g - NASA Technical Reports Server (NTRS)

1 downloads 16 Views 1MB Size Report
stage turbines are considered v, ith the number el desien variables ...... Grossman, B., Mason, W.H., Watson, L.T., and Haftka,. R.T., " ... http://src.doc.ic.ac,.
____________g-_ AIAA 2000-3242

Preliminary Design Optimization Turbine For Rocket Propulsion

For A Supersonic

Nilay Papila _),. Wei Shvy _).. Lisa Griffin _::_, Frank Huber {_ and Ken Tran '-_)

t, University ,2_NASA :' Riverbend _' Boeing

of Florida, Marshall

Gamesvil/e,

Flight

Design

Center,

Services,

- Rocketdyne

FL Huntsville,

Palm

Division,

Beach Canoga

AL Gardens, Park,

FL

C,,\

36th AIAA/ASME/SAE/ASEE . Joint

Propulsion

Conf_erence

16-19 July 2000 / Huntsville,

and Exhibit Alabama

I

For permission

to copy or republish, contact the American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, Virginia 20191-4344.

AIAA-2000-3242

PRELIMINARY

DESIGN

OPTIMIZATION

FOR

ROCKET

Nilay

Papila',

" Department

Wei

Shyy',

of Aerospace +NASA

" Boeing

Griffin',

Engineering, Flight

Design

Services,

- Rocketdyne

Frank

Huber*

Mechanics

of Florida,

Marshall

: Riverbend

TURBINE

FOR

PROPULSION

Lisa

University

A SUPERSONIC

Palm

Division.

Tran §

& Engineering

Gainesville, Center,

and Ken

Science

FL

Huntsville,

AL

Beach

Gardens.

Canoga

Park.

FL CA

ABSTRACT

In this

stud,,',

we present

preliminary

design

propulsion

system

stage

turbines

variables

with and

the

in the

,_ptimization

required

tv,'o-level

domain

is to balance

"['he accuracy this

,,,trategy

investigation

is

single

stage

p_+tll-ly under _,i,_,mficant

thc

engine

[_ortlon

of

discharge ratio

_t

working

t]uid.

issues

related

the

technique, +I)OF+I the

of

and

has also

criteria

_mpact

the

_+n

been

construction

the

,\

tRSMI

is

,,r

' Stage

Reaction

T,.,

' Input

Temperature

_'+ p!tcil W

' Pitch Speed ' Weioht

of maximizing

design

base

and

Increment

Efficiency

is much

1. IN'FRODUCTION

[1_

";upersonlc

Io_,t at the stage

and

it

tectmoi_gleS

in

Optimizing

the

rocket

a multistage is

desirable

cchniclucs

CADC#'IIllC#_[S

are

being

propulsion

turbine

to

efficient

and

tbi_, ta:.,k. In ucneral,

are needed,

actively

community.

is a labor-intensive

develop

to t, ndertake

>ptimlzation

task effective

tv,,3 types

uf

namely.

that

significant

cIflect;vcness

turbine

Tuvestigated

hvdrooen

exhibit

Fraction

Our

It is demonstrated

the data

_1

,ho\_n

to

turbine

>,hown

refined

\merican

cases

it is

increased

;:/_) -

cases

on efficiency

and

optimization

c,,trespt>nding

¢_f the , 13)

diameter.

77, W and

both

composite

whereas

x_ith

the

for

(Eqn.ll)

s=O)

turbine.

optimization

the results

improving

= DxRP3I

D is meanline

of

based

it=l.

>,nze

\'I'_,

where

values

parameters,

ct>mpc>ite

composite

optimization, different and d, are considered

The

W-W+, J

efficiency

capacity. based

the

represents

runs

for single-stage

based

When

functicm

payload

increment based

t_ptimum

and

rib is the baseline

weight.

,.llealtlilw

6 shows

and

s=l)

are

the

and the

calculated

only,

table

find

Different

the corresponding

Table

based

this

Excel

maximum

with

¢t=l,

weight

the

[tic

tt>lh+v,l ng manner.

Xpay =el x tOOx< ll-rlhl-!

in

for dpay

Apav

case on

the optimization shov;n

lunctlotl

is

The

corresponding 5%

local

it=l.

(rms-

to

()ptimization

and

error

cases.

optimization

s=l),

based

used

all

Apay

3by

of the objective

is for

based

for the

evaluated

with

determined.

based

It=O,

t_ptimization

I11_

together

77, W and

2hal-order

136 be

or minimum

to avoid

function

represents

d = 9"d_.d.

x_av

r/,

and 3-

28-unknown

square

constraints

tried

of

(Eqn. s=OL

can

mean

obtained

are

values

results

.\nothcr

for

the and

fit

of 77, W and Apay

parameters

(t=]. according desirability

are

values

desirability where

are

are

2-stage the

root

a given

points

optimum

_>ptlmum =

the of

the maximum

point

starting

be defined

as

there constructing

for

quality

with

design

d

obtained

4 and 5 for 1-,2-,

case,

approximations

to find

function

the desirability

surfaces

in Tables

comparing the adjusted error) shown in Table 5.

optimum

which

response

for

78

The

RSM-based _9)

and

the

W, and Apay

handle

a straightforward

desirability'

for 17, i.e., all, can

turbine

can

response

surfaces.

referred

overall

task

a composite

response

surface

maximizing

surface

optimization building

individual

is

minimizing

The

DISCUSSION

if required. The

In

AND

designed

space

r/ &

Apav

with

of the response

design

design

tot and

space

If

spaces

((t=l.

