imidazolinium Chloride - IUCr Journals

2 downloads 0 Views 151KB Size Report
(1995), C51, 2439–2441]. Comment. The racemic efaroxan hydrochloride which exists under two polymorphic forms (I and II) (Pena et al., 1997) is a α-2-ad-.
CIF access Acta Cryst. (1998). C54, IUC9800004

[ doi:10.1107/S0108270198099818 ]

Polymorph II of 2-(2-Ethyl-2,3-dihydro-1-benzofuran-2-yl)imidazolinium Chloride C. Belin, R. Pena, A. Chauvet, J. P. Ribet and J. L. Maurel Abstract In the title compound, C13H17N2O+·Cl−, homochiral cationic molecules are linked to form chains in the b-direction of the triclinic cell by N—H···Cl hydrogen bonds. The dihydro-2-furanyl groups are nearly parallel to the a axis [81.7 (1)° between the axis and the normal to least-squares plane] and the imidazoline rings are roughly perpendicular to it [25.5 (1)° between the axis and the normal to least-squares plane]. For details of polymorph I see Belin, Chauvet, Leloup, Ribet & Maurel [Acta Cryst. (1995), C51, 2439–2441]. Comment The racemic efaroxan hydrochloride which exists under two polymorphic forms (I and II) (Pena et al., 1997) is a α-2-adrenoreceptor, it enhances insulin release (Beeridge, Collins & Roach, 1989). The molecular structure has been determined with better accuracy than that of previously reported R(+) enantiomer hydrobromide (Belin et al., 1995). H11 is involved in a nearly linear hydrogen bond with Cl (N11···Cl = 3.081 (3)Å and N11—H11···Cl = 163.1°.

Experimental The racemic base was dissolved into diethyl ether. Efaroxan hydrochloride was obtained by bubbling gaseous HCl through the base etheral solution (pH < 2). The hydrochloride which is insoluble in diethyl ether was filtered off, washed with diethyl ether and dried under vacuum. Single crystals of the low temperature form II were grown from acetonitrile solution by slow evaporation. Refinement The structure was solved by the direct methods of SHELXS86 (Sheldrick, 1985) and refined using the SHELXL97 program (Sheldrick, 1997). H atoms were considered as riding atoms according to the SHELXL·HFIX instructions. All computations were carried out on a Pentium 166 computer. Computing details Data collection: CAD-4 Software; cell refinement: CAD-4 Software; data reduction: home program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1976), ATOMS (Dowty, 1993).

'[2-[2-ethyl-2,3-dihydro-2-benzofuranyl]]-2-imidazolinium chloride'

CIF access Crystal data C13H17N2O1+·Cl1–

γ = 86.14 (4)º

Mr = 252.74

V = 648.6 (4) Å3 Z=2 Mo Kα

Triclinic, P1 a = 7.086 (2) Å

µ = 0.28 mm−1 T = 293 (2) K 0.60 × 0.20 × 0.15 mm

b = 8.329 (3) Å c = 11.655 (5) Å α = 71.22 (5)º β = 85.53 (3)º

Data collection Nonius CAD-4 diffractometer Absorption correction: numerical, SHELX76 (Sheldrick, 1976) Tmin = 0.987, Tmax = 0.996 3938 measured reflections 3665 independent reflections

1223 reflections with I > 2σ(I) Rint = 0.039 3 standard reflections every 100 reflections intensity decay: 2σ(F2)] = 0.050

154 parameters

wR(F2) = 0.151

H atoms treated by a mixture of independent and constrained refinement

S = 0.86

Δρmax = 0.24 e Å−3

3665 reflections

Δρmin = −0.29 e Å−3

Table 1 Selected geometric parameters (Å) O1—C8 O1—C2 C2—C10 C2—C15 C2—C3 C3—C9 C4—C5 C4—C9 C5—C6

1.376 (3) 1.460 (3) 1.510 (4) 1.517 (4) 1.552 (4) 1.497 (4) 1.373 (5) 1.385 (4) 1.375 (5)

C6—C7 C7—C8 C8—C9 C10—N11 C10—N14 N11—C12 C12—C13 C13—N14 C15—C16

1.383 (5) 1.382 (4) 1.370 (4) 1.304 (3) 1.305 (3) 1.469 (4) 1.523 (4) 1.466 (4) 1.509 (5)

References Beeridge, T. L., Collins, P. D. & Roach, A. G. (1989). Br. J. Pharm. 96, 288P. +pa1181+Belin, C., Chauvet, A., Leloup, J.M., Ribet, J.P. & Maurel, J.L., (1995). Acta Cryst. C, C51, 2439–2441.

CIF access Dowty, E. (1993). ATOMS. A computer program for displaying atomic structures. 521 Hidden Valley Road, Kingsport, TN 37663, USA. Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, the Netherlands. Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Pena, R., Chauvet, A., Masse, J., Ribet, J. P. & Maurel, J. L. (1997). J. Thermal Anal. under press. Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England. Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen. Germany. Sheldrick, G. M. (1997). SHELXL97. A Program for Refining Crystal Structures. University of Göttingen. Germany.

CIF access Scheme 1

supplementary materials

supplementary materials '[2-[2-ethyl-2,3-dihydro-2-benzofuranyl]]-2-imidazolinium chloride' Crystal data C13H17N2O1+·Cl1–

Z=2

Mr = 252.74

F000 = 268

Triclinic, P1

Dx = 1.294 Mg m−3

a = 7.086 (2) Å b = 8.329 (3) Å c = 11.655 (5) Å

Mo Kα radiation λ = 0.71090 Å Cell parameters from 25 reflections θ = 9.7–19.2º

β = 85.53 (3)º γ = 86.14 (4)º

µ = 0.28 mm−1 T = 293 (2) K Rod, colourless

V = 648.6 (4) Å3

0.60 × 0.20 × 0.15 mm

α = 71.22 (5)º

Data collection Nonius CAD-4 diffractometer

Rint = 0.039

Radiation source: fine-focus sealed tube

θmax = 30.0º

Monochromator: graphite

θmin = 2.6º

T = 293(2) K ω–(2/3)θ scans Absorption correction: numerical, SHELX76 (Sheldrick, 1976) Tmin = 0.987, Tmax = 0.996

h = 0→9 k = −11→11

3938 measured reflections 3665 independent reflections 1223 reflections with I > 2σ(I)

every 100 reflections intensity decay: 2σ(F2)] = 0.050 wR(F2) = 0.151

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement Calculated w = 1/[σ2(Fo2) + (0.0522P)2] where P = (Fo2 + 2Fc2)/3 ?

S = 0.86

(Δ/σ)max < 0.001

3665 reflections

Δρmax = 0.24 e Å−3

154 parameters

Δρmin = −0.29 e Å−3

Primary atom site location: structure-invariant direct Extinction correction: none methods

sup-1

supplementary materials Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) Cl O1 C2 C3 H3A H3B C4 H4 C5 H5 C6 H6 C7 H7 C8 C9 C10 N11 H11 C12 H12A H12B C13 H13A H13B N14 H14 C15 H15A H15B C16 H16A H16B

sup-2

x

y

z

Uiso*/Ueq

0.29665 (13) 0.4173 (3) 0.4516 (4) 0.6685 (4) 0.7261 0.6965 0.9124 (5) 1.0177 0.9291 (6) 1.0473 0.7750 (6) 0.7908 0.5969 (5) 0.4910 0.5847 (4) 0.7358 (4) 0.3494 (4) 0.3066 (4) 0.3258 0.2210 (5) 0.0931 0.2961 0.2209 (5) 0.2977 0.0933 0.3037 (4) 0.3201 0.3770 (5) 0.3989 0.4497 0.1695 (6) 0.1347 0.0954

0.81009 (10) 1.2721 (3) 1.3955 (3) 1.3852 (4) 1.4897 1.3623 1.1599 (4) 1.1973 1.0241 (5) 0.9698 0.9666 (5) 0.8746 1.0437 (4) 1.0047 1.1818 (4) 1.2403 (4) 1.3330 (3) 1.4262 (3) 1.5328 1.3242 (4) 1.3665 1.3237 1.1480 (4) 1.0666 1.1084 1.1756 (3) 1.0981 1.5692 (4) 1.6506 1.6020 1.5807 (5) 1.6943 1.5519

0.39489 (9) 0.17854 (18) 0.2387 (3) 0.2528 (3) 0.2037 0.3369 0.2031 (3) 0.2283 0.1600 (3) 0.1560 0.1227 (3) 0.0936 0.1277 (3) 0.1042 0.1695 (2) 0.2083 (2) 0.3624 (3) 0.4326 (2) 0.4127 0.5501 (3) 0.5639 0.6163 0.5372 (3) 0.5966 0.5461 0.4135 (2) 0.3791 0.1626 (3) 0.2033 0.0853 0.1388 (3) 0.0903 0.2146

0.0511 (3) 0.0384 (5) 0.0350 (7) 0.0433 (8) 0.052* 0.052* 0.0477 (8) 0.057* 0.0574 (10) 0.069* 0.0574 (10) 0.069* 0.0426 (8) 0.051* 0.0338 (7) 0.0359 (7) 0.0308 (6) 0.0398 (6) 0.048* 0.0437 (8) 0.052* 0.052* 0.0435 (8) 0.052* 0.052* 0.0387 (6) 0.046* 0.0459 (8) 0.055* 0.055* 0.0640 (11) 0.096* 0.096*

supplementary materials H16C

0.1463

1.5032

0.0963

0.096*

Atomic displacement parameters (Å2) Cl O1 C2 C3 C4 C5 C6 C7 C8 C9 C10 N11 C12 C13 N14 C15 C16

U11 0.0567 (6) 0.0377 (12) 0.0438 (18) 0.0400 (19) 0.043 (2) 0.059 (2) 0.077 (3) 0.056 (2) 0.0371 (17) 0.0376 (18) 0.0304 (16) 0.0593 (17) 0.055 (2) 0.048 (2) 0.0535 (16) 0.062 (2) 0.071 (3)

U22 0.0286 (4) 0.0415 (12) 0.0278 (15) 0.0465 (19) 0.053 (2) 0.056 (2) 0.046 (2) 0.0393 (18) 0.0375 (16) 0.0394 (17) 0.0267 (15) 0.0217 (12) 0.0349 (17) 0.0349 (17) 0.0229 (12) 0.0342 (17) 0.047 (2)

U33 0.0728 (6) 0.0440 (13) 0.0363 (17) 0.048 (2) 0.040 (2) 0.049 (2) 0.052 (2) 0.0342 (17) 0.0241 (15) 0.0262 (15) 0.0360 (16) 0.0375 (14) 0.0397 (18) 0.0410 (18) 0.0398 (14) 0.0364 (18) 0.064 (2)

U12 −0.0022 (4) 0.0007 (10) −0.0043 (13) −0.0076 (15) −0.0022 (16) 0.0112 (19) 0.0020 (19) −0.0011 (15) 0.0003 (13) −0.0017 (14) −0.0028 (12) −0.0063 (11) −0.0019 (15) −0.0080 (15) −0.0057 (11) −0.0018 (16) 0.0092 (19)

U13 −0.0049 (4) −0.0054 (10) 0.0003 (14) −0.0009 (15) −0.0003 (15) 0.0114 (18) 0.011 (2) 0.0032 (15) 0.0027 (13) 0.0007 (13) −0.0053 (12) 0.0062 (13) 0.0050 (15) 0.0074 (15) 0.0012 (12) 0.0021 (16) −0.012 (2)

U23 −0.0225 (4) −0.0243 (10) −0.0144 (13) −0.0206 (16) −0.0063 (16) −0.0107 (18) −0.0229 (17) −0.0163 (14) −0.0075 (12) −0.0048 (13) −0.0100 (12) −0.0096 (11) −0.0112 (14) −0.0046 (14) −0.0103 (11) −0.0058 (14) −0.0036 (18)

Geometric parameters (Å, °) Cl—N14 Cl—O1 Cl—N11 O1—C8 O1—C2 O1—N14 C2—C10 C2—C15 C2—C3 C3—C9 C3—H3A C3—H3B C4—C5 C4—C9 C4—H4 C5—C6 C5—H5 C6—C7 C6—H6 C7—C8

