Ga(HAsO4) - IUCr Journals

0 downloads 0 Views 827KB Size Report
Sep 24, 2018 - ture types found during our study, one atomic arrangement, ... The free, protonated corner of each AsO4 tetra- hedron forms a hydrogen bond to ...
research communications (NH4)Ga(HAsO4)2 and TlAl(HAsO4)2 - two new RbFe(HPO4)2-type M+M3+ arsenates ISSN 2056-9890

Karolina Schwendtnera* and Uwe Kolitschb

Received 18 September 2018 Accepted 24 September 2018

Edited by S. Parkin, University of Kentucky, USA Keywords: crystal structure; (NH4)Ga(HAsO4)2; TlAl(HAsO4)2. CCDC references: 1869299; 1869298 Supporting information: this article has supporting information at journals.iucr.org/e

a Institute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum, Burgring 7, 1010 Wien, and Institut fu¨r Mineralogie und Kristallographie, Universita¨t Wien, Althanstrasse 14, 1090 Wien, Austria. *Correspondence e-mail: [email protected]

The crystal structures of hydrothermally synthesized (T = 493 K, 7–9 d) ammonium gallium bis[hydrogen arsenate(V)], (NH4)Ga(HAsO4)2, and thallium aluminium bis[hydrogen arsenate(V)], TlAl(HAsO4)2, were solved by single-crystal X-ray diffraction. Both compounds crystallize in the common RbFe(HPO4)2 structure type (R3c) and share the same tetrahedral–octahedral framework topology that houses the M+ cations in its channels. One of the two Tl sites is slightly offset from its ideal position. Strong O—H  O hydrogen bonds strengthen the network.

1. Chemical context Compounds with mixed tetrahedral–octahedral (T–O) framework structures feature a broad range of different atomic arrangements. These result in topologies with several interesting properties such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or non-linear optical features (frequency doubling) (Sun et al., 2017). The two new compounds were obtained during an extensive experimental study of the system M+–M3+–O–(H)–As5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl), which led to an unusually large variety of new structure types (Schwendtner & Kolitsch, 2004, 2005, 2007a,b,c, 2017a, 2018a; Schwendtner, 2006, 2008). Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, R3c), was found to exhibit a large crystal–chemical flexibility, which allows the incorporation of a wide variety of M+ and M3+ cations. Previously, it was also known for the phosphate members RbAl(HPO4)2 and RbGa(HPO4)2 (Lesage et al., 2007). Currently (including the present paper), a total of eight arsenate members are known with the following M+M3+ combinations: TlAl and (NH4)Ga (this work), RbIn, RbGa, RbAl, RbFe, CsIn and CsFe (Schwendtner & Kolitsch, 2017b, 2018a,b,c). It is noteworthy that no K members are currently known.

2. Structural commentary The two compounds are representatives of the RbFe(HPO4)2 structure type (R3c; Lii & Wu, 1994) and show a basic tetrahedral–octahedral framework structure featuring inter-

1504

https://doi.org/10.1107/S2056989018013567

Acta Cryst. (2018). E74, 1504–1508

research communications

Figure 1 Structure drawings of the framework structures of (a) (NH4)Ga(HAsO4)2 and (b) TlAl(HAsO4)2 viewed along a. The unit cell is outlined and the alternative position AsB in (b) is shown in light yellow (the main As position is orange). The Tl1 atom shows a slight positional disorder and is slightly offset from the ideal position.

penetrating channels, which host the M+ cations (Fig. 1). This structure type is closely related to the triclinic (NH4)Fe(HPO4)2 type (P1; Yakubovich, 1993) in which all other known (NH4)M3+(HTO4)2 (T = P, As) compounds crystallize (see Schwendtner & Kolitsch, 2018b for a compilation), the RbAl2As(HAsO4)6 type (R3c; Schwendtner & Kolitsch, 2018a) and the RbAl(HAsO4)2 type (R32; Schwendtner & Kolitsch, 2018a). The fundamental building unit in all these structure types contains M3+O6 octahedra, which are connected via their six corners to six protonated AsO4 tetrahedra, thereby forming an M3+As6O24 unit. These

units are in turn connected via three corners to other M3+O6 octahedra. The free, protonated corner of each AsO4 tetrahedron forms a hydrogen bond to the neighbouring M3+As6O24 group (Fig. 2). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1 and 2). Both title compounds invariably show a very similar crystal habit: strongly pseudohexagonal to pseudo-octahedral (cf. Fig. 3). TlAl(HAsO4)2 has the smallest unit cell of all the arsenates of this structure type published to date. Still, the size of the

Figure 2 Structure drawings of the framework structures of (a) (NH4)Ga(HAsO4)2 and (b) TlAl(HAsO4)2 viewed along c. The unit cells are outlined and the alternative position AsB in (b), which can be generated by a mirror plane in (110), is shown in light yellow (the main As position is orange). The Tl1 atom shows a slight positional disorder. Acta Cryst. (2018). E74, 1504–1508

Schwendtner and Kolitsch



(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2

1505

research communications Table 1

Table 3

˚ ,  ) for (NH4)Ga(HAsO4). Hydrogen-bond geometry (A

˚ ) for TlAl(HAsO4)2. Selected bond lengths (A

D—H  A xxi

O3—H3  O4

D—H

H  A

D  A

D—H  A

0.87 (3)

1.74 (3)

2.610 (3)

172 (6)

Symmetry code: (xxi) y; x  1; z þ 32.

Table 2 ˚ ,  ) for TlAl(HAsO4)2. Hydrogen-bond geometry (A D—H  A xxi

O3—H3  O4

D—H

H  A

D  A

D—H  A

0.87 (4)

1.87 (5)

2.584 (5)

139 (6)

Symmetry code: (xxi) y; x  1; z þ 32.

