments  of  fun,  debauchery  and    

iv  

 sincerity.  They  really  keep  it  all  together.  Also  in  Changchun,  my  friend  Dr.  Kenji   Okazaki,  whom  I  have  been  honored  in  interacting  with,  both  professionally  and   earnestly.  I  hope  to  continue  collaborating  with  in  the  future,  thanks  to  our  shared   interests  and  values.  His  wife  Chen  Xi  is  an  amazing  cook,  a  very  sweet  individual,   and  has  the  distinction  of  being  my  very  first,  albeit  unofficial,  Mandarin  professor.  I   hope  to  one  day  speak  to  her  in  this  wonderful  language.    

Last  but  definitely  not  least,  my  best  friends  in  the  world,  who  through  the  

years  have  put  up  with  my  complaining  and  have  provided  loads  of  emotional   support  that  I  will  not  ever  begin  to  pay  them  back  for.  Christian  Jarquin,  my  longest   friend  knows  me  inside  and  out,  he  is  my  brother.  Dalia  Potosme,  who  I  have  had  the   pleasure  of  keeping  in  touch  with,  and  getting  to  know  better  through  the  years,  and   Vincent  Lau  Chan,  I  could  not  ask  for  more  down  to  earth  individuals.  Life  would  be   a  darker  place  without  them.  Chin-­‐hsin  Liu,  my  mentor  and  confidant,  who  is   responsible  for  cultivating  my  interests  in  bioarchaeology  and  who  has  guided  me   through  very  tough  professional  moments  as  I  have  done  with  her;  no  one  can  break   this  bond.  Shuyu  Lin,  another  longtime  friend  who  helped  me  a  lot  with  the   translation  of  several  archaeological  reports  in  order  to  complete  my  thesis.  Selma   Hodge,  who  has  been  a  mother  to  me  for  many  years,  her  hugs  and  smile  never  fail   to  show  me  the  positive  side  of  humanity.  To  my  dear  roommate,  Lisa  Konkel,  who   has  allotted  me  peace  in  our  house  and  whom  I  have  shared  the  rowdiest  and   calmest  of  times  in  this  crazy  city  of  New  York.    

One  special  mention  should  be  reserved  for  Prof.  Ekaterina  Pechenkina  of  

CUNY  Queens  College.  I  thank  her  for  helping  me  to  discover  bioarchaeological    

v  

 research  in  China  firsthand  and  providing  me  data  from  which  to  get  started  in  my   research  career.  It  is  also  because  of  her  that  I  have  realized  the  necessity  and   importance  of  working  on  my  own.                                            

vi  

TABLE  OF  CONTENTS   PAGE   AKNOWLEDGEMENTS..........................................................................................................................iii     LIST  OF  TABLES.......................................................................................................................................ix     LIST  OF  FIGURES......................................................................................................................................x     CHAPTER  1  –  INTRODUCTION...........................................................................................................1     Research  Goals..........................................................................................................................................2   Stress  Indicators.......................................................................................................................................2   Paleopathology.........................................................................................................................................4     CHAPTER  2  –  ARCHAEOLOGY  OF  THE  SITES..............................................................................9     JIANGJIALIANG   Geography...................................................................................................................................................9   History  and  Cultural  Background....................................................................................................10   Contemporary  Period...........................................................................................................................10     MINHE  X,  MINHE  M  AND  LGS  SITES   Geography..................................................................................................................................................11 History  and  Cultural  Background....................................................................................................12   Contemporary  Period...........................................................................................................................13     CHAPTER  3  –  MATERIALS  AND  METHODS................................................................................14     Background  of  samples........................................................................................................................14   Measurements  and  statistical  calculations.................................................................................16     CHAPTER  4  –  RESULTS........................................................................................................................19     Stature.........................................................................................................................................................20   Body  Mass..................................................................................................................................................23   Correlation  between  stature  and  body  mass.............................................................................24   Bilateral  asymmetry..............................................................................................................................24   Paleopathology........................................................................................................................................28   Non-­‐specific  and  Specific  Response  to  Infection......................................................................28   Degenerative  Joint  Disease.................................................................................................................34   Congenital  Conditions..........................................................................................................................37   Trauma........................................................................................................................................................39   Paleodemography...................................................................................................................................41        

vii  

CHAPTER  5    –  DISCUSSION.................................................................................................................49     Diet  and  Disease.......................................................................................................................................50   Stature,  Sexual  Dimorphism  and  Body  Mass  ..............................................................................51   Indicators  of  Activity..............................................................................................................................54   Health  Model  for  Chinese  Populations  from  the  Neolithic  period  to  the     Bronze  Age.................................................................................................................................................58     CHAPTER  6  –  CONCLUSION................................................................................................................62     REFERENCES  CITED  .............................................................................................................................65      

   

                                                              viii  

LIST  OF  TABLES   PAGE  

  Table  (4-­‐1)  –  Mean  femoral  length  and  stature  estimates  for  each  site    surveyed.  ...................................................................................................................................................20     Table  (4-­‐2)  –  Femur  length  and  estimated  stature  from  Chinese     Neolithic  samples  (adapted  from  Pechenkina  et  al.,  2007)...................................................21     Table  (4-­‐3)  –  Mean  femoral  head  diameter  and  estimated  adult  body     mass  (in  kg)  for  populations  surveyed  at  each  site.  ................................................................23     Table  (4-­‐4)  –  Bilateral  asymmetry  scores  in  the  population  of     Jiangjialiang.  .............................................................................................................................................26     Table  (4-­‐5)  -­‐  Bilateral  asymmetry  scores  in  the  populations  of  Minhe  X,     Minhe  M  and  LGS.  ..................................................................................................................................26     Table  (4-­‐6)  -­‐  Bilateral  asymmetry  scores  in  the  population  of  MXY.  ..............................27     Table  (4-­‐7)  -­‐  Bilateral  asymmetry  scores  in  the  Control  population.  .............................27     Table  (4-­‐8)  –  Incidence  of  pathological  conditions  per  individual  in  all    samples.  ....................................................................................................................................................32     Table  (4-­‐9)  –  Demographic  of  all  surveyed  populations.......................................................42                                              

ix  

LIST  OF  FIGURES   PAGE  

  Figure  (1-­‐1)  –  Lesions  in  specific  and  nonspecific  inflammation  of  bone.     From  Suzuki  (1991).................................................................................................................................6     Figure  (2-­‐1)  –  Map  of  Jiangjialiang  site............................................................................................9  

Figure  (2-­‐2)  –  Map  of  Minhe  X,  Minhe  M  and  LGS  sites...........................................................11   Figure  (4-­‐1)  –  Comparison  of  male  and  female  mean  statures  between   the  Peiligang  site  of  Jiahu  and  all  Yangshao  sites.......................................................................43     Figure  (4-­‐2)  –  Comparison  of  male  and  female  mean  statures  between   Longshan,  early  Dynastic  sites  and  the  Control  population.  ................................................44     Figure  (4-­‐3)  –  Mean  body  mass  (in  kg)  for  males  and  females  at  each     surveyed  site.  ............................................................................................................................................44     Figure  (4-­‐4)  –  Linear  regression  for  stature  as  a  function  of  body     mass  for  males  and  females  of  each  surveyed  population.  ...................................................45     Figure  (4-­‐5)  –  Incidence  of  infectious  disease  in  males  and  females     across  all  surveyed  sites.  .....................................................................................................................45     Figure  (4-­‐6)  –  Distribution  of  skeletal  lesions.  On  the  skeleton     displaying  periostitis,  the  darker  shade  indicates  more  common     involvement;  the  light-­‐shaded  areas  are  where  the  condition  is  less     commonly  found  (after  Kelley,  1989).  ..........................................................................................46     Figure  (4-­‐7)  –  Incidence  of  degenerative  joint  disease  on  males  and     females  at  all  surveyed  sites.  .............................................................................................................47     Figure  (4-­‐8)  –  Incidence  of  congenital  conditions  in  males  and  females     at  all  surveyed  sites.  ..............................................................................................................................47     Figure  (4-­‐9)  –  Trauma  patterns  between  males  and  females  across  all     surveyed  populations.  ..........................................................................................................................48     Figure  (4-­‐10)  -­‐  Paleodemography  comparison  between  all  surveyed     populations.  ..............................................................................................................................................48     Figure  (4-­‐11)  –  Age  ranges  for  males  and  females  at  each  surveyed  site.  ....................49    

 

x  

CHAPTER  1     INTRODUCTION       At  every  segment  of  life,  from  before  birth,  through  childhood  and  all  the  way   into  late  adulthood,  an  organism  may  experience  stress.  Stress  can  come  in  the  form   of  inadequate  nutrition,  infectious  disease,  environmental  factors,  reproductive   needs  or  interpersonal  conflict.  Prolonged  stress  can  leave  behind  evidence  in  the   form  of  insults  on  bone,  due  to  the  inherent  plasticity  of  this  tissue.  Levels  of  stress   and  disease  can  be  discerned  from  skeletal  remains  through  the  analysis  of  bone   tissue,  either  through  simple  visual  examination,  microscopy  of  cross  sections,  x-­‐ray   or  chemical  analysis.    Such  information  can  reveal  age,  sex,  stature,  diet,  intensity  of   activity  and  even  possible  cause  of  death.  However,  more  useful  data  can  be   obtained  when  assessing  patterns  of  stress  at  the  population  level,  or  at  least  a   certain  segment  of  it,  such  as  the  very  young  or  the  very  old  (Goodman  and   Armelagos,  1989).  Further  comparisons  of  skeletal  markers  across  geographical   regions  and  through  time  can  reveal  how  well  populations  adapt  to  varying   climates,  differential  availability  of  resources  and  cope  with  disease.   In  the  following  study  I  present  data  collected  from  several  populations  in   China  and  attempt  to  reveal  how  subsistence  changes  undertaken  by  these  groups   affect  their  health  in  the  long  term.  I  became  interested  in  this  region  of  the  world   because  of  the  dearth  of  published  archaeological  and  bioarchaeological  studies  in   western  journals,  as  well  as  the  potential  of  this  region  of  the  world  to  yield  a  wealth   of  data  on  disease  and  the  development  of  social  systems:  China  is  the  birthplace  of   the  oldest  continuous  civilization.    

1  

Research  Goals   The  aim  of  this  study  is  to  quantify  different  stress  markers  related  to   development,  nutrition,  susceptibility  to  disease,  and  subsistence  activities  from  the   Neolithic  period  to  the  Bronze  Age  in  China.  The  collections  under  study  came  from   two  regions  of  the  country:  Qinghai  province,  located  in  the  Northwest,  and  Hebei   province,  located  to  the  East.  Together  with  previous  research  on  pathological   conditions,  archaeological  finds  from  the  region  and  models  for  the  beginnings  and   intensification  of  agriculture,  this  study  seeks  to  elucidate  patterns  of  stress  caused   by  subsistence  changes  in  these  populations.    

Stress  Indicators   Paleopathologists  investigating  disease  processes  in  bone  do  not  have  the   benefit  of  soft  tissue  analysis  and  laboratory  tests  that  clinical  doctors  do.    In  fact,   Wood  et  al.  (1992)  argue  that  skeletal  data  can  have  more  than  one  interpretation,   due  to  the  paradoxical  nature  of  diagnosing  living  conditions  from  dry  bones,  many   times  without  cultural,  dietary  or  archaeological  context.  However,  Buikstra  and   Cook  (1980)  note  that  useful  models  from  modern  correlates  can  be  developed  to   recreate  conditions  from  the  past,  such  as  utilizing  clinical  cases  to  discern  lesion   patterning.  These  authors  promote  employing  modern  techniques  such  as  x-­‐rays,   microscopy  and  isotope  analysis  to  arrive  at  more  conclusive  diagnoses  of  disease.   Also,  different  pathologies  can  elucidate  different  aspects  of  a  person’s  life  and  their   patterning  on  the  body  of  an  individual  or  on  a  specific  population  demographic  can   itself  help  with  identification.  As  Angel  (1984)  points  out,  studying  pathologies    

2  

together,  rather  than  in  isolation,  helps  to  better  understand  how  disease  processes   work.     In  the  present  study,  the  presence,  incidence  and  severity  of  several  stress   indicators  were  analyzed.  In  the  following  introductory  sections,  I  give  some   background  of  each  stress  indicator  and  why  it  was  chosen.  One  of  the  most  obvious   indicators  of  stress  in  adults  is  stature  reduction,  especially  in  a  region  where  there   is  little  genetic  variation  (Cook,  1984).  Bone  growth  and  development  depends   strongly  on  the  uptake  of  adequate  amounts  of  vitamins  and  minerals.  Such   nutrients  are  largely  absent  on  the  carbohydrate-­‐rich  foods  that  became  the  first   cultigens,  as  a  supplement  to  foraging  and  hunting,  and  in  more  recent  periods,  took   over  as  the  main  food  source  in  agricultural  populations.   Increase  in  body  mass  has  been  cited  by  Styne  and  McHenry  (1993)  as  an   indicator  of  improving  health  due  to  better  socioeconomic  conditions  in  modern   populations.  However,  it  can  also  be  used  to  discern  increased  reliance  on  grain  with   high  caloric  content.  Cohen  (1977)  notes  that  this  pattern  stems  from  humans   looking  for  the  simplest  and  quickest  ways  to  cope  with  population  growth  and   pressure  during  the  Neolithic  period.   Several  authors  have  analyzed  bilateral  asymmetry  in  populations,  in  order   to  discern  changes  in  rates  and  levels  of  activity  within  a  population  and  across   populations  over  time  (Auerbach  and  Ruff,  2005;  Mintz  and  Fraga,  1973;  Stirland,   1993).  An  extensive  review  of  past  studies  by  Kennedy  (1989)  points  to  the  many   patterns  of  occupationally  related  changes  that  can  occur  in  bone  (cortical-­‐ trabecular  ratio,  increased  surface  area  of  muscle  attachments,  overall  size  and    

3  

shape  changes).  Such  osteological  changes,  Stirland  notes,  are  by  definition,   nonrandom  and  habitual,  and  thus  can  be  used  to  reconstruct  past  life  ways,  such  as   those  related  to  subsistence  strategies.  Wolff’s  Law,  proposed  by  anatomist  Julius   Wolff  in  1892,  states  that  bone  will  change  shape  due  to  frequency  and  level  of   pressure  or  force  that  it  is  subjected  to,  therefore,  by  judging  levels  of  asymmetry,   one  can  calculate  rates  and  levels  of  activity.     Paleopathology   Rates  of  infections  increased  in  archaeological  populations  after  agriculture   was  adopted  by  hunter-­‐gatherers  in  different  regions  of  the  world  (Cohen,  1977).   Similarly,  chronic  conditions  exhibit  gross  pathological  changes  to  bone,  largely   absent  in  hunting  and  gathering  groups,  begin  to  appear  around  this  time.  Most   commonly  appearing  at  this  time  is  periostitis,  an  inflammatory  bone  lesion   displaying  reactive  changes  with  irregular,  fine-­‐porous  and  spongy  deposition   located  on  the  exterior  of  the  cortex  with  the  exclusion  of  underlying  tissues   (Suzuki,  1991).  Periostitis  may  be  caused  by  an  adjacent  soft  tissue  infection,   bacterial  transport  through  the  bloodstream  or  the  spread  of  organisms  from  a   compound  fracture,  but  may  have  other  causes  such  as  trauma,  hemorrhage  or  skin   ulcers  (Aufderheide  and  Rodriguez-­‐Martin,  1998).  Due  to  such  varied  etiology,  and   because  the  morphological  changes  associated  may  appear  in  either  an  active  or   healed  stage,  it  is  often  considered  a  nonspecific  indicator  of  infection  (Larsen,   1997).    