3.125 (3) 3.969 (3) 5.295 (3) 1.376 (3) 1.460 (3) 2.669 (3) 1.510 (4) 1.517 (4) 1.552 (4) 1.497 (4) 0.9700 0.9700 1.373 (5) 1.385 (4) 0.9300 1.375 (5) 0.9300 1.383 (5) 0.9300 1.382 (4)

C7—H7 C8—C9 C10—N11 C10—N14 N11—C12 N11—H11 C12—C13 C12—H12A C12—H12B C13—N14 C13—H13A C13—H13B N14—H14 C15—C16 C15—H15A C15—H15B C16—H16A C16—H16B C16—H16C

0.9300 1.370 (4) 1.304 (3) 1.305 (3) 1.469 (4) 0.8600 1.523 (4) 0.9700 0.9700 1.466 (4) 0.9700 0.9700 0.8600 1.509 (5) 0.9700 0.9700 0.9600 0.9600 0.9600

N14—Cl—O1 N14—Cl—N11 O1—Cl—N11

42.13 (6) 0.74 (5) 42.86 (4)

N14—C10—C2 C10—N11—C12 C10—N11—Cl

123.0 (2) 110.7 (2) 34.76 (15)

sup-3

supplementary materials C8—O1—C2 C8—O1—N14 C2—O1—N14 C8—O1—Cl C2—O1—Cl N14—O1—Cl O1—C2—C10 O1—C2—C15 C10—C2—C15 O1—C2—C3 C10—C2—C3 C15—C2—C3 C9—C3—C2 C9—C3—H3A C2—C3—H3A C9—C3—H3B C2—C3—H3B H3A—C3—H3B C5—C4—C9 C5—C4—H4 C9—C4—H4 C4—C5—C6 C4—C5—H5 C6—C5—H5 C5—C6—C7 C5—C6—H6 C7—C6—H6 C8—C7—C6 C8—C7—H7 C6—C7—H7 C9—C8—O1 C9—C8—C7 O1—C8—C7 C8—C9—C4 C8—C9—C3 C4—C9—C3 N11—C10—N14 N11—C10—C2

sup-4

108.3 (2) 106.42 (16) 66.37 (15) 78.30 (15) 116.13 (15) 51.76 (7) 105.5 (2) 108.8 (2) 112.8 (2) 106.1 (2) 109.6 (2) 113.6 (3) 102.9 (2) 111.2 111.2 111.2 111.2 109.1 118.8 (3) 120.6 120.6 121.4 (3) 119.3 119.3 121.0 (3) 119.5 119.5 116.3 (3) 121.8 121.8 113.4 (2) 123.7 (3) 122.9 (3) 118.7 (3) 109.0 (3) 132.3 (3) 112.6 (3) 124.3 (2)

C12—N11—Cl C10—N11—H11 C12—N11—H11 Cl—N11—H11 N11—C12—C13 N11—C12—H12A C13—C12—H12A N11—C12—H12B C13—C12—H12B H12A—C12—H12B N14—C13—C12 N14—C13—H13A C12—C13—H13A N14—C13—H13B C12—C13—H13B H13A—C13—H13B C10—N14—C13 C10—N14—O1 C13—N14—O1 C10—N14—Cl C13—N14—Cl O1—N14—Cl C10—N14—H14 C13—N14—H14 O1—N14—H14 Cl—N14—H14 C16—C15—C2 C16—C15—H15A C2—C15—H15A C16—C15—H15B C2—C15—H15B H15A—C15—H15B C15—C16—H16A C15—C16—H16B H16A—C16—H16B C15—C16—H16C H16A—C16—H16C H16B—C16—H16C

75.97 (15) 124.6 124.6 159.4 103.0 (2) 111.2 111.2 111.2 111.2 109.1 102.5 (2) 111.3 111.3 111.3 111.3 109.2 111.2 (2) 62.32 (17) 170.5 (2) 148.0 (2) 100.76 (17) 86.11 (9) 124.4 124.4 62.5 23.7 115.1 (3) 108.5 108.5 108.5 108.5 107.5 109.5 109.5 109.5 109.5 109.5 109.5