M+-hosting voids seems to be too large for the Tl+ cation, since Tl1 is slightly offset from the ideal position at 0, 0, 3/4 [resulting in some positional disorder for Tl1, with three symmetry-equivalent Tl1 positions in close proximity; Tl1– ˚ ; symmetry codes: (i) y, x  y, z; (ii) y  x, Tl1i,ii = 0.28 (3) A x, z] and there are minor, but distinct negative and positive residual electron densities close to the Tl2 atom. The latter is severely underbonded, with a very low bond-valence sum (BVS) of only 0.54 valence units (v.u.) (calculated after Gagne´ & Hawthorne, 2015). The average Tl2—O bond length ˚ is considerably larger than the longest (Table 3) of 3.321 A ˚ described in the latest average Tl—O bond length of 3.304 A ´ review paper (Gagne & Hawthorne, 2018), but still shorter than the excessively long average Tl—O bond length found in ˚, the related compound TlGa2As(HAsO4)6 (3.439 A Schwendtner & Kolitsch, 2018b). The electron-density distribution is well fitted for the Tl1 atom, which has a BVS of 0.74

Tl1—Tl1i Tl1—O3 Tl1—O3ii Tl1—O3iii Tl1—O3i Tl1—O2iii Tl1—O2i Tl1—O3iv Tl1—O3v Tl1—O2ii Tl1—O2 Tl1—O2v Tl1—O2iv Tl2—O3i Tl2—O3v Tl2—O3 Tl2—O1vi Tl2—O1vii Tl2—O1viii Tl2—O4ix Tl2—O4x

0.28 (3) 3.085 (8) 3.085 (8) 3.136 (5) 3.136 (5) 3.233 (13) 3.233 (13) 3.261 (12) 3.261 (12) 3.351 (4) 3.351 (4) 3.501 (15) 3.501 (15) 2.813 (4) 2.813 (4) 2.813 (4) 3.410 (4) 3.410 (4) 3.410 (4) 3.516 (3) 3.516 (3)

Tl2—O4xi Tl2—O3xii Tl2—O3xiii Tl2—O3xiv Al1—O2xv Al1—O2v Al1—O2xvi Al1—O4xvii Al1—O4i Al1—O4xviii Al2—O1viii Al2—O1xiv Al2—O1xix Al2—O1i Al2—O1xviii Al2—O1xvii As—O1xx As—O2 As—O4ii As—O3

3.516 (3) 3.545 (4) 3.545 (4) 3.545 (4) 1.895 (4) 1.895 (4) 1.895 (4) 1.901 (4) 1.901 (4) 1.901 (4) 1.887 (4) 1.887 (4) 1.887 (4) 1.887 (4) 1.887 (4) 1.887 (4) 1.661 (3) 1.674 (3) 1.679 (3) 1.746 (4)

Symmetry codes: (i) y; x  y; z; (ii) x; x þ y; z þ 32; (iii) y; x; z þ 32; (iv) x  y; y; z þ 32; (v) x þ y; x; z; (vi) x þ 23; y  23; z þ 43; (vii) x  y  43; x  23; z þ 43; (viii) y þ 23; x þ y þ 43; z þ 43; (ix) x  13; x  y  23; z  16; (x) y  13; x þ 13; z  16; (xi) x þ y þ 23; y þ 13; z  16; (xii) x  13; y  23; z þ 43; (xiii) y þ 23; x þ y þ 13; z þ 43; (xiv) x  y  13; x þ 13; z þ 43; (xv) y; x  y þ 1; z; (xvi) x þ 1; y þ 1; z; (xvii) x; y þ 1; z; (xviii) x þ y þ 1; x þ 1; z; (xix) x þ 23; y þ 13; z þ 43; (xx) x  1; y; z.

Table 4 ˚ ) for (NH4)Ga(HAsO4). Selected bond lengths (A N1—O3 N1—O3i N1—O3ii N1—O3iii N1—O3iv N1—O3v N1—O2 N1—O2ii N1—O2iv N1—O2iii N1—O2i N1—O2v N2—O3v N2—O3iii N2—O3 N2—O1vi N2—O1vii N2—O1viii N2—O4ix N2—O4x

3.173 (3) 3.173 (3) 3.173 (3) 3.173 (3) 3.173 (3) 3.173 (3) 3.3657 (18) 3.3657 (18) 3.3657 (18) 3.3657 (18) 3.3657 (17) 3.3657 (17) 2.918 (4) 2.918 (4) 2.918 (4) 3.375 (3) 3.375 (3) 3.375 (3) 3.493 (5) 3.493 (5)

N2—O4xi N2—O3xii N2—O3xiii N2—O3xiv Ga1—O2xv Ga1—O2iii Ga1—O2xvi Ga1—O4v Ga1—O4xvii Ga1—O4xviii Ga2—O1viii Ga2—O1xiv Ga2—O1xix Ga2—O1v Ga2—O1xviii Ga2—O1xvii As—O1xx As—O2 As—O4ii As—O3

3.493 (5) 3.557 (4) 3.557 (4) 3.557 (4) 1.9619 (16) 1.9619 (17) 1.9619 (17) 1.9666 (17) 1.9666 (17) 1.9667 (16) 1.9588 (18) 1.9588 (19) 1.9588 (18) 1.9589 (18) 1.9589 (19) 1.9589 (18) 1.6555 (18) 1.6700 (16) 1.6783 (17) 1.740 (2)

Symmetry codes: (i) x  y; y; z þ 32; (ii) x; x þ y; z þ 32; (iii) x þ y; x; z; (iv) y; x; z þ 32; (v) y; x  y; z; (vi) x þ 23; y  23; z þ 43; (vii) x  y  43; x  23; z þ 43; (viii) y þ 23; x þ y þ 43; z þ 43; (ix) x  13; x  y  23; z  16; (x) y  13; x þ 13; z  16; (xi) x þ y þ 23; y þ 13; z  16; (xii) x  13; y  23; z þ 43; (xiii) y þ 23; x þ y þ 13; z þ 43; (xiv) x  y  13; x þ 13; z þ 43; (xv) y; x  y þ 1; z; (xvi) x þ 1; y þ 1; z; (xvii) x; y þ 1; z; (xviii) x þ y þ 1; x þ 1; z; (xix) x þ 23; y þ 13; z þ 43; (xx) x  1; y; z.

Figure 3 SEM image showing a flattened pseudo-octahedral crystal of (NH4)Ga(HAsO4)2.

1506

Schwendtner and Kolitsch



(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2

˚ , which is v.u. and an average Tl1—O bond length of 3.261 A ˚ also significantly longer than the reported average of 3.195 A (Gagne´ & Hawthorne, 2018). In contrast, the two Al atoms are considerably overbonded (3.05 and 3.14 v.u. for Al1 and Al2, respectively) and average Al—O bond lengths of 1.898 and ˚ are slightly shorter than the reported average of 1.887 A ˚ (Gagne´ & Hawthorne, 2018), but well within the 1.903 A general range of Al—O bond lengths. The protonated AsO4 Acta Cryst. (2018). E74, 1504–1508

research communications Table 5 Experimental details. Crystal data Mr Crystal system, space group Temperature (K) ˚) a, c (A ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3) max, min (e A

(NH4)Ga(HAsO4)2

TlAl(HAsO4)2

367.62 Trigonal, R3c:H 293 8.380 (1), 53.811 (11) 3272.6 (10) 18 Mo K 12.83 0.08  0.07  0.03

511.21 Trigonal, R3c:H 293 8.290 (1), 52.940 (11) 3150.8 (10) 18 Mo K 32.58 0.08  0.07  0.03

Nonius KappaCCD single-crystal four-circle diffractometer Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) 0.427, 0.700 4834, 1326, 1156

Nonius KappaCCD single-crystal four-circle Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) 0.180, 0.441 2478, 698, 685

0.024 0.757

0.022 0.617

0.022, 0.055, 1.07 1326 61 1 All H-atom parameters refined 0.75, 0.95

0.022, 0.058, 1.21 698 69 2 All H-atom parameters refined 0.82, 1.98

Computer programs: COLLECT (Nonius, 2003), HKL DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).

group shows a fairly typical configuration with slightly above average As—O bond lengths and a BVS of 4.97 v.u. for the As atom. As expected from the strong hydrogen bond ˚ , Table 2] the As—O bond to the donor O3 atom is [2.584 (5) A considerably elongated (Table 3). For (NH4)Ga(HAsO4)2, the bond-valence sum values for the M3+ cations and As are quite similar (Table 4), with overbonded Ga3+ (BVS 3.10 and 3.15 v.u., respectively) and numbers for As that are close to the expected values (BVS ˚ ). The NH4+ cations 5.03 v.u., average bond length of 1.686 A ˚ ˚ for N2) seem to (average N  O = 3.268 A for N1 and 3.336 A + fill the M -hosting voids much better, and the BVSs (calculated after Garcı´a-Rodrı´guez et al., 2000) of 0.74 and 1.03 v.u. for N1 and N2, respectively, are closer to ideal values, although N1 is underbonded.

allowed to proceed at 493 K for 9 d. (NH4)Ga(HAsO4)2 was grown over a period of 7 d and the initial and final pH values were 3 and 1, respectively. The reaction products were washed thoroughly with distilled water, filtered, and dried at room temperature. (NH4)Ga(HAsO4)2 formed large colourless pseudo-octahedral crystals (Fig. 3), while TlAl(HAsO4)2 formed small pseudo-hexagonal platelets. Both compounds are stable in air. A measured X-ray powder diffraction pattern of (NH4)Ga(HAsO4)2 was deposited at the International Centre for Diffraction Data under PDF number 00-059-0055 (Wohlschlaeger et al., 2007). Semiquantitative SEM–EDX analysis (15 kV) of carboncoated, horizontally oriented crystals of (NH4)Ga(HAsO4)2 were undertaken to discriminate between H3O+ and NH4+. They confirmed the suspected formula and revealed no impurities.

3. Synthesis and crystallization The compounds were grown by hydrothermal synthesis at 493 K (autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade NH4OH, Tl2CO3, Ga2O3, Al2O3 and H3AsO40.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:3 of the respective M+M3+ compound for both synthesis batches. For TlAl(HAsO4)2, the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1 and 0.5, respectively, and the synthesis was Acta Cryst. (2018). E74, 1504–1508

4. Refinement Crystal data, data collection, and structure refinement details are summarized in Table 5. For the refinement of both compounds, the coordinates of RbFe(HPO4)2 (Lii & Wu, 1994) were used for the initial refinement steps. The hydrogen atoms were then located in difference-Fourier maps and added to the models. In both ˚ . In compounds O—H bonds were restrained to 0.9  0.04 A (NH4)Ga(HAsO4)2, several electron-density peaks between Schwendtner and Kolitsch



(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2

1507

research communications ˚ 3 were recognizable that could be attributed 0.4 and 0.75 e A to the H atoms of the NH4+ cation. These peaks are located at the following coordinates for the N1 atom: 0.0170, 0.1329, 0.7450; 0.0641, 0.0560, 0.7414 and 0.0910, 0.0000, 0.7500. For the N2 atom, the coordinates are: 0.0478, 0.0330, 0.6635; 0.0655, 0.1106, 0.6786; 0.1301, 0.0094, 0.6695 and 0.0521, 0.0657, 0.6513. However, despite the use of restraints, no sensible coordination geometry for the H atoms around the N atoms could be found. Therefore, they were omitted from the model. As a result of the fact that there are 12 possible N— H  O bonds for each N atom, with only two symmetryequivalent positions for N1 and four for N2, it seems reasonable to assume that the H-atom positions around the N atoms are, in both cases, highly disordered. The final residual ˚ 3. electron density in (NH4)Ga(HAsO4)2 is < 1e A The refinement of TlAl(HAsO4)2 revealed a considerable ˚ 3 1.28 A ˚ away from residual electron-density peak of 2.2 e A ˚ As and 1.61 A away from the O1 site. The corresponding position can be generated by a mirror plane in (110) and therefore could be an alternative flipped As position (sharing the same O1 atom). Since the inclusion of the alternative position led to a considerable drop in R1 and weighting parameters and the highest residual electron density dropped ˚ 3, this position was kept in the model. The occuto < 1 e A pancy of the alternative position AsB (Fig. 1b, 2b) refined to only 2.1%, which makes it impossible to locate the alternative O ligand positions that should comprise the coordination sphere of the AsB position. For the final refinement, the displacement parameters of the AsB position were restrained to be the same as for the main As position and the sum of As was restrained to give a total occupancy of 1.00. We note that a similar alternative position was also found for isotypic CsIn(HAsO4)2 (Schwendtner & Kolitsch, 2017b). There was also considerable residual electron density of ˚ 3 close to the two Tl positions, similar to what was 2 e A encountered in the structurally related TlGa2As(HAsO4)6 (Schwendtner & Kolitsch, 2018d). We tried a similar approach that had worked well for the aforementioned compound, viz. to remove the Tl atoms from their ideal, highly symmetrical positions in this structure type. We obtained a better refinement with a slightly off-centre position for Tl1, in line with a slight disorder (probably static), possibly in part or in whole due to the stereochemical activity of the lone electron pair on the Tl+ cations. So, although the Tl1 site is slightly offset from its ideal position (0, 0, 3/4), we unfortunately did not manage to get rid of the negative residual electron density of about

1508

Schwendtner and Kolitsch



(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2

˚ 3 next to Tl2. The most positive residual electron 2 e A ˚ 3. density peak, however, dropped to < 1 e A

Funding information Funding for this research was provided by: Doc Fellowship of the Austrian Academy of Sciences Schwendtner. The authors acknowledge the TU University Library for financial support through its Access Funding Program.

fForte to K. Wien Open

References Brandenburg, K. (2005). DIAMOND. Bonn, Germany. Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85. Gagne´, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Gagne´, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78. ´ ., Pin˜ero, J. R. & Gonza´lez-Silgo, Garcı´a-Rodrı´guez, L., Rute-Pe´rez, A C. (2000). Acta Cryst. B56, 565–569. Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808. Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580. Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory. Nonius, B. V. (2003). COLLECT. Delft, The Netherlands. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Ouerfelli, N., Guesmi, A., Molinie´, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949. Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4. Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63. Schwendtner, K. (2008). PhD thesis, Universita¨t Wien, Austria. Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79–i83. Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409. Schwendtner, K. & Kolitsch, U. (2017a). Acta Cryst. C73, 600–608. Schwendtner, K. & Kolitsch, U. (2017b). Acta Cryst. E73, 1580–1586. Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. C74, 721–727. Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. E74, 766–771. Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1244–1249. Schwendtner, K. & Kolitsch, U. (2018d). Acta Cryst. E74, 1163–1167. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2007). ICDD Grant-in-Aid. University of Vienna, Austria. Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48.

Acta Cryst. (2018). E74, 1504–1508

supporting information

supporting information Acta Cryst. (2018). E74, 1504-1508

[https://doi.org/10.1107/S2056989018013567]

(NH4)Ga(HAsO4)2 and TlAl(HAsO4)2 - two new RbFe(HPO4)2-type M+M3+ arsenates Karolina Schwendtner and Uwe Kolitsch Computing details For both structures, data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010). Ammonium gallium bis[hydrogen arsenate(V)] (NH4GaHAsO42) Crystal data (NH4)Ga(HAsO4)2 Mr = 367.62 Trigonal, R3c:H a = 8.380 (1) Å c = 53.811 (11) Å V = 3272.6 (10) Å3 Z = 18 F(000) = 3132

Dx = 3.358 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 2653 reflections θ = 2.9–32.5° µ = 12.83 mm−1 T = 293 K Small pseudo-octahedral platelets, colourless 0.08 × 0.07 × 0.03 mm

Data collection Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) Tmin = 0.427, Tmax = 0.700 4834 measured reflections

1326 independent reflections 1156 reflections with I > 2σ(I) Rint = 0.024 θmax = 32.5°, θmin = 2.9° h = −12→12 k = −10→10 l = −80→81

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.022 wR(F2) = 0.055 S = 1.07 1326 reflections 61 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Acta Cryst. (2018). E74, 1504-1508

Hydrogen site location: difference Fourier map All H-atom parameters refined w = 1/[σ2(Fo2) + (0.0273P)2 + 16.8283P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.003 Δρmax = 0.75 e Å−3 Δρmin = −0.95 e Å−3 Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.00016 (3)

sup-1

supporting information Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1 N2 Ga1 Ga2 As O1 O2 O3 O4 H3

x

y

z

Uiso*/Ueq

0.000000 0.000000 0.333333 0.333333 −0.42915 (3) 0.4557 (3) −0.4457 (2) −0.1958 (3) 0.4778 (2) −0.161 (8)

0.000000 0.000000 0.666667 0.666667 −0.39386 (3) −0.4378 (3) −0.2535 (2) −0.2785 (3) −0.1224 (2) −0.353 (6)

0.750000 0.66731 (10) 0.75382 (2) 0.666667 0.71282 (2) 0.68635 (3) 0.73337 (3) 0.70541 (4) 0.77594 (3) 0.7114 (9)

0.051 (2) 0.0487 (15) 0.00954 (10) 0.01164 (13) 0.01072 (8) 0.0218 (4) 0.0133 (3) 0.0243 (4) 0.0127 (3) 0.075 (18)*

Atomic displacement parameters (Å2)

N1 N2 Ga1 Ga2 As O1 O2 O3 O4

U11

U22

U33

U12

U13

U23

0.062 (4) 0.060 (2) 0.01025 (13) 0.01394 (18) 0.01365 (12) 0.0368 (11) 0.0137 (7) 0.0192 (9) 0.0136 (7)

0.062 (4) 0.060 (2) 0.01025 (13) 0.01394 (18) 0.01158 (12) 0.0281 (10) 0.0121 (7) 0.0220 (9) 0.0108 (7)

0.029 (4) 0.026 (2) 0.00811 (19) 0.0070 (2) 0.00927 (12) 0.0101 (7) 0.0135 (7) 0.0362 (12) 0.0153 (7)

0.0311 (18) 0.0300 (12) 0.00513 (6) 0.00697 (9) 0.00807 (9) 0.0234 (9) 0.0061 (6) 0.0137 (8) 0.0073 (6)

0.000 0.000 0.000 0.000 0.00172 (8) −0.0049 (7) 0.0030 (6) 0.0137 (8) −0.0026 (6)

0.000 0.000 0.000 0.000 0.00141 (7) −0.0010 (7) −0.0014 (6) 0.0126 (8) −0.0047 (6)

Geometric parameters (Å, º) N1—O3 N1—O3i N1—O3ii N1—O3iii N1—O3iv N1—O3v N1—O2 N1—O2ii N1—O2iv N1—O2iii N1—O2i N1—O2v N2—O3v

Acta Cryst. (2018). E74, 1504-1508

3.173 (3) 3.173 (3) 3.173 (3) 3.173 (3) 3.173 (3) 3.173 (3) 3.3657 (18) 3.3657 (18) 3.3657 (18) 3.3657 (18) 3.3657 (17) 3.3657 (17) 2.918 (4)

N2—O3xii N2—O3xiii N2—O3xiv Ga1—O2xv Ga1—O2iii Ga1—O2xvi Ga1—O4v Ga1—O4xvii Ga1—O4xviii Ga2—O1viii Ga2—O1xiv Ga2—O1xix Ga2—O1v

3.557 (4) 3.557 (4) 3.557 (4) 1.9619 (16) 1.9619 (17) 1.9619 (17) 1.9666 (17) 1.9666 (17) 1.9667 (16) 1.9588 (18) 1.9588 (19) 1.9588 (18) 1.9589 (18)

sup-2

supporting information N2—O3iii N2—O3 N2—O1vi N2—O1vii N2—O1viii N2—O4ix N2—O4x N2—O4xi

2.918 (4) 2.918 (4) 3.375 (3) 3.375 (3) 3.375 (3) 3.493 (5) 3.493 (5) 3.493 (5)

Ga2—O1xviii Ga2—O1xvii As—O1xx As—O2 As—O4ii As—O3 O3—H3

1.9589 (19) 1.9589 (18) 1.6555 (18) 1.6700 (16) 1.6783 (17) 1.740 (2) 0.87 (3)

O3—N1—O3i O3—N1—O3ii O3i—N1—O3ii O3—N1—O3iii O3i—N1—O3iii O3ii—N1—O3iii O3—N1—O3iv O3i—N1—O3iv O3ii—N1—O3iv O3iii—N1—O3iv O3—N1—O3v O3i—N1—O3v O3ii—N1—O3v O3iii—N1—O3v O3iv—N1—O3v O3—N1—O2 O3i—N1—O2 O3ii—N1—O2 O3iii—N1—O2 O3iv—N1—O2 O3v—N1—O2 O3—N1—O2ii O3i—N1—O2ii O3ii—N1—O2ii O3iii—N1—O2ii O3iv—N1—O2ii O3v—N1—O2ii O2—N1—O2ii O3—N1—O2iv O3i—N1—O2iv O3ii—N1—O2iv O3iii—N1—O2iv O3iv—N1—O2iv O3v—N1—O2iv O2—N1—O2iv O2ii—N1—O2iv O3—N1—O2iii O3i—N1—O2iii O3ii—N1—O2iii

162.83 (7) 123.01 (7) 69.03 (6) 69.03 (6) 102.44 (7) 162.83 (8) 102.44 (7) 69.03 (6) 69.03 (6) 123.01 (7) 69.03 (6) 123.01 (8) 102.44 (7) 69.03 (6) 162.83 (7) 48.11 (4) 115.51 (5) 126.51 (5) 70.41 (5) 65.01 (5) 113.56 (5) 126.52 (5) 70.41 (5) 48.11 (5) 115.51 (5) 113.56 (5) 65.01 (5) 171.26 (6) 65.01 (5) 113.56 (5) 70.41 (5) 126.51 (5) 48.11 (4) 115.51 (5) 59.00 (6) 113.20 (2) 113.56 (5) 65.01 (5) 115.51 (5)

O2xv—Ga1—N1 O2iii—Ga1—N1 O2xvi—Ga1—N1 O4v—Ga1—N1 O4xvii—Ga1—N1 O4xviii—Ga1—N1 N2xxi—Ga1—N1 N1xvii—Ga1—N1 O2xv—Ga1—N1xvi O2iii—Ga1—N1xvi O2xvi—Ga1—N1xvi O4v—Ga1—N1xvi O4xvii—Ga1—N1xvi O4xviii—Ga1—N1xvi N2xxi—Ga1—N1xvi N1xvii—Ga1—N1xvi N1—Ga1—N1xvi O1viii—Ga2—O1xiv O1viii—Ga2—O1xix O1xiv—Ga2—O1xix O1viii—Ga2—O1v O1xiv—Ga2—O1v O1xix—Ga2—O1v O1viii—Ga2—O1xviii O1xiv—Ga2—O1xviii O1xix—Ga2—O1xviii O1v—Ga2—O1xviii O1viii—Ga2—O1xvii O1xiv—Ga2—O1xvii O1xix—Ga2—O1xvii O1v—Ga2—O1xvii O1xviii—Ga2—O1xvii O1viii—Ga2—N2xix O1xiv—Ga2—N2xix O1xix—Ga2—N2xix O1v—Ga2—N2xix O1xviii—Ga2—N2xix O1xvii—Ga2—N2xix O1viii—Ga2—N2xvii

119.85 (5) 32.80 (5) 105.75 (5) 77.33 (5) 143.46 (5) 59.54 (5) 92.432 (5) 119.821 (1) 105.75 (5) 119.85 (5) 32.80 (5) 143.46 (5) 59.54 (5) 77.33 (5) 92.432 (5) 119.821 (1) 119.821 (1) 93.53 (7) 93.53 (7) 93.53 (7) 180.0 86.47 (7) 86.47 (7) 86.47 (7) 180.0 86.47 (7) 93.53 (7) 86.47 (7) 86.47 (7) 180.0 93.53 (7) 93.53 (7) 62.79 (8) 67.00 (7) 146.77 (8) 117.21 (8) 113.00 (7) 33.23 (8) 117.21 (8)

Acta Cryst. (2018). E74, 1504-1508

sup-3

supporting information O3iii—N1—O2iii O3iv—N1—O2iii O3v—N1—O2iii O2—N1—O2iii O2ii—N1—O2iii O2iv—N1—O2iii O3—N1—O2i O3i—N1—O2i O3ii—N1—O2i O3iii—N1—O2i O3iv—N1—O2i O3v—N1—O2i O2—N1—O2i O2ii—N1—O2i O2iv—N1—O2i O2iii—N1—O2i O3—N1—O2v O3i—N1—O2v O3ii—N1—O2v O3iii—N1—O2v O3iv—N1—O2v O3v—N1—O2v O2—N1—O2v O2ii—N1—O2v O2iv—N1—O2v O2iii—N1—O2v O2i—N1—O2v O3v—N2—O3iii O3v—N2—O3 O3iii—N2—O3 O3v—N2—O1vi O3iii—N2—O1vi O3—N2—O1vi O3v—N2—O1vii O3iii—N2—O1vii O3—N2—O1vii O1vi—N2—O1vii O3v—N2—O1viii O3iii—N2—O1viii O3—N2—O1viii O1vi—N2—O1viii O1vii—N2—O1viii O3v—N2—O4ix O3iii—N2—O4ix O3—N2—O4ix O1vi—N2—O4ix O1vii—N2—O4ix O1viii—N2—O4ix

Acta Cryst. (2018). E74, 1504-1508

48.11 (5) 126.51 (5) 70.41 (5) 113.20 (2) 74.86 (6) 171.26 (6) 115.51 (5) 48.11 (4) 113.56 (5) 65.01 (5) 70.41 (5) 126.51 (5) 74.86 (6) 113.20 (2) 113.20 (2) 59.00 (6) 70.41 (5) 126.51 (5) 65.01 (5) 113.56 (5) 115.51 (5) 48.11 (4) 113.20 (2) 59.00 (6) 74.86 (6) 113.20 (2) 171.26 (6) 76.09 (13) 76.08 (13) 76.08 (13) 77.21 (6) 152.44 (16) 91.02 (6) 152.44 (16) 91.02 (6) 77.21 (6) 110.03 (9) 91.02 (6) 77.21 (6) 152.44 (16) 110.03 (9) 110.03 (9) 111.48 (7) 156.43 (10) 126.99 (7) 45.41 (6) 90.09 (12) 80.30 (10)

O1xiv—Ga2—N2xvii O1xix—Ga2—N2xvii O1v—Ga2—N2xvii O1xviii—Ga2—N2xvii O1xvii—Ga2—N2xvii N2xix—Ga2—N2xvii O1viii—Ga2—N2 O1xiv—Ga2—N2 O1xix—Ga2—N2 O1v—Ga2—N2 O1xviii—Ga2—N2 O1xvii—Ga2—N2 N2xix—Ga2—N2 N2xvii—Ga2—N2 O1viii—Ga2—N2xvi O1xiv—Ga2—N2xvi O1xix—Ga2—N2xvi O1v—Ga2—N2xvi O1xviii—Ga2—N2xvi O1xvii—Ga2—N2xvi N2xix—Ga2—N2xvi N2xvii—Ga2—N2xvi N2—Ga2—N2xvi O1viii—Ga2—N2xxii O1xiv—Ga2—N2xxii O1xix—Ga2—N2xxii O1v—Ga2—N2xxii O1xviii—Ga2—N2xxii O1xvii—Ga2—N2xxii N2xix—Ga2—N2xxii N2xvii—Ga2—N2xxii N2—Ga2—N2xxii N2xvi—Ga2—N2xxii O1viii—Ga2—N2xxiii O1xiv—Ga2—N2xxiii O1xix—Ga2—N2xxiii O1v—Ga2—N2xxiii O1xviii—Ga2—N2xxiii O1xvii—Ga2—N2xxiii N2xix—Ga2—N2xxiii N2xvii—Ga2—N2xxiii N2—Ga2—N2xxiii N2xvi—Ga2—N2xxiii N2xxii—Ga2—N2xxiii O1xx—As—O2 O1xx—As—O4ii O2—As—O4ii O1xx—As—O3