 

4  

A  second  nonspecific  infectious  condition  more  severe  in  nature  is   osteomyelitis.  Osteomyelitis,  unlike  periostitis,  is  defined  as  inflammatory  changes,   which  spread  through  the  medullary  cavity  and  the  cortical  bone  (see  figure  1-­‐1).  Its   most  common  features  are  the  appearance  of  sequestrum,  involucrum,  and  cloacal   formation  due  to  the  simultaneous  process  of  bone  destruction  and  bone  formation   (Suzuki,  1991).    Sandison  (1968,  cited  in  Roberts  and  Manchester,  1995)  notes  that   since  bone  is  a  single  biological  unit,  the  different  terminology  for  these  nonspecific   morphological  changes  is  arbitrary.    In  this  study,  periostitis  and  osteomyelitis,   although  caused  by  similar  nonspecific  factors  are  kept  separate  for  two  reasons.   The  first  is  to  provide  continuity  of  understanding  and  interpretation  from  all   previous  paleopathological  studies  of  infection.  The  second  is  because  this   separation  of  severity  is  meaningful  when  analyzing  prehistoric  agricultural  groups   in  comparison  to  recent  industrialized  societies  in  relation  to  diseases,  which  are   population  density-­‐dependent.                                      

5  

Figure  (1-­‐1)  –  Lesions  in  specific  and  nonspecific  inflammation  of  bone.  From  Suzuki   (1991)    

    Infectious  diseases  that  cause  specific  changes  to  bone  morphology  such  as   leprosy  or  treponemal  diseases  begin  to  appear  along  with  interregional  trade   routes  and  overcrowded  population  centers,  both  of  which  promote  close  contact   between  many  people.  Robbins  et  al.  (2009)  report  a  case  of  leprosy  in  India  at   around  4,000  BP.  The  adult  individual  displays  bilateral  erosive  lesions  of  the   supraorbital  region  and  glabella,  including  erosion/remodeling  of  the  margin  of  the   nasal  aperture.  The  northern  inland  route  of  the  Silk  Road  passed  through  Qinghai   and  Gansu  provinces,  which  would  have  allowed  for  long  distance  trade  networks   increasing  the  spread  of  infectious  diseases.   Degenerative  joint  disease  (DJD)  is  a  multifactorial  non-­‐inflammatory   disorder  affecting  articular  joints.  Associated  skeletal  changes  include  proliferative   exophytic  growths  on  vertebrae,  a  porous  joint  surface,  or  in  severe  cases  where    

6  

cartilage  has  completely  worn  away,  eburnation  (Waldron  and  Rogers,  1991).  The   causative  factors  for  DJD  include  hormones,  nutrition,  metabolism,  infection,  trauma   and  heredity  (Larsen,  1997,  1998).    Cultural  differences  in  activity,  stemming  from   subsistence  patterns  or  from  sexual  division  of  labor  can  create  differing   osteoarthritis  incidence  between  males  and  females,  as  seen  in  studies  of  living   populations  (Kennedy,  1989;  McCarty  and  Koopman,  1993).  Lastly,  DJD  incidence   greatly  increases  with  age,  so  populations  composed  of  older  individuals  have  a   greater  incidence  of  the  condition.   This  study  also  notes  two  fairly  common  sacral  malformations  present  in  the   collections  examined:  lumbosacral  transitional  vertebra  and  spina  bifida  oculta.   Lumbosacral  transitional  vertebra,  or  LSTV  is  a  congenital  condition  that  carries  an   increased  risk  for  disc  degeneration  (Aihara  et  al.,  2005),  herniated  discs  (Wigh  et   al.,  1981)  and  may  be  linked  to  genetic  factors  (Tini  et  al.,  1977).  Some  studies  found   no  link  between  LSTV  to  lower  back  pain  (Magora  and  Schwartz,  1978;  Vergauwen   et  al.,  1997).    However,  the  clinical  literature  indicates  that  when  combined  with   LSVT,  lower  back  pain  may  be  more  severe  (Tini  et  al.,  1977).    The  condition  may  be   partial  or  complete,  evidenced  by  anomalies  on  the  transverse  processes.  It  may   present  itself  in  the  more  common  sacralization  of  lumbar  segments,  or  the  less   common  lumbarization  of  sacral  segments.     Spina  bifida  oculta  is  the  least  severe  form  of  a  condition  (the  other,  spina  bifida   cystica,  which  is  incompatible  with  life)  referring  to  incomplete  fusion  of  the   posterior  neural  arch  on  the  sacrum  (Roberts  and  Manchester,  1995).  The  condition   is  fairly  common  on  modern  populations  and  usually  decreases  with  age,  especially    

7  

among  females  (Aufderheide  and  Rodriguez-­‐Martin,  1998).  Patterns  of  both  of  these   congenital  conditions  will  be  examined  to  establish  any  possible  genetic  links   between  individuals  at  the  site.  This  may  help  determine  how  frequently  these   conditions  were  inherited.   Trauma  can  be  caused  by  cultural  activities,  warfare  or  isolated  accidents.   Whereas  isolated  trauma  evident  on  skeletal  material  may  not  imply  much,   consistent  patterns  of  trauma  in  a  population  can  reveal  intergroup  conflict   (amputations,  scalping),  risky  food  procurement  (animal  encounters  while  hunting   and  foraging  from  tall  trees  which  can  cause  fractures),  or  other  cultural  practices   (trepanation,  foot  binding).  Within  this  study,  I  classify  several  subcategories  of   trauma  in  order  to  discern  any  patterns  of  activity  in  the  surveyed  populations:   forelimb  and  hindlimb  fractures,  rib  fractures,  herniated  discs,  and  ossified   ligament/tendon  or  joints.  Fractures  occur  due  to  impacts  and  low  bone  mass  may   increase  their  propensity.  Herniated  discs  may  occur  from  a  weakening  of  the   vertebral  centrum  via  high  frequency  of  lifting  heavy  loads.  Although  herniated   discs  occur  in  individuals  suffering  from  tuberculosis  (Pott’s  disease)  or  Paget’s   disease,  other  osteological  patterning  usually  helps  in  their  diagnosis.  Lastly,   traumatic  injuries  may  cause  for  tendons  or  ligaments  to  spontaneously  ossify.  Joint   fractures  also  lead  to  the  fusing  of  bones  forming  part  of  the  fracture,  which  reduces   movement  and  may  hinder  function.  The  conditions  to  be  analyzed  will  now  be  put   in  better  perspective  after  an  overall  look  of  the  sites  surveyed  for  the  study  and  the   diet  of  the  inhabitants.        

8  

CHAPTER  2   ARCHAEOLOGY  OF  THE  SITES     JIANGJIALIANG   Figure  (2-­‐1)  –  Map  of  Jiangjialiang  site  

  Geography   Jiangjialiang  (姜家梁)  sits  atop  a  hill  east  of  the  Xishuidi  (西水地)  village   north  of  the  Sanggan  (桑干)  river,  located  just  east  of  the  Nihewan  Basin  in   Jiangjiakou  (張家口)  county,  Hebei  province.  The  site  is  positioned  at  an  altitude  of   approximately  30  meters  above  the  riverbed.  It  is  divided  into  three  sections  to   account  for  the  altitude  differences  and  the  effects  of  riverine  erosion  processes.          

 

9  

History  and  Cultural  Background   The  Nihewan  basin  has  been  studied  since  1921  by  French  scholar  E.  Lecent   who  began  collecting  prehistoric  zoo-­‐archaeological  material.  In  1924,  American   geographer  G.B.  Barbour  gathered  geographical  information  in  region.  In  1930,   French  scholar  P.  Teilhard  de  Chardin  hypothesized  human  presence  in  the  region   after  his  analyses  of  mammalian  fossils.   In  1957,  Chinese  archaeologists  Wang  Jiang  and  Jia  Lanpo  hypothesized  that   the  area  would  yield  the  earliest  human  occupation.    In  1974  a  team  led  by  Jia  Lanpo   and  Wei  Qi  discovered  the  Paleolithic  site  of  Syujiayao  (許家窯),  and  in  1976  found   the  first  human  skeletal  remains  (nine  fragments)  during  the  excavation  of  the  site.   By  1977,  another  Chinese  scholar,  Wu  Maolin  found  another  eight  human  skeletal   fragments.   In  1978,  three  scholars  You  Yuzhu,  Tang  Yingjun  and  Li  Yi  discovered  the  site   of  Xiaochangliang  (小長梁),  some  of  the  earliest  Paleolithic  remains  in  East  Asia.   Since  the  1990s,  Xie  Fei  from  the  Hebei  Institute  of  Cultural  Relics  has  discovered   another  seven  archaeological  sites  in  the  region.   Contemporary  Period   Two  excavations  were  undertaken  at  Jiangjialiang.  The  1995  excavation   discovered  section  I  of  the  site.  Sections  II  and  III  were  discovered  during  the  1998   excavation.  By  area,  Jiangjialiang  is  the  largest  Neolithic  site  in  Hebei  province,  with   all  three  sections  measuring  1,600  m2.  The  age  of  the  site  is  around  6,850  +/-­‐  80  BP   via  C14  dating  and  represents  the  transition  between  two  cultural  periods:  terminal    

10  

Yangshao  and  very  early  Longshan.  Between  both  excavations,  a  total  of  nine  houses   and  78  tombs  were  discovered,  all  within  close  proximity,  although  it  is  noted  that   they  do  not  seem  to  be  contemporaneous.  The  Jiangjialiang  cemetery  is  very   organized,  consisting  of  five  rows  of  rectangular  tombs  facing  east  to  west.  The   number  of  these  tombs  located  within  each  row  varies.     MINHE  X,  MINHE  M  AND  LGS  SITES     Figure  (2-­‐2)  –  Map  of  Minhe  X,  Minhe  M  and  LGS  sites.  

  Geography Minhe  autonomous  county  (民和回族土族自治县)  is  located  in  a   mountainous  region  on  the  eastern  portion  of  Qinghai  province,  bordering  Gansu   province  to  the  east.  Most  of  these  mountains  reach  3,500  meters  above  sea  level.   The  region  features  thick  and  widespread  loess  soil  deposits.  Due  to  the  loose    

11  

texture  of  this  sediment,  water  and  soil  erosion  are  a  big  problem  and  many  gullies   can  be  seen  throughout  the  land.  Elevation  differences  are  significant  in  the  region.   The  altitude  ranges  from  1,650  meters  up  to  4,220  meters  with  three  main  altitude   levels  currently  utilized  for  agriculture.  The  Huang  Shui  (黃水)  valley  at  1,650-­‐2,000   meters  of  elevation  has  a  long  history  of  cultivation,  and  is  currently  used  for   planting  vegetable  and  fruit  crops  such  as  melon.  At  around  2,000-­‐2,700  meters  of   elevation,  the  region  frequently  experiences  drought  conditions,  so  it  is  not  an  ideal   environment  for  cultivation  except  for  wheat,  a  cultivated  cereal  that  does  not   require  much  irrigation.  Areas  with  an  altitude  of  2,700-­‐3,200  meters  are  mainly   employed  for  growing  oil-­‐bearing  crops.  

Minhe  is  located  between  two  major  highlands,  so  the  weather  has  several  

apparent  transitional  features.  There  is  sufficient  light  and  sun  throughout  the  year   and  little  unevenly  distributed  rainfall.  The  temperature  of  the  region  is  relatively   moderate,  between  7-­‐8°  C  in  the  Huang  Shui  valley  down  to  -­‐5°  C  at  the  highest   altitudes.     History  and  Cultural  Background   In  China,  the  first  inhabitants  of  the  Qinghai  region,  around  30,000  BP   consisted  of  hunter-­‐gatherers  who  utilized  advanced  stone  and  bone  tools  (Suzuki   et  al.,  2005).    Yangshao  ruins  have  been  discovered  in  the  Minhe  region,  confirming   that  inhabitants  had  close  connections  with  Central  China  over  6,000  years  ago.  A   large  number  of  sites  (113  in  total)  belonging  to  the  Majiayao  culture  (5,300-­‐3,050   BP),  which  has  strong  local  characteristics,  176  sites  belonging  to  the  Qijia  culture    

12  

(4,000-­‐3,600  BP)  and  other  Bronze  Age  culture  sites  have  also  been  discovered  in   the  region.     The  populations  studied  are  part  of  the  Xindian  culture,  which  dates  to  the   first  half  of  the  second  millennium  and  the  late  Western  Zhou  period.  Its  area  of   distribution  is  the  Hehuang  River  Valley  and  the  eastern  part  of  Gansu.  It  originated   in  the  late  Qijia  culture  (due  to  the  continuity  in  pottery  style).  The  Xindian  culture   later  expanded  toward  the  west  and  became  closer  to  the  Kayue  Culture,  by  which  it   was  possibly  absorbed  (Loewe  &  Shaughnessy,  1999).     Contemporary  Period   Swedish  scholar  Johan  Gunnar  Andersson  carried  out  the  first  archaeological   studies  of  the  region  in  1923  and  1924  and  discovered  several  Neolithic  and  Bronze   Age  sites.  The  site  was  accidentally  discovered  by  villagers  while  building  a  house.   In  the  years  1978  through  1980,  full-­‐scale  excavations  were  undertaken  by  the   Qinghai  Provincial  Administration  of  Cultural  Relics,  uncovering  367  graves,  500   ceramic  vessels  and  2,690  stone,  bone  or  bronze  tools  and  vessels  (Qinghai   Provincial  Administration,  2004).   The  collections  included  in  this  study  come  from  three  physically  and   culturally  contemporaneous  sites  and  are  thus  lumped  together  during  analysis:  the   Xiaohandi  (小旱地)  cemetery  –  represented  as  Minhe  X;  the  Mapai  (馬排)  cemetery   –  represented  as  Minhe  M;  and  LGS.    Within  the  Xiaohandi  cemetery,  only  about  100   simple  internments  (27.5%  of  the  site)  are  present  the  rest  being  disturbed,   incomplete  or  missing.    

13  

The  cemeteries  under  study  are  located  east  of  the  Hetao  (核桃)  village.  The   village  residents  grow  several  cultigens  such  as  potatoes,  white  carrots  and  white   radish  in  one  annual  season.  The  average  age-­‐at-­‐death  for  males  is  60  years,  and  for   females,  62-­‐64  years.   I  have  given  a  brief  introduction  on  the  study  and  the  health  parameters  I   sought  to  examine  and  described  some  of  the  background  information  of  the   surveyed  sites.  Now  I  will  describe  the  methodology  and  materials  that  I  used  in  this   study,  noting  some  of  the  limitations  encountered.  

CHAPTER  3     MATERIALS  AND  METHODS     Background  of  samples   For  the  purposes  of  this  study,  only  post-­‐crania  were  examined.  Further  

information  regarding  the  paleopathology  of  Jiangjialiang  crania  can  be  found  in   Okazaki  (in  preparation)  and  Li  (2004).  The  skeletal  collections  analyzed  for  the   experimental  portion  of  this  study  are  curated  at  the  Institute  of  Field  Archaeology,   Jilin  University,  China.  The  Jiangjialiang  collection,  from  the  Neolithic  period  of   China,  consists  of  66  individuals  from  the  transitional  period  between  the  Yangshao   (7,000  to  5,000  BP)  and  Longshan  cultures  (5,000  to  3,000  BP).  For  this  study,  the   site  of  Jiangjialiang  is  still  treated  as  a  Yangshao  site,  as  the  dietary  changes  that   occurred  during  the  formal  Longshan  period  would  not  have  been  readily  apparent   on  the  skeletons.  The  Minhe  X,  Minhe  M,  and  LGS  collections  occur  later  in  time,  and   are  associated  with  the  Xindian  culture  (ca.  3,000  BP)  from  the  Bronze  Age  of  China.    