s=O),

based

optimization

spaces,

substantial

and Astronautics

are

ts based

shown

details

in Table

on the optimal (t=O, cases.

s=l)

& (t=l,

With

improvement

9 -

values

these of the

AIAA-2000-3242 response surface fit accuracy is observed also for 3-stage (Tables 13 and 14). Based on the results can be made: (i)

lii)

obtained,

tbr 2-stage

the follo'xing

and

observations

In order to determine how the optimum solution for 3pay changes as the weighting constants, t and s, are changing, three designs of (t=l, s=O), (t=O, s=l) and (t=l, s=l) denoted

To ascertain required predictive capability of the RSM. a two-level domain refinement strategy has been adopted. The accuracy of the predicted optimal design points based on this approach is shown to be satisfactory. For Apay-based

optimization,

the 2-stage

turbine

as

..Qt,E2, and

candidate vertex Plane as follows.

=/3(I_+).i

where

"_ a2_'2

points

D.3,respectively, to define

are selected

a plane referred

as

as of

(15)

2 h- O_3_"_ 3

E c_, = 1and 0 _

as

the

DlIeScnt

rcsp_;n:.-,c

>Lll-lat..'c

For both x_eight onb, _ptlmizatlon _,'=/ ,=t)) and efficiency only vpumization el=t), s=]), as expected, the single-_tage design gives the smallest wmght, l-he efficient\ a[,_o improves a:-, the number of stages mcrease_, tgonse surfaces generated for r/, W and Apay by using 1990-data generated by face centered composite design and 249-data selected by OA method. This table illustrate.,, tilat the fidelity of the response surface generated fl_r design space of 249 data, based on ,+rthogonal arrays, are comparable with that of 1990 data based on the face centered criterion. The response surface models arc al.so ab.',es.,,ed bv u_,mg 78-test data to determine the predicttxe accuracy of these models. Table IS presents that the testing tins-errors of response surfaces generated are 1.65% tbr r7 and 0.96% for W using 249-data, and 1.67c_ for r/and 1.21% for W using 1990-data. The results ot optimization based on Apay and composite desirability tunction of 77 & W with 249-data ,,elected by orthogonal arrays are shown in Table 19 for tim original design space and in Table 20 for the refined design space. When these results are compared with the results of 1990-data presented in Tables 7 and 13, it is observed that the optimum r/, W and Apay are largely consistent. However, it is also observed from Figure 7 which shows the comparison of the design variables for optimization based _n i=lpayl, some of the design variables are different even though optimum r/, W and Apay are consistent. This .,,hows that there are multiple points in the design space which yield comparable performance. Nevertheless. it remains true that the twostage turbtne is most >ratable from a payload point of view.

6 Institute of Aeronautics

and Astronautics

AIAA-2000-3242 7. CONCLUDING

REMARKS

In summary, the result of the RSM computation indicates that indeed the efficiency rises quickly from 1 stage to 2 stages but the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A significant portion of kinetic energy is lost at the turbine discharge of the lstage design due to high pressure ratio and high energy content, mostly hydrogen, of the working fluid. Adding a 2 nd stage recovers most of that wasted energy resulting in much better efficiency for a 2-stage turbine. An extra 3 'd stage only improves the efficiency slightly. Understandably, the turbopump weight also increases substantially from 1 to 3 stages even though the 3-stage turbine diameter is smaller. The smaller diameter is the direct outcome of higher RPM that is the result of lower exit annulus area satisfying the constraint defined tot AN'. ]'he exit annulus area is smaller because of the lower pressure ratio per stage. However. the 3-stage turbine is much longer and requires a change in bearing configuration that adds significantly into the overall wei,,ht The optimum 2-sta_e turbine resultine from the RSM optimization is consistent with a design produced by an experienced engineer; namely, that most of the work is done bv the 1" stage at very h_w reaction. By varying from 1- to 2-to 3-stages, _e _bscr'ce lhaI while the size of the training data increase naturally \t.ith the number ot design variables, the actual need is case dependent. Furthermore, it seems that the selection of the data distribution can be more critical than the data size. Present investigation has also demonstrated that the criteria for selecting the data base exhibit significant impact on the cfficienc,v and effectiveness of the constructum of the response surface. S. AC KNOWIA'2DG

I,?,MENT

This present work is supported by NASA Marshall Space Flight Center IGrant #: NAG8-1251). We have also rcceu,,ed _aluable comments fr(',rn t-'r_fessor t),,aphael [taftka o1 the University of Fh>rida. 9. REFERENCES 1Myers, R. H. and Montgomery, D. C., Response Surtace Methodology - Process and Product Optimization Using Designed Experiments, New York: John Wiley & Sons, Inc., 1995. "JMP version 3. Statistics Institute Inc., 1998. _Sloan, J., "Airfoil Low P,evnolds Science Thesis,

And

and Wing

_pmber University

Graphics

Planlorm

Guide.

Optimization

Flieht Vehicles." ot Elorida, 1998.

American

Master

SAS

ti)r _I

4Madsen, J.I., "Design Devices," Philosophy University, 1998. SMicrosoft

Corporation

Optimization of Doctorate

(1985-1996).

of Internal Flow Thesis, Aaiborg

Microsoft

Excel 97.

