heteroaryl

0 downloads 0 Views 6MB Size Report
Palladacycle precatalysts,1 phenyl, 2-thiophenyl, and 3-pyridinyl boronic acid. MIDA ester2 were ... suppliers without further purification. 1H NMR and ..... 2009, 131, 6961; (c) Synthesis of 3-pyridine boronic acid MIDA ester: J. L.. Gustafson, D.
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Palladacycle-catalyzed aryl/heteroaryl

halides

Suzuki-Miyaura with

MIDA

reaction

of

boronates

in

environmentally friendly solvents Yabo Li,a Jingran Wang,a Zhiwei Wang,a Mengmeng Huang,a,* Beiqi Yan,a Xiuling Cui,a Yusheng Wu,a,b,* and Yangjie Wu.a,* College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P. R. China. Fax: +86-371-67767993; E-mail address: [email protected] (Y. Wu), [email protected] (M. Huang) b Tetranov Biopharm, LLC. 75 Daxue Road, Zhengzhou, 450052, P. R. China; E-mail address: [email protected] a

Experimental and Analytical data for all compounds…………………………………S2-S9 Copies of 1H and 13C NMR spectra of compounds…………………………………...S10-S49 X-ray crystallographic details (3qi)…………………………………………………...S50-S51

1

Experimental section General All reactions were run under a nitrogen atmosphere in Schlenk tubes using vacuum lines. Palladacycle precatalysts,1 phenyl, 2-thiophenyl, and 3-pyridinyl boronic acid MIDA ester2 were prepared according to the literature procedures. Unless otherwise noted, chemical reagents used in experiments were purchased from commercial suppliers without further purification. 1H NMR and 13C NMR spectra were recorded on a 400 and 100 MHz instrument using CDCl3 as the solvent at room temperature. High resolution mass spectrometry data of the products were collected on an LC/MS instrument. Melting points were measured using a WC-1 microscopic apparatus and were uncorrected. Thin-layer chromatography was visualized with UV light (254 and 365 nm). Flash chromatography was performed on silica gel (200-300 mesh). General procedures of Suzuki-Miyaura reaction with aryl/heteroaryl bromides In a typical experiment, Cat.II (3.7 mg, 1 mol%), aryl/heteroaryl MIDA boronate (0.52 mmol), aryl/heteroaryl bromide (0.5 mmol) and K3PO4 (425 mg, 2 mmol) were dissolved in EtOH/H2O (6:1, 2.1 mL) or H2O (2.5 mL with 20 mol% TBAB, 32 mg) under nitrogen atmosphere. Unless otherwise noted, the reaction mixture was stirred at 90 oC for 24 hours. Then, the suspension was cooled to room temperature and extracted with ethyl acetate (3 x 15 mL). The combined organic layers were dried with Na2SO4. After evaporation of the solvents, the residue was purified by silica gel column chromatography affording the desired product. General procedures of Suzuki-Miyaura reaction with aryl/heteroaryl chlorides In a typical experiment, Cat.I (4.6 mg, 1 mol%), X-Phos (9.5 mg, 4 mol%), aryl/heteroaryl MIDA boronate (0.52 mmol), aryl/heteroaryl chloride (0.5 mmol) and K3PO4 (425 mg, 2 mmol) were dissolved in H2O (2.5 mL with 20 mol% TBAB, 32 mg) under nitrogen atmosphere. Unless otherwise noted, the reaction mixture was stirred at 90 oC. Then, the suspension was cooled to room temperature and extracted with ethyl acetate (3 x 15 mL). The combined organic layers were dried with Na2SO4. After evaporation of the solvents the residue was purified by silica gel column chromatography affording the desired product. Analytical data for all compounds 4-Methoxybiphenyl (3a)[3] White solid, mp 84-86 oC (lit. 83-84 oC). 1H NMR (400 MHz, CDCl3) δ 7.57-7.49 (m, 4H), 7.43-7.37 (m, 2H), 7.32-7.26 (m, 1H), 6.99-6.94 (m, 2H), 3.84 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 159.14, 140.82, 133.77, 128.70, 128.13, 126.71, 126.63, 114.19, 2

