Hydrated Magnesium Carbonates

1 downloads 0 Views 4MB Size Report
CSCHE, QUÉBEC CITY. 1/16. Hydrated Magnesium Carbonates. Formation and Stability in Ambient Conditions. Ali ENTEZARI-ZARANDI, Faïçal LARACHI.
66th Canadian Chemical Engineering Conference QUÉBEC CITY, OCTOBER 16-19, 2016

Hydrated Magnesium Carbonates Formation and Stability in Ambient Conditions Ali ENTEZARI-ZARANDI, Faïçal LARACHI Department of Chemical Engineering Université Laval – Québec – Canada

Georges BEAUDOIN Department of Geology & Geological Engineering Université Laval – Québec – Canada

Benoît PLANTE Institut de recherche en mines et en environnement Université du Québec en Abitibi-Temiscamingue – Rouyn-Noranda – Canada

Michelle SCIORTINO Royal Nickel – Toronto, Ontario, Canada Natural Sciences & Engineering Research Council of Canada Conseil de recherches en sciences naturelles & en génie du Canada

Royal Nickel Corporation 19-19/10/2016

CSCHE, QUÉBEC CITY

1/16

LECTURE’S ROADMAP

CONTEXT GOAL EXPERIMENTAL SETUP CARBONATION OF NICKEL MINING TAILINGS (NiMT) Environmental Factors on Carbonation Stability of Carbonates IMPLICATIONS

19-19/10/2016

CSCHE, QUÉBEC CITY

2/16

Introduction Advancements in mineral carbonation

Kakizawa et al., Indirect carbonation Charles D. Keeling “greenhouse effect” global warming

Lackner et al., Detailed experimentation Devoldere et al., application of alkaline industrial residues

W. Seifritz “mineral carbonation”

1985

19-19/10/2016

1990

London, UK, 2006 Rome, Italy, 2008 Turku, Finland, 2010 Leuven, Belgium, 2013 New York, USA, 2015

1995

CSCHE, QUÉBEC CITY

2000

2001

2006 …

3/16

Mining and Mineral carbonation

Mining practice may result in production of two types of wastes: Mine exploitation wastes: coarse material (blast operation) stockpiled as heaps. Mineral processing tailings: Fine material in form of pulp accumulated in dams.

http://www.gardguide.com

19-19/10/2016

CSCHE, QUÉBEC CITY

4/16

DUMONT SILL GEOLOGIC MAP

http://www.royalnickel.com/

http://www.royalnickel.com/ 19-19/10/2016

CSCHE, QUÉBEC CITY

5/16

DUMONT SILL GEOLOGIC MAP

http://www.royalnickel.com/

Differentiated ultramafic-to-mafic intrusion Ultramafic zone ca. 6.8 km long & 450 m thick

[ Ultramafic zone = Peridotite + Dunite ] // Mafic rock + Gabbro 19-19/10/2016

CSCHE, QUÉBEC CITY

6/16

NiMT CHARACTERIZATION

C = chrysotile; L = lizardite; M = magnetite; B = brucite

d80 = 140 mm wt. % Brucite, wt. % BET, m2/g Magnet., emu/g Density, g/cm3 19-19/10/2016

Fine Medium Coarse < 106 mm 106–150 mm 150–212 mm 55.7 42.7 1.4 12 11.5 11.2 11.5 11.1 8.1 7.4 2.75 2 3.1 2.2 2.6 CSCHE, QUÉBEC CITY

7/16

THROUGH–FLOW CELL 3 cm

[7]

25 cm

[6]

5 cm

[5]

350 cc min-1

[4] [3]

[2]

[1]

19-19/10/2016

[1] Compressed air [5] Sample [2] Rotameter [6] Quartz tube [3] Support and rubber cap [7] Sponge cap [4] Fritted glass CSCHE, QUÉBEC CITY

8/16

Carbonation with Atmospheric CO2

NiMT, Brucite+silica, Peridotite

ure 2

WS (%)

100%

(a)

50%

t (day)

0% 9

8

7

6

5

4

3

2

1 26.0 T ( C)

11

10

12

13

14

15

16

17

18

19

20

13

14

15

16

17

18

19

20

21

22

23

26

25

24

27

30

29

28

(b)

24.0 22.0 5

4

3

8

7

6

9

10

11

12

(c)

NiMT

21

22

24

23

25

Peridotite waste

C,L

27

28

29

30

Brucite + quartz Q

Intensity (a. u.)

C,L

C,L B

C,L C,L G

M

G

G

B 25

15

25

15

55 5

45

35

(d)

C,L Intensity (a. u.)