113.00 (7) 33.23 (8) 62.79 (8) 66.99 (7) 146.77 (8) 180.0 33.23 (8) 117.21 (8) 113.01 (8) 146.77 (8) 62.79 (8) 67.00 (8) 60.005 (2) 119.995 (2) 113.01 (7) 33.23 (8) 117.21 (8) 66.99 (7) 146.77 (8) 62.79 (8) 60.005 (2) 119.995 (2) 119.995 (2) 66.99 (7) 146.77 (8) 62.79 (8) 113.00 (7) 33.23 (8) 117.21 (8) 119.995 (2) 60.005 (2) 60.005 (2) 180.0 146.77 (8) 62.79 (8) 66.99 (8) 33.23 (8) 117.21 (8) 113.00 (8) 119.995 (2) 60.005 (2) 180.0 60.005 (2) 119.994 (2) 118.81 (9) 105.46 (9) 115.11 (9) 107.12 (11)

sup-4

supporting information O3v—N2—O4x O3iii—N2—O4x O3—N2—O4x O1vi—N2—O4x O1vii—N2—O4x O1viii—N2—O4x O4ix—N2—O4x O3v—N2—O4xi O3iii—N2—O4xi O3—N2—O4xi O1vi—N2—O4xi O1vii—N2—O4xi O1viii—N2—O4xi O4ix—N2—O4xi O4x—N2—O4xi O3v—N2—O3xii O3iii—N2—O3xii O3—N2—O3xii O1vi—N2—O3xii O1vii—N2—O3xii O1viii—N2—O3xii O4ix—N2—O3xii O4x—N2—O3xii O4xi—N2—O3xii O3v—N2—O3xiii O3iii—N2—O3xiii O3—N2—O3xiii O1vi—N2—O3xiii O1vii—N2—O3xiii O1viii—N2—O3xiii O4ix—N2—O3xiii O4x—N2—O3xiii O4xi—N2—O3xiii O3xii—N2—O3xiii O3v—N2—O3xiv O3iii—N2—O3xiv O3—N2—O3xiv O1vi—N2—O3xiv O1vii—N2—O3xiv O1viii—N2—O3xiv O4ix—N2—O3xiv O4x—N2—O3xiv O4xi—N2—O3xiv O3xii—N2—O3xiv O3xiii—N2—O3xiv O2xv—Ga1—O2iii O2xv—Ga1—O2xvi O2iii—Ga1—O2xvi

Acta Cryst. (2018). E74, 1504-1508

156.43 (10) 126.99 (7) 111.48 (7) 80.30 (10) 45.41 (6) 90.09 (12) 45.67 (8) 126.99 (7) 111.48 (7) 156.43 (10) 90.09 (12) 80.30 (10) 45.41 (6) 45.67 (8) 45.67 (8) 119.40 (8) 150.86 (8) 83.78 (6) 46.33 (6) 63.78 (7) 123.57 (16) 45.67 (7) 43.44 (7) 80.03 (12) 83.77 (6) 119.40 (8) 150.86 (7) 63.78 (7) 123.57 (16) 46.33 (6) 43.44 (7) 80.03 (12) 45.67 (7) 88.14 (11) 150.86 (8) 83.77 (6) 119.40 (8) 123.57 (16) 46.33 (6) 63.78 (7) 80.03 (12) 45.67 (7) 43.44 (7) 88.14 (11) 88.14 (11) 91.61 (7) 91.61 (7) 91.61 (7)

O2—As—O3 O4ii—As—O3 O1xx—As—N2xii O2—As—N2xii O4ii—As—N2xii O3—As—N2xii O1xx—As—N1 O2—As—N1 O4ii—As—N1 O3—As—N1 N2xii—As—N1 O1xx—As—N2 O2—As—N2 O4ii—As—N2 O3—As—N2 N2xii—As—N2 N1—As—N2 O1xx—As—N1xxiv O2—As—N1xxiv O4ii—As—N1xxiv O3—As—N1xxiv N2xii—As—N1xxiv N1—As—N1xxiv N2—As—N1xxiv O1xx—As—N2xxiv O2—As—N2xxiv O4ii—As—N2xxiv O3—As—N2xxiv N2xii—As—N2xxiv N1—As—N2xxiv N2—As—N2xxiv N1xxiv—As—N2xxiv Asxxv—O1—Ga2xxvi Asxxv—O1—N2vi Ga2xxvi—O1—N2vi Asxxv—O1—N2xxv Ga2xxvi—O1—N2xxv N2vi—O1—N2xxv Asxxv—O1—N2xxvi Ga2xxvi—O1—N2xxvi N2vi—O1—N2xxvi N2xxv—O1—N2xxvi As—O2—Ga1xxiv As—O2—N1 Ga1xxiv—O2—N1 As—O2—N2 Ga1xxiv—O2—N2 N1—O2—N2

103.09 (10) 106.35 (9) 64.22 (8) 173.25 (6) 68.25 (8) 70.17 (8) 142.98 (8) 56.21 (6) 108.99 (6) 50.09 (8) 117.48 (2) 81.32 (10) 99.84 (7) 133.25 (6) 32.26 (8) 74.310 (11) 65.36 (6) 88.02 (8) 94.12 (6) 40.77 (6) 147.10 (7) 92.00 (3) 127.434 (12) 165.32 (5) 43.28 (9) 127.15 (7) 63.82 (7) 128.79 (9) 59.42 (2) 172.65 (3) 117.94 (11) 48.43 (5) 137.99 (11) 89.57 (11) 128.22 (11) 76.36 (10) 93.37 (8) 76.98 (4) 121.95 (10) 89.12 (8) 74.93 (4) 145.93 (11) 121.85 (9) 99.43 (7) 128.79 (7) 60.17 (5) 163.08 (8) 63.03 (5)

sup-5

supporting information O2xv—Ga1—O4v O2iii—Ga1—O4v O2xvi—Ga1—O4v O2xv—Ga1—O4xvii O2iii—Ga1—O4xvii O2xvi—Ga1—O4xvii O4v—Ga1—O4xvii O2xv—Ga1—O4xviii O2iii—Ga1—O4xviii O2xvi—Ga1—O4xviii O4v—Ga1—O4xviii O4xvii—Ga1—O4xviii O2xv—Ga1—N2xxi O2iii—Ga1—N2xxi O2xvi—Ga1—N2xxi O4v—Ga1—N2xxi O4xvii—Ga1—N2xxi O4xviii—Ga1—N2xxi O2xv—Ga1—N1xvii O2iii—Ga1—N1xvii O2xvi—Ga1—N1xvii O4v—Ga1—N1xvii O4xvii—Ga1—N1xvii O4xviii—Ga1—N1xvii N2xxi—Ga1—N1xvii

88.91 (7) 92.29 (8) 176.05 (7) 92.29 (8) 176.05 (7) 88.91 (7) 87.16 (8) 176.05 (7) 88.91 (7) 92.29 (7) 87.16 (8) 87.16 (8) 124.12 (5) 124.12 (5) 124.12 (5) 52.75 (5) 52.75 (5) 52.75 (5) 32.80 (5) 105.75 (5) 119.85 (5) 59.54 (5) 77.33 (5) 143.46 (5) 92.432 (5)

As—O3—N2 As—O3—N1 N2—O3—N1 As—O3—N2xii N2—O3—N2xii N1—O3—N2xii As—O3—H3 N2—O3—H3 N1—O3—H3 N2xii—O3—H3 Asii—O4—Ga1xxvi Asii—O4—N2xxvii Ga1xxvi—O4—N2xxvii Asii—O4—N1xxv Ga1xxvi—O4—N1xxv N2xxvii—O4—N1xxv Asii—O4—N1 Ga1xxvi—O4—N1 N2xxvii—O4—N1 N1xxv—O4—N1 Asii—O4—N2xxviii Ga1xxvi—O4—N2xxviii N2xxvii—O4—N2xxviii N1xxv—O4—N2xxviii N1—O4—N2xxviii

129.17 (11) 105.03 (9) 93.77 (9) 82.43 (8) 96.22 (6) 159.27 (9) 102 (4) 125 (4) 91 (3) 69 (3) 130.02 (10) 85.25 (7) 100.62 (8) 124.11 (7) 96.68 (6) 118.40 (4) 51.75 (5) 79.17 (5) 104.63 (4) 136.70 (4) 98.66 (7) 129.48 (6) 66.70 (3) 57.01 (5) 150.37 (5)

Symmetry codes: (i) x−y, −y, −z+3/2; (ii) −x, −x+y, −z+3/2; (iii) −x+y, −x, z; (iv) y, x, −z+3/2; (v) −y, x−y, z; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) x−y−4/3, x−2/3, −z+4/3; (viii) y+2/3, −x+y+4/3, −z+4/3; (ix) x−1/3, x−y−2/3, z−1/6; (x) −y−1/3, −x+1/3, z−1/6; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) −x−1/3, −y−2/3, −z+4/3; (xiii) y+2/3, −x+y+1/3, −z+4/3; (xiv) x−y−1/3, x+1/3, −z+4/3; (xv) −y, x−y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) −x+y+1, −x+1, z; (xix) −x+2/3, −y+1/3, −z+4/3; (xx) x−1, y, z; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) x−1, y−1, z; (xxv) x+1, y, z; (xxvi) x, y−1, z; (xxvii) −y+1/3, −x−1/3, z+1/6; (xxviii) y+1, x, −z+3/2.

Hydrogen-bond geometry (Å, º) D—H···A O3—H3···O4

xxix

D—H

H···A

D···A

D—H···A

0.87 (3)

1.74 (3)

2.610 (3)

172 (6)

Symmetry code: (xxix) y, x−1, −z+3/2.

Thallium aluminium bis[hydrogen arsenate(V)] (TlAlHAsO42) Crystal data TlAl(HAsO4)2 Mr = 511.21 Trigonal, R3c:H a = 8.290 (1) Å c = 52.940 (11) Å V = 3150.8 (10) Å3 Z = 18 F(000) = 4068

Acta Cryst. (2018). E74, 1504-1508

Dx = 4.849 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1004 reflections θ = 2.9–30.0° µ = 32.58 mm−1 T = 293 K Small pseudo-octahedral platelets, colourless 0.08 × 0.07 × 0.03 mm

sup-6

supporting information Data collection Nonius KappaCCD single-crystal four-circle diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) Tmin = 0.180, Tmax = 0.441 2478 measured reflections

698 independent reflections 685 reflections with I > 2σ(I) Rint = 0.022 θmax = 26.0°, θmin = 2.9° h = −10→10 k = −8→8 l = −64→64

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.022 wR(F2) = 0.058 S = 1.21 698 reflections 69 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map All H-atom parameters refined w = 1/[σ2(Fo2) + (0.023P)2 + 84.2452P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.003 Δρmax = 0.82 e Å−3 Δρmin = −1.98 e Å−3 Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.00049 (3)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Tl1 Tl2 Al1 Al2 As AsB O1 O2 O3 O4 H3

x

y

z

Uiso*/Ueq

Occ. (