55.31. 4-Fluoro-1,1'-biphenyl (3b)[4] White solid, mp 75-79 oC. 1HNMR (400 MHz, CDCl3) δ 7.58-7.55 (m, 4H), 7.47-7.43 (m, 2H), 7.38-7.34 (m, 1H), 7.16-7.12 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 162.44 (d, J = 244.7 Hz), 140.23, 137.31 (d, J = 3.1 Hz), 128.80, 128.67 (d, J = 8.1 Hz), 127.23, 127.00, 115.59 (d, J = 21.4 Hz). Methyl 2-Biphenylcarboxylate (3c)[5] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.85-7.79 (m, 1H), 7.56-7.49 (m, 1H), 7.44-7.34 (m, 5H), 7.34-7.29 (m, 2H), 3.63 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 169.15, 142.45, 141.28, 131.24, 130.83, 130.68, 129.75, 128.28, 128.02, 127.21, 127.14, 51.92. 2,4,6-Trimethylbiphenyl (3d)[6] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.44-7.37 (m, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.14 (d, J = 7.6 Hz, 2H), 6.94 (s, 2H), 2.33 (s, 3H), 2.00 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 141.08, 139.06, 136.57, 135.99, 129.30, 128.36, 128.04, 126.50, 21.03, 20.75. 2-Phenylpyridine (3e)[7] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 8.74-8.67 (m, 1H), 8.00 (dd, J = 5.3, 3.3 Hz, 2H), 7.80-7.69 (m, 2H), 7.54-7.37 (m, 3H), 7.25-7.21 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 157.41, 149.63, 139.33, 136.73, 128.91, 128.72, 126.86, 122.07, 120.55. 5-Methyl-2-phenylpyridine (3f)[8] Light yellow solid, mp 52-54 oC. 1H NMR (400 MHz, CDCl3) δ 8.52 (s, 1H), 7.96 (d, J = 7.3 Hz, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.59-7.53 (m, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 154.78, 150.06, 139.39, 137.29, 131.58, 128.68, 128.56, 126.66, 120.04, 18.16. 3-Methyl-2-phenylpyridine (3j)[9] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 8.53 (d, J = 4.1 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.55-7.49 (m, 2H), 7.45 (t, J = 7.3 Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 7.17 (dd, J = 7.7, 4.8 Hz, 1H), 2.35 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 158.62, 146.92, 140.56, 138.41, 130.74, 128.86, 128.08, 127.83, 122.00, 20.00. 3-Phenylpyridine (3h)[7] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 8.85 (d, J = 2.0 Hz, 1H), 8.58 (m, 1H), 7.90-7.80 (m, 1H), 7.61-7.53 (m, 2H), 7.47 (dd, J = 10.2, 4.8 Hz, 2H), 7.43-7.30 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 148.38, 148.26, 137.76, 136.56, 134.25, 128.99,