6Madsen, J.I., Shyy, W. and Haftka, R.T., "Response Surface Techniques for Diffuser Shape Optimization," accepted for publication in AIAA Journal, 1999. VTucker, P.K., Shyy, W. and Sloan, J.G.,

"An Integrated

Design/Optimization Methodology for Rocket Engine Injectors," AIAA/SAE/ASME/ASEE 34th Joint Propulsion Conference, Paper No. 98-3513, July 13-15, 1998. SPapila, N., Shyy, W., Fitz-Coy, N. and Haftka, R.T., "Assessment of Neural Net and Polynomial-Based Techniques for Aerodynamic Applications," AIAA 17th Applied Aerodwmmics Conference, Paper No. 99-3167, 1999. "Shyy, W., "Fucker, P.K. and Vaidyanathan, R., "Response Surface and Neural Network Techniques for Rocket Engine Injector Optimization," A1AA/SAE/ASME/ASEE 35th Joint Propulsion Conference, Paper No. 99-2455. June 20-24, 1999. "_Unal, R., Lepsch, R. A., :md McMillin, M. L., "Response Surface Model Building and Multidisciplinary Optimization using D-Optimal Designs," 7'/' A 1AA/USA F/NA SA/ISSMO Symposium on .Ihdtidisciplinat T Analysis amt Optunizatlon, Paper No. 98-4759. September 2-4. 1998. t:Unal,

R., Braun.

R. D., Moore.

A.A., and Lepsch.

R.A..

'Response Surface Model l?_uilding l rsing Orthogonal Xrravs for Computer Experiments," 19 'h Ammal International Cotg_,'rence _g the lmernattonal Society of Parametric Analysis, New Orleans, Louisiana, May 2230. pp. 13. 1997. t:Unal. R., Braun. R. I3.. Moore. A. A, and Lepsch, R.A., "Design Optimization _n Cost Basis Using Taguchi's Orthogonal Arrays" Proceedings of the Annual American Society for Engineering Management (ASEM) Conference, October, 1996. _3Unal, R., and Dean, E. B., "Design For Cost And Quality: The Robust Design Approach," http ://m ij U11O. larc. nasa. go v/pap/robdes/robdes, htm l, 1995. t_Unal, R., and Dean, Design Optimization Overview," Proceedings

7 Institute of Aeronautics

and Astronautics

E. B., "Taguchi Approach to for Quality and Cost: An Of the International Society of

AIAA-2000-3242 Parametric Analysts 13 th Annual Orleans, Louisiana, May 21-24, 1991.

Cottference,

New

_5Dean, E. B., "Taguchi Methods from the Perspective Competitive Advantage," http://akao.larc.nasa.gov/dfc/ tm.html, 1995.

tSOwen, A., "Orthogonal Arrays for: Computer Experiments, Visualization, and Integration in high dimensions," http://src.doc.ic.ac, uk/public/pub/Mirrors/ lib.stat.cmu.edu/designs/owen.readme, 1994.

of

tVLadson, L.S.,

Z°Venter,

1. Design

Space for Single-Stage

Turbine

A. D., Jain,

A., and Ratner,

G.,

Haftka,

R.T.,

and

Starnes,

J.H.,

(All geometric

design

variables

are normalized

by the baseline

values) Variable Mean Diameter.

Table

Lower Limit 0.50

Upper Limit 1.50

Speed, RPM Blade Annulus Area. A ..... Vane Axial Chord. c, Blade Axial Chord, Cb

0.70 0.70 0.39 0.26

1.30 1.30 1.71 1.14

Stage Reaction,

0.0%

50%

2. Design Space for 2-Stage

D

sr

l'urbine

tAll geometric

design

Variable Mean Diameter, D Speed, RPM Blade Annulus Area. A;,,m 1" Blade Height (';4 of Exit Blade), h_ 1_tVane Axial Chord. c,i 1_tBlade Axial Chord. %1 2 ''a Vane Axial Chord, c,.2 2 "a Blade Axial Chord, %2 1_tStage Reaction, srl 2_ Stage Reaction, sr2 I st Work Fraction, wft

American

Institute

M.,

Jr.

"Construction of Response Surface Approximation for Design Optimization," AIAA Journal, 36(12), pp. 22422249, 1998.

_7Trosset, M. W., and Torczon, V., "Numerical Optimization Using Computer Experiments," NASA CR201724 ICASE Report No.9738, pp. ! 6, August 1997.

Table

Waren,

"Design and Testing of a Generalized Reduced Gradient Code for Non-linear Programming," ACM Transactions on Mathematical Software, Vol. 4, No. 1, pp.51-56, 1978.

_6Balabanov, V.O., Giunta, A.A., Golovidov, O., Grossman, B., Mason, W.H., Watson, L.T., and Haftka, R.T., "Reasonable Design Space Approach to Response Surface Approximation," Journal of Aircraft, 36(1), pp. 308-315, 1999.