14  

Since  all  three  occur  in  close  temporal  and  spatial  proximity,  and  due  to  their  small   sample  quantity  (96  individuals  altogether),  all  three  are  placed  together  in  the   analyses.  For  information  regarding  craniometric  studies,  the  study  by  Wang  (1995)   should  be  consulted.  Lastly,  the  MXY  collection,  consisting  of  40  individuals  also   comes  from  the  Xindian  culture,  although  it  is  not  in  physical  proximity  to  the  other   three  sites.     The  comparative  data  for  this  study  come  from  two  sources.  First,  a  total  of   eight  individuals  of  Chinese  and  Japanese  descent  housed  at  the  Department  of   Anthropology  in  the  American  Museum  of  Natural  History,  New  York  City  are  part  of   an  anatomical  collection  donated  by  the  Cornell  University  Medical  College  in  1945.   The  second  collection  consists  of  over  70  individuals  (all  male,  except  for  one   female)  of  Chinese  descent  who  worked  at  the  Karluk  Cannery  in  Kodiak  Island,   Alaska.  They  were  collected  by  Aleš  Hrdlička  in  the  early  1940s  and  are  housed  at   the  Department  of  Anthropology  within  the  National  Museum  of  Natural  History,   Washington,  D.C.    

Analyses  for  all  samples  included  gross  examination  of  the  entire  skeleton  to  

discern  and  exclude  development  abnormalities  and  pathologies  that  may  hinder   measurement.  Any  post-­‐mortem  breaks  were  glued  back  together  with  epoxy  glue   after  cleaning  in  order  to  be  properly  measured.  To  limit  intraobserver  error,  all   measurements  were  taken  twice  with  a  Carolina  osteometric  board  (catalog   #249800),  or  a  Mitutoyo  Absolute  Digimatic  digital  caliper.  Photographic  record  of   the  collections  was  taken  with  a  Nikon  D80  camera  and  a  Sigma  17-­‐70mm  f/2.8  lens.        

15  

Measurements  and  statistical  calculations   Age  assessments  were  performed  according  to  Todd  (1921)  pubic  symphysis   protocol  or  the  Lovejoy  et  al.  (1985)  method  for  the  auricular  surface.  Infants,  when   possible,  were  aged  according  to  humeral  length  or  femoral  length  after  Johnston   (1962),  Table  2,  and/or  via  dental  development  after  Ubelaker  (1989),  Figure  71.   Limb  bone  measurements  from  sub-­‐adults  (individuals  whose  age-­‐at-­‐death  was   under  17-­‐18)  were  omitted  in  this  study,  as  their  epiphyses  had  not  yet  fully  fused.   Pathological  parameters  were  also  not  measured,  as  they  would  have  skewed   results.     Sex  assessments  depended  heavily  on  the  presence  and  condition  of  the  os   coxae,  and  were  determined,  according  to  Phenice  (1969)  as  cited  in  Buikstra  and   Ubelaker  (1994).  Due  to  curation  bias,  most  individuals  within  the  Minhe  X,  Minhe   M,  LGS  and  MXY  collections  were  missing  all  carpals,  metacarpals,  tarsals,   metatarsals,  phalanges,  ribs,  sternums,  and  in  some  cases  os  coxae  and  sacra,  so   discerning  sex  and  the  incidence  of  many  pathological  conditions  was  only  possible   for  a  limited  number  of  individuals.     Within  the  Minhe  X  collection,  several  individuals’  limb  bones,  along  with  os   coxae,  incomplete  scapulae  and  sacra  were  found  comingled  in  a  box.  To  utilize   these  comingled  femora  for  population  comparisons,  I  used  a  sex  determination   method  devised  by  Iscan  and  Shihai  (1995).  The  authors  determined  that  within   Mongoloid  populations,  the  distal  epiphyseal  breadth  of  the  femur  is  the  most   dimorphic  part,  and  thus  best  for  discriminating  between  the  sexes  (with  an  average   success  rate  of  94.9%  between  both  sexes).    

16  

Limb  bone  measuring  protocols  for  this  study  are  also  based  on  Buikstra  and   Ubelaker  (1994).    They  include  maximum  and  physiological  lengths,  as  well  as   maximum  and  minimum  widths  at  the  midshaft,  or  anterior-­‐posterior  and  medio-­‐ lateral  parameters  for  all  forelimb  and  hindlimb  bones  including  the  clavicle.   Epiphyseal  breaths  and  diameter  of  the  femoral  and  humeral  heads  were  also  taken.   Lastly,  maximum  length  and  breadth  of  all  os  coxae  and  sacra  was  measured.   Scapulae  were  not  included  in  the  study  due  to  their  very  fragmentary  condition   within  the  archaeological  populations  analyzed.    All  bones  were  oriented  in   standard  position  according  to  Ruff  &  Hayes  (1983,  Figure  2a).       Stature,  in  centimeters,  was  calculated  from  the  average  of  left  and  right   femur  formulas  devised  for  Mongoloid  femora  in  Trotter  and  Gleser  (1958).  When   both  femora  of  an  individual  were  present,  the  left  was  chosen  for  the  study,  as  they   were  generally  more  numerous  within  the  sample.    Average  femur  length  for  males   and  females,  their  estimated  stature  and  sexual  dimorphism  were  then  compared  to   data  from  North  China,  found  on  Pechenkina  et  al.,  (2007),  as  this  study  also   employed  the  stature  estimate  formula  from  Trotter  and  Gleser  (1958).  Body  mass,   in  kilograms,  was  calculated  by  taking  the  average  of  the  Ruff  et  al.  (1991)  equation   for  the  male  and  female  femoral  heads  (BM  =  (2.741  X  FH  –  54.9)  X  .90).     Left  and  right  sides  were  measured  in  order  to  test  bilateral  asymmetry   between  males  and  females  and  across  all  sites.  All  analyses  could  not  be  performed   in  every  collection  due  to  small  samples  sizes  and  preservation/collection  biases.   Following  the  work  of  Auerbach  and  Ruff  (2005),  asymmetry  data  were  converted  

 

17  

into  percentage  directional  asymmetries  (%DA)  to  allow  for  the  direct  comparison   of  asymmetries  in  different  skeletal  elements  within  right  and  left  dominant  groups:   %DA  =  ((right  –  left)  /  (average  of  all  left  and  right))  * 100   For  comparison  percent  absolute  asymmetries  (%AA)  between  sides  were   also  calculated  to  find  out  the  magnitude  of  random  asymmetry  for  every  dimension   measured:   %AA  =  ((maximum  –  minimum)  /  (average  of  all  maximum  and  minimum))  *  100   As  these  analyses  were  performed  using  non-­‐parametric  tests  on  non-­‐ transformed  data,  median  asymmetry  values  are  emphasized  and  mean  asymmetry   values  are  included  as  well,  for  comparison  with  earlier  studies  that  employ  this   statistic  (Auerbach  and  Ruff,  2005).   Due  to  time  constraints  during  data  collection  and  analysis  restrictions,  more   invasive  methods  such  as  cross-­‐sectional  analyses  data  and  x-­‐rays  could  not  be   taken.  Also,  about  one  third  of  the  Jiangjialiang  femora  were  previously  sectioned   for  a  study  approximately  along  the  20%  and  80%  portions  of  the  diaphysis,  which   did  not  allow  for  bilateral  asymmetry  comparison.       Pathologies  were  classified  into  five  categories  based  on  their  perceived   etiologies.  The  first  category  is  periostitis,  which  results  from  non-­‐specific  disease   processes  that  only  act  upon  the  outer  bone  table.  This  category  is  divided  into  Type   I  (inactive  and  mild  periostitis),  Type  II  (active  and  moderate  or  severe  periostitis),   unspecific  inflammation,  osteomyelitis,  which  involves  the  inner  table  of  bone  and   has  characteristic  sequestrum,  involucrum  and  cloaca  formation  and  osteitis.  The   second  category  includes  bone  inflammation  more  specific  in  origin,  often  exhibiting    

18  

a  granulomatous  lesion,  such  as  in  the  case  of  tuberculosis,  leprosy  and  treponemal   diseases.  The  third  category  is  degenerative  joint  disease  (DJD),  which  derives  from   activity-­‐related  wear  and  tear  of  joints  (unlike  rheumatoid  arthritis,  an  autoimmune   disorder)  and  encompasses  osteoarthritis  and  osteophytosis.  The  fourth  category   includes  congenital  malformations  of  the  sacrum  such  as  lumbosacral  transitional   vertebra  and  spina  bifida.  The  fifth  category  includes  all  traumas,  evident  in  healed   or  unhealed  fractures,  amputated  limb  segments  and  post-­‐traumatic  joint,  tendon   and/or  ligament  ossification.    

Now  after  describing  my  methodology,  I  will  present  the  results  of  my  analysis  

on  the  skeletal  populations  I  studied,  including  the  comparative  data  obtained  from   museum  collections.    

CHAPTER  4     RESULTS     Several  health  markers  were  examined  in  these  populations.  Each  pathology  

elucidates  a  particular  aspect  in  the  livelihood  of  these  individuals.    Taken  together,   they  allow  for  a  more  complete  picture  of  their  health  profile  to  emerge.  Below,  I   present  the  results  for  the  data  on  stature,  sexual  dimorphism  bilateral  asymmetry   and  body  mass.  After,  I  present  paleopathological  data,  which  encompasses   nonspecific  and  specific  infections,  degenerative  joint  disease,  congenital  conditions   and  trauma.  Lastly  I  examine  the  paleodemography  of  the  sites  before  making   inferences  on  the  health  of  populations  in  Northern  China  from  the  Neolithic  period   up  to  the  Bronze  Age.      

19  

Stature   There  is  a  visible  difference  in  the  stature  of  different  populations,  compared  to  the   modern  control  group,  and  also  between  males  and  females.  The  control  group   mainly  composed  of  factory  workers  of  Chinese  descent,  and  an  anatomical   collection,  both  from  the  20th  century  displays  a  slightly  reduced  stature  from  the   early  Dynastic  populations,  at  165.04  cm.    These  modern  samples,  although   generally  shorter,  are  still  of  similar  stature  to  those  of  the  early  Dynastic  periods.   Unfortunately,  a  sufficiently  large  female  sample  was  missing  for  stature  and  sexual   dimorphism  comparisons.   Table  4-­‐1  shows  that  the  earlier  Yangshao  culture  site  at  Jiangjialiang   displays  the  tallest  statues  in  both  males  and  females,  with  males  averaging  more   than  eleven  centimeters  in  height  over  females,  and  more  than  five  centimeters  in   height  over  the  anatomical  collections  analyzed.  The  lowest  average  male  statures   are  represented  at  the  Xindian  culture  site,  MXY,  whereas  the  lowest  female  statures   are  comparable  at  all  the  Xindian  culture  sites,  Minhe  X,  Minhe  M,  LGS  and  MXY.       Table  (4-­‐1)  –  Mean  femoral  length  and  stature  estimates  for  each  site  surveyed.     a

Femur Length (mm) Site Yangshao Jiangjialiang Xindian MHX, MHM, LGS MXY Modern Control

Males [N]

Females [N]

Estimated Stature (cm) Sexual Males Females Dimorphism

457.33 +/- 16.2 [3]

405 +/- 14.12 [4]

170.81

159.40

3.45

438.57 +/- 17.38 [7] 417.38 +/- 26.1 [8]

401.25 +/- 17.69 [10] 401.43 +/- 16.08 [7]

166.72 162.10

158.58 158.62

2.50 1.08

430.85 +/- 20.37 [65]

165.04

a  Stature  estimates  are  based  on  the  average  of  both,  left  and  right  femur  formulas  

from  Mongoloid  males  from  Trotter  and  Gleser  (1958).    

20  

      Table  (4-­‐2)  –  Femur  length  and  estimated  stature  from  Chinese  Neolithic  samples   (adapted  from  Pechenkina  et  al.,  2007).     a

Femur Length (mm) Site Peiligang Jiahu Yangshao Beiliu Jiangzhai I Jiangzhai II Shijia Guanjia Xipo Longshan Meishan b Mengzhuang Dynastic Kangjia Western Zhou

Males [N]

Females [N]

Estimated Stature (cm) Sexual Males Females Dimorphism

470.31 +/- 17.4 [32]

428.09 +/- 33.8 [21]

173.69

164.49

2.72

448.00 +/- 27.3 [4] 455.87 +/- 19.4 [4] 450.73 +/- 17.9 [7] 447.71 +/- 26 [14] 440.60 +/- 10.9 [5] 448.98 +/- 24.5 [11]

408.84 +/- 20.1 [4] 427.85 +/- 19.9 [5] 416.9 +/- 11.3 [6] 410.08 +/-16.5 [10] 413.44 +/- 20.7 [9] 398.65 +/- 23.3 [5]

168.89 170.58 169.46 169.26 167.3 169.1

160.5 164.53 162.26 161.11 161.46 158.28

2.55 1.81 2.17 2.47 1.78 3.31

441.8 +/- 15.1 [5] 438.9 +/- 29.2 [9]

389.6 +/- 31 [3] 418.5 +/- 15 [4]

167.56 166.93

156.33 162.55

3.47 1.33

433.4 +/- 18.8 [8] 437.0 +/- 18.3 [8]

366.8 +/- 14.8 [4] 397.1 +/- 24.6 [6]

165.76 166.52

155.74 157.94

3.12 2.64

a  Stature  Estimates  are  based  on  the  average  of  both,  left  and  right  femur  formulas  

from  Mongoloid  males  from  Trotter  and  Gleser  (1958).  b  Based  on  Henan  Institute   (2003):  546     By  comparing  data  from  this  study  to  data  in  Table  4-­‐2  from  eleven   populations,  expanding  a  wider  time  period  in  North  China,  I  was  able  to  obtain  a   better  consensus  of  inter-­‐site  stature  changes  over  time.    The  Early  Neolithic  site  of   Jiahu  dated  to  the  Peiligang  culture  (7,500-­‐6,900  BP)  displays  a  wide  disparity   between  male  and  female  stature,  which  could  not  be  attributed  to  insufficient   sampling,  as  it  contained  measurements  for  over  53  individuals  (see  Figure  4-­‐1).     Yangshao  culture  sites,  occurring  later  in  the  sequence  (7,000-­‐5,000  BP),  are   much  less  sexually  dimorphic  than  Jiahu.  The  population  at  Jiangjialiang  exhibits  one    

21  

of  the  most  sexual  dimorphism  of  all  sites  (similar  to  Xipo);  it  also  displays  the   tallest  males  in  the  Yangshao  culture  with  an  average  stature  of  170.81  cm.  The   smallest  sexual  dimorphism  in  the  Yangshao  period  occurs  at  the  site  of  Guanjia   with  1.78  cm.  At  the  Yangshao  culture  sites,  average  male  stature  ranges  from   170.81  cm  to  167.3  cm  and  females  statures  range  from  164.53  cm  to  158.28  cm.   At  the  Longshan  and  Xindian  cultures  there  is  an  overall  reduction  of  stature   in  both  males  and  females  across  all  sites,  more  apparent  as  time  progressed   towards  the  early  Dynastic  period  (see  Figure  4-­‐2).  In  the  Longshan  culture  (5,000-­‐ 4,000  BP),  male  stature  range  from  167.56  cm  to  166.93  cm  and  female  stature,   from  162.55  cm  to  156.33  cm.  In  the  slightly  later  Xindian  culture  (ca.  3,000  BP)   sites  analyzed  for  this  study,  average  male  statures  ranged  from  166.72  cm  to   162.10  cm  and  females  statures  ranged  from  158.62  cm  to  158.58  cm,  with  the   shortest  males  at  the  site  of  MXY.  By  the  early  Dynastic  periods,  stature  seems  to   make  a  small  rebound  in  males,  although  for  females,  the  reduction  trend  persists   until  the  Western  Zhou  period.    