3

128.01, 127.07, 123.45. 3-Phenylquinoline (3i)[10] Light yellow solid, mp 51-52 oC. 1H NMR (400 MHz, CDCl3) δ 9.18 (d, J = 1.3 Hz, 1H), 8.28 (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.71 (dd, J = 7.9, 7.4 Hz, 3H), 7.60-7.46 (m, 3H), 7.42 (t, J = 7.3 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 149.86, 147.25, 137.78, 133.75, 133.16, 129.32, 129.14, 129.11, 128.04, 127.94, 127.35, 126.93. 4-Phenylisoquinoline (3j)[11] Light yellow solid, mp 78-80 oC. 1H NMR (400 MHz, CDCl3) δ 9.26 (s, 1H), 8.49 (s, 1H), 8.05-8.00 (m, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.69-7.57 (m, 2H), 7.54-7.44 (m, 5H). 13C NMR (100 MHz, CDCl3) δ 151.94, 142.81, 136.92, 134.10, 133.18, 130.46, 130.02, 128.52, 128.34, 127.86, 127.80, 127.08, 124.71. 2-Phenylpyrimidine (3k)[7] White solid, mp 36-38 oC. 1H NMR (400 MHz, CDCl3) δ 8.85-8.76 (m, 2H), 8.498.39 (m, 2H), 7.55-7.45 (m, 3H), 7.17 (dd, J = 6.8, 2.7 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 164.77, 157.27, 137.59, 130.81, 128.64, 128.15, 119.11. 5-Phenylpyrimidine (3l)[12] Yellow oil. 1H NMR (400 MHz, CDCl3) δ 9.22 (s, 1H), 8.96 (s, 2H), 7.59 (d, J = 7.8 Hz, 2H), 7.50 (m, 3H). 13C NMR (100 MHz, CDCl3) δ 157.46, 154.89, 134.32, 134.23, 129.41, 128.99, 126.97. 2-Phenylthiophene (3m)[7] Colorless solid, mp 33-34 oC. 1H NMR (400 MHz, CDCl3) δ 7.65-7.58 (m, 2H), 7.417.34 (m, 2H), 7.33-7.24 (m, 3H), 7.10-7.04 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 144.40, 134.36, 128.85, 127.97, 127.43, 125.92, 124.77, 123.04. 3-Phenylthiophene (3n)[7] White solid, mp 89-92 oC. 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 2.1 Hz, 1H), 7.44-7.37 (m, 4H), 7.29 (t, J = 7.4 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 142.36, 135.84, 128.79, 127.12, 126.44, 126.34, 126.18, 120.26. 1-(3-Phenylthiophen-2-yl)ethanone (3o)[13] Yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 4.9 Hz, 1H), 7.46-7.40 (m, 3H), 7.40-7.36 (m, 2H), 7.06 (d, J = 5.0 Hz, 1H), 2.14 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 192.21, 146.79, 139.93, 136.45, 131.97, 131.03, 129.08, 128.38, 128.27, 29.22. 5-Phenylfuran-2-carbaldehyde (3p)[7] 4

Red oil. 1H NMR (400 MHz, CDCl3) δ 9.66 (s, 1H), 7.83 (dd, J = 8.4, 1.1 Hz, 2H), 7.48-7.37 (m, 3H), 7.33 (d, J = 3.7 Hz, 1H), 6.85 (d, J = 3.7 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 177.25, 159.43, 152.02, 129.69, 128.95, 125.29, 123.55, 107.66. 3,5-Diphenylpyridine (3q)[3] White solid, mp 136-138 oC (lit. 137-138 oC). 1H NMR (400 MHz, CDCl3) δ 8.83 (d, J = 1.5 Hz, 2H), 8.05 (t, J = 2.2 Hz, 1H), 7.65 (dd, J = 8.5, 0.9 Hz, 4H), 7.51 (t, J = 7.6 Hz, 4H), 7.43 (dd, J = 8.3, 6.3 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 146.99, 137.73, 136.57, 132.86, 129.09, 128.19, 127.23. 3,4-Diphenylthiphene (3r)[14] Yellow solid, mp 112-113 oC. 1H NMR (400 MHz, CDCl3) δ 7.31 (s, 2H), 7.28-7.22 (m, 6H), 7.21-7.16 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 141.73, 136.52, 128.99, 128.12, 126.85, 124.01. 6-Methoxy-2,2'-bipyridine (3s)[7] Yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.66 (d, J = 4.4 Hz, 1H), 8.41 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 7.4 Hz, 1H), 7.80 (td, J = 7.8, 1.2 Hz, 1H), 7.70 (t, J = 7.8 Hz, 1H), 7.32-7.26 (m, 1H), 6.78 (d, J = 8.2 Hz, 1H), 4.05 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 163.52, 156.09, 153.45, 149.06, 139.38, 136.73, 123.48, 120.97, 113.70, 111.04, 53.19. 2-(6-Methoxypyridin-2-yl)thiophene (3t)[15] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.61-7.51 (m, 2H), 7.35 (dd, J = 5.0, 1.1 Hz, 1H), 7.22 (d, J = 7.4 Hz, 1H), 7.12-7.04 (m, 1H), 6.60 (d, J = 8.2 Hz, 1H), 4.00 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 163.50, 150.05, 145.03, 139.06, 127.87, 127.03, 124.26, 111.23, 108.90, 53.28. 2,3'-Bipyridine (3u)[7] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 9.20 (s, 1H), 8.70 (dd, J = 27.7, 3.4 Hz, 2H), 8.33 (d, J = 7.6 Hz, 1H), 7.87-7.70 (m, 2H), 7.49-7.35 (m, 1H), 7.37-7.27 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 154.82, 150.06, 149.88, 148.20, 136.98, 134.90, 134.35, 123.60, 122.83, 120.60. 3-(2-Thienyl)pyridine (3v)[7] Yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.88 (d, J = 1.7 Hz, 1H), 8.51 (d, J = 4.0 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 4.3 Hz, 2H), 7.31 (dd, J = 7.9, 4.9 Hz, 1H), 7.16-7.09 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 148.41, 146.98, 140.38, 132.99, 130.39, 128.25, 126.01, 124.20, 123.60. 5