8 of Aeronautics

variables

are normalized

Lower Limit 0.50 0.70 0.70 0.90 0.39 0.26 0.21 0.17 0.0% 0.0% 50%

and Astronautics

bv the baseline

Upper Limit 1.50 1.30 1.30 1.50 1.71 1.14 1.41 1.13 50% 50% 85%

valuest

AIAA-2000-3242 Table3.Design Space for3-Stage Turbine (All geometric design variables arenormalized bythebaseline values) Variable Mean Diameter,

LowerLimit

Speed, RPM Blade Annulus Area, A._n i st Blade Height (% of Exit Blade), I st Vane Axial Chord, cvl 1 st Blade Axial Chord, Cbl 2 "d Vane Axial Chord. cv2 2 n'l Blade Axial Chord, c_2 3 rd Vane Axial Chord, c,3 3 r'j Blade Axial Chord. oh3 I st Stage 2 "d Stage 3 rd Stage 1 st Work 2 "d Work

hi

Reaction, sr, Reaction, sr2 Reaction, sr3 Fraction, wf_ Fraction, wf2

Table

1-Stage 2-Stage

0.50 0.70 0.70 0.90 0.39 0.26 0.21 0.17 0.21 0.17 0.0% 0.0% 0.0% 40% 30%

D

4. Response

Surface

No. of Design Parameters 6 11

3-Sta_e

Summary

No. of Coefficients 28 78 136

"Fable 5. The quality of the Second-Order Response Surface obtained IMean values ot tl. Wand Apay are normalized

I -Stage

2-Stage

3-Stage

1.50 1.30 1.30 1.50 1.71 1.14 1.41 1.13 1.41 1.13 50% 50% 50% 80% 10%

tor 1,. _ and 3-Stage

15

UpperLimit

Turbine No. of Desien Points 76 1990 2235

for 17, W, and Apay 1.2 and 3-Stage Turbine by the baseline values_

R: Ra" rms- ,'rrc_r Mean R-" t),a: rms- _rror Mean

r1 0.998 0.997 2.5()f} 0.57 0.995 !).994 1.31 '.;_ 0.78

W 0.999 0.999 0.82 f:;0.60 0.996 0.996 2.56c4 0.86

Apay 0.998 0.997 4.09¢_ -0.43 0.995 0.995 9.58% -0.24

R2 I),a: rms- ,';rot Mean

0.989 0.988 2.05¢ 0.89

0.989 0.988 2.90_ 1.41

0.994 0.994 8.4'.;'_ -0.26

American

Institute

9 ot Aeronautics

and Astronautics

AIAA-2000-3242 Table6.Optimization based onApay (All geometric

design

variables

and composite desirability function of 7"/and W for single-stage and output parameters are normalized by the baseline values)

Wopt

Apayopt

0.766

0.731

-0.214 -0.193

Error % of mean

0.797 2.9

0.733 0.3

4.8

RSM(t= I, s=O) Meanline Error % of mean

0.399 0.383 1.8

0.407

-0.611

0.402 t

-0.623 2.7

RSM(t=O, s= 1) Meanline Error % of mean

0.781 0.797

0.762 0.762 0.03

-0.216

RSM(t= 1, s= 1) Meanline Error % of mean

0.702 0.718 3.1

0.583

-0.261 -0.239

_'loDt

RSM(Apay) Meanline

2.2

-0.199 3.8

0.588 0.8

I

turbine

D

RPM

1.181

0.975

1.166

1.706

0.880

0

0.502

1.284

0.699

0.394

0.264

0.5

1.260

0.915

1.300

1.575

0.880

0

0.895

1.284

0.699

1.706

0.264

0

Aalul

Cv

Cb

sr

5

Table 7. Optimization based on Apm and composite desirability function of r/and W for 2-stage turbine for original design space (All geometric design variables and output parameters are normalized by the baseline values)

[ RSM(Apav) : _

floor

Wopt

Apayopt

1.10 , 1.1_.

1.05 1.05

i

0.11 0.14

]

I

0.00

RSbl(t=l.

[

0.66

-0.34

0.65

0.65

0.35

1.10

0.60

4.00

Meanline Error %of mean[ RSM(t=O.

0.65

s=l)

Meanline

0. ll 113

1.10

0.14

] [

0.41

13.50

IError '_ot"meanI 0.30 I

1.70

Error %of mean[ 3.30 RSM(t=I..s=I)] 0.99 Meanline 0.991

RPM

Aann

hi

Cvl

c,,2

Cbt

%2

srt

srz

Wn

0.99

1.14

1.50

1.57

0.97

0.71

0.68

0

0.50

0.85

1

1.16

10.60

Error ' _of mean I 2.50 s=0;

D

]

0.50

t i

1.27

] 0.70 1

1.24

i

{).92

]

t.27

I ,:0 :k-I "_0 ]

o.84 0.03 0.03 '""'i 0.85

1.50

1.71

t

1.76

11 i

1.30__ .............. l 50

1.44

1.06

t).92

1.13

0.7l

0.79

a 0.85 : I 13 ....12__1_

t 71 _[7(,

Lttl 0.50

0

0

0.50

Ill 0

t10

0.40

Table 8. Optimization based _n Apay and composite desirability function of 71and W for 3-staee turbine for original design space IAII geometric design variables and output parameters are normalized by the baseline values)

"lq,_o t

Wop

I

Apayopt

RSM (Apay) Meanline Error %of mean

1.24 1.21 4.72

1.62 1.57 3.52

0.14 0.10 14.59

RSM (t=l, s=O) Meanline Error ',;_of mean

0.85 I_.83 2.13

1.13 1. t3 0.34

-0.23 -0.26 14.39

RSM (t=O, s=l; .Meanline Error %of mean

1.26 123 4.27

1.74 1.69 3.10

0.12 0.09 13.54

RSM (t=l. r=/; Meanline -. , Error %of mean

IO8 i.10 2.16

1.33 1._4 0.59

0.05 0.04 4.11

:\merlcan

10 Institute _)t Aeronautics

and Astronautics

0.50

0.80

0.50

AIAA-20(X)-3242

RSM(z._pay) RSM (t=1, s=O) RSM (t=O, s=l) RSM (t=l, s=l) Table

D

RPM

Aa_

hi

c,,l

c¢_

e,3

ebl

Cb2

Cb3

1.07 0.50 1.19 0.91

1.07 1.28 0.96 1.29

0.98 0.70 1.20 0.70

1.50 0.90 1.50 1.50

1.59 1.71 1.44 1.71

1.09 1.76 1.06 0.62

0.87 1.41 0.78 0.78

0.56 0.73 0.56 0.17

1.02 1.41 0.99 0.21

0.89 0.17 0.90 1.13

9. Upper and Lower Limits (All geometric

D

RPM

srt 0 0.5 0 0

of the Design Parameters of the refined designed spaces design variables are normalized by the baseline values)