B

B

U UU

5

26

14 days

2

C,L M

Q

B B

B 55 5

45

35

Q B Q 25

15

35

Q

B 2θ

45

55

Q

C,L

30 days

1

C,L

Q

C,L B N

5

15

C,L B

C,L

N

M

25

35

B

G

B 45

55 5

N 15

M GN

B

25

35

N 45

Q

B

B

N 55 5

15

B Q

Q

N 25

35

45

Q

B 2θ 55

Ambient T, atmospheric CO2, periodic watering 19-19/10/2016

CSCHE, QUÉBEC CITY

9/16

ISOBARIC DIFFERENTIAL CARBONATION CELL (7)

(1)(2)

(8)

UC

(5) (3) (4)

(3)

LC

750 mm

1) CO2 probes 2) Hygrometersthermocouples 3) Fans 4) Gate 5) Sample holder 6) Gas bag 7) Gas inlet line 8) Gas outlet 9) Gas cylenders 10) Mass flow meter

250 mm

(9)

(10)

(7)

(6)

19-19/10/2016

(8)

Bronkhorst

(2) (1)

CSCHE, QUÉBEC CITY

10/16

Cyclic accelerated ambient carbonation

Figure 3

200

(a)

180 160

200

2nd 4th 6th 8th

(b)

180

9th Oven Dry (40°C)

160

Freeze/ Thaw (10 cycles)

140 VCO2 (mL)

VCO2 (mL)

140

1st 3rd 5th 7th 9th

120 100 80

120 100 80

60

60

40

40

20

20

0

0 0

500

1000 1500 t (min)

2000

2500

0

500

1000 1500 t (min)

2000

2500

Ambient T, 10% CO2 in N2, 50% W.S.

↑ # refills = ↓ Carbonation kinetics (solid product, lesser alkalinity); ↓ pH; Drying causes higher reactivity, freeze/thaw maintains reactivity, why? 19-19/10/2016

CSCHE, QUÉBEC CITY

11/16

POST-CARBONATION CHARACTERIZATION D = Dypingite ; N = Nesquehonite ; T = Talc

C,L

intensity (a. u.)

C,L D

D

B

L,C

C,L C,L

N

B C,L

N

M

N

B

C,L M

Carbonated T ≈ 35°C

N

B

C,L

M

Carbonated T≈ 25°C

N

B

C,L

M

Carbonated T ≈ 5°C

L

M

L,C

B

L

M T

N

N C,L N

B C,L B C,L

5

15

T

M

M

M

C,L

25

L,C

NM

L,C

B

B

L

L

35 2θ (°)

C,L M

B

45

55

NiMT

65

Warm

Carbonation/Sequential carbonates hydration Dypingite: H2O + 4CO2 + 5Mg(OH)2 ↔ [MgCO3]4Mg(OH)2. 5H2O

Ambient

Nesquehonite: 2H2O + CO2 + Mg(OH)2 ↔ MgCO3. 3H2O

Cold

Nesquehonite: 2H2O + CO2 + Mg(OH)2 ↔ MgCO3. 3H2O Talc: Mg3Si2O5(OH)4 + 2SiO2(amorph) ↔ Mg3Si4O10(OH)2 + H2O

19-19/10/2016

CSCHE, QUÉBEC CITY

12/16

Scanning Electron Microscopy Cementing, carbonate formation, thermal stresses, crystal growth

(a)

15 KV

100 100μm

(d)

15 KV

1500 10μm

19-19/10/2016

(b)

(e)

15 KV

15 KV

500 10μm

500 10μm

CSCHE, QUÉBEC CITY

(c)

15 KV

500 10μm

(f)

15 KV

2000 10μm

13/16

POST-CARBONATION CHARACTERIZATION FATE OF NESQUEHONITE IN SPENT NiMT Figure 7 C, L C, L N

N

L N

C, L

M

H

H

Intensity (a. u.)

Newly carb.

M

59-61 mm

H Brg.

50-51 mm

Brg.

D, H

M

39-40 mm 20-23 mm

D, H

D, H

M

0-2 mm NiMT

M D

D

D D B

5

10

15

B 20

25

30

35

B 40

45

50

55



Diffraction peaks of Brucite (B), brugnatellite (Brg), chrysotile/lizardite (C,L), dypingite (D), hydromagnesite (H), magnetite (M) and nesquehonite (N). 19-19/10/2016

CSCHE, QUÉBEC CITY

14/16

POST-CARBONATION CHARACTERIZATION 940 L - C

Figure 8 3680 B, L - C

NiMT

Transmittance, %

X1

3650

3150

1470 N 2650

2150

850 N

1405 N 1420 D - HM

1650

X4 X5

800, 880 HM - D

1515 N

X3

1475 D - HM

3105 N

3460 N 3437 D - HM

3606 D - HM

3647 D - HM

3555 N

X2

1150

Aged

“Aged” sample

650

Wavenumber, cm-1

ATR–FTIR spectra of as–received NiMT, successive contacts (X1 – X5), “aged” carbonated NiMT brucite (B), chrysotile (C), dypingite (D), hydromagnesite (HM), lizardite (L), and nesquehonite (N) 19-19/10/2016

CSCHE, QUÉBEC CITY

15/16

Warm air Low CO2

Gas transport by diffusion O2 and CO2 Ambient air

Run-off waters re-circulation

Evaporation

Precipitation

IMPLICATIONS

Run-off waters

Wind blow convection

Geo-membrane 19-19/10/2016

CSCHE, QUÉBEC CITY

16/16

CONSOLIDATED REMARKS

Nesquehonite = main carbonate in ambient conditions but … as a function of time and aging: N → D → HM D → HM : dependent on water saturation Yet, HM is not the final hydrated magnesium carbonate product …

Environmental variability (carbonation cycles) Wetting/drying: formation of cracks over carbonate product surfaces (thermomechanical stress) Freeze/thaw: water volume changes  “peel-off” of surface carbonate layers

19-19/10/2016

CSCHE, QUÉBEC CITY

17/16