2'-Methoxy-2,3'-bipyridine (3w)[16] Yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.70 (d, J = 4.3 Hz, 1H), 8.26-8.17 (m, 2H), 7.97 (d, J = 8.0 Hz, 1H), 7.77-7.68 (m, 1H), 7.26-7.19 (m, 1H), 7.04 (dd, J = 7.1, 5.3 Hz, 1H), 4.04 (s, 3H). 13C NMR (100MHz, CDCl3) δ 161.06, 154.16, 149.53, 146.96, 139.39, 135.96, 124.58, 123.00, 122.16, 117.35, 53.52. 2-Methoxy-3-(2-thienyl)pyridine (3x)[7] Colorless oil. 1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 2.9 Hz, 1H), 7.89 (d, J = 7.1 Hz, 1H), 7.57 (s, 1H), 7.35 (d, J = 4.5 Hz, 1H), 7.11 (d, J = 4.0 Hz, 1H), 6.94 (dd, J = 7.0, 5.1 Hz, 1H), 4.07 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 159.36, 145.08, 137.74, 135.82, 127.16, 125.96, 125.89, 117.78, 116.95, 53.49. 2-Thiophen-2-ylpyridine (3y)[7] White solid, mp 60-62 oC. 1H NMR (400 MHz, CDCl3) δ 8.57 (d, J = 4.8 Hz, 1H), 7.72-7.63 (m, 2H), 7.58 (d, J = 3.6 Hz, 1H), 7.40 (d, J = 5.0 Hz, 1H), 7.18-7.08 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 152.62, 149.57, 144.86, 136.63, 128.00, 127.55, 124.50, 121.88, 118.79. 2,2’-Bithiophene (3z)[7] Yellow solid, mp 30-32 oC. 1H NMR (400 MHz, CDCl3) δ 7.21 (dd, J = 5.1, 0.7 Hz, 2H), 7.19-7.15 (m, 2H), 7.01 (dd, J = 5.1, 3.7 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 137.40, 127.75, 124.34, 123.76. 2-(Furan-2-yl)pyridine (3aa)[7] Red oil. 1H NMR (400 MHz, CDCl3) δ 8.59 (d, J = 4.8 Hz, 1H), 7.75-7.64 (m, 2H), 7.53 (d, J = 0.9 Hz, 1H), 7.19-7.10 (m, 1H), 7.06 (d, J = 3.3 Hz, 1H), 6.53 (dd, J = 3.3, 1.7 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 153.57, 149.57, 149.39, 143.29, 136.61, 121.88, 118.57, 112.03, 108.54. 2-(Thiophen-2-yl)furan (3ab)[7] Yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.42-7.38 (m, 1H), 7.25-7.23 (m, 1H), 7.23-7.20 (m, 1H), 7.05-7.00 (m, 1H), 6.50 (d, J = 3.4 Hz, 1H), 6.46-6.41 (m, 1H). 13C NMR (100 MHz, CDCl ) δ 149.50, 141.58, 133.78, 127.59, 124.09, 122.54, 3 111.61, 104.97. 2-(Benzofuran-2-yl)pyridine (3ac)[7] Yellow solid, mp 80-81 oC (lit. 82-83 oC). 1H NMR (400 MHz, CDCl3) δ 8.68 (d, J = 4.7 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.81-7.73 (m, 1H), 7.65 (d, J = 7.7 Hz, 1H), 6