A_,m

ht

cv,

c,,2

Cbl

st2 0.5 0.5 0.5 0

st3 0.5 0.5 0.5 0

Cb2

Srl

sr2

wta

Max

1.50

1.30

1.30

1.50

1.71

1.76

0.92

1.13

0.50

0.50

0.85

Min

0.50

0.70

0.70

0.90

0.39

0.26

0.21

0.17

0.00

0.00

0.50

Refined

Max

1.26

1.05

1.20

1.50

1.71

1.11

0.79

0.79

0.05

0.50

0.85

(Apay) Refined

Min Max

1.06 0.60

0.93 1.30

1.08 0.76

1.44 1.50

1.44 1.71

0.81 1.76

0.64 0.92

0.60 1.13

0.00 0.50

0.45 0.50

0.82 0.54

It=l,

Min

0.50

1.21

0.70

1.44

1.57

1.61

0.85

1.03

0.45

0.45

0.50

Refined

Max

1.34

0.98

1.30

1.50

t.63

1.20

0.76

0.90

0.05

0.05

0.82

¢t=O, s=l)

Min

1.14

0.86

1.24

1.44

1.36

0.91

0.62

0.70

0.00

0.00

0.75

Refined

Max

1.00

1.30

0.76

1.50

1.71

1.76

0.92

1.13

0.05

0.05

0.54

!t=l.

Min

0.80

1.21

0.70

1.44

1.57

1.61

0.80

1.03

0.00

0.00

0.50

s=l)

Table

Original Refined Refined Refined Refined

(Apay) (t=1. s=O) (t=O, s=l) (t=l. s=/)

Refined IApay) Refined (t=l, s=O) Refined (t=O, s=l) Refined It=l. s=l)

0.3 0.3 0.3 0.1

10. Center Coordinates of the refined designed spaces for 2-stage turbine IAII ,.zeometric desi,,n variables are normalized by the baseline valuesl

D

RPM

A:,._

h_

c_

c_2

0 1.16 0.50 1.24 0.91

0 0.99 1.27 0.92 t.27

0 1.14 0.70 1.30 0.70

0 1.50 1.50 1.50 1.50

0 1.57 1.71 1.50 1.7I

0 0.97 1.76 t.06 1.76

Cb_ 0 0.71 0.92 0.69 0.85

Cb2

sr_

st2

we,

0 0.68 1.13 0.80 1.13

0 0 0.5 0.0 0

0 0.5 0.5 0.0 0

0 0.85 0.5 0.78 0.50

"Fable 1 I. 1 rpper and l_ower Limits _)f the l)csign Parameters of the refined designed spaccs tall geometric design x ariables are normalized by the baseline values_

Original

0.6 0.4 0.6 0.6

w f2

for 2-stage turbine

Original

s=O)

wft

for 3-stage turbine

Max Min Max Min

D 1.50 0.50 1.17 0.97

RPM 1.30 0.70 1.13 1.01

A_ 1.30 0.70 1.05 0.92

h_ 1.50 0.90 1.50 1.44

c_t 1.71 0.39 1.71 146

c,,2 1.76 0.26 1.24 0.9-,

c,,_ 1.41 0.21 0.99 0.75

ct, I 0.73 0.17 0.62 0.51

cl__ 1.41 0.21 1.14 0.90

ct,_ 1.13 0.17 0.99 0.79

sr, 0.5 0.0 0.05 0.00

srl 0.5 0.0 0.50 0.45

sr;l 0.5 0.0 0.50 0.45

wf I 0.8 0.4 0.62 0.56

Max Min Max Min Max

0.60 0.50 1.29 1.09 1.00

1.30 1.22 1.02 0.90 1.30

0.76 0.70 1.26 1.14 0.76

0.96 0.90 1.50 1.44 1.50

1.71 1.57 1.60 1.34 1.71

1.76 1.61 1.18 0.88 0.74

1.41 1.29 0.93 0.69 0.88

0.73 0.68 0.60 0.49 0.23

1.41 1.29 1.10 0.86 0.33

0.26 0.17 0.99 0.80 1.13

0.50 0.45 0.05 0.00 0.05

0.50 0.45 0.50 0.45 0.05

0.50 0.45 0.50 0.45 0.05

0.44 0.40 0.62 0.56 0.64

0.3 0. t 0.30 0.26 0.30 0.28 0.30 0.26 0.14

Min

0.80

1.23

0.70

1.44

1.57

0.44

0.64

0.17

0.21

1.03

0.00

0.00

0.00

0.58

0.10

American

Institute

11 of Aeronautics

and Astronautics

AIAA-2000-3242 Table12.Center Coordinates oftherefined designed spaces for3-stage turbine (All geometric design variables arenormalized bythebaseline values) D 0 1.07 0.50 1.19 1.00