Sexual  dimorphism  is  reduced  to  some  degree  in  the  Longshan  culture  

(except  at  the  site  of  Meishan),  with  the  Xindian  culture  experiencing  the  least   amount  of  dimorphism  between  all  periods.  Stature  differences  between  males  and   females  at  the  sites  of  Minhe  X,  Minhe  M,  LGS  and  MXY  only  vary  between  3.48  cm  to   8.15  cm,  unlike  in  earlier  Yangshao  culture  periods,  where  differences  per  site  were   as  high  as  11.41  cm  at  Jiangjialiang.  For  females  in  the  early  Dynastic  period,  there   seems  to  be  an  increase  in  sexual  dimorphism  compared  to  their  male  counterparts;   the  implications  for  which  will  be  evaluated  in  the  discussion.    

22  

Body  Mass   Body  mass  was  determined  from  the  femoral  head  diameter  using  the   average  from  the  male  and  female  formulas  from  Ruff  et  al.  (1991).    Data  on  Table   (4-­‐3)  indicate  that  at  the  Jiangjialiang  site,  male  body  mass  was  the  highest  of  all  six   populations  surveyed,  including  the  modern  anatomical  samples,  at  70.55  kg,  and   females  were  also  the  heaviest,  at  59.02  kg.  All  four  Xindian  populations  also   experienced  a  reduction  in  body  mass  similar  to  that  in  stature.  The  site  of  MXY  had   the  least  average  body  mass  for  both  males  and  females,  with  61.2  kg  and  49.06  kg   respectively  (see  Figure  4-­‐3).     Table  (4-­‐3)  –  Mean  femoral  head  diameter  and  estimated  adult  body  mass  (in  kg)   for  populations  surveyed  at  each  site.     Jiangjialiang MHX, MHM, LGS MXY Control

Femoral Head Diameter (mm) Males [N] Females [N] 47.76 +/- 2.88 [18] 42.8 +/- 2.39 [19] 44.98 +/- 2.13 [11] 40.74 +/- 1.12 [14] 43.74 +/- 3.07 [12] 38.52 +/- 1.81 [12] 44.99 +/- 2.16 [64]

Estimated Body Mass (kg) Males Females 70.55 59.02 64.09 54.23 61.20 49.06 64.11

  The  control  population  had  a  slightly  higher  average  body  mass  than   individuals  from  the  Xindian  culture,  at  64.11  kg.  Such  results  indicate  a  slight   rebound  in  body  weight  after  the  beginning  of  the  Dynastic  period,  although  it   would  be  useful  to  have  more  samples  from  the  2,000  years  that  separate  these   periods  to  form  more  solid  conclusions.          

23  

Correlation  between  stature  and  body  mass    

An  ordinary  least  squares  (OLS)  regression  plot  of  stature  relative  to  body  

mass  is  reported  in  Figure  (4-­‐4)  in  order  to  determine  the  quantitative  relationship   between  both  metric  variables  dealing  with  levels  of  sexual  dimorphism.    The  plot   displays  a  high  positive  correlation  (.916),  which  indicates  both  variables  are   inherently  connected.    Males  have  a  wide  spread  with  those  from  Jiangjialiang   clearly  being  the  tallest  and  largest  among  all  samples.  Males  from  the  Xindian   culture  and  the  control  group  are  located  near  the  middle  of  the  graph,  with  the  MXY   males  closer  to  the  female  cluster.  The  three  female  groups  surveyed  cluster  closer   together  than  to  any  of  the  male  groups,  displaying  the  lowest  average  body  mass   and  stature  form  all  samples.    From  the  graph,  it  can  again  be  noted  that  the   Jiangjialiang  population  was  on  average  the  tallest,  but  had  the  highest  degree  of   sexual  dimorphism,  whereas  the  MXY  population  was  on  average  the  shortest,  and   had  the  least  amount  of  sexual  dimorphism.     Bilateral  asymmetry   Degrees  of  bilateral  asymmetry  shifted  little  from  population  to  population,   although  there  were  slight  to  moderate  levels  between  males  and  females  on  certain   measurement  parameters.   Male  humeral  midshaft  diameter  asymmetry  drastically  increases  from  the   Jiangjialiang  population  to  the  Minhe  X,  Minhe  M,  and  LGS  populations  from  a  mean   percentage  of  directional  asymmetry  (%DA)  of  3.67  to  a  mean  %DA  of  11.63,   indicating  more  single-­‐side-­‐focused  activities  at  the  Xindian  population  sites  (see    

24  

Tables  4-­‐4  and  4-­‐5  respectively).  For  females  however,  mean  %DA  decreases   between  both  periods.  At  Jiangjialiang,  the  median  %DA  is  4.69,  whereas  at  the  later   Minhe  X,  Minhe  M  and  LGS  sites,  it  decreases  to  only  0.63,  indicating  activities  that   require  the  use  of  both  arms  equally.  The  MXY  site,  dated  to  the  same  time  period   does  not  show  a  similar  median  %DA  of  the  humeral  midshaft  in  males  (see  Table  4-­‐ 6).  Instead,  the  male  value  (1.14)  and  the  female  value  (0.77)  indicate  that  females   and  males  may  have  been  performing  more  similar  activities  than  at  the  Minhe  X,   Minhe  M,  and  LGS  sites.  Males  from  the  control  sample  display  a  moderate  median   %DA  with  2.68,  and  a  median  %AA  of  3.74  (see  Table  4-­‐7).  Their  radial  midshaft   median  %DA  and  median  %AA  are  also  moderate,  at  1.83  and  4.77  respectively,   which  may  have  had  to  do  with  their  work  at  the  cannery.   Tibial  midshaft  diameters  also  show  moderate  changes  in  median  %DA  and   median  %AA  in  both  males  and  females.  At  the  Jiangjialiang  site,  median  %AA  for   males  and  females  is  2.97  and  2.30  respectively.  At  the  MXY  site,  median  %DA  is   2.26  for  males  and  1.88  for  females,  but  the  median  %AA  for  males  is  2.88  and  3.57   for  females,  indicating  that  females  have  a  higher  percentage  of  absolute  asymmetry   of  their  tibia  midshaft  diameters.  Lastly,  males  from  the  control  population  also   display  a  moderate  median  %AA  of  3.18.  

 

25  

Table
(4‐4)
–
Bilateral
asymmetry
scores
in
the
population
of
Jiangjialiang.
 Measure Humeral maximum length Humeral distal epicondylar breadth Humeral head diameter Humeral average 50% diaphyseal diameter Radial maximum length Femoral AP head diameter Tibial maximum length Tibial average 50% diaphyseal diameter

Median %DA (mean %DA) Total Males Females 0.71 (0.56) -0.24 (0.00) 1.79 (1.41) -1.37 (-1.50) -1.03 (-0.82) -1.37 (1.04) 0.06 (0.32) -0.62 (0.22) 1.11 (0.47) 3.97 (3.75) 3.67 (3.63) 4.19 (3.88) 0.22 (0.28 -0.21 (0.05) 0.43 (0.43) -0.31 (-0.32) -0.63 (-0.32) 1.22 (-0.31) 0.00 (-0.11) -0.47 (-0.10) 0.15 (-0.12) 0.18 (0.57) 0.29 (0.71) 0.07 (0.41)

Median %AA (mean %AA) Total Males Females 1.26 (1.22) 1.18 (1.10) 1.79 (1.41) 1.37 (1.96) 1.17 (1.04) 1.37 (3.38) 1.74 (1.65) 1.86 (1.69) 1.74 (1.58) 4.32 (4.81) 4.91 (5.12) 4.19 (4.49) 0.53 (0.71) 0.52 (0.57) 0.76 (0.80) 1.30 (1.48) 0.76 (0.88) 2.05 (2.49) 0.54 (0.63) 0.54 (0.64) 0.46 (0.62) 2.57 (3.47) 2.97 (4.07) 2.30 (2.79)


 
 Table
(4‐5)
‐
Bilateral
asymmetry
scores
in
the
populations
of
Minhe
X,
Minhe
M
and
LGS.
 
 Measure

Median %DA (mean %DA) Males Females -1.02 (-1.24) 3.49 (4.57) 11.63 (11.85) 0.63 (2.15) -0.30 (-0.12) -0.62 (-0.68) 0.12 (0.25) -0.40 (-0.43) 0.29 (0.39) -1.10 (-1.06) 0.01 (-0.06) -0.27 (-1.00) 0.30 (0.34) -0.29 (-0.05) -1.15 (-1.19) 2.24 (2.61)

Total Humeral head diameter Humeral average 50% diaphyseal diameter Femoral maximum length Femoral AP head diameter Tibial maximum length Tibial condylar breadth



26


Median %AA (mean %AA) Males Females 1.02 (1.28) 5.13 (3.49) 11.63 (11.85) 1.76 (2.89) 0.53 (0.69) 0.68 (0.71) 0.43 (0.70) 0.98 (1.41) 0.46 (0.96) 1.22 (1.76) 0.74 (1.36) 0.54 (1.36) 0.88 (1.36) 1.54 (1.65) 1.16 (1.36) 2.24 (2.24)

Total

Table
(4‐6)
‐
Bilateral
asymmetry
scores
in
the
population
of
MXY.



 Measure Humeral maximum length Humeral distal epicondylar breadth Humeral head diameter Humeral average 50% diaphyseal diameter Radial maximum length Femoral maximum length Femoral epicondylar breadth Femoral AP head diameter Tibial maximum length Tibial condylar breadth Tibial average 50% diaphyseal diameter

Median %DA (mean %DA) Total Males Females 1.45 (1.33) -0.40 (-0.87) 2.21 (2.24) 4.19 (4.19) 0.81 (0.94) 0.95 (1.14) 1.14 (1.10) 0.77 (1.17) 1.12 (0.52) 0.36 (-0.11) 0.36 (-0.08) 0.19 (-0.13) 0.00 (0.51) -0.34 (0.17) 0.74 (0.74) -0.14 (-0.08) -0.60 (-0.82) 0.75 (0.77) -0.30 (-0.30) -0.36 (-0.36) -0.30 (-0.27) -0.38 (-0.38) 2.15 (1.45) 2.26 (1.90) 1.88 (0.93)

Median %AA (mean %AA) Total Males Females 1.45 (1.33) 0.94 (1.59) 2.21 (3.04) 4.19 (4.19) 2.00 (2.27) 2.27 (2.52) 2.24 (2.06) 3.01 (2.87) 1.12 (1.12) 0.63 (0.90) 1.43 (1.27) 0.50 (0.63) 1.05 (1.06) 1.02 (1.18) 1.11 (0.99) 0.75 (1.52) 0.74 (1.81) 0.84 (1.18) 0.72 (0.64) 0.36 (0.36) 0.91 (0.76) 0.77 (0.77) 3.39 (4.26) 2.88 (4.46) 3.57 (4.04)



Table
(4‐7)
‐
Bilateral
asymmetry
scores
in
the
Control
population.



 Measure Total Humeral maximum length Humeral distal epicondylar breadth Humeral head diameter Humeral average 50% diaphyseal diameter Radial maximum length Radial average 50% diaphyseal diameter Femoral maximum length Femoral epicondylar breadth Femoral AP head diameter Femoral average 50% diaphyseal diameter Tibial maximum length Tibial condylar breadth Tibial average 50% diaphyseal diameter



Median %DA (mean %DA) Males Females 0.66 (0.70) 1.25 (0.96) 1.20 (1.29) 2.68 (2.75) 0.85 (0.84) 1.83 (2.41) -0.23 (-0.27) 0.65 (0.53) 0.29 (0.21) 0.26 (0.54) -0.07 (-0.12) 0.00 (0.35) 1.24 (0.36)

27


Total

Median %AA (mean %AA) Males Females 0.66 (0.97) 1.65 (1.79) 1.90 (3.09) 3.74 (4.81) 0.85 (1.04) 4.77 (6.04) 0.58 (0.67) 0.65 (1.01) 1.08 (1.37) 2.02 (2.20) 0.43 (0.53) 1.37 (1.63) 3.18 (3.55)

Paleopathology   Paleopathological  conditions  examined  in  this  study  were  divided  into  five   categories,  each  representing  a  related  etiology.  Every  marker  points  to  a  different   aspect  on  an  individual’s  life,  and  can  be  used  to  determine  not  only  incidence,  but   propensity  to  infectious  disease,  nutritional  stress,  strenuous  labor,  intergroup   conflict  or  other  chronic  health  conditions  that  has  left  their  mark  on  bone.     Non-­‐specific  and  Specific  Response  to  Infection   Periostitis  is  noted  to  be  more  common  in  agricultural  populations  than  in   hunter  gatherers,  reaching  high  incidence  after  growing  group  numbers  promoted   an  intensification  of  this  subsistence  strategy  (Cohen  and  Armelagos,  1984;  Larsen,   1984).  At  the  site  of  Jiangjialiang,  35  bones  in  17  individuals  (ten  male  and  seven   female)  display  the  woven  striated  bone  typical  of  the  condition  (see  Figure  4-­‐5).   There  is  an  unusually  high  percentage  of  type  I  periostitis  in  males  (39.13%),  as  well   as,  but  less  so,  for  females  (18.18%).    

         

 

 

Furthermore,  four  cases  in  females  and  one  in  males  is  considered  type  II  (severe).   The  tibia  is  the  most  affected  bone,  encompassing  20  of  35  cases,  with  the  fibula    

28  

making  up  an  extra  10  of  those  cases.  Demographically,  periostitis  occurs  early  at   the  site,  with  13  of  the  17  cases  present  on  individuals  between  20  and  39  years  old.    

  Other  affected  bones  include  the  femur  (3),  and  even  more  rare,  the  os  coxa  (1).   Most  bones  (except  for  the  healed  rib)  exhibiting  healed  fractures  were  associated   with  periostitis.  A  female  around  40  to  54  years  old  displays  a  healed  compound   fracture  of  the  humeral  shaft  with  extensive  bone  remodeling  that  could  be   considered  osteomyelitis,  with  remains  of  a  cloaca  on  the  midshaft.    

  However,  the  lesion  is  completely  healed  and  no  sequestrum  or  involucrum   are  apparent,  only  inactive  woven  bone.  Also  an  important  observation  to  be  made   is  that  in  more  than  three  cases,  fractures  are  also  associated  with  periostitis  of  the   limb  bone,  usually  involving  the  adjacent  bone  element,  as  in  the  case  of  healed  

 

29  

distal  fibulae.  This  shows  one  of  the  many  ways  that  periostitis  could  develop  and   the  importance  to  document  patterns  of  occurrence.  

 

  At  the  combined  sites  of  Minhe  X,  Minhe  M  and  LGS,  12  bones  in  three   individuals  display  periostitis.  One  of  the  three  cases  is  type  II  periostitis  (see  Table   4-­‐8).  Two  of  the  three  cases  could  not  be  aged  or  sexed,  so  determining  the   demographic  profile  at  this  site  was  not  possible.  At  the  MXY  site,  six  bones  in  four   individuals  exhibit  periostitis.  Three  or  possibly  all  four  cases  are  males  between  20   to  39  years  of  age  (since  in  the  last  case  it  could  only  be  ascertained  that  the   individuals  was  young).  None  of  the  individual  cases  is  severe  enough  to  be   considered  type  II.   Within  the  control  group,  there  are  10  bones  in  four  males  affected  by   periostitis.  Here,  three  of  the  four  cases  are  severe  enough  to  be  considered  type  II.   The  demographic  incidence  is  less  focused  on  a  particular  age  group.  Here  two   males  are  between  20  and  39,  another  is  between  40  and  54,  and  the  fourth  is  over    

30  

55  years  old.  Within  this  population  of  cannery  workers,  two  individuals  suffer  from   acute  chronic  osteomyelitis,  encompassing  several  skeletal  elements,  and  displaying   severe  bone  remodeling  (see  Figure  4-­‐6).    The  first  individual,  a  male  between  44   and  48  years  old,  displays  bone  inflammation  on  right  ulna,  left  fibula  diaphysis,  left   proximal  tibia  diaphysis,  and  both  clavicles.  The  left  os  coxa  and  humerus  display   severe  bone  remodeling  and  active  woven  bone  lesions  are  apparent  on  inner  table   with  sequestrum  and  involucrum  present.     The  second  case  of  an  individual  around  38  to  45  years  old  is  more  severe.   Both  humeri  display  active  woven  bone  lesions  with  bone  inflammation  present.   Right  humeral  head  has  withered,  losing  its  shape,  and  sequestrum  and  involucrum   appear  throughout  both  diaphyses.  Osteological  changes  extend  distal  to  the   proximal  ulna  and  radius  on  the  left  arm.  Both  scapulae  show  spread  of  infection,   especially  the  right  one  near  the  articulation  with  the  withered  humeral  head.  This   individual  may  have  been  capable  of  only  10-­‐15  degrees  of  anterio-­‐posterior   rotation  on  right  arm.     Sternum  also  displays  woven  bone  lesions  with  the  left  first  rib  fused  onto   the  manubrium  after  the  cartilage  ossified  and  there  is  swelling  on  the  body  of   sternum.  The  diaphyses  of  the  left  and  right  clavicles  show  reactive  lesions  (woven   bone  comprises  entire  left  clavicle).  The  left  femur  displays  moderate  osteomyelitic   changes  on  shaft  and  linea  aspera.  The  left  tibia  also  displays  inflammation  on  the   proximal  diaphysis  and  woven  bone.

 

31  

Table
(4‐8)
–
Incidence
of
pathological
conditions
per
individual
in
all
samples.
 Lesion
 



JJL
Females


MHX/MHM/
 LGS
Males


MHX/MHM/
 LGS
Females


MXY
Males


MXY
 Females


Control
 Males


%



[N]


%



[N]


%



[N]


%



[N]


%



[N]


%



[N]


%



[N]


Type
I
periostitis


39.13

[9]


18.18

[4]


20

[2]


0

[0]


36.36

[4]


0

[0]


1.54

[1]


Type
II
periostitis


4.35

[1]


13.64

[3]


10

[1]


7.14

[1]


0

[0]


0

[0]


4.62

[3]


Osteitis


0


[0]


4.55

[1]


0

[0]


14.29

[2]


9.09

[1]


8.33

[1]


3.08

[2]


Osteomyelitis


0


[0]
 0


[0]


0


[0]
 0


[0]


0


[0]
 0


[0]


0


[0]
 0


[0]


0


[0]
 0


[0]


0


[0]
 0


[0]


3.08
[2]
 0


[0]


Osteophytosis


47.83

[11]


22.73

[5]


20

[2]


14.29

[2]


18.18

[2]


0

[0]


1.54

[1]


Osteoarthritis


8.70

[2]


4.55

[1]


0

[0]


14.29

[2]


9.09

[1]


0

[0]


4.62

[3]


Spina
bifida
 Sacralized
L4
 and/or
L5


13.04

[3]


4.55

[1]


40

[4]


0

[0]


9.09

[1]


25

[3]


4.62

[3]


13.04

[3]


4.55

[1]


0

[0]


14.29

[2]


18.18

[2]


8.33

[1]


13.85

[9]


Forelimb
fracture


4.35

[1]


4.55

[1]


0

[0]


7.14

[1]


9.09

[1]


0

[0]


3.08

[2]


Hindlimb
fracture


8.70

[2]


0

[0]


0

[0]


0

[0]


9.09

[1]


0

[0]


3.08

[2]


Rib
Fracture


8.70

[2]


0

[0]


0

[0]


0

[0]


0

[0]


0

[0]


0

[0]


Herniated
disc
 Ossified
ligament/
 tendon


8.70

[2]


9.09

[2]


0

[0]


0

[0]


0

[0]


0

[0]


0

[0]


8.70

[2]


0

[0]


20

[2]


21.43

[3]


9.09

[1]


0

[0]


3.08

[2]


0

[0]


9.09

[2]


0

[0]


0

[0]


0

[0]


0

[0]


3.08

[2]


Specific
Infection


Ossified
joint




JJL
Males


32


   

Both  cases  of  osteomyelitis  and  the  third  possible  case  on  the  Jiangjialiang  

humerus  differ  from  the  periostitis  cases  in  the  patterns  of  bone  that  are  affected,  so   they  must  occur  via  a  different  etiology  (see  Figure  4-­‐6).    Also,  all  three  cases  seem   to  stem  from  infections  cause  by  traumatic  bone  fractures,  whereas  only  two  cases   of  periostitis  are  associated  with  fractures.     Seven  cases  of  non-­‐specific  inflammation  are  noted  within  the  collections,   which  do  not  qualify  as  periostitis  but  rather  osteitis  because  of  the  involvement  of   inner  cortical  bone.    

  These  cases  are  uncommon,  occurring  only  once  in  a  Jiangjialiang  female,  twice  in   females  from  the  Minhe  X,  Minhe  M  and  LGS  sites;  twice  at  the  MXY  site  affecting  a   male  and  a  female;  and  twice  in  males  within  the  control  group.  All  samples  were   also  analyzed  to  assess  any  possible  specific  inflammatory  changes  stemming  from   treponemal  disease,  tuberculosis  and  leprosy  but  no  evidence  was  found.     A  possible  case  of  Brodie’s  abscess  was  found  in  the  MXY  sample.  The   pathology  is  described  as  a  one-­‐centimeter  foramen  roughly  of  elliptical  shape   located  on  the  posterior  medial  supracondylar  region  of  distal  left  femur.  The   cortical  bone  appears  normal  and  the  bone  itself  does  not  appear  swollen.    

 

33  

  The  edges  are  smooth  and  the  lesion  is  deep  enough  to  reach  the  medullary  cavity,   although  no  trabecular  bone  is  discernible.  However,  radiographs  are  needed  in   order  to  be  certain  of  this  diagnosis.  Lastly,  it  should  be  mentioned  that  no  changes   in  morphology  resulting  from  specific  infections  were  noted  at  any  of  the  sites,   although  such  diseases  may  have  been  prevalent  in  the  region  due  to  trade.     Degenerative  Joint  Disease   Arthrititic  lesions  resulting  from  DJD  can  occur  between  synovial  joints  on   limbs  or  apophyseal  joints  on  vertebra  (osteoarthritis).  It  can  also  manifest  itself  as   bony  outgrowths  on  the  centra  of  vertebral  segments  (osteophytosis).  At  the   Jiangjialiang  site,  there  was  a  high  incidence  of  osteophytosis  among  males   (affecting  11  out  of  34  individuals)  whereas  only  one  female  was  affected.    

   

34  

At  the  Minhe  X,  Minhe  M,  and  LGS  sites,  the  incidence  of  osteophytosis  was  lower  for   males,  occurring  only  on  two  individuals,  and  also  twice  on  females.  At  the  MXY  site,   two  males  and  no  females  were  affected.  In  the  control  group,  only  one  male  showed   osteophytotic  lesions.  Incidence  of  osteoarthritis  was  low  throughout  the  sites,  only   appearing  in  two  males  and  one  female  at  Jiangjialiang,  two  females  from  the  Minhe   X,  Minhe  M  and  LGS  sites,  one  male  at  the  MXY  site  and  three  males  in  the  control   group.  

 

                       

 

         

 

35  

                           

 

A  possible  case  of  ankylosing  spondylitis  or  diffuse  idiopathic  skeletal   hyperostosis  (DISH)  was  found  within  the  comingled  remains  from  the  Minhe  X  site.   Three  fused  thoracic  and/or  lumbar  vertebra  fragments,  along  with  a  possible   fourth  fragment  of  sacrum  display  anterior  fusion  between  vertebral  bodies  without   involvement  of  the  centrum.    

                    The  tissue  that  appears  to  have  ossified,  linking  up  the  vertebrae  is  the  longitudinal   ligament  of  the  spine,  which  may  point  to  DISH  (Verlaan  et  al.,  2007).  However,  due   to  the  lack  of  osteophytosis  of  the  spinal  segments,  the  individuals  suffering  from   this  condition  may  not  have  been  old,  pointing  to  ankylosing  spondylitis,  which   primarily  affects  individuals  over  50  years  of  age  (Rogers  et  al,  1985).      

 

36  

 

Congenital  Conditions   Data  from  only  two  congenital  conditions,  spina  bifida  and  lumbosacral   transitional  vertebra  (LSTV)  are  analyzed  in  this  study.  Most  other  non-­‐metric  traits   occur  on  the  cranium,  especially  in  the  dentition,  both  of  which  were  not  examined.   Sacralization  of  the  fifth  lumbar  vertebra  is  evident  in  three  males  and  one  female   from  the  Jiangjialiang  site.  At  the  Minhe  X,  Minhe  M  and  LGS  sites,  no  males  and  only   two  females  exhibit  the  condition.  At  the  MXY  site,  the  incidence  is  also  quite  low:   only  two  males  and  one  female  exhibit  L5  sacralization.    

 

                  In  the  control  group  however,  males  exhibit  a  high  incidence  of  this  condition   (13.85%  in  67  individuals).  One  case  of  the  less  common  lumbarization  of  a  sacral  

 

37  

 

 

vertebra  was  found  in  the  LGS  collection,  but  was  not  included  in  the  study  since  it   was  part  of  the  comingled  remains  to  which  no  sex  could  be  attributed.  

  All  cases  of  spina  bifida  analyzed  are  comprised  of  either  incomplete  or   complete  spina  bifida  oculta,  which  are  common  in  modern  populations.  The  less   common  condition  spina  bifida  cystica  is  fatal,  and  therefore  not  observed  in  adults.     At  Jiangjialiang,  three  males  and  one  female  exhibit  the  condition,  whereas  at  the   Minhe  X,  Minhe  M  and  LGS  sites,  four  males  and  no  females  exhibit  it.  The  other   Xindian  culture  site  MXY,  has  one  male  and  three  females  who  display  the  condition,   whereas  in  the  control  group,  three  males  display  spina  bifida.  

                   

 

38  

 

    Trauma   Several  types  of  trauma  can  be  discerned  in  Jiangjialiang  males,  but  have  low   incidence.  Healed  fractures  occur  only  seldom  in  the  forelimb  (4.35%),  hindlimb   (8.7%)  and  ribs  (8.7%)  within  males,  whereas  only  4.35%  of  females  exhibited   forelimb  fractures.    Herniated  discs  occur  at  a  slightly  higher  incidence  in  females   (9.09%)  than  in  males  (8.70%)  at  Jiangjialiang.    

      Some  cases  of  Schmorls  nodes,  which  are  evidence  of  heavy  loads,  were  also  noted   at  the  Jiangjialiang  site.    

 

39  

   

 

  Furthermore,  Jiangjialiang  males  had  an  8.70%  incidence  of  ossified   tendons/ligaments,  whereas  females  have  a  9.09%  incidence  of  ossified  joint   segments.    

The  only  apparent  pathologies  found  within  the  three  sites  of  Minhe  X,  Minhe  

M  and  LGS  are  relatively  high  incidences  of  ossified  tendons  and/or  ligaments,  with   males  displaying  the  condition  20%  of  the  time  and  females  21.43%  of  the  time.  In   addition,  females  also  display  forelimb  fractures  7.14%  of  the  time.  At  the  MXY  site,   males  display  similar  incidences  of  forelimb  (evidenced  by  an  amputation  halfway   down  the  forearm)  and  hindlimb  fractures,  as  well  as  ossified  tendons/ligaments   (9.09%).      

 

40  

                                 

 

No  pathologies  can  be  discerned  on  the  females  of  these  populations.  Within  the   males  of  the  control  group,  there  are  fairly  low  incidences  of  forelimb  and  hindlimb   fractures,  as  well  as  ossified  tendons/ligaments  and  joints  (all  at  3.08%).     Paleodemography    

Regarding  the  paleodemography  of  all  sites,  it  is  useful  to  build  a  life  table  for  

comparisons  between  sites,  such  as  Table  4-­‐9.    For  the  purpose  of  this  study  it  is   assumed  that  any  sampling  biases  for  sub-­‐adults  are  sufficiently  small  to  be  omitted.   At  Jiangjialiang,  four  sub-­‐adults  (three  males  and  one  of  indeterminate  sex)  have  an   age-­‐at-­‐death  around  10-­‐15  years.  At  the  combined  sites  of  Minhe  X,  Minhe  M  and   LGS,  17  sub-­‐adults  were  found,  14  whose  age  could  be  discerned.    Six  had  an   approximate  age-­‐of-­‐death  from  around  6  months  to  3.5  years.  Another  four  had  age-­‐ at-­‐death  estimates  between  6  and  10  years  old  and  the  last  four  were  between  11   and  18  years  old  when  they  died.  Three  individuals  at  the  MXY  site  has  age-­‐at-­‐death   estimates  of  4.5  through  10  years,  and  another  two  were  approximately  between  13   to  15  years  old  when  they  died.      

 

41  

  Table  (4-­‐9)  –  Demographic  of  all  surveyed  populations.     Age 18-29 30-39 40-49 50+

JJL M N % 7 (23) 14 (47) 8 (27) 1 (3)

JJL F N % 8 (32) 7 (28) 6 (24) 4 (16)

MHX/MHM/LGS M N % 10 (59) 6 (35) 1 (6) 0 (0)

MHX/MHM/LGS F N % 3 (13) 13 (57) 6 (26) 1 (4)

MXY M N % 1 (9) 8 (73) 1 (9) 1 (9)

MXY F N % 3 (23) 9 (69) 1 (8) 0 (0)

Control M N % 4 (6) 25 (40) 26 (41) 8 (13)

   

Adult  age-­‐at-­‐death  spreads  display  some  differences  between  the  sites.  At  

Jiangjialiang,  47%  of  males  died  between  30  to  39  years  and  only  3%  reached  late   adulthood  (50+  years).  Female  age  spreads  at  Jiangjialiang  are  more  evenly   distributed.  Although  they  tend  to  accumulate  earlier  (60%  died  between  the  ages   of  18  and  39  years),  16%  of  women  still  manage  to  live  over  50  years  (see  Figure  4-­‐ 11).  At  the  combined  sites  of  Minhe  X,  Minhe  M  and  LGS,  59%  of  males  did  not  live   past  29  years  of  age,  whereas  57%  of  females  lived  until  30-­‐39  years  old,  another   26%  lived  up  to  49  years  and  even  still,  4%  lived  past  50  years  of  age  (see  Table  4-­‐ 9).  It  should  be  noted  that  substantial  amounts  of  demographic  information  from   these  three  sites  are  missing  due  to  post-­‐collection  comingling  (38  adults  could  not   be  aged  with  certainty  and  89  skeletal  elements  were  found  together  in  a  box).  At   the  MXY  site,  73%  of  males  die  around  30-­‐39  years  of  age,  with  another  9%  living  up   to  49  years  and  a  further  9%  living  past  50  years.  For  females,  69%  die  between  30-­‐ 39  years  of  age,  and  another  8%  lived  up  to  49  years,  but  none  were  found  to  live   past  50  years.  Around  81%  of  males  from  the  control  group  died  between  30  and  49   years  of  age  and  13%  lived  past  50  years.  

 

42  

 

The  health  of  populations  in  North  China  during  the  Bronze  Age  appears  to  

have  worsened  from  the  Late  Neolithic  period,  in  different  ways.  Female  and  male   susceptibility  to  disease  as  well  as  their  activity  patterns  are  seen  to  differ,  even   across  contemporaneous  populations.  Now  I  will  discuss  these  results  within  the   wider  context  of  health  during  the  period  when  agricultural  intensification  occurs  in   the  region  and  present  a  health  model  for  these  populations.       Figure  (4-­‐1)  –  Comparison  of  male  and  female  mean  statures  between  the  Peiligang   site  of  Jiahu  and  all  Yangshao  sites.    

 

                       

43  

Figure  (4-­‐2)  –  Comparison  of  male  and  female  mean  statures  between  Longshan,   early  Dynastic  sites  and  the  Control  population.      

  Figure  (4-­‐3)  –  Mean  body  mass  (in  kg)  for  males  and  females  at  each  surveyed  site.    

 

    Figure  (4-­‐4)  –  Linear  regression  for  stature  as  a  function  of  body  mass  for  males  and   females  of  each  surveyed  population.    

44  

 

Slope:  y=  0.6067  +  126.44                                                                                          Coefficient  of  Correlation  =  .916     Figure  (4-­‐5)  –  Incidence  of  infectious  disease  in  males  and  females  across  all   surveyed  sites.    

 

45  

Figure
(4‐6)
–
Distribution
of
skeletal
lesions.
On
the
skeleton
displaying
periostitis,
the
darker
shade
indicates
more
common
 involvement;
the
light‐shaded
areas
are
where
the
condition
is
less
commonly
found
(after
Kelley,
1989).
 
 











 







 






 
 





































Periostitis













































Osteomyelitis
case
#1































Osteomyelitis
case
#2
 Image
credit:
www.sciencequiz.net




46


Figure  (4-­‐7)  –  Incidence  of  degenerative  joint  disease  on  males  and  females  at  all   surveyed  sites.    

    Figure  (4-­‐8)  –  Incidence  of  congenital  conditions  in  males  and  females  at  all   surveyed  sites.    

 

 

 

47  

Figure  (4-­‐9)  –  Trauma  patterns  between  males  and  females  across  all  surveyed   populations.    

    Figure  (4-­‐10)  -­‐  Paleodemography  comparison  between  all  surveyed  populations.    

 

   

 

48  

Figure  (4-­‐11)  –  Age  ranges  for  males  and  females  at  each  surveyed  site.    

      CHAPTER  5     DISCUSSION     In  this  chapter,  I  first  reconstruct  the  population  health  at  the  Late   Yangshao/Early  Longshan  site  of  Jiangjialiang  and  the  Xindian  sites  of  Minhe  X,   Minhe  M,  LGS  and  MXY  in  order  to  examine  the  role  that  diet  plays  in  the  propensity   to  nutritional  stress  and  disease.    I  then  follow  with  a  discussion  of  how  stature,   sexual  dimorphism  and  body  mass  data  from  these  populations  correlate  to   subsistence  and  levels  of  nonspecific  response  to  infection  at  each  site.  Indicators  of   activity  are  then  assessed  in  each  population  to  determine  possible  stratification  of   labor  between  males  and  females.  Some  attention  is  given  to  the  history  of  specific  

 

49  

infections  in  the  region  and  the  frequency  of  congenital  sacral  malformations  in   order  to  discern  relatedness.  Finally,  I  review  changes  in  stress  marker  incidence   overtime  and  present  an  overall  model  of  health  for  each  site  and  across  time  in   North  China.     Diet  and  Disease   Diet  has  a  very  close  relation  with  susceptibility  to  disease  (Kelley,  1989).   Cohen  (1991)  notes  increased  infection  rates  in  populations  that  adopted   agriculture  (and  domestication).  This  trend  skyrockets  as  cultivation  is  later   intensified  as  nutrient-­‐poor  starchy  foods  that  support  larger  populations  become   the  staple  diet  of  large  populations.  Disease  reduces  uptake  of  nutrients,  which  in   turn  propagates  the  condition  and  brings  on  added  stress  (Roosevelt,  1984).      

In  China,  experimentation  with  millet,  a  small-­‐seeded  cereal  crop  may  have  

occurred  as  early  as  12,000  BP  (Shi,  1998,  2001,  cited  in  Pechenkina  et  al,  2005).   However,  more  formalized  millet  agriculture,  evidenced  by  agricultural  tools  and   carbonized  grain,  probably  began  around  8,500-­‐7,000  BP  (Hu  et  al.,  2008).  Based  on   the  spread  of  Sino-­‐Tibetan  language,  Bellwood  (2009)  proposes  that  cultural  contact   played  a  role  in  the  adoption  of  agriculture  in  the  region.  Animal  domestication  also   had  its  origins  in  North  China  around  the  early  Neolithic,  with  osteological  evidence   at  Cishan,  in  Hebei  province  around  8,000  BP.  This  may  have  occurred  as  a  passive   reaction  to  meat  scarcity  from  increasing  cultivation  (Jing  &  Flad,  2002).  This   evidence  of  animal  domestication  and  early  cultivation  suggests  that  individuals   living  at  the  late  Yangshao  site  of  Jiangjialiang  would  have  had  both  subsistence  

 

50  

strategies  available  to  them.   Isotopic  studies  on  the  Jiangjialiang  population  based  on  nine  trace  elements   have  yielded  a  wealth  of  dietary  information.    Within  the  site,  inhabitants  consumed   a  diet  primarily  consisting  of  non-­‐grain  vegetables  (Strontium  levels  were  higher   than  normal)  with  some  evidence  for  millet  agriculture  (Wang,  1995;  Okazaki,   2008).  Wang  (1995)  notes  that  food  distribution  at  the  site  was  uneven  and  all   samples  showed  varying  degrees  of  dietary  activity.  He  mentions  a  key  difference  in   the  diet  of  the  17  individuals  he  tested.  One  group  had  a  significantly  higher   proportion  of  meat  consumption  than  the  other.  Wang  (1995)  also  mentions  that   the  population  at  Jiangjialiang  consumed  relatively  low  levels  of  protein  when   compared  to  later  Bronze  Age  period  sites  from  Gansu  province.  In  contrast,   although  no  isotopic  studies  were  undertaken  at  the  Minhe  sites,  archaeological   evidence  points  to  intensive  cultivation  of  grains  (mainly  millet)  supplemented  by   some  meat  (Qinghai  Provincial  Administration,  2004;  Wei,  personal   communication).    The  wide  range  of  nutritional  profiles  seen  here  may  play  a  role  in   the  different  levels  of  stress  markers  examined  below.  As  grain  consumption   increased  through  time  and  became  the  main  food  source  for  these  populations,  the   impact  of  less  nutrients  on  individual  and  population  health  will  be  quantified.     Stature,  Sexual  Dimorphism  and  Body  Mass      

Three  stress  indicators  (Stature,  Sexual  Dimorphism  and  Body  Mass)  are  a  

valuable  tool  for  assessing  nutritional  difference  in  sex  and  long-­‐term  health   changes  in  a  population.    At  Jiangjialiang,  both  the  average  male  stature  (170.81cm)  

 

51  

and  the  average  female  stature  (159.40cm)  scored  the  highest  within  all  surveyed   populations  analyzed  in  this  study  and  second  only  to  the  Peiligang  culture  site  at   Jiahu  (from  Pechenkina  et  al.,  2007).  Further  comparison  with  Longshan  sites  and   Xindian  culture  sites  examined  in  the  study  shows  a  steady  stature  reduction.  The   average  males  at  Longshan  sites  measure  167.25cm  whereas  the  average  males  and   Xindian  sites,  later  in  time,  measure  164.41cm.  Female  stature  at  Longshan  sites   does  not  seem  to  change  much,  measuring  on  average  159.44cm.    However,  there  is   a  small  stature  decrease  at  later  Xindian  sites,  where  MXY  females  measure   158.6cm.  These  data  suggest  a  slight  to  moderate  stature  decrease  overtime   affecting  males  much  more  than  females.    

Sexual  dimorphism  at  Jiangjialiang  was  also  the  highest  in  all  populations  

surveyed  (3.45),  and  only  second  highest  to  Meishan  (3.47),  a  Longshan  culture   population  from  the  Pechenkina  et  al.,  (2007).  In  the  later-­‐occurring  Xindian  culture,   such  dimorphism  drops  to  2.50  at  the  Minhe  X,  Minhe  M,  and  LGS  sites,  and  even   lower  at  the  MXY  site  (1.08).  Benfer  (1984)  noted  a  similar  drop  in  sexual   dimorphism  for  the  population  at  the  pre-­‐ceramic  village  of  Paloma,  Peru.  This   drastic  drop  in  sexual  dimorphism  levels  over  time  may  stem  from  similar  diet  being   consumed  by  males  and  females  in  the  later  periods.      

Changes  in  estimated  body  mass  can  also  be  noted  between  males  and  females  

over  time.  Jiangjialiang  males  and  females  once  again  score  the  highest  of  the   populations,  at  70.55kg  and  59.02kg  respectively.  An  additional  interesting  pattern   between  the  sexes  emerges  from  the  analysis  of  these  data.  Female  body  mass  at   these  sites  always  hovers  around  10  kg  less  when  compared  to  males.    

 

52  

 

Body  mass  data  and  sexual  dimorphism  data  seem  to  disagree  at  this  point.  

One  possible  reason  is  that  female  anatomy  is  generally  more  compact  than  male   anatomy  within  a  homogeneous  population  and  changes  across  populations  will   display  the  similar  values.  However,  sexual  dimorphism  values  decrease  across   time,  because  female  stature  does  not  decrease  at  the  level  that  male  stature  does  as   a  consequence  of  nutritional  stress.  Ortner  (1998)  attributes  similar  observations  to   differences  in  hormones  between  both  sexes  that  allow  females  to  have  better   natural  buffers  against  stress,  especially  since  they  are  adapted  for  childbirth.  Even   if  both  sexes  maintain  the  same  body  mass  dimorphism,  both  experience  nutritional   stress  overtime,  evidenced  in  their  decreasing  statures.    

The  different  subsistence  strategies  between  the  Yangshao  culture  site  and  the  

Xindian  culture  sites  not  only  played  a  mayor  role  in  stature  and  body  mass  changes,   but  also  determined  how  susceptible  each  population  would  be  to  infectious   diseases.  Cohen  (1991)  notes  that  rates  of  infection  increased  as  farming  was   adopted  an  intensified,  although  infection  is  traditionally  with  increasing  population   density  and  sedentism.  Levels  of  Type  I  periostitis  among  males  and  females  were   highest  at  Jiangjialiang  (39.13%  and  18.18%  respectively).  Jiangjialiang  females  also   suffered  the  highest  levels  of  Type  II  periostitis  out  of  all  populations  (13.64%).   When  comparing  males  and  females  across  time  however,  another  pattern  emerges.   Incidence  of  periostitis  in  females  decreases  drastically  from  the  Neolithic  period   through  to  the  Bronze  Age.  For  males,  however,  incidence  of  periostitis  decreases   only  slightly  at  the  end  of  the  Neolithic  period  before  once  again  increasing  during   the  Bronze  Age;  evidenced  by  males  from  the  MXY  site  at  36.36%.  Osteitis  incidence  

 

53  

differed  from  this  trend,  increasing  in  both  groups  over  time  and  possibly   suggesting  a  different  etiology  from  periostitis.  Data  on  infectious  disease  indicate   that  although  males  and  females  may  have  been  suffering  from  similar  nutritional   stress,  males  were  more  susceptible  to  disease,  supporting  Ortner’s  (1998)  model.     Indicators  of  Activity    

Indicators  of  activity  have  been  used  historically  to  argue  that  agricultural  

populations  worked  harder  and  longer  than  their  hunter-­‐gatherer  predecessors   (Lee  and  DeVore  1968,  cited  in  Cohen,  1991).    However,  more  recent  work  has  not   only  dispelled  these  myths  (Larsen,  1984),  but  has  also  pointed  out  that  are  these   indicators  only  elucidate  physical  demand  peaks  but  not  work  length.    In  any  case,   occupationally–related  paleopathology  is,  as  defined  by  Stirland  (1991),  nonrandom   and  habitual,  so  skeletal  changes  directly  relate  to  the  activities  performed  while  the   individual  was  alive.    In  what  follows,  I  investigate  the  intensity  of  labor  between   early  agricultural  populations  and  those  practicing  more  intensive  agriculture  via   levels  and  patterns  of  DJD,  bilateral  asymmetry  and  trauma.  My  examination  also   aims  to  determine  any  possible  differences  in  labor  loads  between  males  and   females.      

Males  and  females  at  Jiangjialiang  exhibit  moderate  levels  of  osteoarthritis  

(8.7%  and  4.55%  respectively)  and  very  high  levels  of  osteophytosis  (47.83%  and   22.73%  respectively).  At  the  sites  of  Minhe  X,  Minhe  M  and  LGS,  levels  of   osteoarthritis  increase  for  females  but  overall  incidence  of  osteophytosis  decreases.   Discerning  osteophytosis  incidence  in  Xindian  culture  sites  presented  a  challenge,  as  

 

54  

most  vertebra,  ribs  and  os  coxae  were  not  curated  along  with  limb  bones  (also   making  sex  and  age  estimations  difficult).  Lastly,  at  the  MXY  site,  males  show  low   levels  of  DJD  and  no  females  exhibit  these  conditions.  The  decreasing  levels  of  DJD   agree  with  data  comparing  hunter-­‐gatherers  to  agriculturalists  and  may  signify  that   this  trend  continued  from  early  agriculture  through  to  intensive  agriculture.      

In  the  agricultural  populations  surveyed,  osteoarthritis  was  observed  mostly  

on  the  elbow  joint  but  at  very  low  levels.  Inouye  et  al.,  (2001)  note  that   osteoarthritis  is  most  often  seen  in  East  Asians  at  the  medial  femoral  condyle  and   the  medial  tibial  plateau  of  the  knee  joint  and  is  more  common  in  hunter-­‐gatherers   at  the  elbow  and  knee  joints  than  agriculturalists.  Findings  within  this  study  also   agree  with  their  data,  suggesting  that  these  joints  were  being  utilized  with  higher   frequencies  in  earlier  periods.  DJD  was  found  mostly  at  the  elbow  joint,  with  one   case  of  distal  ulna  DJD  at  the  MXY  site.  Expanding  the  scope  of  the  current  study  to   pre-­‐agricultural  populations  will  produce  more  results  for  better  data  comparisons,   fortifying  the  hypothesis  that  DJD  decreased  from  hunter-­‐gatherer  populations  to   practitioners  of  early  agriculture  and  intensive  agriculture.    

Bilateral  asymmetry  is  another  way  to  judge  levels  of  activity  in  populations.  

The  parameters  that  changed  the  most  within  the  populations  surveyed  were  the   diameter  of  the  humeral  midshaft  and  of  the  tibial  midshaft.  Mean  %DA  for  humeral   midshaft  diameter  in  males  increases  up  to  11.63%  at  Xindian  culture  sites,   although  females  experience  an  overall  decrease  over  time.  Asymmetry  of  the  tibial   midshaft  diameter  in  males  decreases  from  Jiangjialiang  to  the  Xindian  culture  sites,   although  the  opposite  occurs  in  females.  Judging  from  the  data,  males  become  more  

 

55  

involved  in  activities  that  require  the  use  of  one  arm  over  the  other,  such  as  raising  a   plow  or  other  agricultural  implements.  Females  however,  have  an  overall  decrease   in  asymmetry,  suggesting  they  took  up  activities  that  required  less  use  of  one  arm   over  the  other,  such  as  cooking  or  the  use  of  a  grinding  stone  to  process  grain.  One   surprising  result  is  the  increased  asymmetry  in  the  tibial  midshaft  in  females  over   time,  as  no  previous  studies  of  occupationally-­‐related  osteological  changes  chronicle   this  occurrence.  Kennedy’s  (1989)  review  of  past  literature  of  skeletal  markers  of   occupational  stress  only  yielded  tibial  pathologies  related  to  nutritional  deficiencies   (platycnemia)  and  to  squatting  (squatting  facets,  retroversion  of  the  tibial  head,   rounding  of  the  lateral  tibial  condyle),  so  further  research  is  needed  to  examine  this   phenomenon.    

Trauma  patterns  in  the  form  of  fracture  and  ossified  soft  tissue  were  also  

examined  in  order  to  discern  activity.  Jiangjialiang  males  exhibit  several  types  of   trauma  (forelimb,  hindlimb  and  rib  fractures,  along  with  herniated  disks  and   ossified  tissues)  although  occurring  at  low  levels.  Females  only  display  low  levels  of   herniated  disks  and  ossified  joints,  suggesting  that  even  if  both  sexes  were  doing   heavy  lifting  of  grain  for  storage  or  construction  materials,  males  may  have  been   doing  a  wider  range  of  activities  that  promoted  different  fracture  patterns.  Females   at  Minhe  X,  Minhe  M  and  LGS  display  three  cases  of  ossified  ligaments/tendons,   suggesting  increased  peak  intensity  of  labor  (more  pronounced  loading  in  less   time).  Lastly,  forelimb  fractures  are  seen  at  very  low  levels  at  Xindian  culture  sites,   mostly  in  males.  However,  this  finding  may  not  be  meaningful,  as  the  incidence  does   not  change  from  Jiangjialiang.  Activity  at  the  MXY  site  with  more  intensive  

 

56  

agriculture  seems  to  have  lessened  the  incidence  of  different  fracture  patterns.   However,  new  types  of  repetitive  activity,  such  as  grinding  of  cereal  grains,  could   have  increased  the  likelihood  for  ossified  soft  tissue,  at  least  in  females.    

Although  no  cases  of  specific  infections  were  found,  it  is  important  to  note  the  

prevalence  of  these  conditions  in  the  region.  Historical  descriptions  of  possible   leprosy  cases  in  China  start  around  2,500  BP.  An  account  tells  of  a  Confucian,  Pai-­‐ Niu,  suffering  from  a  disease  characterized  by  nasal  destruction,  eyebrow  loss,   crippled  broken  legs,  anesthetic  mucosa  and  hoarseness  (McLeod  and  Yates,  1981).   Suzuki  et  al.  (2005)  examined  skeletons  from  the  Kayue  culture  (2,500  BC  to  1,850   BP)  and  found  two  cases  showing  irregular  sclerotic  hyperostosis  with  swelling  on   distal  femoral  and  tibial  diaphyses,  suggestive  of  treponemal  disease.  The  authors   cite  Hackett’s  map  of  endemic  syphilis  (1967),  noting  that  the  most  northeastern   region  of  prevalence  around  9,000  BP  corresponds  to  Qinghai  province.    

These  data  indicate  that  with  the  development  of  long-­‐distance  trade  routes,  

diseases  producing  specific  responses  were  likely  present  in  China  around  the  time   of  the  Xindian  culture.  From  gross  examination  of  skeletal  material  from  the  sites  in   Qinghai  and  Hebei  provinces,  no  pathologies  characteristic  of  treponemal  disease  or   leprosy  could  be  discerned.  However,  there  were  high  incidences  of  periostitis  in  all   populations,  which  signifies  low  tolerance  for  infectious  disease  in  the  region.    

Both  congenital  conditions  examined,  LSVT  and  spina  bifida,  could  be  used  to  

detect  relatedness  in  the  population,  which  may  help  in  determining  the  level  of   endogamous  pairings.  In  total,  four  individuals  in  the  Jiangjialiang  population  and   another  four  from  the  Xindian  culture  combined  sites  exhibit  the  condition,  which  is  

 

57  

not  statistically  significant.  However,  the  prevalence  of  LSVT  is  moderate  (13.43%)   in  the  control  population,  which  may  suggest  that  several  Karluk  cannery  workers   may  have  been  related.     Health  Model  for  Chinese  Populations  from  the  Neolithic  period  to  the  Bronze  Age    

The  subsistence  strategies  at  Yangshao  site  of  Jiangjialiang  emphasize  a  diet  of  

non-­‐grain  vegetables  along  with  moderate  consumption  of  meat  by  a  certain   segment  of  the  population.  In  contrast,  later  populations  belonging  to  the  Xindian   culture  had  a  diet  mainly  consisting  of  grain  supplemented  by  small  amounts  of   meat.  Comparison  of  nutritional  stress  markers  from  both  time  periods  indicates   that  males  and  females  experienced  lower  quality  of  health  into  the  Bronze  Age,   evidenced  by  decreased  stature  and  body  mass.  The  health  impact  on  females  was   less  significant  than  in  males,  who  continually  experienced  higher  levels  of  non-­‐ specific  infection,  suggesting  a  higher  susceptibility  to  disease.  A  decrease  in  sexual   dimorphism  also  points  to  males  having  suffered  a  more  profound  health  impact   than  females.    

Occupational  markers  of  stress  at  the  Xindian  culture  sites  indicate  lower  

levels  of  labor  intensity  from  a  decrease  in  the  incidence  of  degenerative  joint   disease  in  both  sexes  when  compared  to  the  Jiangjialiang  population.  Bilateral   asymmetry  data  also  point  to  different  activities  at  the  Xindian  culture  sites.  Male   humeral  shafts  become  more  asymmetric,  suggesting  activities  that  favor  one  side  of   the  body  over  the  other,  such  as  planting  grain  and  land  management.  Females  on   the  other  hand,  become  less  asymmetric,  suggesting  that  they  performed  activities  

 

58  

requiring  the  use  of  both  sides  of  the  body  equally  such  as  tending  to  animals,  craft   production  or  food  processing.      

Patterns  of  traumatic  lesions  also  indicate  that  males  at  Jiangjialiang  were  

involved  in  a  wider  scope  of  activities  (perhaps  related  to  food  procurement  or   settlement  construction)  than  females,  as  they  display  different  fracture  patterns  at   low  levels.  This  parameter  changes  at  the  later  Xindian  sites,  suggesting  more   focused  activities.  Females  seem  to  experience  higher  levels  of  joint,  and   ligament/tendon  ossification  at  the  Xindian  sites,  which  may  point  to  higher  levels   of  focused  activity  –  which,  coupled  by  decreased  upper  limb  asymmetry  lends   further  support  to  hypotheses  for  food  processing  activities.    

The  results  of  this  study  strongly  suggest  that  as  populations  in  North  China  

shifted  their  subsistence  strategies  from  vegetable  cultivation  in  the  Neolithic   period  to  intensive  grain  cultivation  during  the  Bronze  Age,  levels  of  nutrition   decreased  (impacting  males  more  severely)  while  activities  between  males  and   females  became  more  stratified  and  focused.  Pechenkina  et  al.,  (2002)  examined   developmental  stress  markers  in  the  late  Neolithic  period  and  proposed  a  similar   model  of  health  for  these  populations.  They  blame  subsistence  changes  occurring   during  the  late  Yangshao  period  for  the  general  decline  in  health  evident  in  the  later   Longshan  period  persisting  into  the  Western  Zhou  Dynasty.    

An  important  question  to  ask  is:  what  prompted  populations  to  settle  and  

begin  to  grow  their  own  food?  Also,  if  the  consequences  of  this  subsistence  shift   were  decreased  nutrition  and  higher  infection  rates,  why  did  populations  intensify   agriculture  at  a  later  time?  Cohen  (2009)  posits  that  the  adoption  of  agriculture  

 

59  

seems  more  of  a  matter  of  necessity  rather  than  of  invention  and  choice.  In   reviewing  his  earlier  work  (Cohen  1977,  1991),  he  notes  that  that  there  is  an  overall   increase  in  population  in  all  areas  of  the  world  as  time  passes.  Such  steady   population  growth,  coupled  with  dwindling  resources  created  an  imbalance,  causing   population  stress  and  eventually  prompting  the  exploitation  of  different  sources.   Cereal  grains  such  as  millet  and  sorghum  (first  cultigens  in  East  Asia)  provided  a   high  ratio  of  caloric  value  to  labor  output,  helping  mitigate  stress  from  population   growth.  However,  these  grains  were  low  in  vitamins  and  minerals  compared  to   other  vegetable  foods.    

Cohen  argues  that  it  was  population  growth  and  not  climatic  change  (itself  

only  a  regional  phenomenon)  the  main  factor  that  prompted  incipient  cultivation.   However,  a  possible  reason  why  different  areas  of  the  world  developed  agriculture   at  different  times  may  have  been  due  to  favorable  regional  environments  for   planting  (such  as  longer  rainy  seasons  or  more  suitable  land).  Following  this   argument,  with  the  notion  that  climatic  events  occur  regionally,  one  could  make  a   case  for  the  later  intensification  of  agriculture  occurring  in  North  China  near  the  end   of  the  Yangshao  period,  after  the  fifth  millennium,  and  continuing  into  the  third   millennium  BP.    A  study  by  An  et  al.  (2005)  into  the  rapid  environmental  change  in   the  Western  Loess  Plateau  of  China  verifies  the  increased  aridity  of  the  region  at  this   time.  They  propose  a  reduction  of  settlement  expansion  due  to  the  decreased   numbers  of  archaeological  sites  in  the  region  caused  by  reduced  agricultural   productivity.    

Pechenkina  et  al.  (2002)  indeed  propose  that  the  subsistence  changes  that  

 

60  

impacted  population  health  were  first  triggered  by  environmental  deterioration   during  that  period.  The  sudden  food  scarcity  that  resulted  thus  prompted   agricultural  populations  to  increase  their  production  output  of  the  highly  caloric  and   weather-­‐tolerant  millet  grain,  which  had  been  domesticated  earlier  during  the   Neolithic  period.  As  the  main  staple  in  the  diets  of  Longshan  and  later  periods,   cereal  grains  negatively  impacted  population  health  in  the  region,  as  all  the  data   seems  to  suggest.  Lastly,  due  to  its  high  caloric  properties  and  dependability  as  a   crop,  millet  continued  to  support  growing  populations  in  China,  albeit  having  low   nutrient  levels  and  a  tendency  to  exacerbate  bad  health.    

From  the  results  of  this  study,  a  working  model  for  the  health  impacts  caused  

by  an  increased  reliance  in  cereal  grains  over  time  was  presented.  The  evidence   from  the  various  nutritional  and  occupational  stress  parameters  serves  to   reconstruct  the  possible  physical  activities  and  subsistence  strategies  of  the   populations  surveyed.  Next,  I  summarize  the  main  points  of  this  study  and  how  they   relate  to  the  long-­‐term  consequences  of  agricultural  intensification.  Finally,  I  will   place  the  findings  of  this  study  within  the  wider  context  of  bioarchaeological   research  in  East  Asia  and  discuss  its  significance  within  current  and  past  research   into  the  role  that  diet  plays  in  individual  and  population  health  at  the  end  of  the   Neolithic  period.            

 

61  

CHAPTER  6   CONCLUSION     This  study  was  designed  to  reveal  possible  connections  between  stress  and   the  change  in  subsistence  strategies  occurring  at  the  end  of  the  Neolithic  period   through  the  Bronze  Age  in  Northern  and  Eastern  China.    Three  types  of  stress   markers  were  studied:  nutritional  stress,  occupational  stress  and  paleopathology.     Nutritional  stress  markers  show  an  overall  stature  decrease  for  males  and   females  from  the  Neolithic  period  through  the  Bronze  Age  in  these  regions  of  China.   This  finding  was  also  confirmed  by  similar  body  mass  decreases  in  males  and   females  over  time.  Furthermore,  it  became  apparent  that  male  health  has  been  more   greatly  impacted  during  this  period  because  of  a  decrease  in  stature  and  sexual   dimorphism,  and  greater  incidence  of  infectious  disease  at  the  Xindian  culture  sites.   These  data  suggest  that  males  were  more  susceptible  to  nutritional  stress.     Occupational  stress  markers  point  to  less  severe  activities  being  performed   by  individuals  at  Xindian  culture  sites.  This  finding  implies  that  intensive  grain   agriculture  was  less  arduous  than  a  more  mixed  system  that  included  vegetable   cultigens  and  greater  meat  consumption.  In  addition,  there  was  a  sexual   stratification  of  labor  during  the  Bronze  Age,  apparent  from  the  increased   asymmetry  in  the  males  humeral  midshaft  and  a  decrease  of  the  same  parameter  in   females.  Males  became  involved  with  activities  that  emphasized  the  use  of  one  size   of  their  body,  whereas  females  began  practicing  activities  where  both  sides  of  the   body  were  utilized  equally.  Degenerative  joint  disease  patterns  also  point  to  more  

 

62  

focused  activities,  such  as  repetitive  lifting,  pounding  or  carrying  heavy  objects,  in   both  sexes  over  time,  as  incidence  of  different  traumas  in  earlier  populations   disappear  in  later  populations.   The  transition  to,  and  later  intensification  of  agriculture  worldwide  were   complex  and  risky  undertakings.  This  study  verifies  the  theory  proposed  by   Pechenkina  et  al.  (2002)  that  a  general  health  decline  in  North  and  West  China  at  the   end  of  the  Neolithic  period  was  caused  by  a  marginalization  of  diet,  due  to  a  change   in  subsistence  strategies.  The  intensification  of  grain  production  was  probably  a   direct  result  of  regional  climatic  changes  at  the  end  of  the  fifth  millennium  BP.     The  study  also  expands  on  Cohen’s  hypothesis  (1977)  that  population   pressure  around  the  world  would  have  prompted  hunter-­‐gatherers  to  settle   gradually  and  take  up  agriculture  (discounting  climate  as  the  primary  global  factor).     Cohen  suggests  that  eventual  regional  climate  degradation  would  have  been  the   primary  motive  for  populations  to  begin  intensive  agricultural  production.   To  further  understand  the  multifaceted  role  of  subsistence  changes  in  this   region,  I  propose  that  additional  populations  in  North  and  West  China  be  examined   to  expand  the  scope  of  this  research.  Such  comparisons  would  provide  additional   dietary  data  and  a  wider  sample  of  male  and  female  measurements  from  which   more  confident  results  could  be  obtained.  Lastly,  similar  analyses  should  be  carried   in  other  regions  of  the  world  where  agriculture  was  prevalent  at  the  time  and   climatic  data  is  available,  in  order  for  meaningful  comparisons  to  be  made.  A   limitation  of  my  current  study  is  the  number  of  research  projects  and  articles   published  in  foreign  languages  and  lesser-­‐known  journals  that  could  not  be  used  to  

 

63  

strengthen  my  proposed  health  model.  I  hope  that  my  research  can  be  of  use  to   Chinese  scholars  as  well  as  western  scholars  when  attempting  to  answer  questions   regarding  the  shifting  patterns  of  nutrition  and  occupation  in  East  Asian  populations   and  results  in  more  cross-­‐cultural  collaborations.  One  day,  the  results  of  this  study   may  further  help  elucidate  other  aspects  of  the  intensification  of  agriculture  and  the   consequences  it  had  on  population  health  across  the  world.                                                                        

64  

REFERENCES  CITED       Aihara,  T.,  Takahashi,  K.,  Ogasawara,  A.,  Itadera,  E.,  Ono,  Y.,  Moriya,  H.,  2005.   Intervertebral  disc  degeneration  associated  with  lumbosacral  transitional   vertebrae:  A  clinical  and  anatomical  study.  J.  Bone  and  Joint  Surgery  -­‐  British   Volume,  87-­‐B  (5)  687-­‐691.     An,  C.-­‐B.,  Lingyu  T.,  Barton,  L.,  Chen,  F.-­‐H.,  2005.  Climate  change  and  cultural   response  around  4000  cal  yr  B.P.  in  the  western  part  of  Chinese  Loess   Plateau.  Quarter.  Res.  347–352.     Angel,  J.L.,  1984.  Health  as  a  crucial  factor  in  the  changes  from  hunting  to  developed   farming  in  the  eastern  Mediterranean.  In:  Cohen,  M.N.  and  Armelagos,  G.J.   (Eds.),  Paleopathology  at  the  Origins  of  Agriculture.  Academic  Press,  Orlando,   pp.  51-­‐73.     Auerbach,  B.M.,  Ruff,  C.B.,  2006.  Limb  bone  bilateral  asymmetry:  variability  and   commonality  among  modern  humans.  J.  Hum.  Evol.  50  (2)  203-­‐218.     Aufderheide,  A.C.,  Rodriguez-­‐Martin,  C.,  1998. The  Cambridge  Encyclopedia  of   Human  Paleopathology.  Cambridge  University  Press,  Cambridge.         Benfer,  R.A.,  Jr.,  1984.  The  challenges  and  rewards  of  sedentism:  the  preceramic   village  of  Paloma,  Peru.  In:  Cohen,  M.N.  and  Armelagos,  G.J.  (Eds.),   Paleopathology  at  the  Origins  of  Agriculture.  Academic  Press,  Orlando,  pp.   531-­‐558.     Bellwood,  P.,  2009.  The  Dispersals  of  Established  Food-­‐Producing  Populations.   Current  Anthropology  50  (5)  621-­‐626.     Buikstra,  J.E.,  Cook,  D.C.,  1980.  Paleopathology:  An  American  account.  Ann.  Rev.   Anthropol.  9  433-­‐470.     Buikstra,  J.E.,  Ubelaker,  D.H.,  1994.  Standards  for  Data  Collection  from  Human   Skeletal  Remains.  Arkansas  Archaeological  Survey  Research  Series  No.  44,   Fayetteville.     Cook,  D.C.,  1984.  Subsistence  and  health  in  the  Lower  Illinois  Valley:  osteological   evidence.  In:  Cohen,  M.N.  and  Armelagos,  G.J.  (Eds.),  Paleopathology  at  the   Origins  of  Agriculture.  Academic  Press,  Orlando,  pp.  237–269.     Cohen,  M.N.,  1977.  The  Food  Crisis  in  Prehistory.  Yale  University  Press,  New  Haven.    

 

65  

Cohen,  M.N.,  1991.  Paleopathology  and  the  interpretation  of  economic  change  in   prehistory.  In:  Lamberg-­‐Karlovsky,  C.C.  (Ed.),  Archaeological  Thought  in   America.  Cambridge  University  Press,  Cambridge,  pp.  117-­‐132.     Cohen,  M.N.,  2009.  Introduction:  Rethinking  the  origins  of  agriculture.  Current   Anthropol.  50  (5)  591-­‐595.     Goodman,  A.,  Armelagos,  G.J.,  1989.  Infant  and  childhood  morbidity  and  mortality   risks  in  archaeological  populations.    World  Archaeo.  21  (2)  225-­‐243.     Hackett  C.J.,  1967.  The  human  treponematoses.  In:  Brothwell  D.  and  Sandison  A.T.   (Eds.),  Diseases  in  Antiquity.  Charles  C.  Thomas,  Springfield,  pp.  152–169.     Hu,  Y.,  Wang,  S.,  Luan,  F.,  Wang,  C.,  Richards,  M.P.,  2008. Stable  isotope  analysis  of   humans  from  Xiaojingshan  site:  implications  for  understanding  the  origin  of   millet  agriculture  in  China.  J.  Archaeo.  Sci.  35  2960–2965.     Inoue,  K.,  Hukuda,  S.,  Fardellon,  P.,  Yang,  Z.Q.,  Nakai,  M.,  Katayama,  K.,  Ushiyama,  T.,   Saruhashi,  Y.,  Huang,  J.,  Mayeda,  A.,  Catteddu,  I.,  Obry,  C.,  2001.  Prevalence  of   large-­‐joint  osteoarthritis  in  Asian  and  Caucasian  skeletal  populations.   Rheumatology  40  70-­‐73.     Iscan,  M.Y.,  Shihai,  D.,  1995.  Sexual  dimorphism  in  the  Chinese  femur.  Forensic  Sci.   Inter.  74  79-­‐87.      Jing,  Y.,  Flad,  R.K.,  2002.  Pig  domestication  in  ancient  China.  Antiquity  76  724-­‐732.     Johnston,  F.E.,  1962.  Growth  of  the  long  bones  of  infants  and  young  children  at   Indian  Knoll.    Am.  J.  Phys.  Anthropol.  20  249-­‐254.     Kelley,  M.A.,  1989.  Infectious  disease.  In:  Iscan,  M.Y.,  Kennedy,  K.A.R.,  (Eds.),   Reconstruction  of  Life  from  the  Skeleton.  Wiley-­‐Liss,  Hoboken,  pp.  191-­‐200.     Kennedy,  K.A.R.,  1989.  Skeletal  markers  of  occupational  stress.  In:  Iscan,  M.Y.  and   Kennedy,  K.A.R.  (Eds.),  Reconstruction  of  Life  from  the  Skeleton.  Wiley-­‐Liss,   Hoboken,  pp.  129-­‐160.     Larsen,  C.S.,  1984.  Health  and  disease  in  prehistoric  Georgia:    The  transition  to   agriculture.  In:  Cohen,  M.N.  and  Armelagos,  G.J.  (Eds.),  Paleopathology  at  the   Origins  of  Agriculture.  Academic  Press,  Orlando,  pp.  367-­‐392.     Larsen,  C.S.,  1997.  Bioarchaeology:  Interpreting  behavior  from  the  human  skeleton.   Cambridge  University  Press,  Cambridge.     Larsen,  C.S.,  1998.  Gender,  health,  and  activity  in  foragers  and  farmers  in  the   American  southeast:  Implications  for  social  organization  in  the  Georgia  bight.    

66  

In:  Grauer,  A.L.,  and  Stuart-­‐Macadam,  P.  (Eds.),  Sex  and  Gender  in   Paleopathological  Perspective.  Cambridge  University  Press,  Cambridge,  pp.   165-­‐187.     Li  F.,  2004.  A  Research  of  the  Neolithic  Human  Skeletons  from  Jiangjialiang,   Yangyuan  in  Hebei  Province,  China.  Unpublished.  M.A.  Thesis.       Loewe,  M.,  Shaughnessy,  E.L.,  1999.  The  Cambridge  history  of  ancient  China:  from   the  origins  of  civilization  to  221  B.C.  Cambridge  University  Press,  Cambridge.     Lovejoy,  C.O.,  Meindl,  R.S.,  Pryzbeck,  T.R.,  Mensforth,  R.P.,  1985.  Chronological   metamorphosis  of  the  auricular  surface  of  ilium:  A  new  method  for   determination  of  adult  skeletal  age  at  death.  Am.  J.  Phys.  Anthropol.  68  15–28.     Magora,  A.,  Schwartz,  A.,  1978.  Relation  between  the  low  back  pain  syndrome  and  x-­‐ ray  findings.  2.  Transitional  vertebra  (mainly  sacralization).  Scand.  J.  Rehabil.   Med.  10  (3)  135-­‐145.     McCarty,  D.J.,  Koopman,  W.J.,  1993.  Arthritis  and  Allied  Conditions:  A  Textbook  of   Rheumatology,  12th  Edition.  Lippincott  Williams  &  Wilkins,  Philadelphia.     McLeod,  K.C.D.,  Yates,  R.D.S.,  1981.  Forms  of  Ch’in  Law:  An  annotated  translation  of   the  Feng-­‐chen  shih.  Harvard  Journal  of  Asiatic  Studies  41  (1)  111-­‐163.     Mintz,  G.,  Fraga,  A.,  1973.  Severe  osteoarthritis  of  the  elbow  in  foundry  workers.   Archives  Of  Environmental  Health  27  (2)  78-­‐80.     Okazaki,  K.,  Wei,  D.,  Zhu,  H.,  2008. Oral  and  paleohealth  in  millet  agriculturalists  of   the  Neolithic  and  the  Warring  States-­‐Qin  dynasty,  northern  China.  Paper   presented  at  the  62nd  annual  meeting  of  the  Anthropological  Society  of   Nippon.     Ortner,  D.,  1998.  Male-­‐female  immune  reactivity  and  its  implications  for   interpreting  evidence  in  human  skeletal  paleopathology.  In:  Grauer,  A.L.,  and   Stuart-­‐Macadam,  P.  (Eds.),  Sex  and  Gender  in  Paleopathological  Perspective.   Cambridge  University  Press,  Cambridge,  pp.  79-­‐92.     Pechenkina,  E.A.,  Benfer,  R.A.,  Jr.,  Wang  Z.,  2002.  Diet  and  health  changes  at  the  end   of  the  Chinese  neolithic:  The  Yangshao/Longshan  transition  in  Shaanxi   province.  Am.  J.  Phys.  Anthropol.  117  15–36.     Pechenkina,  E.A.,  Ambrose,  S.H.,  Ma  X.,  Benfer,  R.A.,  Jr.,  2005.  Reconstructing   northern  Chinese  neolithic  subsistence  practices  by  isotopic  analysis.  J.   Archaeo.  Sci.  32  1176-­‐1189.    

 

67  

Pechenkina,  E.A.,  Benfer,  R.A.,  Jr.,  Ma,  X.,  2007.  Diet  and  health  in  the  neolithic  of  the   Wei  and  Middle  Yellow  river  basins,  northern  China.  In:  Cohen,  M.N.,  and   Crane-­‐Kramer,  G.  (Eds.),  Ancient  Health  Skeletal  Indicators  of  Agricultural   and  Economic  Intensification.  University  Press  of  Florida,  Gainesville,  pp.   255-­‐272.     Phenice,  T.W.,  1969.  A  newly  developed  visual  method  of  sexing  of  the  0s  pubis.  Am.   J.  Phys.  Anthropol.  30  297-­‐302.     Qinghai  Provincial  Administration  of  Cultural  Relics,  and  College  for  Cultural   Heritage  and  Museology,  Northwest  University,  2004.  Hetaozhuang  of  Minhe   County.  Science  Press,  Beijing.     Robbins,  G.,  Tripathy,  V.M.,  Misra,  V.N.,  Mohanty,  R.K.,  Shinde,  V.S.,  Gray,  K.M.,  Schug,   M.D.,  2009.  Ancient  skeletal  evidence  for  leprosy  in  India  (2000  B.C.).  PLoS   ONE  4  (5)  e5669  1-­‐8.     Roberts  C.,  Manchester,  K.,  2005.  The  Archaeology  of  Disease.  Cornell  University   Press,  Ithaca.     Rogers,  J.,  Watt,  J.,  Dieppe,  P.,  1985.  Paleopathology  of  spinal  osteophytosis  vertebral   ankylosis,  ankylosing  spondylitis  and  vertebral  hyperostosis.  Ann.  Rheum.   Dis.  44  113–120.       Roosevelt,  A.C.,  1984.  Population,  health,  and  the  evolution  of  subsistence:   Conclusions  from  the  conference.  In:  Cohen,  M.N.  and  Armelagos,  G.J.  (Eds.),   Paleopathology  at  the  Origins  of  Agriculture.  Academic  Press,  Orlando,  pp.   559-­‐84.       Ruff,  C.B.,  Hayes,  W.C.,  1983.  Cross-­‐sectional  geometry  of  Pecos  Pueblo  femora  and   tibiae-­‐A  biomechanical  investigation.  I.  Method  and  general  patterns  of   variation.  Am.  J.  Phys.  Anthropol.  60  359-­‐381.     Ruff,  C.B.,  Scott,  W.W.,  Liu,  A.  Y.-­‐C.,  1991.  Articular  and  diaphyseal  remodeling  of  the   proximal  femur  with  changes  in  body  mass  in  adults.  Am.  J.  Phys.  Anthropol.   86  397-­‐413.     Stirland,  A.J.,  1993.  Asymmetry  and  activity-­‐related  change  in  the  male  humerus.  Int.   J.  Osteoarchaeol.  3  105-­‐113.     Stirland,  A.J.,  1991.  Diagnosis  of  occupationally  related  paleopathology:  can  it  be   done?  In:  Ortner,  D.J.,  and  Aufderheide,  A.C.  (Eds.),  Human  Paleopathology:   Current  Syntheses  and  Future  Options.  Smithsonian  Institution  Press,   Washington,  pp.  40-­‐47.    

 

68  

Styne,  D.M.,  McHenry,  H.,  1993.  The  evolution  of  stature  in  humans.  Horm.  Res.  39   (Suppl.  3)  3-­‐6.     Suzuki,  T.,  1991.  Paleopathological  study  on  infectious  diseases  in  Japan.  In:  Ortner,   D.J.  and  Aufderheide,  A.C.  (Eds.),  Human  Paleopathology:  Current  Syntheses   and  Future  Options.  Smithsonian  Institution  Press,  Washington,  pp.  128–139.     Suzuki  T.,  Matsushita,  T.,  Han,  K.,  2005.  On  the  possible  case  of  treponematosis  from   the  Bronze  Age  in  China.  Anthropological  Science  113  253–258.     Tini,  P.G.,  Wieser,  C.,  Zinn,  W.M.,  1977.  The  transitional  vertebra  of  the  lumbosacral   spine:  Its  radiological  classification.  Rheumatology,  16  180-­‐185.     Todd,  T.W.,  1921.  Age  changes  in  the  pubic  bone.  I:  The  male  white  pubis.  Am.  J.  Phys.   Anthropol.  3  285-­‐334.     Trotter  M.,  Gleser,  G.C.,  1958.  A  re-­‐evaluation  of  estimation  of  stature  based  on   measurements  of  stature  taken  during  life  and  long  bones  after  death.  Am.  J.   Phys.  Anthropol.  16  79–123.     Ubelaker,  D.H.,  1989.  The  estimation  of  age  at  death  from  immature  human  bone.  In:   Iscan  M.Y.  (Ed.),  Age  markers  in  the  human  skeleton.  Charles  C.  Thomas,   Springfield,  pp.  55–70.     Vergauwen,  S.,  Parizel,  P.M.,  van  Breusegem,  L.,  Van  Goethem,  J.W.,  Nackaerts,  Y.,  Van   den  Hauwe,  L.,  De  Schepper  A.M.  (1997)  Distribution  and  incidence  of   degenerative  spine  changes  in  patients  with  a  lumbo-­‐sacral  transitional   vertebra.  Eur.  Spine  J.  6  168-­‐172.     Verlaan,  J.  J.,  Oner,  F.C.,  Maat,  G.J.R.,  2007.  Diffuse  idiopathic  skeletal  hyperostosis  in   ancient  clergymen.  Eur.  Spine  J.  16  1129–1135.     Waldron,  T.,  Rogers,  T.,  1991.  Inter-­‐observer  variation  in  coding  osteoarthritis  in   human  skeletal  remains.  Inter.  J.  Osteoarchaeol.  1  (1)  49-­‐56.     Wang,  M.H.,  1995.  A  Research  on  Ancient  Human  Bones  from  Hetaozhuang   Cemetery  of  Xindian  Culture  in  Minhe  county  Qinghai  province.  Unpublished.   M.A.  Thesis.     Wigh,  R.E.,  Anthony,  H.F.,  Jr.,1981.  Transitional  Lumbosacral  Discs:  Probability  of   Herniation.  Spine  6  (2)168-­‐171.     Wolff,  J.,  1892.  Das  Gesetr  der  Transformation  der  Knochen.  Hirchwild,  Berlin.   (Translated  as  The  Law  of  Bone  Remodeling.)  Springer,  Berlin.    

 

69  

Wood,  J.W.,  Milner,  G.R.,  Harpending,  H.C.,  Weiss  K.M.,  1992.  The  osteological   paradox:  problems  of  inferring  prehistoric  health  from  skeletal  samples.   Current  Anthropology  33  343–370.  

 

70