7.57 (d, J = 8.2 Hz, 1H), 7.43 (s, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.29-7.21 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 155.31, 155.08, 149.91, 149.28, 136.71, 128.84, 125.18, 123.17, 122.87, 121.68, 119.80, 111.51, 104.78. 2-(Thiophen-2-yl)benzofuran (3ad)[7] White solid, mp 94-96 oC (lit. 94-95 oC). 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 7.1 Hz, 1H), 7.51-7.46 (m, 2H), 7.33 (d, J = 4.4 Hz, 1H), 7.30-7.25 (m, 1H), 7.247.19 (m, 1H), 7.10 (dd, J = 4.8, 3.8 Hz, 1H), 6.85 (d, J = 8.9 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 154.42, 151.16, 133.18, 128.97, 127.74, 125.64, 124.46, 124.15, 122.97, 120.60, 110.92, 100.97. 5-(Pyridin-2-yl)benzo[c][1,2,5]oxadiazole (3ae) White solid, mp 131-133 oC. 1H NMR (400 MHz, CDCl3) δ 8.77 (d, J = 4.6 Hz, 1H), 8.37 (s, 1H), 8.26 (d, J = 9.4 Hz, 1H), 7.94 (d, J = 9.4 Hz, 1H), 7.86 (d, J = 3.6 Hz, 2H), 7.41-7.32 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 154.79, 150.02, 149.75, 149.13, 142.45, 137.19, 131.74, 123.67, 121.16, 116.55, 113.57. HRMS (ESI): calcd. for C11H8N3O [M+H]+ 198.0663 (found: 198.0667). 5-(Thiophen-2-yl)benzo[c][1,2,5]oxadiazole (3af) Yellow solid, mp 118-119 oC. 1H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H), 7.87 (d, J = 9.4 Hz, 1H), 7.79-7.71 (m, 1H), 7.51 (d, J = 3.4 Hz, 1H), 7.45 (d, J = 4.9 Hz, 1H), 7.21-7.13 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 149.63, 148.52, 141.70, 137.06, 131.70, 128.59, 127.54, 125.95, 116.89, 110.07. HRMS (ESI): calcd. for C11H8N3O [M+H]+ 203.0274 (found: 203.0274). 4-Phenylbenzonitrile (3ag)[3] White solid, mp 80-82 oC (lit. 84-88 oC). 1H NMR (400 MHz, CDCl3) δ 7.75-7.65 (m, 4H), 7.59 (d, J = 7.3 Hz, 2H), 7.52-7.39 (m, 3H).13C NMR (100 MHz, CDCl3) δ 145.61, 139.11, 132.56, 129.08, 128.62, 127.69, 127.19, 118.94, 110.82. Methyl 5-phenylthiophene-2-carboxylate (3ah)[17] White solid, mp 98-99 oC (lit. 99-100 oC).1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 3.9 Hz, 1H), 7.66-7.60 (m, 2H), 7.45-7.32 (m, 3H), 7.28 (d, J = 3.9 Hz, 1H), 3.90 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 161.66, 150.24, 133.38, 132.36, 130.95, 128.06, 127.76, 125.17, 122.58, 51.15. 3-Cyano-2-Phenylpyridine (3ai)[18] White solid, mp 92-94 oC. 1H NMR (400 MHz, CDCl3) δ 8.89 (dd, J = 4.8, 1.7 Hz, 1H), 8.09 (dd, J = 7.9, 1.7 Hz, 1H), 7.98-7.86 (m, 2H), 7.59-7.48 (m, 3H), 7.39 (dd, J 7

= 7.9, 4.9 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 160.96, 152.60, 141.77, 137.08, 130.18, 128.81, 128.64, 121.49, 117.60, 107.43. 2-Phenylquinoline (3aj)[7] White solid, mp 84-85 oC. 1H NMR (400 MHz, CDCl3) δ 8.24-8.11 (m, 4H), 7.86 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.76-7.69 (m, 1H), 7.57-7.49 (m, 3H), 7.497.42 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 157.33, 148.24, 139.65, 136.74, 129.70, 129.62, 129.28, 128.81, 127.53, 127.43, 127.13, 126.24, 118.98. 1-Phenylisoquinoline (3ak)[7] Light yellow solid, mp 95-96 oC. 1H NMR (400 MHz, CDCl3) δ 8.61 (d, J = 5.7 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.74-7.62 (m, 4H), 7.57-7.45 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 160.70, 142.19, 139.54, 136.80, 129.95, 129.87, 128.53, 128.30, 127.53, 127.12, 126.93, 126.66, 119.86.

2,3'-Bithiophene (3al)[7] White solid, mp 64-65 oC (lit 63-65 oC). 1H NMR (400 MHz, CDCl3) δ 7.40-7.35 (m, 1H), 7.35-7.28(m , 2H), 7.22-7.16 (m, 2H), 7.06-6.99 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 138.14, 134.58, 126.67, 125.28, 125.16, 122.85, 122.15, 118.56. Reference [1] (a) S. Q. Huo, Y. J. Wu, C. X. Du, Y. Zhu, H. Z. Yuan and X. A. Mao, J. Organomet. Chem., 1994, 483, 139; (b) Y. J. Wu, S. Q. Huo, J. F. Gong, X. L. Cui, L. Ding, K. L. Ding, C. X. Du, Y. H. Liu and M. P. Song, J. Organomet. Chem., 2001, 27, 637; (c) Y. J. Wu, L. R. Yang, J. L. Zhang, M. Wang, Li. Zhao, M. P. Song and J. F. Gong, ARKIVOC, 2004, ix, 111; (d) J. Ma, X. L. Cui, B. Zhang, M. P. Song and Y. J. Wu, Tetrahedron, 2007, 63, 5529. [2] (a) Synthesis of phenylboronic acid MIDA ester: T. Mancilla, M. A. C. Romo and L. A. Delgado, Polyhedron, 2007, 26, 1023; (b) Synthesis of 2-thiophene boronic acid MIDA ester: D. M. Knapp, E. P. Gillis and M. D. Burke, J. Am. Chem. Soc., 2009, 131, 6961; (c) Synthesis of 3-pyridine boronic acid MIDA ester: J. L. Gustafson, D. Lim, K. T. Barrett And S. J. Miller, Angew. Chem. Int. Ed., 2011, 50, 5125. [3] Y. Li, X. Mi, M. Huang, R. Cai and Y. Wu, Tetrahedron, 2012, 68, 8502. [4] C. T. To, T. L. Chan, B. Z. Li, Y. Y. Hui, T. S. Z. Kwok, S. Y. Lam and K. S. Chan, Tetrahedron. Lett., 2011, 52, 1023. [5] Q. Liu, Y. Lan, J. Liu, G. Li, Y. D. Wu and A. Lei, J. Am. Chem. Soc., 2009, 131, 10201. 8

[6] I. Kondolff, M. Feuerstein, H. Doucet and M. Santelli, Tetrahedron, 2007, 63, 9514. [7] J. Yang, S. Liu, J. F. Zheng and J. S. Zhou, Eur. J. Org. Chem., 2012, 31, 6248. [8] T. Nokami, Y. Tomida, T. Kamei, K. Itami and J.Yoshida, Org. Lett., 2006, 8, 729. [9] A. Lemire, M. Grenon, M. Pourashraf and A. B. Charette, Org. Lett., 2004, 6, 3517. [10] C. L. Deng, S. M. Guo, Y. X. Xie and J. H. Li, Eur. J. Org. Chem., 2007, 9, 1457. [11] Á Gordillo, E de Jesús and C López-Mardomingo, Org. Lett., 2006, 8, 3517. [12] B. Tao and D. W. Boykin, J. Org. Chem., 2004, 69, 4330. [13] N. Yoshikai, A. Matsumoto, J. Norinder and E. Nakamura, Angew. Chem. Int. Ed., 2009, 48, 2925. [14] R. S. Grainger, B. Patel, B. M. Kariuki, L. Male and N. Spencer, J. Am. Chem. Soc., 2011, 133, 5843. [15] C. A. Fleckenstein and H. Plenio, J. Org. Chem., 2008, 73, 3236. [16] V. L. Blair, D. C. Blakemore, D. Hay, E. Hevia and D. C. Pryde. Tetrahedron. Lett., 2011, 52, 4590. [17] L. A. McAllister, M. S. Hixon, J. P. Kennedy, T. J. Dickerson and K. D. Janda, J. Am. Chem. Soc., 2006, 128, 4176. [18] R. Ghosh, N. N. Adarsh and A. Sarkar, J. Org. Chem., 2010, 75, 5320.

9

Copies of 1H and 13C NMR spectra of compounds

OMe 3a

OMe 3a

10

F 3b

F 3b

11

COOMe

3c

COOMe

3c

12

COOMe

COOEt +

COOMe

COOEt +

13

3d

3d

14

N 3e

N 3e

15

N 3f

N 3f

16

N

3g

N 3g

17

N 3h

N 3h

18

N 3i

N 3i

19

N 3j

N 3j

20

N N 3k

N N 3k

21

N N 3l

N N 3l

22

S

3m

S 3m

23

S 3n

S 3n

24

Ph O S 3o

Ph O S 3o

25

Ph

CHO

O 3p

Ph

O

CHO

3p

26

Ph

Ph N 3q

Ph

Ph N 3q

27

Ph

Ph S 3r

Ph

Ph S 3r

28

MeO N N 3s

MeO N N 3s

29

MeO

S

N 3t

MeO

S

N

3t

30

N

N 3u

N

N 3u

31

N

S 3v

N

S

3v

32

N

N OMe 3w

33

N

N OMe 3w

S N

OMe 3x

34

S N

OMe 3x

S N 3y

35

S N 3y

S S 3z

36

S S 3z

N O 3aa

37

N O 3aa

S O 3ab

38

S O 3ab

N O 3ac

39

N O 3ac

S O 3ad

40

S O 3ad

N O

N

N 3ae

41

N O

N

N 3ae

S

N O N 3af

42

S

N O N

3af

CN 3ag

43

CN 3ag

MeOOC

S 3ah

44

MeOOC

S 3ah

CN

N 3ai

45

CN

N 3ai

N 3aj

46

N 3aj

N 3ak

47

N 3ak

S S 3al

48

S S 3al

49

X-ray crystallographic details (3qi) (CCDC 965688)

Figure S1. Crystal structure for 3qi Table S1. Crystal data and structure refinement for 3qi. Empirical formula

C10H6N2OS

Formula weight

202.23

Temperature/K

291.15

Crystal system

monoclinic

Space group

P21/n

a/Å

11.3001(8)

b/Å

3.9310(2)

c/Å

20.1304(16)

α/°

90.00

β/°

95.043(8)

γ/°

90.00

Volume/Å3

890.74(11)

Z

4

ρcalcmg/mm3

1.508

m/mm-1

2.929

F(000)

416.0 50

Crystal size/mm3

0.30 × 0.20 × 0.04

2Θ range for data collection

8.66 to 145.26

Index ranges

-13 ≤ h ≤ 13, -4 ≤ k ≤ 4, -24 ≤ l ≤ 23

Reflections collected

2612

Independent reflections

2612[R(int) = 0.0000]

Data/restraints/parameters

2612/3/141

Goodness-of-fit on F2

1.014

Final R indexes [I>=2σ (I)]

R1 = 0.0658, wR2 = 0.1831

Final R indexes [all data]

R1 = 0.0780, wR2 = 0.1945

Largest diff. peak/hole / e Å-3

0.28/-0.31

51