Original Refined (Apay) Refined (t=l, s=O) Refined (t=O, s=l) Refined(t=l, s=l)

RPM 0 1.07 1.28 0.96 1.00

Am 0 0.98 0.70 1.20 1.00

h1 0 1.50 0.90 1.50 1.20

Cvl 0 1.57 1.71 1.44 1.05

Cy_

Cv_

Cbl

Cb2

Cb_

0 1.06 1.76 1.06 1.06

0 0.85 1.41 0.78 0.85

0 0.56 0.73 0.56 0.45

0 0.99 1.41 0.99 0.85

0 0.90 0.17 0.90 0.68

sr! 0 0.0 0.5 0.0 0.3

sr2 0 0.5 0.5 0.5 0.3

sr3 0 0.5 0.5 0.5 0.3

wfl 0 0.6 0.4 0.6 0.6

wf2 0 0.3 0.3 0.3 0.2

Table 13. Optimization based on Apay and composite desirability function of 7?and W for 2-stage turbine for refined design space (All geometric design variables and output parameters are normalized by the baseline values) rlo_t

W_

1.13

1.04

0.15

1.13

1.04

0.15

0.03

0.02

0.16

RSM(t= 1, s=O) Meanline Error %of mean

0.65

0.65

-0.35

0.65 0.00

0.65 0.00

-0.35 0.01

RSM(t=O,

s=l)

1.15

1.10

0.15

Error %of mean

1.15 0.02

1.10 0.01

0.15 0.09

1.00 i 1.00

0.85 0.85

0.04 0.04

RSM

(Apay)

IMeanline Error % of mean

Meanline

Apayovt

D

RPM

Aim

hi

1.08

s=l)

1.44

Cv2

Cbl

CB2

Srl

0.79

0.71

0.62

0.1

0.5

0.92

1.13

0.5

0.5

1.12

1.02

0.50

1.27

0.70

1.50

1.71

1.76

1.23

0.93

1.30

1.50

1.31

0.88

0.71

0.73

0.1

1.58

0.92

1.01

0

sr2

Wn



0

05

0.8

r

1

RSM(t=I, Meanline

1.50

Cvl

0.91

1.27

0.701

.50

1

1.71

0

f 1

0.51

[Error '/(of mean Table 14. Optimization based on Apay and composite desirability function of r/and W fl)r 3-stage turbine lor refined design space (All geometric design variables and output parameters are normalized by; the baseline values) 'lqoot

Wopt

Apayopt

RSM (Apay) Meanline Error %of mean

1.20 1.21 0.22

1.54 1.54 0.13

0.11 0.11 0.41

RSM (t=l, s=O) Meanline F_rror C+of mean

0.82 0.82 0.04

1,13 1.13 0.02

-0.27 -0.27 0.31

RSM (t=O, s=l) Meanline Error %of mean

1.24 1.23 1.39

1.75 1.72 1.29

0.09 0.09 1.35

RSM (Apay) RSM(t= I, s=O) RSM(t=O, s= 1)

D 1.03 0.50 1.20

, 1.11 1.27 0.94

Aa 0.92 0.70 1.26

ht 1.50 0.96 1.47

1.46 1.71 1.35

0.94 1.76 0.88

c,.3 0.75 1.41 0.69

Cbl 0.51 0.73 0.54

Cb2 0.90 1.41 0.86

• L

American

Institute

12 of Aeronautics

and Astronautics

Cb3 0.79 0.17 0.80

srl 0.04 0.5 0

sa'2 : _;;Brgl 0.5 0.5 0.62 0.5 0.5 0.4 0.45 0.45 0.6

wt'2 0.28 0.3 0.3

AIAA-2000-3242 Table15.Optimization summary for 1,2and3-stage turbinewithresponse surface inoriginaldesign space (All outputparameters arenormalized bythebaseline values)

Apay (t=l,

s=O)

(t=O, s=l)

(t=l,

Table

s=l)

qo_,t

Woof

1-stage 2-stage 3-stage

0.77 1.10 1.24

0.73 1.05 1.62

-0.21 0.11 0.14

1-stage 2-stage

0.40 0.65

0.41 0.66

-0.61 -0.34

3 -stage l-stage 2-stage 3-stage l-stage 2-stage

0.85 0.78 1.10 1.26 0.70 0.99

i. 13 0.76 1.10 1.74 0.58 0.85

-0.23 -0.22 0.11 0.12 -0.26 0.03

3-sta_e

1.08

1.33

0.05

16. Optimization

summary for 1.2 and 3-stage turbine with response surface in refined design (All output parameters are normalized by the baseline values)

l-stage Apay

(t=l,

2-stage 3-sta_e 1-stage 2-stage 3-staoe l-stage 2-stage 3-sta_e l-stage

s=O)

It=O, s= l )

(t= 1. s= 1 )

Table

2-sta_e

17.The quality

Apayovt

floor

Wovt

Apayov,

0.77 1.13 1.20 0.40 0/05 0.82 0.78 1.15 1.24

0.73 1.04 1.54 0.41 0.65 1.13 0.76 1.10 1.75

-0.21 0.15 0.11 -0.6 l -0.35 -0.27 -0.22 0.15 0.09

0.70

0.58

-0.26

1.00

0.85

0.04

of the Second-Order Response Surface obtained tor r/, W and Apay of 2-Stage 1990-data tFCCD criterion) and 249-data (OA crtteriom (Mean

1990-data

249-data

values of r/, W and Apay are normalized

by the baseline

values)

RRa: rms- error Mean

r1 0.995 0.994 1.31% 0.78

W 0.996 0.996 2.56% 0.86

Apay 0.995 0.995 9.58% -0.24

Rz Ra 2 rms- error Mean

0.995 0.992 2.128% 0.89

0.998 0.997 0.826%) 0.92

0.994 0.992 20.68% -0.11

.\merican

Institute

13 of Aeronautics

and Astronautics

space

Turbine

for

AIAA-2000-3242 Table18.Testing oftheSecond-Order Response Surface obtained forrl andWof2-Stage Turbinefor1990-data (FCCDcriterion) and249-data (OAcriterion)with78-testdata # of design

points

# of test data

rms-error

for rl (%)

rms-error

for W(%)

249

78

1.65

0.96

1990

78

1.67

1.21

Table 19. Optimization based on Apay and composite desirability function of q and W for 2-stage turbine original design space with 249-data (OA criterion). (All geometric design variables and output parameters normalized by the baseline values)

Wopt

for are

I /xpayoot

1.04

[

0.]3

1,02

I

2.76

0.83

I

0.00

Meanline Error %of mean RSM(t=O,

s= 1)

Meanline _ RSM(t=I. Meanline

s=l)_ I 0.96

76

0._21

1.i3

0.5

0.0

0.9

Error '5 of mean_ Table 20. Optimization based on Apay and composite desirability function of q and W t'or 2-stage turbine tot refined design space for 249-data (OA criterion). (All geometric design variables and output parameters are normalized by the baseline values) D rlopt I Wopt RSM I@ay) t 1.13 Meanline ' 1.12 Error % of mean RSM(t= 1, s=O) Meanline

0.63

I I

1.02 1.02 0.01

-0.38

RSM(t=O,

s= 1)

1.10

RSM(t= 1, s= 1) Meanline Error %of mean

0.15 0.37

0.64

t0"00311 0.0002

Error %of mean

j

1.03

0.16

-0.38

mean

Meanline

!

0.64

Error _of

c,2c,,ic,2 I

RPM

[Apayopt 1.10

t.50

1.05

I

1.57

0.53

1.27

0.70

0.90

0.391

0.26

0.931

t.30 i

1.50

1.57

0.70 t

0.0002 [

0.15

1.14

1.10

0.15

0.005 0.97

0.001 0.84

[ 0.029 0.02

0.98 0.08

0.84 0.05

0.02 6.08

I

t 09o t 039

American

institute

14 of Aeronautics

and Astronautics

_t ]

0.85

0.51

o,o,1o,

AIAA-2000-3242 Selecti_h 6_ 1 Desig_,..._J _-_

I Normalization -if required

Function Approxtmatmn

1-',,

Cross-Validation (ModelTesting)

] ]

Optimization

Figure

1. Function

Approximation

and Optimization

A

i

Flow Chart

A

'

_]" :_ .T.o I 1 .,-.}..,"-t'-" :'::

/

o"1

:,C,

Figure

2. Face Centered

!

I

_!_

('t_mpos.te

I

X_

Designs

(FCCD)

for 3 Design

o,

American

15 Institute of Aeronautics

and Astronautics

Variables

AIAA-2000-3242

E]fect ot # of Turbine

Stages

( normalized

1.3

for Optimum E_ficiency

by the baseline

Optimum Diameter

value)

( normalized

1.20

1.2

i

I

I i

,4,--

1.1

by the baseline value)

1.15

1

•s

1.0

I /'

WO.9

S

,m 1.10

I i

'

r •

I

/

0.8

•s

t 05

"3,

0.7 0.6

1,00 0

1

2 # ol Stage

EYfect of # ol Turbine ( normalized

3

Stagesfor

4

1

2 # of Stage

OptimumWeignt

by the baseline

Optimum RPM

value)

1.7

1 20 ,

.4'

15

3

( normalized by the baseline valuel - .......................................

115

/ / / s

13

110

/ / /

E

:s a_ 1.05 rr

/"

s

s

100

09

I i

/

/

0 95

II /

07

0.90

05 0

1

2 # of Stage

E_fect of _ of Turbine Payload Q_

Qnange

3

0

4

1

Optimum AnnuLus Area

Stages for Optimum Incremental

( normalized

by the baseline

2 # of Stage

normalized

vaiuet

by the baseline

value)

1 20

.................................

_15 :5 01

/

110

-_.%,

I

_

/

o,o i

_

0

>.

.......

s

1

t 05

,,

.

_

C

2

3

4

.1,00

i I

r_

T4-O 1 "d

x x

-%

095

/ /I

0 9O

/ //

_- -0 2 :?

:3 85 0.80

-0.3

0

Figure

3. [:ftect

of the number output

(A[I geometric

o[ turbine

parameters: design

1

:

# of Stage

stage

on optimum

t t, tL', :md Apay

variables

and output

design

calculated parameters

parameters;

tk)r Apay-based are normalized

16 American

Institute

o[ Aeronautics

and

Astronautics

2 # o! Stage

D, RPM.

3

and A.,,,,, and optimum

optimization by the baseline

values)

4

AIAA-2000-3242 Bfect of # of Turbine Stages for Optimum Bficiency 0.9

i

i

( normalized by the baseline value)

Optimum Diameter ( normalized by the baseline value)

0.600

0.8 0.7 0.6

m

0.550

I s

J

i i

0.5

I i

J

J

i

i o 0.500

i

i

ff

0.4

0.450

0.3 i

0.2

0.400 0

1

# of 2Stage

1

2

3

# of

IRfect o! # of Turbine Stagesfor Optimum Weight

Optimum ( normalized

( normalized by the baseline value)

by

3

4 ;

3

4

3

4

Stage

RPM the

baseline

value)

1 3O

1.2

#,

11

1 29

i

1.0

i i i I

0.9

1 28

I i I 0,_

i

___ 0.8

i i

;_0.7

127 0.6

1 126

I

0,5 I i I1"

04

I 25

03

o

1

2 # of Stage

3

0

2 = Of

Ootimum

E_fect of n of Turbine Stages lor Oplimum Pay_oacl ( normalized by the baseline vatue) 1

i

2

( normalized 071

3

Stage

Annulus bY

lne

Area baselme

value}

...................

4

-02 070

-_ -03 _ -04

• ........

->,,- .......

-_

/

G..

./ /

-,'_, 5

/

/ I / /

-C.6

/

II /

0 69

-0.7

0 # of Stage

Figure

4. Effect

of the

number

of turbine

stage

output

parameters:

on optimum

geometric

design

variables

design

parameters;

tT. W, and Apay

for Weight-based iAIl

1

2 _ of Stage

i

optimization

and output

parameters

(t=/.

Institute

of Aeronautics

and A ..... and optimum

s=d)

are normalized

17 American

D, RPM.

calculated

and Astronautics

by the baseline

values)

AIAA-2000-3242

E]fect of # of Turbine Stages 1,3

( normalized

Optimum Diameter

for Optimum Efficiency

by the baseline

value) .;7

( normalized

1.30

by the baseline

value)

"1

1.2 1.25

1.1 i /

o

i I t_

1.0

7"

!

I /

0.9

1.20

7" s

0.8

II' 1.15

0.7

1 0

1

# of _tage

3

2 # of Stage

4

3

4

Optirru m RPM ETfect of # of Turbine Stagesfor ( normalized

]

!

Optimum Weight

by the baseline

( normalized

value)

18

by the baseline

value)

# 094

16 / / //

14 /

Z

>

//

I I

/

O..

/

/

n"

/

t.2

0.92

/

/

1.0

f

0.8

m" 0.90

0.6 0

1

_fect

2 # of Stage

of # of Turbine Stages ( normalized

020

3

for Optirrum

by the baseline

o

4

1

2 # of Stage

Optimum Annulus

Payload

value)

( normalized .....................................

135

3

4

3

4

Area

by the baseline

value)

015 010 1.30

/

0.05 #1

-_ 0.00

........

/

1

90.05

.....

2

/I

3

i I

1.25

(2/I

-010

/ I

-0.15

/ /t

-0.20

li t

120 0

-025 # of Stage

1

_

2 # of Stage

J

Figure

5. Effect of the number

(All geometric

design

of turbine stage on optimum design parameters; _+utput parameters; r/, W. and Apay calculated Ibr q-based optimization (t=O, s= I) variables and output parameters are normalized

t+-

American

Institute

18 of Aeronautics

and Astronautics

D, RPM, and A ......and optimum

by the baseline

values)

AIAA-2000-3242

cz-plot forApay

Response Surface tbr 2-Stage (normalized by the baseline value )

Turbine

(t= 1,s=0) (t=l,s=l)

(t=0.s= 1 )

Dpay _



0.118547 0.108876 0.100127 0.0825071 0.0646329 0.0441748 0.00650685 -0.0415149

i_-0.0755047 -0.112671 -0.167669

-0279187 -0.224047 -03322

(t= 1,s=O)

Figure 6.6z-Plot tor Apay normalized by the baseline values ) Response Surface for 2-Stage Turbine based on composite desirability function optimization (Effect ot values of t and s on optimum Apay )

Amer|can

Institute

_9 of Aeronautics

and Astronauttcs

AIAA-2000-3242

Optization

Based on Payload Increment for Original Design Space E}----t

1 O 0.8 +

,..- 0.6



[]

,.L.'

[]

._c 0.4 O a

0.2 []

¢ 0 _3 :_ -0.2

2

4

3

rq

5

6

7

9

10

1!1

_-0.4 _ -0.6 0

z

-0.8

O

Design Variables

ia) Ori,_,inal

Optization 1.0

0.6

Space

Based on Payload Increment for Refined Design Space ..........

--'

;

0.8 4-

Desi,,n

(DV)

O

,

[]

O

40

_

"7 O4 _ i, O O

:::

O oOA

o.o 2

> -0.2

........ 4 5

s

6

7

_

Z3

_o

FCCD

O

-0,4 E -0.6 ,

© Z

9

; _

0

-0.8 -1.0 Design Variables

i b)Refined

Figure

7. Comparison data

(DV#1:

of the IDc,_ign Variables

¢FCCD)

D, DV#2:

RPM,

and 249-data DV#3:

IOA)

Amn DV#4:

Design

(DV)

Space

for Optimization I__)rboth

Original

h_, DV#5:

bJ.scd Design

c,.i, DV#6:

sr,_, and DV#11:

on Payload Space

and

c,.2, DV#7:

wn)

q,

20 ,-\mencan

Institute

of Aeronautics

and Astronautics

Increment Refined

Cbl, DV#8:

Design

(Apay_

u,,,ing

1990-

Space

Cb2, DV#9:

sq,

DV#10: