International observational campaigns of the last two eclipses in EE ...

5 downloads 27 Views 7MB Size Report
Sep 26, 2012 - SR] 26 Sep 2012. Astronomy & Astrophysics manuscript no. EECep˙AaA˙120417 c ESO 2012. September 27, 2012. International observational ...
c ESO 2012

Astronomy & Astrophysics manuscript no. EECep˙AaA˙120417 September 27, 2012

arXiv:1205.0028v3 [astro-ph.SR] 26 Sep 2012

International observational campaigns of the last two eclipses in EE Cep: 2003 and 2008/9 ⋆ C. Gałan1,2 , M. Mikołajewski1 , T. Tomov1 , D. Graczyk3 , G. Apostolovska4 , I. Barzova5 , I. Bellas-Velidis6 , B. Bilkina5 , R.M. Blake7 , C.T. Bolton8 , A. Bondar9 , L. Br´at10,11 , T. Bro˙zek1 , B. Budzisz1 , M. Cikała1,12 , B. Cs´ak13 , A. Dapergolas6 , D. Dimitrov5 , P. Dobierski1 , M. Drahus14 , M. Dr´oz˙ d˙z15 , S. Dvorak16 , L. Elder17 , S. Fra¸ckowiak1 , G. Galazutdinov18 , K. Gazeas19 , L. Georgiev20 , B. Gere21 , K. Go´zdziewski1 , V.P. Grinin22 , M. Gromadzki1,23 , M. Hajduk1,24 , T.A. Heras25 , J. Hopkins26 , I. Iliev5 , J. Janowski1 , R. Koci´an27 , Z. Kołaczkowski3,28 , D. Kolev5 , G. Kopacki28 , J. Krzesi´nski15 , H. Kuˇca´ kov´a27 , E. Kuligowska29 , T. Kundera29 , M. Kurpi´nska-Winiarska29 , A. Ku´zmicz29 , A. Liakos19 , T.A. Lister30 , G. Maciejewski1 , A. Majcher1,31 , A. Majewska28 , P.M. Marrese32 , G. Michalska3,28 , C. Migaszewski1 , I. Miller33,34 , U. Munari35 , F. Musaev36 , G. Myers37 , A. Narwid28 , P. N´emeth38 , P. Niarchos19 , E. Niemczura28 , W. Ogłoza15 , ¨ gmen39 , A. Oksanen40 , J. Osiwała1 , S. Peneva5 , A. Pigulski28 , V. Popov5 , W. Pych41 , J. Pye17 , E. Ragan1 , Y. Oˇ B.F. Roukema1 , P.T. R´oz˙ a´nski1 , E. Semkov5 , M. Siwak15,29 , B. Staels42 , I. Stateva5 , H.C. Stempels43 , M. Ste¸s´licki28 , ´ E. Swierczy´ nski1 , T. Szyma´nski29 , N. Tomov5 , W. Waniak29 , M. Wie¸cek1,44 , M. Winiarski15,29 , P. Wychudzki1,2 , A. Zajczyk1,24 , S. Zoła15,29 , and T. Zwitter45 (Affiliations can be found after the references) Received xxxxx xx, xxxx; accepted xxxxx xx, xxxx ABSTRACT

Context. EE Cep is an unusual long-period (5.6 yr) eclipsing binary discovered during the mid-twentieth century. It undergoes almost-grey eclipses that vary in terms of both depth and duration at different epochs. The system consists of a Be type star and a dark dusty disk around an invisible companion. EE Cep together with the widely studied ε Aur are the only two known cases of long-period eclipsing binaries with a dark, dusty disk component responsible for periodic obscurations. Aims. Two observational campaigns were carried out during the eclipses of EE Cep in 2003 and 2008/9 to verify whether the eclipsing body in the system is indeed a dark disk and to understand the observed changes in the depths and durations of the eclipses. Methods. Multicolour photometric data and spectroscopic observations performed at both low and high resolutions were collected with several dozen instruments located in Europe and North America. We numerically modelled the variations in brightness and colour during the eclipses. We tested models with different disk structure, taking into consideration the inhomogeneous surface brightness of the Be star. We considered the possibility of disk precession. Results. The complete set of observational data collected during the last three eclipses are made available to the astronomical community. The 2003 and 2008/9 eclipses of EE Cep were very shallow. The latter is the shallowest among all observed. The very high quality photometric data illustrate in detail the colour evolution during the eclipses for the first time. Two blue maxima in the colour indices were detected during these two eclipses, one before and one after the photometric minimum. The first (stronger) blue maximum is simultaneous with a “bump” that is very clear in all the U BV(RI)C light curves. A temporary increase in the I-band brightness at the orbital phase ∼ 0.2 was observed after each of the last three eclipses. Variations in the spectral line profiles seem to be recurrent during each cycle. The Na i lines always show at least three absorption components during the eclipse minimum and strong absorption is superimposed on the Hα emission. Conclusions. These observations confirm that the eclipsing object in EE Cep system is indeed a dark, dusty disk around a low luminosity object. The primary appears to be a rapidly rotating Be star that is strongly darkened at the equator and brightened at the poles. Some of the conclusions of this work require verification in future studies: (i) a complex, possibly multi-ring structure of the disk in EE Cep; (ii) our explanation of the “bump” observed during the last two eclipses in terms of the different times of obscuration of the hot polar regions of the Be star by the disk; and (iii) our suggested period of the disk precession (∼ 11–12 Porb ) and predicted depth of about 2.m for the forthcoming eclipse in 2014. Key words. Stars: binaries, eclipsing – Stars: circumstellar matter – Stars: emission-line, Be

1. Introduction The 11th magnitude star EE Cep is a unique object among the about 40 well-known eclipsing systems with orbital periods longer than one year. The primary B5 III star is obscured by an invisible, dark secondary component of very low luminosity every 5.6 yr. The variability of the star was discovered in 1952 ⋆

Tables B.1 – B.36 are available at the CDS anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/544/A53

via via

(epoch E = 0) by Romano (1956) and soon confirmed by Weber (1956), who reported observations obtained during a previous eclipse in 1947 (E = -1). Since then, ten consecutive primary eclipses have been observed, while a secondary eclipse has never been detected. The depths of the eclipses vary across a wide range of magnitudes from about 0.m 5 to 2.m 0 (see Graczyk et al. 2003). However, all of them seem to have the same features: they are almost grey and have a similar asymmetric shape (the descending branch of every eclipse has a longer duration than the ascending one). In the light curves of all the eclipses, it is pos-

2

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep 0 0.2

1a 1a

0.4

4a

2

0.6

4

Var - comp [mag]

1

1 3 4 4a

3

0.8 1 1.2 1.4 1.6 1.8

2

2

Fig. 1. Schematic representation of the eclipse geometry in the EE Cep system. The inner opaque and outer semi-transparent regions of the disk are separated. The characteristic positions of the disk and the star configuration during the eclipses (left) correspond to the contact times (1a, 1, 2, 3, 4, 4a) distinguished in the light curve (right). The figure shows a highly simplified case that ignores a number of issues such as e.g. possible inhomogeneities in the distribution of brightness on the star’s surface or of the actual size of the disk. sible to distinguish five characteristic phases (shown in Fig. 1): ingress (1-2) and egress (3-4) are preceded and followed, respectively, by extended atmospheric eclipse parts (1a-1 and 4-4a), and in the middle of the eclipses a bottom phase of variable slope (2-3) occurs. The most plausible hypothesis to explain the observed shape of the light curve, as well as the changes in the eclipse depth during successive conjunctions and their weak dependence on the photometric band was proposed by Mikołajewski & Graczyk (1999). Their model considers the eclipses of a hot B5-type primary by an invisible, dark companion, which is most probably a dusty disk around a low-luminosity central object. The disk is slightly inclined to the orbital plane. The obscurations of the star by the opaque interior of the disk can explain the deep central parts of the eclipses, while the semi-transparent exterior areas are responsible for the observed external wings, which are similar to wings caused by atmospheric eclipses in ζ Aur type variable stars. The projection of the inclined disk onto the sky plane produces oblong shape of an obscuring body, which is tilted with respect to the direction of motion during most of the occultations. Since the eclipses are not central (the impact parameter is non-zero), the light curves observed during the eclipses have an asymmetric shape (Fig. 1). A possible precession of the disk can change both the inclination of the disk to the line of sight and the tilt of its cross-section to the transit direction. This leads to changes in the depth and the duration of the eclipses. The model briefly described above can explain the shallow (0.m 6), flat-bottomed eclipse observed in 1969, if we assume a nearly edge-on and non-tilted projection of the disk (Graczyk et al. 2003). This very specific configuration in 1969 is very similar to the geometry of the eclipses in the ε Aur system (see Mikołajewski & Graczyk 1999). Wide eclipsing binaries of this kind, i.e. those containing a nearly edge-on dusty disk as an eclipsing object, are very rare and apart from the two abovementioned cases we know of only about one additional system – M2-29 – that may show some similarities (Hajduk et al. 2008). In this paper, we present the results of two observational campaigns organized for the eclipses that occured in 2003 and 2008/9, mainly to test the hypothesis of a precessing disk. The

2.2 720

740

760 780 JD - 2450000

800

820

Fig. 2. U (dots) and i (crosses) light curves obtained during the 1997 eclipse of EE Cep. results of the second campaign were systematically presented during the eclipse at a web page1 .

2. Observations 2.1. The 1997 eclipse

During the 1997 eclipse (epoch E = 8), the first multicolour U BVRCi (λ¯ i ≈ 7420 Å) photometric observations were made using a 60 cm Cassegrain telescope at the Piwnice Observatory near Toru´n (Poland) equipped with a one-channel photometer (Mikołajewski & Graczyk 1999). This eclipse was one of the deepest eclipses of all those observed in EE Cep. However, the amplitude of the minimum changes quite weakly with wavelength from about 1.m 75 in the U passband to about 1.m 45 in i (Fig. 2). These observations thus provided the first evidence that the eclipsing body cannot be an ordinary evolved cool star, motivating us to organize a special international observational campaign for the next two minima. A complete set of U BVRCi photometry obtained in 1997 is shown in our Appendix (available online) in Table B.1. 2.2. International photometric campaigns in 2003 and 2008/9

Observers from four European countries responded to the appeal of Mikołajewski et al. (2003) to perform a precise monitoring of the subsequent eclipse of EE Cep anticipated in 2003 (epoch E = 9). During the organized campaign, ten telescopes were used to acquire the photometric observations (Table 1). Very high quality photometric U BV(RI)C data were obtained with very fine sampling. The eclipse turned out to be quite shallow and in accordance with the expectations, almost grey. The eclipse reached depths from about 0.m 7 in U to 0.m 5 in IC . The preliminary photometric results of the 2003 campaign were described by Mikołajewski et al. (2005a). The results of this fruitful campaign in 2003 did not however significantly constrain the precessing disk model, and the nature of the central part of the disk and its contribution to the total flux remained uncertain. The next opportunity for resolving these uncertainties came with the most recent eclipse, which took place at the turn of 2008 (epoch 1

http://www.astri.uni.torun.pl/∼cgalan/EECep/

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

3

Table 1. Overview of instruments and their involvement in photometric observations of the EE Cep eclipses since 1997. Observatory Altan, Mt Giant Athens Białk´ow Green Island Hankasalmi Furzehill, Swansea Krak´ow Kryoneri GRAS, Mayhill Navas de Oro, Segovia Ostrava Ostrava Piszk´estet¨o Piwnice⋆⋆ Piwnice Rolling Hills, Clermont Rozhen Rozhen Rozhen⋆⋆ Rozhen Skinakas Sonoita Suhora Tenagra-II

Country Czech Republic Greece Poland North Cyprus Finland United Kingdom Poland Greece USA (NM) Spain Czech Republic Czech Republic Hungary Poland Poland USA (FL) Bulgaria Bulgaria Bulgaria Bulgaria Greece USA (AZ) Poland USA (AZ)

Telescope type Reflector Cassegrain Cassegrain Ritchey-Chr´etien RCOS Schmidt-Cassegrain Cassegrain Cassegrain Reflector Reflector Newton Schmidt-Cassegrain Schmidt Cassegrain Cassegrain Reflector Ritchey-Chr´etien Schmidt Cassegrain Cassegrain Ritchey-Chr´etien Reflector Cassegrain Ritchey-Chr´etien

Diameter [m] 0.2m 0.4m 0.6m 0.35m 0.4m 0.35m 0.5m 1.2m 0.3m 0.35m 0.2m 0.3m 0.6/0.9m 0.6m 0.6m 0.25m 2m 0.5/0.7m 0.6m 0.6m 1.3m 0.5m 0.6m 0.81m

Bands B, V, R, I B, V, R, I B, V, R, I, HαW⋆ , HαN⋆ B, V, R, I B, V, R, I B, V, R, I U, B, V, R, I U, B, V, R, I B, V, I V B, V, R, I B, V, R, I B, V, R, I U, B, V, R, I, c⋆ , Hβ⋆ U, B, V, R, I B, V U, B, V, R, I U, B, V, R, I U, B, V U, B, V, R, I U, B, V, R, I B, V, R, I U, B, V, R, I U, B, V, R, I

Epoch 10 9, 10 9, 10 10 10 10 9, 10 9, 10 10 10 10 10 9 8, 9 10 10 9, 10 9, 10 9 10 9 10 10 10

N 60 176 109 35 28 68 336 42 127 16 24 4 12 612 470 80 20 33 18 34 44 349 196 20

Table B.12 B.2, B.24 B.3, B.13 B.14 B.25 B.15 B.4, B.27 B.5, B.21 B.31 B.16 B.26 B.17 B.11 B.1, B.6 B.6 B.32 B.7, B.18 B.8, B.19 B.9 B.20 B.10 B.22, B.23 B.30 B.28

Notes. N is the number of individual brightness determinations summed over all the photometric bands. The last column specifies the number of the table with the original data. (⋆ ) HαW and HαN are intermediate width (FWHM ≈ 200 Å) and narrow (FWHM ≈ 30 Å) photometric bands, both centred at the Hα spectroscopic line. c and Hβ are narrow (FWHM ≈ 100 Å) photometric bands centred on λ = 4804 Åand at the Hβ spectroscopic line, respectively. (⋆⋆ ) In these two cases, the photomultipliers were used as the light receiver instead of CCD.

E = 10), with a minimum on January 10, 2009. An invitation to participate in an observational campaign (Gałan et al. 2008) attracted strong interest. Twenty telescopes located in Europe and North America were involved in the photometric observations (Table 1), which provided a more comprehensive multicolour and temporal photometric coverage than for any previous eclipse. The first results and the U BV(RI)C light curves in graphical form were published by Gałan et al. (2009). Surprisingly, the last eclipse turned out to be the shallowest in the observing history of EE Cep, reaching a depth of only ∼ 0.m 5 in U and nearly ∼ 0.m 4 in IC . The strong interest inspired by Mikołajewski et al. (2003) and Gałan et al. (2008) resulted in many observations. The original data and the observatories that sent them are presented in Tables B.2-B.11 for the 2003 eclipse (E = 9) and Tables B.12-B.32 for the 2008/9 (E = 10) eclipse, respectively. The three standard stars “a” = BD +55◦ 2690, “b” = GSC3973:2150, and “c” = BD +55◦2691 have been recommended by Mikołajewski et al. (2003). Most magnitudes were evaluated with respect to either the standard star ”a” (Tables B.2B.20) or all three standard stars “a”, “b”, and “c” independently (Tables B.24-B.32). One set of data (Table B.21) were obtained only with respect to standard star “c” because of the small field of view of the instrument used. The data in Tables B.2-B.21 and B.24-B.32 are shown in differential form. Two sets of data, from Sonoita Research Observatory (Tables B.22-B.23), were obtained partly with respect to other standard stars (see Table B.22), and we show them as apparent magnitudes. They were transformed to a differential form using the known brightness of star “a” from Mikołajewski et al. (2003). The original differential magnitudes obtained with the three standard stars were calculated with respect to star “a”, us-

ing the average differences between the standard stars (a − b) and (a − c). All of the mean values in Tables B.24–B.32 for variable star “v” were calculated according ito the expression h (v − a) + (v − b) − (a − b) + (v − c) − (a − c) /3 for each filter, excluding ∆V and ∆RC data in Table B.25. For this last set of data, the differences (v − a) were not recorded by the observers, hence the using i h reduced average values were calculated the expression (v − b) − (a − b) + (v − c) − (a − c) /2, where the (a − b) and (a − c) VR magnitudes were adopted from Mikołajewski et al. (2003). All data were corrected for the differences between the particular photometric systems. The CCD data from Krak´ow were adopted as a zero-point, owing to their high quality and good coverage during both the eclipses. Original individual data points obtained close to the eclipses are presented in Fig. 3, which is composed of about 2500 measurements. The phases were calculated with ephemeris (Mikołajewski & Graczyk 1999) JD(Min) = 2434344.1 + 2049.d94 × E.

(1)

The photometric observational data were further processed by averaging the groups of neighbouring points. In the case of the previous eclipse at E = 9, for which the photometric measurements were obtained only in Europe, each point in the light curves represents the average of all measurements obtained in a given passband during a single night. The V light curve constructed in this way was complemented by the data obtained independently for this eclipse by Samolyk & Dvorak (2004), which we shifted by +0.m 02 onto the reference system. The last eclipse at E = 10 was observed from two continents, Europe and North America. The measurements obtained during each day form groups of points separated by about one-third of a day

4

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep 0 0.2 0.4 Var - comp [mag]

0.6 0.8 1

∆Ic

∆Ic

∆Rc+0.15

∆Rc + 0.15

∆V+0.4

∆V + 0.4

∆B+0.7

∆B + 0.7

∆U+1.4

∆U + 1.4

0 0.2 0.4 0.6 0.8 1

1.2 1.4

1.2 1.4

1.6

1.6

1.8

1.8

2

2

2.2

2.2 2740

2760

2780

2800

2820

2840 4800 JD - 2450000

4820

4840

4860

4880

4900

Fig. 3. All of the approximately 800 individual photometric U BV(RI)C measurements obtained during the 2003 eclipse (left; Tables B.2-B.11) and all of the more than 1600 observations obtained during the 2008/9 eclipse (right; Tables B.12-B.32). Table 2. Overview of the instruments involved in the spectroscopic observations during the three last eclipses at epochs E = 8, E =9, and E =10. N is the number of spectra. Observatory NOT, La Palma Rozhen Asiago SPM DDO Terskol Asiago Piwnice

Country Canary Isl. Bulgaria Italy Mexico Canada Russia Italy Poland

Telescope type Ritchey-Chr´etien Ritchey-Chr´etien Cassegrain Ritchey-Chr´etien Cassegrain Ritchey-Chr´etien Cassegrain Schmidt-Cassegrain

Diameter [m] 2.56 2.0 1.82 2.12 1.88 2.0 1.82 0.9

and should not be averaged together. In the light curves of this eclipse, each point represents the average of all measurements obtained in a given filter during the first or second part of a particular Julian day. The accuracy of the photometry obtained in this way is excellent, reaching a few mmag. The resulting mean points of the average light curves, together with the formal standard deviations for particular observations, are shown in Table B.35.

2.3. Spectroscopic data collected in 2003 and 2008/9

For several decades until the eclipse at epoch E = 9 in 2003, changes in EE Cep’s spectrum outside and during eclipses had been poorly studied, whereas the photometric behaviour during the eclipses had been relatively well characterized. The situation improved significantly after the observational campaign in 2003. Seven observatories located in Europe and North America took part in the observations (using the instruments listed in Table 2), collecting spectra at low and high resolution. The spectral observations covered various phases of the eclipse, revealing changes in the line profiles (mainly Hα, Na i, Hβ, and Fe ii) not only during the photometric eclipse but even more than two months before and after the minimum (Mikołajewski et al. 2005b). Unfortunately, during the last campaign at the turn of 2008 (epoch E = 10) only a small number of spectra were obtained, with only three instruments. The new spectra complement those obtained during the previous epoch, because a sig-

Spectrograph FIES-Echelle Coude Echelle Echelle Cassegrain Echelle AFOSC/echelle CCS

Res. power 48000 15000, 30000 20000 18000 16000 13500 3600 2000 – 4000

Spectral reg. 3680-7280 Å Hα, Hβ, Na i 4600-9200 Å 3700-6800 Å Hα, Na i 4200-6700 Å 3600-8800 Å 3500-10500 Å

Epoch 10 8, 9, 10 9 9 9 9 9 9, 10

N 4 38 5 1 16 7 3 26

nificant number of these spectra were acquired during orbital phases that had not been previously covered. With this paper, we make available a large number (100) of spectra, most of which were, however, obtained with moderate resolution and/or cover a narrow spectral range, containing mainly Hα or Na i spectral lines. In addition, they were clustered near the eclipse – the spectroscopic observations have insufficient temporal coverage throughout the orbital phase to use them in studying changes in the radial velocities. The list of spectra and instruments together with some additional information are given in Table B.36. All these spectra were heliocentric corrected and some of them (obtained at Rozhen Observatory and DDO), which cover a narrow spectral range (∼ 100-200 Å), were normalized to the continuum. The low resolution spectra obtained at Piwnice Observatory were flux calibrated. All spectra are available as FITS files at the CDS.2

3. Results 3.1. Light and colour changes during the last two eclipses

Thanks to the aforementioned observational campaigns, it has been possible for the first time to analyse colour evolution during the eclipses. In Fig. 4, the mean B light curves and the colour indices for both of the last eclipses are presented. The 2003 and 2008/9 eclipses reached their minima on Julian days 2

Centre de Donn´ees astronomiques de Strasbourg

B [mag]

11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8

11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8

B - Rc

0.7 0.8

0.7 0.8

V - Ic

5

0.8 0.9

0.8 0.9

B - Ic

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

1.2 1.3

1.2 1.3 2740

2760

2780

2800

2820

2840 4800 JD - 2450000

4820

4840

4860

4880

4900

Fig. 4. Average points from Table B.35 of the 2003 eclipse (left) and the 2008/9 eclipse (right). The B light curves (top) and three colour indices (bottom) are presented. Arrows denote times of blue maxima.

3.2. Variations in the spectrum

The most important results of the spectroscopic observations obtained during the 2003 campaign seem to be the conclu-

-0.1

0.0

∆I [mag.]

JD = 2452795 and JD = 2454842, respectively. The small timing residuals (O−C, observations minus calculations) +1.d 44 and −1.d 5 with respect to the ephemeris [Eq. (1)] did not change this significantly. The Mikołajewski & Graczyk (1999) ephemeris was used (unchanged) for orbital phasing to produce all the observational data in this paper. The colour indices for the 2003 eclipse show two blue maxima, about nine days before and after the mid-eclipse. Two weak maxima in the B light curve are also clearly visible. Similar features also occur in the 2008/9 eclipse but the “bump” (at JD 2454836) preceding the minimum (Fig. 3 and 4) is much more pronounced than previously. The differences in the phase and strength of these features can be caused, such as the depth of eclipses, by changes in the spatial orientation of the disk. The observed variations in the I passband after the eclipses could give additional support to this idea. In Fig. 5, the I-band light curve obtained over 13 years, from 1996 to 2010, is shown. About one year after each eclipse, near the orbital phase ∼ 0.2, an increase in I-band brightness appears. The recurrence and rapid variation during these events allow us to speculate that this increase may be caused by proximity effects when the components are close to periastron. If this is true, then the orbit in the EE Cep system must be significantly eccentric. An interesting correlation – the brightening events appear to be stronger when the eclipses are deeper – may indicate that there are changes in the disk projection and this may be an additional observational argument for precession of the disk. The quite large amplitude of variability outside the eclipse in the I passband (which is not clearly visible at shorter wavelengths) also indicates that the contribution of a dark component (disk or/and central object) to this band has to be significant. The cool component becomes readily noticeable at the red edge of the visible spectrum, and in the near infrared (the JHK bands) it might dominate the observed fluxes.

0.1

0.3 0.5 0.7 0.9 1.1 1.3 1.5 7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

phase

Fig. 5. Differential I magnitudes of EE Cep obtained at Piwnice Observatory during the 13 years from 1996 to 2010. The zero value corresponds to the level of the average brightness outside (phases 0.4–0.8) eclipses. Below +0.m 1 (i.e. for magnitude changes smaller than +0.m 1) an artificial, strongly non-linear scale is used to reduce the contrast in the amplitude of the changes during and outside eclipses (thus, the relatively small variations outside the eclipses can be seen and compared with the depth of the eclipses).

sions regarding the nature of the hot component. The emission and absorption components of the Balmer and Fe ii line profiles in the spectra obtained around the 2003 eclipse imply that the hot component is a rapidly rotating Be star surrounded by a highly inclined emitting gaseous ring (Mikołajewski et al. 2005b). These line profiles show the same pattern during the 2008/9 eclipse (compare Fig. 6 with Fig. 2 of Mikołajewski et al. 2005b). A comparison of the Balmer H8-H11 absorption lines in the spectrum of EE Cep with theoretical profiles (Fig. 7) gives v sin i ≈ 350 km s−1 (Gałan et al. 2008), which implies that there has been a strong equatorial gravitational darkening. The rota-

6

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

φ

Date

φ

9.98871

19 Dec 2008

8.90474

19 Nov 2002 /Rozhen

9.95651

14 Oct 2008 /Rozhen

9.98381

9 Dec 2008 /Rozhen

Normalized Flux [Fλ/Fcont]

9.98971

21 Dec 2008

9.99308

4880 4900 Heliocentric wavelengths [Å]

4920

1 H11

Normalized Flux [Fλ/Fcont]

4860

Fig. 6. Hβ and Fe ii line profiles in the spectra obtained during the 2008/9 eclipse with the Nordic Optical Telescope (NOT, La Palma). The spectra are vertically offset for clarity.

Normalized flux [Fλ/Fcont]

19 Dec 2008 /NOT

8.99268

19 May 2003 /Asiago

9.99308

28 Dec 2008 /NOT

8.99413

22 May 2003 /Asiago

8.99997

3 Jun 2003 /Rozhen

10.00037

12 Jan 2009 /Rozhen

9.00144

6 Jun 2003 /Asiago

9.00339

10 Jun 2003 /Rozhen

9.00581

14 Jun 2003 /Rozhen

9.00780

19 Jun 2003 /Asiago

9.00985

23 Jun 2003 /DDO

9.01379

1 Jul 2003 /DDO

10.01505

11 Feb 2009 /NOT

11 Feb 2009

1

0.9

9.98871

28 Dec 2008

10.01505

4840

Date/Observatory

1

H10

0.8

9.01756

9 Jul 2003 /Rozhen

9.02433

22 Jul 2003 /Rozhen

9.02795

30 Jul 2003 /DDO

9.03375

11 Aug 2003 /SPM

9.03554

14 Aug 2003 /Rozhen

9.06430

12 Oct 2003 /Rozhen

8.12387

3 Jul 1998 /Rozhen

8.16769

30 Sep 1998 /Rozhen

9.24877

25 Oct 2004 /Asiago

0.7 0.6 0.5 3760

3770

3780

3790

3800

3810

λ [Å]

Fig. 7. The Balmer H10 and H11 line profiles in the spectrum of EE Cep taken on 11 Aug 2003 with an Echelle spectrograph on the 2.12 m telescope in SPM Observatory in Mexico. The best fit was obtained for a synthetic spectrum with: T eff = 15000K, log g = 3.5, [Fe/H] = 0, and v sin i = 350 km s−1 (solid line). Two poorer fits calculated with different values of the rotational velocity, v sin i = 300 km s−1 (dashed line) and v sin i = 400 km s−1 (dash-dotted line), are shown for comparison purposes.

tional velocity of the Be star in the EE Cep system is very close to the critical value. It must lead to a continuously strong radial outflow of the gas stream from the equator, which is confirmed by the existence of the gaseous ring – a characteristic feature of Be-type stars (Mikołajewski et al. 2005b). Figures 8–10 show the evolution of the Hα and Na i line profiles in which additional absorption components appeared during both of the last two eclipses. Towards the mid-eclipse, an

−600

−400

−200

0

200

400

600

Radial velocities [km/s]

Fig. 8. Representative examples of Hα line profiles in the spectra obtained near the eclipses at epochs E = 10, E = 9, and E = 8 (in the electronic version of this paper, the profiles have different colours: red, blue, and green, respectively). The spectra are vertically offset for clarity.

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

φ

Date/Observatory 1

8.90473

19 Nov 2002 /Rozhen 14 Oct 2008 /Rozhen

9.95652

12 Apr 2003 /Rozhen 8.97466 9 Dec 2008 /Rozhen

Normalized Flux [Fλ/Fcont]

9.98383 9.98871

19 Dec 2008 /NOT

8.99268

19 May 2003 /Asiago

9.99308

28 Dec 2008 /NOT

8.99413

22 May 2003 /Asiago

9.00000

3 Jun 2003 /Rozhen

10.00034

12 Jan 2009 /Rozhen

9.00144

6 Jun 2003 /Asiago

9.00341

10 Jun 2003 /Rozhen

9.00583

15 Jun 2003 /Rozhen

9.00780

19 Jun 2003 /Asiago

9.00997

23 Jun 2003 /DDO

9.01046

24 Jun 2003 /DDO

10.01505

11 Feb 2009 /NOT 9 Jul 2003 /Rozhen

9.01754

7

absorption component in the Hα profile grows, and during the minimum it is very deep and broad. The sodium doublet line profiles in the minimum show a multi-component structure and we can discern at least two additional absorption components shifted towards blue wavelengths, first at a velocity of about 40 km s−1 and then at about -70 km s−1 (Fig. 11). In a few high-resolution spectra from the Rozhen, NOT, Asiago, and Terskol observatories, we can see Hα and Hβ lines. The spectra from NOT and Terskol contain higher order Balmer lines, which are, however, underexposed, permitting us to see only that the emission is weakening and the broad and strong absorption features of the Be star begin to dominate. The only spectrum displaying absorption from Hα to H13-H14 is the SPM spectrum (see Table 2) obtained during the 2003 eclipse. In this spectrum, strong absorption in the Be star dominates and the higher order emission Balmer lines are absent (see Fig. 7). In the case of other lines of the Be star, in a few spectra, the He i 5876 Å, 4471 Å, and Mg ii 4481 Å lines appear to be present but are barely visible. In the spectra from CCS and Asiago, the emission triplet Ca ii (8498 Å 8542 Å 8662 Å ) and the O i 8446 Å line are visible. Because of the small number of lines in the Be star spectrum and their weakness and large width, it was impossible to extract reliable information about changes in the radial velocities of the hot component. The spectra obtained during the two most recent eclipses suggest that the behaviour of the spectral line profiles might not change between eclipses. A unique spectrum was obtained at phase ∼ −0.025 before the 2003 eclipse when both lines of the Na i doublet showed a P Cyg profile. If this is a sign of outflow from the Be star, then this implies that the eclipses occur relatively close to periastron. At orbital phases far from the eclipses, absorption structures are indeed sometimes appear imposed on the emission lines indicating that there are large amounts of loose gaseous clouds in the system, which could support such a scheme (see e.g. Fig. 8 – Hα line profiles at phases ∼ 0.17 and ∼ 0.25). On the other hand, these structures are observed during the brightening event observed in the I band at an orbital phase ∼ 0.2. The changes of the spectral line profiles during phases close to the photometric eclipses allowed us to estimate the sizes of the eclipsing dusty disk and gaseous ring around the Be star (Mikołajewski et al. 2005b). The disappearance of the bluest component of the Na i doublet at a phase of about 0.011 suggests that the radius of the eclipsing cloud producing the Na i lines is at least 6RBe . The shell absorption in Hα rapidly decays about 2.5 months after minimum (at phase ∼ 0.036), which suggests that the gaseous ring around the Be star producing the Hα emission is almost twice the size of the eclipsing cloud, i.e. > ∼ 10RBe.

9.03375

11 Aug 2003 /SPM

9.03555

14 Aug 2003 /Rozhen

9.06429

12 Oct 2003 /Rozhen

8.16774

30 Sep 1998 /Rozhen

4. Modelling of the eclipse light curves, precession of the disk, and discussion

9.24877

25 Oct 2004 /Asiago

4.1. Numerical code and basic assumptions

−150 −100 −50

0

50

−100 −50

0

50

100

Radial velocities [km/s]

Fig. 9. Representative examples of Na i doublet line profiles in the spectra obtained near the eclipses at epochs E = 10, E = 9, and E = 8 (in the electronic version of this paper, the profiles have different colours: red, blue, and green, respectively). The spectra are vertically offset for clarity.

Although similar to ε Aur and maybe even M2-29, EE Cep is nevertheless quite a unique system, and existing tools do not seem to be suitable for analysing this system. To model the brightness and colour variations during the eclipses and changes from epoch to epoch, possibly depending on precession, it was necessary to develop our own, original numerical code. The models require the adoption of some quite simplistic assumptions. An axially symmetric, circular, flat disk with an r−n density profile was assumed in all cases. The disk was considered to be geometrically thin, although we highlight that two

8

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

[mag.]

1.1 1.3 11.2 11.4 11.6 11.8

B−I

1.1 1.3

B

11.2 11.4 11.6 11.8

Epoch no. 10

5888

λhel. [Å]

5896

Na I

5892

5888 5892 5896

6555

[mag.]



6560

6555 6560

6565

6565

6570

6570

11.2 11.4 11.6 11.8 1.1 1.3

B

11.2 11.4 11.6 11.8 1.1 1.3

Epoch no. 9 B−I −0.10 −0.08 −0.06 −0.04 −0.02 0.0 phase

0.02

0.04

0.06

0.08

−0.015

−0.01

−0.005

0.0 0.005 phase

0.01

0.015

0.02

Fig. 10. The B and B − V light curves of the 2003 (bottom) and 2008/9 (top) eclipses. In the middle panel, we present all available line profiles of the Na i doublet and Hα for epoch 9 (superposition of two lines: thick dashed with thin solid) and 10 (solid line). The positions of the continuum levels refer to the orbital phases. The right-hand panels show a zoom of the central part of left-hand panels as indicated by vertical dashed lines. The arrows indicate the shallow minima in the external parts of the eclipses observed about 35 days before and after mid-eclipse at both last epochs (both last eclipses seem to be longer than expected and lasted about 90 days). 0

-20 Radial velocity [km/s]

different approaches are possible with our code. One is to assume a disk thickness H and integrate the density of the matter in the disk. The second approach, which is more efficient for the calculation, is to assume that the disk has a negligible thickness (in reality zero thickness in the model). Changes in the optical depth depending on the disk inclination could also be taken into account (τ ∼ | cos id −1 |). The outer disk radius was assumed to be six times the equatorial radius of the Be star (Rd0 = 63.4R⊙), i.e. approximately the minimal possible radius that can be estimated from the contact times in the eclipse light curves (Mikołajewski et al. 2005a). A possible additional contribution of radiation from the eclipsing body (disk and/or its central object) to the total flux (commonly called “the third light”) and scattering of Be star radiation off the disk particles have been neglected. We assumed that the matter of the disk absorbs radiation selectively in accordance with interstellar extinction. The passband-dependent absorption coefficients were estimated based on the total value of the reddening, which increased by ∆EB−V ≈ 0.05 during mid-eclipse in 2003. The Be star parameters that could not be reliably calculated during the modelling process had to be entered as inputs into the model. Our spectra show that the hot component has an effective temperature T eff = 15000 K and log g = 3.5, implying that it is a B5III or B4II type star. With the spectral type and luminosity class, the stellar effective temperature and luminosity L = 3500L⊙ can be determined using the statistical relations of de Jager & Nieuwenhuijzen (1987). Comparing the resulting values with the theoretical evolutionary models for stars with moderate and high masses (Claret 2004), via interpolation, the mass range MBe = 8.0 ± 2.2M⊙ was estimated for the mass of the Be star in EE Cep. A mean stellar radius was estimated with the Stefan-Boltzmann law. For a description of the

-40

-60

-80

-100

0.9

1

1.1

1.2

Phase

Fig. 11. Radial velocities of the three components of the sodium doublet Na i lines obtained from the spectra of five observatories (NOT, SPM, DDO, Asiago, and Rozhen). The main stellar component is shown with filled circles, and two components from the disk blue-shifted by about -40 and -70 km s−1 are shown with open circles and filled diamonds, respectively.

star’s surface, its shape and radiation, we used the model described by Cranmer & Owocki (1995) and Owocki et al. (1994) in our program. The model takes into account both the oblateness of the star and gravity darkening using a Roche model and a von Zeipel (F ∼ g → T eff ∼ g0.25 ) law. By comparing of the critical rotational velocities that characterize each pair of mass and radius with the observed rotational velocity, which for the

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

Fig. 12. Schematical explanation of the geometrical parameters in the special case when the precession axis of the disk (the symmetry axis of the conical surface over which the rotation axis of the disk moves cyclically with the precession period Pprec ) is parallel to the Y axis of the coordinate system (i.e. it is perpendicular to the orbital plane). Our code allows this axis to be inclined by angles θprec and φprec in a similar way to the inclination of the rotation axis. adopted inclination i = 90◦ is v = 350 ± 50 km s−1 , we constrained the possible masses to the range 5.9M⊙ < ∼ MBe < ∼ 7.9 M⊙ , i.e. the range in which stars do not disintegrate as a result of rapid rotation. We eventually decided to fix the basic parameters of the Be star in our model to a mass M = 6.7M⊙ , mean radius R¯ Be ≈ 9.0R⊙ (with equatorial to polar radius ratio Req R−1 p ≈ 1.44, giving equatorial and polar radii, respectively, Req ≈ 10.57R⊙ and R p ≈ 7.34R⊙), luminosity L = 3500L⊙, and rotational velocity at the equator Veq = 325 km s−1 . To perform a χ2 minimization, our numerical code was equipped with the simplex algorithm. This procedure used the method described in Brandt (1998) and the flowchart of Kallrath & Milone (1999). The solutions were carried out using the U BV(RI)C light curves. In general, several parameters were treated as free parameters: the impact parameter D, the mid-eclipse moment T 0 (in the sense of the minimum proximity of the star and the disk centres in the projection on the sky plane), the relative tangential velocity of the star and the disk Vt , the inclination of the disk (90◦ − θd ), an angle related to the disk precession phase φd , the absorption coefficient κs representing the contribution by the grey extinction and the central disk density ρc expressed in arbitrary units. The geometrical parameters (D, θd , φd , Rd0 , Rd1 , and Rd2 ) describing the disk sizes and orientation in the models are presented in Fig. 12. The code allows additional disk radii Rdi for i ≤ 5 to be defined, making it possible to take into account the presence of one or two gaps in the disk and the central opening. 4.2. A solid or a gapped disk model?

We used our code to model the last two eclipses with a solid disk causing the eclipses. This model is consistent with the global changes in the light curves and colours (it fits the depth and the shape of the eclipses), especially for the 2003 eclipse (see Appendix A, Fig. A.1). However, this model has trouble in explaining the two blue maxima in the colour evolution that appeared during the last two eclipses, roughly symmetrically a few days before and after the photometric minimum. We tried to explain these blue maxima based on a hot star being rotationally darkened at the equator and brightened at the poles, and assuming that the eclipsing disk is divided into two parts by a gap. For a hot Be star such as EE Cep, convection is impossible in the envelope and we can expect the darkening effect to occur in pure von Zeipel (1924) form. Since the star rotates with a velocity very close to the critical value, the grav-

9

Fig. 13. Schematic explanation for the formation of the bump in the light curves. The configurations of the star and the disk at the first and second minima are shown at the top.

ity darkening effect can result in a difference between the polar and the equatorial temperatures of as much as 5–6 thousand Kelvins. Thus, the appearance of the hot polar area in the gap could be observed as the blue maxima. Gałan et al. (2008) considered and briefly described a model with a disk that has a concentric gap for the 2003 eclipse. In the current work, an attempt has been made to create a similar model for the last two eclipses together, by taking into account the precession period Pprec as an additional free parameter. Although this model seemed to be appropriate when the 2003 eclipse alone is considered, it does not work well when we consider the two eclipses together (see the online Appendix A: Fig. A.2). The model indeed generates colour changes and blue maxima of the same order as observed during the 2003 eclipse. However, its predictions are inconsistent with the observations, because the shallower eclipses should be accompanied by a less pronounced “bump” and associated blue maximum, in contradiction to the case of the 2003 and 2008/9 eclipses taken together. The “bump” at JD 2454836 in the last eclipse (E = 10) seems to be too strong to be explained entirely by a gap in the disk. After many attempts to model the light changes during the eclipses, especially the shallow ones, we realized that another mechanism, connected with the flattening of the Be star, could be helpful in explaining the “bump”. For example, we consider the case when the disk has an inclination close to 90 degrees (when the eclipse is shallow) and the tilt with respect to the direction of motion is high (we expect that this could occur for the eclipses at epochs E = 9, E = 10). The temporal superposition of the two minima should be observed, corresponding to the successive obscuration of the two hot poles separately, at significantly different times (see Fig. 13). The first minimum is shallower and the second deeper, because of the non-zero value of the impact parameter, which reduces the obscuration of one of the poles, and because the outer part of the disk is more transparent than the inner part. The condition for the occurrence of the “bump” is a sufficiently long temporal separation of the two minima. Models generated using our numerical code at various precession phases suggest that the “bump” would disappear in the deep eclipses and be stronger in the shallow ones, matching what we observe. Although this scenario is very promising, it may not match the observed colour changes. The main problem is the second blue maximum, which appears in both of the last eclipses (during 2003 and 2008/9), although it is already very weak during the last one. We speculate that the reason for the occurrence of the second blue maximum may be (i) a concen-

10

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep JD = 2452830.25

40 20

20

0

0

-20

-20

-40

-40 0

50

100

-50

∆B[mag.]

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.3

B-Ic [mag.]

∆B[mag.]

-50

B-Ic [mag.]

JD = 2454880.19

40

0.4 0.5 52740

52760

52780 52800 52820 JD-2400000

52840

52860

0

50

100

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.3 0.4 0.5 54780

54800

54820 54840 54860 JD-2400000

54880

54900

Fig. 14. Modelling of the eclipses of a rapidly rotating Be star by a solid disk, considering both the 2003 (left) and 2008/9 (right) eclipses. The precession period is a free parameter. The top panels show projections of the system onto the plane of the sky. The polar (hot) and equatorial (cool) areas of the star are shown by changing shades. The inner (opaque) and outer (semi-transparent) areas of the disk are shown by dark and light shades, respectively. The sizes are expressed in solar radii. The lower panels show the B light curve (middle) and the B − IC colour index (bottom) together with the synthetic fits (lines). The Julian day in the upper right corner represents the moment at which (according to the model) the spatial configuration of the system is the same as shown in the relevant panel. tric gap (or a local, concentric depression of the density) or (ii) a central opening in the disk structure. The former would be adequate for eclipse models similar to those presented here, i.e. in which the impact parameter is small enough for both sides of the entire disk to be involved in the eclipses. The latter would require the impact parameter to be larger, so that the eclipses could be caused by about half of the disk. Which of these two cases is true? We are unable to establish this based on the photometric observations. The behaviour of the Na i sodium doublet lines suggests that case (ii) may be correct. In this case, the disk would be about twice as large as in case (i) and it would move on an orbit with an appropriately higher speed. 4.3. Precession solutions from the 2003 and 2008/9 eclipses

As stated above, we propose that the precession of the disk is responsible for the observed differences between the eclipses from epoch to epoch. Since the number of eclipses observed is small, the constraints on precession are weak, so other processes, perhaps connected with changes in the disk size and/or its internal structure, might be needed to explain the rapid changes. Nevertheless, we decided to study our hypothesis of precession as the most likely hypothesis that can presently be constrained. In one approach, we used the highest quality photometric data obtained during the last two eclipses, when the disk was nearly edge-on, so that its optical thickness was high, but it projected to a small solid angle at that time. Using our code, we determined the best-fit solution for the solid disk for the two last eclipses, taking precession into account. The basic assumptions

about the nature of the Be star, and the both fixed and free parameters were the same as those in Section 4.1. The disk was treated as having negligible thickness (infinitesimally small with all its mass concentrated in the plane) with an r−2 density profile. The precession period of the disk Pprec was adopted as an additional free parameter. For simplicity, the precession axis was assumed to be perpendicular to the orbital plane. The resulting model is presented in Fig. 14 and its parameters are shown in Table 3. The best-fit solution was obtained for the precession period Pprec ≈ 61.94 yr (about 11 Porb ) for which the angle related to the disk precession phase φd changes from 34.88◦ at epoch E = 9 to 67.5◦ at epoch E = 10. Such a fast precession seems to be necessary to explain the observed rapid changes in the eclipse depths at consecutive epochs. For example, the very shallow eclipse at E = 3 occurred very close in time to two very deep eclipses at E = 2 and E = 4, and the deep minimum at E = 8 was followed by two shallow ones at E = 9 and 10. An alternative solution exists according to which the disk would achieve, at epoch E = 10, the precession phase φd = 112.5◦ with about half the precession period of the former solution, Pprec ≈ 26.03 yr (∼ 5 Porb ). Since we are only able to observe a projection of the disk, we are unable to distinguish between these two cases using only the photometric data of these two eclipses. 4.4. Precession solutions using all the eclipses

However, although the precession period in EE Cep should indeed be rather short, its lower limit of about five orbital periods inferred from colour variations during two successive eclipses,

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

11

Table 3. Parameters obtained from the solution of the solid disk model when applied to the last two eclipses together, taking into account disk precession. Parameter D T 0(E=9) T 0(E=10) Vt θd φd(E=9) φd(E=10) Pprec κs ρc

Value 4.91 52795.25 54845.19 1.78 14.39 34.88 67.50 61.94 0.175 92.8

± 0.15 0.27 −′′ − 0.12 2.59 2.63 −′′ − 1.66 0.019 11.2

Unit R⊙ day day R⊙ /day degree degree degree yr 1 1 R−3 ⊙

as presented in Section 4.3, seems unrealistic. One credible argument for a longer period of precession is the following, which favours a Pprec of the order of 14Porb (≈ 78.5 yr). If the shallow minimum with a flat bottom observed in 1969 was indeed caused by an edge-on, non-tilted disk (Mikołajewski & Graczyk 1999), then the precession axis is not perpendicular to the orbital plane. For perpendicular orientations, two edge-on positions with opposite tilt angles should be observed. More generally, two edgeon positions can occur when the precession axis lies nearly in the sky plane and is inclined with respect to the orbital plane. One of these positions may be non-tilted with respect to the orbital motion, but both should produce similar (shallow) eclipse depths, despite the very different tilt angles, because an edge-on disk obscures at most only a small part of the Be star. This situation might have arisen in 1969 (E = 3) and 2008/9 (E = 10), if the time interval between these minima was about half a precession period. This hypothesis provides a solution what may satisfy the data of all the eclipses. Thus, we propose this as a possible way of explaining the seemingly chaotic changes that occur in successive eclipses. The next key step in understanding this system was to realize that the deepest eclipses are not necessarily those that occur when the projected disk size is greatest (as we assumed at first); the deepest eclipses must instead be those where the column density in the disk and the projected disk size are together high enough to obscure most of the Be star surface. This situation must occur close in time to the most shallow eclipses in order to be consistent with the rapid changes in the eclipse depths. According to this line of reasoning, during the shallowest eclipses, the projection of the disk becomes small so that there is very little obscuration of the stellar flux, even though the column density in the disk is greatest at that time. Similarly, the eclipses should have intermediate depths at those precession phases at which the projected disk size is largest, since, despite the eclipsing of nearly the whole surface of the star, this eclipsing is performed by the highly transparent part of the disk. We tested this hypothesis using our numerical code for the case with a precession axis inclined relative to the normal of the orbital plane by several different small values of θprec . We found that as a first approximation, φprec should be around 70◦ – 80◦ (see Fig. 12 for the definition of θprec and φprec ). When θprec is non-zero (i.e. the precession axis is inclined), the value of φprec determines how unequal the time intervals between the two shallowest minima in the precession cycle will be and how different the eclipse depths will be between these two intervals. We define II as the time interval from the eclipse with the minimal tilt of the projected disk (as in 1969) to the eclipse with a maximal disk tilt (as in 2008/9) and vice versa, III as the time interval from the eclipse with maximal disk tilt to the eclipse with minimal disk

Fig. 15. Dependence of the depths of eclipses in EE Cep system on precession. Photometry obtained during epochs 0–10 is shown as circular symbols. The solid and dashed lines delineate two models of the changes in eclipse depth as a function of orbital phase, generated using our numerical code. In these two cases, the precession periods Pprec are 10.8 Porb and 11.8 Porb , respectively. At the bottom, the spatial configurations of the disk and the star in four special cases, denoted by the letters a, b, c, and d, are shown. Table 4. Subjective (“eye”) and quantitative (“fit”) optimal solutions of our precession model using all the eclipses. Parameter Rd0 H D T0 Vt θd φ⋆d θprec φprec Pprec κs ρc n⋆⋆

eye 75.0 1.0 4.0 40493.92 2.0 12.5 175.0 18.0 79.0 11.8 0.328 1.18 0.3

fit 73.8 0.6 4.0 40493.92 2.0 12.1 173.7 19.5 80.0 10.8 0.328 1.13 0.27

± 2.7 ... ... ... ... 0.7 1.9 1.0 2.0 0.4 ... 1.21 0.09

Unit R⊙ R⊙ R⊙ day R⊙ /day degree degree degree degree Porb 1 1 R−3 ⊙ 1

Notes. (⋆ ) At the time of minimal disk tilt. (⋆⋆ ) Exponent in the function describing the disk density distribution.

tilt. When φprec = 90◦ , the time intervals II and III are equal and the changes in eclipse depth as a function of precession phase proceed symmetrically with respect to the times of the shallowest eclipses. In general, however, φprec differs from 90◦ , in which case asymmetry appears. For example, when φprec < 90◦ , the time interval III is shorter than II and the eclipses during III are deeper, especially during the central parts of this interval. This seems to be the case for EE Cep. We know that II ∼ 7Porb and that III seems to be shorter. Hence, if this scenario were correct, we would have succeeded in constraining the full precession period Pprec < ∼ 14Porb . We considered many combinations of sets of parameters, for different disk sizes, starting from the large (Rd0 ∼ 200 R⊙) and geometrically thick (H ∼ Rp ) disks. Because the adopted artifi-

12

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

cial density distribution does not provide a good solutions for the external parts of the light curves during the eclipses, we concentrated on their central parts, i.e. we searched for the set of parameters that could explain the dependence of eclipse depth on precession phase. By visual inspection of plots comparing the synthetic curves that represent the dependence of the eclipse depth on precession with the observational data, we chose subjectively a few optimal sets of parameters. One of these fits, perhaps the best of them, is shown in Table 4 (left) and Fig. 15 (dashed line). Using the simplex algorithm, we performed a χ2 minimization over the parameter space of the system input parameters. The best-fit solution is that shown in Table 4 (right) and the synthetic fit is presented as the solid line in Fig. 15. Our solutions were obtained for a disk radius Rd0 ≈ 75R⊙ and a geometrically very thin disk H = 0.6R⊙ . We cannot exclude, however, the possibility that a smaller or larger disk could provide more reliable results. On the other hand, the disk thickness in the optimal solution equals the spatial resolution adopted in the model (which represents the grid size) and in reality, the disk could be even thinner. The disk must be extremely thin in order for this model to work correctly at times close to the shallow minima. Some of the eclipses in the EE Cep system could be even shallower than those in 2008/9 (the disk could sometimes almost completely disappear, as happens with Saturn’s rings when they have an edge-on orientation). Thus, our model (Table 4) suggests that the value of the precession period should be about 11–12 Porb . Is it possible that the precession period is really so short? The development of a mechanical model of a precessing circumstellar disk would be a useful follow-up study to this paper to test our preferred solution theoretically. Empirically, at least one binary system that appears to have a similarly short precession period exists. This system, SS433, is very different from EE Cep – it is far more compact and the disk has to be smaller and perhaps more massive. Margon et al. (1980) suggested that the SS433 system, with Porb ≈ 13.d 1, has an accretion disk that can precess with a period of 164.d , which is just 12.5 times its orbital period. Applying our model of precession to predict the depth of the next EE Cep minimum, we find that it should be similar to the deepest of the previous eclipses, reaching about 2.m . According to the ephemeris (Eq. 1), this minimum should occur on 23 Aug 2014. To some degree, this tests our proposed model, although this model has a serious problem. The existing set of observations span a time interval that is almost identical to the expected precession period. A statistically more significant test would require much more than one full precession cycle, and preferably at least two cycles. Several more decades of observations would be required. Nevertheless, there is some hope that old photographic surveys might contain a sufficient amount of extra data. For example, the database of the DASCH3 (Digital Access to a Sky Century @ Harvard) project (see Grindlay et al. 2009) provides data from more than 5000 old Harvard photographic plates obtained between JD 2411556 and JD 2447823 (nearly exactly 100 years) that contain EE Cep in their field of view. By checking the Julian dates when these photographs were obtained using EE Cep’s ephemeris, it seems likely that we may be able to extract data for the eclipses from epochs E = −9 to E = −1, with which we can test our model.

3

http://hea-www.harvard.edu/DASCH/

4.5. On the similarity of EE Cep and ε Aur

Our observations show that the disk in the EE Cep system may be similar to (though smaller than) the multi-ring structure observed in ε Aurigae. Leadbeater & Stencel (2010) found that the equivalent width of the K i potassium line at 7699 Å increased step-wise during the ingress of the last ε Aur eclipse. They interpreted this pattern as a manifestation of the complex structure of the disk as an alternating series of concentric rings and gaps, which had already been suggested based on the observations of the previous eclipse during the 1980’s (Ferluga 1990). According to what until recently has been the dominant interpretation, based on ε Aur observations during the eclipse of the 1980’s, a quite close binary system should exist at the disk centre (Lissauer & Backman 1984). On the basis of their spectral energy distribution (SED) analysis, Hoard et al. (2010) suggested that the ε Aur system is composed of a massive B5V type primary embedded in a dusty disk with a radius of about 3.8AU and an F type post-AGB secondary of about half the mass of the primary. In this model, the disk has to be a byproduct of mass transfer from the initially more massive star (currently an F type post-AGB) to what was initially the secondary (and is now a more massive B5V star). Kloppenborg et al. (2010), via interferometric observations during the ingress of the 2009 eclipse, detected and measured movement of the disk with respect to the F star. They confirmed the existence of an optically thick, inclined disk in the system and provided the first direct evidence that the disk is geometrically thin. The mass of the disk is dynamically negligible (< ∼ 15 M⊕ ), but is sufficient to cause eclipses. Hoard et al. (2010) pointed out that the dust content of the disk must be largely confined to grains larger than ∼10 µm to explain the grey nature of eclipses, from the optical range up to the infrared, and the lack of broad dust emission features in the mid-infrared spectra. Owing to the important role that grey extinction plays in our models, we can conclude that the disk in the EE Cep system should also be dominated by particles of quite large diameters – a mixture of grains and dust, and our results concerning our precession model also suggest that this disk should be geometrically very thin. In both cases, ε Aur and EE Cep, the disks are inclined to the orbital plane. The presence of a binary system at the disk centre might help to explain the inclination of the disk and the rapid precession. However, the statistical likelihood of a binary system at the centre of the disk in the case of ε Aur is low, and for EE Cep even lower. Another possible way of explaining the inclination of the disk is that since the main component in EE Cep is a rapidly rotating Be star, it is very probable that it is the donor star that supports a disk around its companion. Therefore, to explain the inclination of this disk relative to the orbit, we have to assume that the orbital plane is not coplanar with the equatorial plane of the Be star. In this case, the disk around the companion will also not be coplanar with the orbit. In principle, to introduce disk precession into the system in a way in which the precession axis is inclined to the orbital plane, it is sufficient to add a third body as the perturber if it satisfies two conditions: (i) its orbit should not be coplanar with the orbital plane of the disk, and (ii) it should have a high enough mass (and/or the disk should have a low enough mass). In the light of these two conditions, we have many possibilities as to what could constitute a third body. It could be an object orbiting the Be star, either closer to or further away from than the eclipsing object, but it might also be an object on an orbit around the body at the disk centre, either outside or within the disk. The latter case would be equivalent to the presence of a binary system at the disk centre. At the moment,

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

we probably do not have enough observations of the system to decide which of these possibilities is most likely to be correct. In addition to the differences in the sizes of the systems, there are additional indications that the geometries of the eclipses could be very different. While the consecutive eclipses in ε Aur are nearly identical in terms of their depth (see eg. Stencel 2009), the eclipse depths in EE Cep are highly variable. Some variations in the durations of the entire eclipse and the various stages of the eclipse (ingress, totality, and egress) in ε Aur (see Hopkins & Stencel 2008) are observed. Perhaps these changes could be explained in terms of disk precession. In this case, the large differences between the eclipse depths of EE Cep and ε Aur would be explained by variations in the direction of the rotation axis due to the strong precession in the case of EE Cep and a small θprec (of Fig.12 caption) in ε Aur. There are also interesting differences between the Na i doublet line profiles observed during the eclipses of these systems. During the last eclipse of ε Aur, an additional component appeared, which was redshifted during the first part of the eclipse and blueshifted during the second part (see Tomov et al. 2012), in contrast to EE Cep, where only blueshifted additional components were observed. This may indicate that in the case of EECep, the impact parameter may be so large that roughly only half of the disk is involved in the eclipses.

5. Conclusions We have presented our observational data obtained during the last three eclipses of EE Cep. We release these data for use by the astronomical community. For the two latest minima, our investigations were carried out as international campaigns that provided data of unprecedented quality for this object, especially in the case of the photometry, where an accuracy of a few thousandths of a magnitude was achieved. These minima turned out to be the shallowest EE Cep eclipses observed. The grey character of these eclipses, i.e. the weak dependence of the eclipses’ depth on the photometric band, reinforces our belief that the eclipsing object is indeed a dark, dusty debris-disk around a lowluminosity central body that is visible in neither the spectra nor photometry. The results of these campaigns shed new light on our understanding of the EE Cep system. Our spectroscopic data have demonstrated that the main component of the system is a rapidly rotating (v sin i ≈ 350 km s−1 ) Be-type star. The oblateness of the star leads, via the von Zeipel effect, to a highly inhomogeneous temperature distribution across its surface. The spectra obtained during the last two eclipses suggest that the absorption lines change in the same way during each eclipse. During the minima of both eclipses, we were able to detect at least three absorption components in the Na i lines and the same strong absorption superimposed on the Hα emission. By analysing all the photometric and spectroscopic data together, we have proposed several hypotheses that provide predictions for future eclipses. Using high quality photometry, it was possible to detect two blue maxima in the colour indices during the 2003 and 2008/9 eclipses, that occurred from about six to nine days before and after the photometric minimum. The first (stronger) blue maximum occurred simultaneously with a “bump” in the light curves, which is very clear in all the U BV(RI)C photometric bands. This “bump” seems to be caused by a temporal offset between the two minima in a single eclipse, which can be explained by the nonsimultaneous obscuration of the hot polar regions of the Be star by the elliptical, tilted shape of the projected disk.

13

The durations of the last two eclipses were longer than expected (both lasting about 90 days). In the external parts of these long minima, two shallow minima were observed about 35 days before and after mid-eclipse during both epochs (arrows in Fig. 10). This could be explained by the presence of a gap near the outer border of the disk. The second blue maximum, which could not be explained by the mechanism proposed for the “bump”, may indicate the existence of either an inner gap or a central opening. Thus, the disk in the EE Cep system could have a complex, possibly multi-ring structure. The behaviour of the Na i line profiles gives some support to this idea. Another hypothesis that follows from the behaviour of these lines and the recurrent asymmetry of the eclipses is that maybe only half the disk is involved in the eclipses. Considering all the eclipses together, from the 1950’s to the present, we estimated the duration of the disk precession period to be about 62–67 years (∼ 11–12 Porb ). Using our new model of precession, we predict that the depth of the forthcoming eclipse in 2014 should be one of its deepest, reaching about 2.m . More spectroscopic observations during the next eclipse would be needed to more clearly understand the nature of the EE Cep system. Photometry in the infrared JHK bands during and after the eclipse would be very useful. This could make it possible to detect the secondary companion of EE Cep (disk and/or central star/stars), as it seems to make a significant contribution to the total flux at the red edge of the visible spectrum (a brightening event by about 0.m 05 at the phase ∼ 0.2 was observed). The radial velocity variations of the hot component, which would be a real challenge to obtain, may be of crucial importance in constraining the parameters of this system. Acknowledgements. E. Semkov would like to thank the Director of Skinakas Observatory, Prof. I. Papamastorakis, and Dr. I. Papadakis for granting telescope time. We thank T. Karmo, Stefan Mochnacki, and G. Conidis for contributing their data. Some of the observations used here were taken courtesy of the AAVSO and the Sonoita Research Observatory. This study was supported by MNiSW grant No. N203 018 32/2338.

References Brandt, S., 1998, Data Analysis. Statistical and Computational Methods, Polish edition (Polish Scientific Publishers PWN) Claret, A., 2004, A&A, 424, 919 Cranmer, S.R., & Owocki, S.P., 1995, ApJ, 440, 308 Ferluga, S. 1990, A&A, 238, 278 Gałan, C., Mikołajewski, M., Tomov, T. et al. 2008, IBVS, 5866 Gałan, C., Mikołajewski, M., Tomov, T. et al. 2009, in Binaries – Key to Comprehension of the Universe, ed. A. Prsa & M. Zejda, ASP Conf. Ser., 435, 423 Graczyk, D., Mikołajewski, M., Tomov, T. et al. 2003, A&A, 403, 1089 Grindlay, J., Tang, S., Simcoe, R., et al., 2009, in Preserving Astronomys Photographic Legacy, ed. W. Osborn & L. Robbins, ASP Conf. Ser., 410, 101 Hajduk, M., Zijlstra, A. A., & Ge¸sicki, K 2008, A&A, 490, 7 Hoard, D.W., Howell, S.B., Stencel, R.E., AJ, 714, 459 Hopkins J. L., Stencel, E. R., 2008, Epsilon Aurigae – a mysterious star system, Phoenix Observatory, 2008, 67 de Jager, C., & Nieuwenhuijzen, H., 1987, A&A, 177, 217 Kallrath, J., & Milone, E.F., 1999, Eclipsing binary stars – modeling and analysis (New York: Springer) Kloppenborg, B., Stencel, R., Monnier, J., et al., 2010, Nature, 464, 870 Leadbeater, R., Stencel, R., 2010, http://arxiv.org/abs/1003.3617 Lissauer, J. J., & Backman, D. E. 1984, ApJ, 286, 39 Margon, B., Grandi, S. A., Downes, R. A., 1980, ApJ, 241, 306 Mikołajewski, M., & Graczyk, D. 1999, MNRAS, 303, 521 Mikołajewski, M., Tomov, T., Graczyk, D. et al. 2003, IBVS, 5412 Mikołajewski, M., Gałan, C., Gazeas, K. et al. 2005a, Ap&SS, 296, 445 Mikołajewski, M., Tomov, T., Hajduk, M. et al. 2005b, Ap&SS, 296, 451 Owocki, S.P., Cranmer, S.R., Blondin, J.M., 1994, ApJ, 424, 887 Romano, G. 1956, Coelum, 24, 135 Samolyk, G., & Dvorak, S. 2004, JAAVSO, 33, 42

14

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep

Stencel, R. E., 2009, Sky Telesc., May 2009, 58 Tomov, T., Wychudzki, P., Mikołajewski, M. et al., 2012, BlgAJ, in press von Zeipel, H. 1924, MNRAS, 84, 665 Weber, R., 1956, Doc. des Obs. Circ., no. 9 1 Toru´ n Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toru´n, Poland e-mail: [cgalan; mamiko; tomtom]@astri.uni.torun.pl 2 Olsztyn Planetarium and Astronomical Observatory, Al. Marszałka J. Piłsudskiego 38, 10-450 Olsztyn, Poland 3 Universidad de Concepci´on, Departamento de Astronomia, Casilla 160-C, Concepci´on, Chile 4 Institute of Physics, Faculty of Science, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, FYROM, Macedonia 5 Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., BG1784 Sofia, Bulgaria 6 Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, NOA, PO Box 20048, 11810 Athens, Greece 7 Dept. of Physics and Earth Science, University of North Alabama, Florence, 35632 AL, USA 8 David Dunlap Observatory, Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4, Canada 9 International Centre for Astronomical and Medico-Ecological Research, Terskol, Russia 10 Variable Star and Exoplanet Section of Czech Astronomical Society, Czech Republic 11 Altan Observatory, Velka Upa 193, Pec pod Snezkou, Czech Republic 12 Tadeusz Banachiewicz Astronomical Observatory, We¸gl´owka, PL-32-412 Wi´sniowa, Poland 13 Max Planck Institute for Astronomy, K¨onigstuhl 17, D-69117 Heidelberg, Germany 14 Department of Earth and Space Sciences, University of California at Los Angeles, 595 Charles E. Young Dr. East, CA 90095, USA 15 Mt. Suhora Observatory, Pedagogical Univ., ul. Podchora¸z˙ ych 2, 30-084 Krak´ow, Poland 16 Rolling Hills Observatory Clermont, FL, USA 17 University of Hawaii Maui College, Kahului, Hawaii 18 Instituto de Astronomia, Universidad Catolica del Norte, Av. Angamos 0610, Antofagasta, Chile 19 Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University of Athens, GR 157 84 Zografos, Athens, Greece 20 Instituto de Astronom´a, Universidad Nacional Aut´onoma de M´exico Apdo. postal 70264, Ciudad Universitaria, M´exico D.F. 04510, M´exico 21 Department of Experimental Physics and Astronomical Observatory, University of Szeged, Dom ter 9, H-6720 Szeged, Hungary 22 Pulkovo Astronomical Observatory, Russian Academy of Sciences, Pulkovskoe sh. 65, St. Petersburg, 196140, Russia 23 Space Research Centre, Polish Academy of Sciences, Bartycka 18A, Pl-00-716 Warsaw, Poland 24 Nicolaus Copernicus Astronomical Center, Rabia´nska 8, 87-100 Toru´n, Poland 25 Observatorio Astron´omico ”Las Pegueras”, NAVAS DE ORO (Segovia), Spain 26 Hopkins Phoenix Observatory, 7812 West Clayton Drive, Phoenix, Arizona 85033-2439, USA 27 ˇ - Technical Observatory and Planetarium of Johann Palisa, VSB University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic 28 Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 51-622 Wrocław, Poland 29 Astronomical Observatory, Jagiellonian Univ., ul. Orla 171, 30244 Krak´ow, Poland 30 Las Cumbres Observatory, 6740 Cortona Drive Suite 102, Goleta, CA 93117, USA

31

National Centre for Nuclear Research, Warsaw, Poland Leiden Observatory, P.O. Box 9513, 2300 RA Leiden, The Netherlands 33 Furzehill House, Ilston, Swansea. SA2 7LE, UK 34 Variable Star Section of the British Astronomical Association 35 INAF, Osservatorio Astronomico di Padova, via dell Osservatorio 8, 36012 Asiago (VI), Italy 36 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz 369167, Russia 37 GRAS Observatory, Mayhill, New Mexico, USA 38 Department of Physics and Space Sciences, 150 W. University Blvd, Florida Institute of Technology, Melbourne, FL 32901, USA 39 Green Island Observatory (B34), North Cyprus 40 Hankasalmi Observatory, Jyvaskylan Sirius ry, Vertaalantie 419, FI-40270 Palokka, Finland 41 Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland 42 Sonoita Research Observatory/AAVSO, USA 43 Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden 44 Centrum Hewelianum, PKFM ”Twierdza Gda´nsk”, ul. 3 Maja 9a, 80-802 Gda´nsk, Poland 45 University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, 1000 Ljubljana, Slovenia 32

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 1

Appendix A: The models of eclipses with a solid or a gapped disk Using our numerical code, we fitted models of the last two eclipses separately, using a solid disk as the eclipsing object. We made the same assumptions about the nature of the Be star, and we used the same fixed and free parameters as in Section 4.1. The disk was treated as having negligible thickness (infinitesimally small with all the mass concentrated in the plane) and an r−2 density profile. For simplicity, the precession axis was assumed to be perpendicular to the orbital plane. The resulting solution is shown in Table A.1 together with the error estimates. In Fig. A.1, we present models of two eclipses using a solid disk, for the 2003 eclipse on the left and for the 2008/9 eclipse on the right. The models containing a solid disk provide quite a good fit to the light curve and the global colour changes, reproducing both the depth and the shape of the eclipses, especially for the 2003 eclipse. This model, however, cannot explain the two maxima in the colour evolution during the eclipses. In the present study, we adopted a model containing a disk that has a concentric gap for the two last eclipses, taking into account the precession of the disk. We assumed the same disk diameter, disk density distribution, and orthogonality of the precession axis to the orbital plane, and the same Be star parameters as in the case of the solid disk. This model was based solely on the B − IC , V − IC , and V − RC colour indices. We chose the same free parameters as in the case of the solid disk model for the 2008/9 eclipse (the tangential velocity was fixed at Vt = 1.57R⊙day−1 ) but added three more free parameters: the precession period Pprec and two parameters specifying the outer Rd1 and inner Rd2 radii of the gap. The resulting model is presented in Fig. A.2 and Table A.2. The best results were obtained for the precession period Pprec ≈ 31.91yr (about 5–6 Porb ), for which the angle related to the disk precession phase φd changes from 50.00◦ at epoch E = 9 to 113.32◦ at epoch E = 10. An alternative solution was found to exist in which the precession phase φd = 66.68◦ at epoch E = 10 has a precession period Pprec ≈ 121.13 yr, which is almost four times longer (being about 22 Porb ). In the light of the results of Sections 4.3 and 4.4, both these periods of precession seem to be unrealistic. Comparison of this model with the Gałan et al. (2008) model for the 2003 eclipse alone reveals a problem. The gapped disk model seemed to be very promising for explaining the colour changes that occurred during the 2003 eclipse, but fails in the case of the 2008/9 eclipse, since it cannot explain either the colour changes during an eclipse or the strong “bump” in the light curve. Table A.1. The parameters of the solutions obtained for the solid disk model, derived independently for the 2003 eclipse (left) and the 2008/9 eclipse (right). Parameter D T0 Vt θd φd κs ρc ⋆

2003 eclipse 4.74 52795.98 1.57 20.05 52.85 0.171 94.8

± 0.24 0.29 0.06 0.93 1.28 0.022 8.6

2008/9 eclipse 6.32 54843.85 1.57⋆ 16.36 27.32 0.346 45.5

±

Unit

0.59 0.50 ... 2.05 2.00 0.034 3.9

R⊙ day R⊙ /day degree degree 1 1 R−3 ⊙

For the 2008/9 eclipse model the tangential velocity Vt was adopted to be identical to that obtained for the 2003 eclipse.

Table A.2. Parameters of the solution of the gapped disk model when applied to the last two eclipses together, taking into account disk precession. Parameter Rd1 Rd2 D T 0(E=9) T 0(E=10) Vt θd φd(E=9) φd(E=10) Pprec κs ρc

Value 27.61 14.19 6.97 52797.07 54847.01 1.57⋆ 21.48 50.00 113.32 31.91 0.056 113.6

± 0.85 0.46 0.37 0.48 −′′ − ... 0.47 1.92 −′′ − 1.14 0.014 5.9

Unit R⊙ R⊙ R⊙ day day R⊙ /day degree degree degree yr 1 1 R−3 ⊙

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 2 JD = 2452831.37

40 20

20

0

0

-20

-20

-40

-40 -50

0

50

100

-50

∆B[mag.]

0.4 0.5 52740

52760

52780 52800 52820 JD-2400000

52840

0

50

100

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.3

B-Ic [mag.]

∆B[mag.]

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.3

B-Ic [mag.]

JD = 2454878.85

40

0.4 0.5

52860

54780

54800

54820 54840 54860 JD-2400000

54880

54900

Fig. A.1. Modelling of the eclipse of a rapidy rotating Be star as a solid disk during the 2003 eclipse (left) and the 2008/9 eclipse (right). The top panels show the system projected onto the plane of the sky. The polar (hot) and equatorial (cool) areas of the star are shown by different shades. The inner (opaque) and outer (semi-transparent) areas of the disk are shown by dark and light shades, respectively. The sizes are expressed in solar radii. The lower panels show the B light curve (middle) and the B − IC colour index (bottom) together with the synthetic fits (lines). The Julian day in the upper right corner represents a moment at which (according to the model) the spatial configuration of the system is the same as that shown in the relevant panel. E=9

40

JD = 2452832.07

20

20

0

0

-20

-20

-40

-40 0

50

100

-50

∆B[mag.]

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.3

B-Ic [mag.]

B-Ic [mag.]

∆B[mag.]

-50

0.4 0.5 52740

52760

52780 52800 52820 JD-2400000

52840

E = 10

40

52860

JD = 2454882.01

0

50

100

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.3 0.4 0.5 54790

54810

54830 54850 54870 JD-2400000

54890

54910

Fig. A.2. Modelling of the last two eclipses together with the precession period taken as an additional free parameter, when a gapped disk is considered. The sky plane projections of the system during the last two eclipses (at E = 9 and E = 10) (top), the B light curve (middle), and the B − IC colour index (bottom), together with the synthetic fits (lines) are shown. The symbols and the shades of colour have the same meaning as those in Fig. A.1.

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 3

Appendix B: Online photometric and spectroscopic data

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 4

Table B.1. Photometry in standard U BVRC filters and a non-standard i (λ¯ i ≈ 7420 Å) filter obtained at Piwnice Observatory⋆ (Poland) during and near the 1997 eclipse (E = 8). A one-channel photometer with an uncooled EMI 9558B photomultiplier on the 0.6 m Cassegrain telescope was used. The differential magnitudes are given with respect to our standard star BD +55◦2690, together with the corresponding standard deviations. JD 2450348.616 2450349.618 2450360.540 2450474.366 2450512.336 2450711.327 2450712.606 2450720.565 2450742.436 2450743.298 2450746.393 2450747.421 2450748.364 2450749.339 2450750.329 2450756.203 2450756.511 2450757.202 2450757.519 2450763.209 2450798.300 2450819.339 2450825.516 2450826.201 2450837.216 2450839.386 2450843.266 2450845.397 2450954.455 2450985.472 2451029.502 2451077.352 2451078.470 2451093.412 2451105.418 2451196.285 2451332.418 2451435.577 ⋆

∆U 0.050 0.040 0.045 0.176 -0.034 0.122 0.177 0.174 1.682 1.785 1.675 1.563 1.396 1.205 1.201 0.436 0.299 0.398 0.269 0.375 0.142 0.109 0.063 0.063 0.109 0.086 0.079 0.142 0.085 0.009 0.195 0.171 0.075 0.085 0.101 0.109 0.090 0.118

∆B 0.450 0.481 0.426 0.515 0.239 0.506 0.461 0.585 2.089 2.107 1.988 1.807 1.730 1.613 1.476 0.695 0.684 0.620 0.631 0.624 0.556 0.447 0.462 0.467 0.465 0.428 0.469 0.434 0.435 0.395 0.452 0.495 0.465 0.450 0.447 0.435 0.476 0.464

∆V 0.415 0.414 0.392 0.407 0.205 0.441 0.437 0.527 1.948 2.013 1.874 1.700 1.650 1.524 1.406 0.674 0.624 0.588 0.591 0.452 0.498 0.396 0.396 0.408 0.410 0.390 0.415 0.401 0.398 0.375 0.347 0.399 0.402 0.414 0.409 0.398 0.389 0.424

Observers: D. Graczyk, J. Janowski, M. Mikołajewski.

∆RC 0.310 0.320 0.298 0.225 0.196 0.331 0.345 0.441 1.791 1.765 1.651 1.557 1.463 1.346 1.271 0.559 0.522 0.509 0.485 0.313 0.361 0.288 0.307 0.312 0.290 0.276 0.310 0.314 0.309 0.242 0.306 0.330 0.292 0.340 0.293 0.283 0.290 0.310

∆i 0.243 0.268 0.350 0.132 0.132 0.322 0.274 0.302 1.589 1.727 1.572 1.401 1.359 1.153 1.180 0.461 0.454 0.409 0.375 0.153 0.338 0.190 0.167 0.218 0.256 0.230 0.209 0.260 0.206 0.190 0.159 0.214 0.231 0.245 0.187 0.220 0.057 0.116

σU 0.025 0.026 0.032 0.081 0.139 0.033 0.028 0.040 0.035 0.035 0.035 0.035 0.044 0.045 0.031 0.023 0.027 0.021 0.022 0.050 0.028 0.028 0.033 0.035 0.024 0.045 0.014 0.042 0.042 0.026 0.040 0.047 0.025 0.022 0.010 0.019 0.040 0.020

σB 0.025 0.024 0.022 0.055 0.104 0.017 0.016 0.030 0.025 0.024 0.022 0.018 0.020 0.028 0.024 0.023 0.013 0.015 0.010 0.040 0.028 0.019 0.013 0.015 0.015 0.030 0.015 0.019 0.018 0.012 0.025 0.011 0.012 0.026 0.009 0.013 0.019 0.011

σV 0.015 0.014 0.011 0.031 0.075 0.010 0.007 0.030 0.018 0.015 0.012 0.008 0.010 0.016 0.020 0.016 0.010 0.012 0.007 0.030 0.016 0.009 0.010 0.012 0.012 0.009 0.008 0.008 0.011 0.017 0.016 0.015 0.015 0.014 0.010 0.010 0.009 0.008

σRC 0.009 0.009 0.016 0.026 0.077 0.008 0.008 0.030 0.017 0.009 0.007 0.011 0.012 0.009 0.017 0.017 0.008 0.010 0.008 0.020 0.012 0.010 0.009 0.010 0.015 0.008 0.008 0.009 0.005 0.027 0.016 0.014 0.010 0.016 0.005 0.006 0.011 0.006

σi 0.054 0.043 0.055 0.041 0.119 0.056 0.022 0.040 0.040 0.035 0.020 0.041 0.039 0.025 0.042 0.027 0.022 0.031 0.015 0.050 0.023 0.020 0.026 0.021 0.030 0.004 0.022 0.024 0.020 0.018 0.067 0.027 0.029 0.022 0.011 0.019 0.032 0.029

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 5

Table B.2. Photometry obtained at Athens Observatory⋆ (Greece) with standard BV(RI)C (Bessell) filters during and near the 2003 eclipse (E = 9). The 0.4 m Cassegrain telescope with an SBIG ST8 CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690. Each point is the mean value obtained from several to tens of frames. The columns labelled HJD+ denote the fraction of the day. HJD 2452739 2452764 2452765 2452769 2452770 2452771 2452772 2452773 2452774 2452775 2452776 2452781 2452786 2452788 2452792 2452793 2452794 2452795 2452800 2452801 2452802 2452803 2452804 2452805 2452806 2452807 2452808 2452809 2452810 2452811 2452812 2452813 2452814 ⋆

HJD+ .62750 .64212 .53587 .49517 .56873 .55519 .53586 .56504 .50343 .47683 .47378 .45747 .47119 .46608 .42979 .57410 .51185 .53744 .42771 .53422 .40815 .44077 .45837 .56707 .57030 .53823 .53893 .57845 .54475 .42696 .53275 .38111 .47151

∆B 0.488 0.522 0.529 0.555 0.564 0.566 0.567 0.576 0.584 0.621 0.636 0.715 0.788 0.852 1.068 1.141 1.160 1.165 0.901 0.823 0.732 0.671 0.612 0.577 0.567 0.576 0.572 0.565 0.567 0.564 0.556 0.551 0.571

HJD+ .62337 .64044 .54065 .49336 .57578 .54796 .54233 .57164 .50238 .47800 .47824 .46881 .49102 .46946 .44118 .57307 .51545 .54773 .42606 .53600 .41125 .44744 .46491 .57346 .57443 .54110 .53822 .57985 .54468 .42732 .53775 .38625 .47200

∆V 0.437 0.464 0.472 0.490 0.491 0.499 0.511 0.509 0.532 0.542 0.561 0.636 0.714 0.795 0.988 1.033 1.065 1.046 0.836 0.752 0.674 0.600 0.555 0.510 0.503 0.487 0.482 0.470 0.474 0.469 0.479 0.473 0.477

HJD+ .62475 .64775 .54330 .48959 .57405 .54933 .46700 .56991 .50405 .48459 .47607 .47640 .49241 .46176 .44256 .57445 .51156 .54494 .43365 .53604 .41528 .44330 .46056 .57175 .57952 .54125 .53939 .57969 .55963 .42716 .54214 .38870 .47231

∆RC 0.316 0.336 0.342 0.357 0.363 0.376 0.369 0.381 0.388 0.417 0.430 0.486 0.577 0.654 0.825 0.868 0.894 0.882 0.695 0.614 0.540 0.465 0.438 0.393 0.377 0.375 0.370 0.362 0.371 0.370 0.359 0.358 0.370

HJD+ .62541 .64316 .54433 .49209 .57508 .55270 .52149 .57401 .49545 .47315 .48915 .47743 .49783 .46171 .44825 .57859 .53862 .54615 .42845 .54151 .43071 .44978 .46753 .57591 .57786 .54398 .53724 .57967 .54444 .42753 .52927 .38856 .47257

∆IC 0.144 0.166 0.172 0.186 0.193 0.197 0.193 0.207 0.218 0.233 0.246 0.308 0.398 0.463 0.611 0.651 0.678 0.675 0.507 0.435 0.359 0.305 0.263 0.220 0.208 0.196 0.184 0.174 0.181 0.186 0.178 0.172 0.168

Observers: K. Gazeas, P. Niarchos.

Table B.3. Photometry in standard VIC filters and wide HαW and narrow HαN filters (FWHM ≈ 200 Å and 30 Å, respectively) obtained at Białk´ow Observatory⋆ (Poland) during and near the 2003 eclipse (E = 9). The 0.6 m Cassegrain telescope with a Photometrics Star I CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690. The columns labelled HJD+ denote the fraction of the day. HJD 2452776 2452777 2452784 2452788 2452790 2452793 2452795 2452798 2452800 2452837 2452840 2452841 2452872 2452885 2452887 2452888 2452889 ⋆

HJD+ .5778 .5320 .5616 .5578 .5551 .5550 .5448 .5410 .5436 .5224 ... .4810 .4676 .6077 .6238 .6174 .6265

∆V 0.518 0.531 0.662 0.754 0.885 0.983 0.995 0.887 0.804 0.427 ... 0.419 0.425 0.424 0.422 0.412 0.416

Observers: Z. Kołaczkowski, G. Michalska, A. Pigulski

HJD+ .5743 .5175 .5487 .5582 .5540 .5533 .5345 .5431 .5471 .5243 ... .4777 .4652 .6058 .6238 .6146 .6287

∆IC 0.223 0.244 0.354 0.438 0.545 0.624 0.641 0.552 0.469 0.128 ... 0.123 0.129 0.121 0.119 0.110 0.117

HJD+ .5810 .5503 .5598 .5592 .5549 .5562 .5449 .5420 .5542 .5312 .4921 .4883 .4732 .6110 .6238 .6236 .6390

∆HαW⋆ 0.208 0.222 0.350 0.421 0.524 0.600 0.601 0.524 0.481 0.118 0.125 0.111 0.091 0.084 0.090 0.098 0.089

HJD+ .5807 .5555 .5598 .5592 .5546 .5565 .5488 .5423 .5583 .5308 .4921 .4881 .4731 .6109 .6238 .6236 .6386

∆HαN⋆ -0.390 -0.426 -0.301 -0.227 -0.175 -0.137 -0.166 -0.205 -0.237 -0.473 -0.511 -0.500 -0.572 -0.597 -0.617 -0.637 -0.606

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 6

Table B.4. U BV(RI)C photometry obtained at Krak´ow Observatory⋆ (Poland) during and near the 2003 eclipse (E = 9). The 0.5 m Cassegrain telescope with a Photometrics CH350 CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690. Each point is the mean value obtained from several to tens of frames. The columns labelled HJD+ denote the fraction of the day. HJD 2452742 2452743 2452744 2452746 2452750 2452751 2452755 2452758 2452764 2452765 2452766 2452767 2452776 2452778 2452783 2452784 2452785 2452789 2452790 2452792 2452793 2452794 2452795 2452796 2452798 2452799 2452800 2452801 2452803 2452805 2452807 2452808 2452815 2452818 2452820 2452821 2452824 2452832 2452834 2452836 2452837 2452838 ⋆

HJD+ ... ... .61238 .58829 .60107 .60010 .58115 ... .54462 .55173 .56137 .54455 .53959 ... .53779 .53914 .52699 .53035 .53799 .52509 .51916 .48100 .47197 ... .48089 .49353 ... ... .43021 ... .48001 .46784 .51562 ... .45161 .54204 ... .47416 .44905 .54793 .51369 ...

∆U ... ... 0.095 0.107 0.119 0.092 0.133 ... 0.124 0.142 0.123 0.168 0.280 ... 0.388 0.439 0.439 0.589 0.658 0.736 0.763 0.804 0.800 ... 0.683 0.637 ... ... 0.317 ... 0.185 0.169 0.154 ... 0.160 0.136 ... 0.135 0.118 0.099 0.099 ...

HJD+ .61300 .61000 .59863 .59760 .58647 .59110 .58724 .58841 .54941 .55733 .56430 .54632 .54328 ... .53285 .52331 .51793 .52150 .52399 .49760 .51716 .51445 .52219 .49899 .48471 .49693 .51947 .51660 .44238 .40439 .46494 .46858 .50313 ... .45133 .54376 .40417 .49666 .45297 .53299 .51689 .39151

∆B 0.463 0.436 0.466 0.451 0.474 0.480 0.491 0.478 0.485 0.499 0.468 0.518 0.611 ... 0.712 0.760 0.768 0.925 0.988 1.053 1.103 1.133 1.108 1.074 0.990 0.951 0.892 0.804 0.637 0.554 0.514 0.508 0.494 ... 0.485 0.493 0.516 0.506 0.488 0.475 0.457 0.480

HJD+ .61483 .60964 .59958 .59757 .59057 .59252 .58649 .58998 .54591 .55698 .56418 .54654 .54325 .52319 .53142 .52563 .51579 .51801 .53132 .50715 .52349 .51573 .46593 .50321 .48100 .49907 .52276 .51731 .44233 .40822 .46306 .46863 .49738 .39964 .45258 .54900 .40485 .47412 .45749 .53872 .51298 .38864

∆V 0.423 0.423 0.443 0.423 0.440 0.449 0.460 0.443 0.448 0.467 0.440 0.479 0.570 0.569 0.651 0.689 0.701 0.845 0.922 0.981 1.021 1.054 1.043 1.014 0.936 0.894 0.825 0.755 0.590 0.520 0.478 0.479 0.455 0.471 0.456 0.449 0.459 0.480 0.458 0.443 0.417 0.448

HJD+ .61444 .60846 .59856 .59779 .58976 .59116 .58530 .58900 .54599 .55731 .56502 .54529 .54319 ... .53316 .52620 .51617 .52549 .53065 .50787 .52716 .49771 .46248 .51733 .48271 .50182 .52514 .51561 .44656 .40338 .46424 .46801 .50087 ... .44952 .54549 .40368 .49257 .44761 .53637 .51053 .38661

∆RC 0.310 0.308 0.335 0.301 0.326 0.333 0.347 0.323 0.327 0.343 0.327 0.357 0.439 ... 0.507 0.559 0.564 0.720 0.750 0.828 0.867 0.892 0.883 0.855 0.790 0.749 0.692 0.626 0.474 0.397 0.365 0.361 0.338 ... 0.339 0.337 0.355 0.360 0.336 0.320 0.311 0.333

HJD+ .61482 .60989 .60249 .59065 .59308 .59189 .58756 .58976 .54659 .55851 .56445 .54675 .54210 ... .52791 .52332 .51684 .52472 .53227 .51185 .52136 .51477 .52356 .52067 .48434 .50152 .52758 .51059 .44356 .40517 .46265 .46931 .50353 ... .45251 .54868 .40434 .50195 .45349 .54058 .51141 .38459

∆IC 0.136 0.116 0.122 0.109 0.129 0.120 0.123 0.129 0.132 0.149 0.168 0.159 0.212 ... 0.307 0.347 0.368 0.477 0.537 0.582 0.626 0.645 0.630 0.609 0.546 0.515 0.456 0.395 0.277 0.206 0.170 0.144 0.139 ... 0.133 0.134 0.155 0.166 0.140 0.130 0.122 0.138

Observers: M. Drahus, M. Kurpi´nska-Winiarska, A. Majewska, M. Siwak, W. Waniak, M. Winiarski, S. Zoła.

Table B.5. U BV(RI)C photometry obtained at Kryoneri Observatory⋆ (Greece) during the 2003 eclipse (E = 9). The 1.2 m Cassegrain telescope with a CCD camera was used. The differential magnitudes are given with respect to BD +55◦ 2690. Each point is the mean value obtained from several to tens of frames. The columns labelled JD+ denote the fraction of the day. JD 2452802 2452803 2452804 2452805 2452825 2452826 2452827 ⋆

JD+ .5545 .5742 .5712 .5726 .5731 .5707 .4723

∆U 0.510 0.325 0.375 0.340 0.120 0.119 0.117

Observers: I. Bellas-Velidis, A. Dapergolas.

JD+ .5534 .5737 .5715 .5729 .5731 .5707 .4723

∆B 0.680 0.600 0.550 0.520 0.489 0.492 0.472

JD+ .5537 .5739 .5717 .5738 .5731 .5707 .4723

∆V 0.640 0.560 0.505 0.470 0.448 0.456 0.436

JD+ .5552 .5742 .5719 .5726 .5731 .5707 ...

∆RC 0.530 0.465 0.425 0.390 0.331 0.345 ...

JD+ .5554 .5737 .5721 .5728 .5731 .5707 .4723

∆IC 0.340 0.290 0.235 0.200 0.143 0.149 0.124

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 7

Table B.6. Photometry in standard U BV(RI)C and narrow (FWHM ≈ 100 Å) c (continuum at λ¯ = 4804 Å) and Hβ filters obtained at Piwnice Observatory⋆ (Poland) during and near the 2003 eclipse (E = 9). A one-channel photometer with a cooled Burle C31034 photomultiplier on the 0.6 m Cassegrain telescope was used. Differential magnitudes are given with respect to BD +55◦ 2690, together with the corresponding standard deviations. JD 2452520.4438 2452528.4847 2452537.3925 2452550.4774 2452567.4421 2452584.5783 2452615.4933 2452618.4436 2452644.2981 2452706.3175 2452711.6256 2452723.5955 2452746.5724 2452755.4434 2452765.5459 2452774.5113 2452776.4954 2452781.5073 2452782.4471 2452784.4702 2452787.4748 2452788.4596 2452789.4708 2452790.4560 2452792.4784 2452793.4881 2452794.4838 2452795.4733 2452797.5101 2452798.4117 2452799.5068 2452800.4813 2452802.4563 2452804.4661 2452807.4662 2452808.4152 2452809.5060 2452812.4715 2452813.4397 2452817.4821 2452818.4616 2452823.5078 2452825.4532 2452837.4346 2452853.5289 2452856.5146 2452863.4907 2452869.4528 2452888.5588 2452929.4190 2452935.5038 2452954.4270 2452985.2883 2453008.3696 2453035.2914 2453057.2583 2453124.5278 2453150.4178 2453159.4468 2453170.4703 2453202.4900 2453226.4641 2453249.5761 2453291.4884 ⋆

∆U 0.056 0.036 0.015 0.041 0.008 0.125 -0.007 0.049 0.043 ... 0.022 0.085 0.087 0.139 0.067 0.253 0.264 0.333 0.369 0.423 0.455 0.494 0.554 0.623 0.757 0.717 0.792 0.769 0.797 0.664 0.621 0.536 0.320 0.244 0.123 0.165 0.202 0.121 0.082 0.130 0.118 0.096 0.104 0.068 0.072 0.047 0.045 0.096 0.054 0.071 0.097 -0.060 0.050 0.072 0.113 0.045 0.114 0.095 0.027 0.055 0.018 0.050 0.025 0.008

∆B 0.479 0.449 0.455 0.477 0.431 0.501 0.496 0.464 0.458 ... 0.458 0.476 0.494 0.509 0.461 0.615 0.623 0.765 0.701 0.804 0.800 0.870 0.952 1.020 1.102 1.071 1.140 1.116 1.092 1.018 0.999 0.898 0.736 0.615 0.538 0.514 0.532 0.520 0.509 0.512 0.529 0.489 0.487 0.489 0.482 0.457 0.489 0.486 0.482 0.468 0.520 0.394 0.427 0.445 0.468 0.461 0.464 0.485 0.460 0.461 0.465 0.482 0.470 0.422

∆V 0.423 0.389 0.386 0.404 0.404 0.497 0.461 0.399 0.399 ... 0.406 0.428 0.409 0.472 0.415 0.516 0.525 0.698 0.608 0.667 0.739 0.762 0.866 0.916 0.970 0.974 1.037 1.045 0.956 0.915 0.886 0.791 0.662 0.553 0.454 0.441 0.461 0.464 0.418 0.449 0.459 0.419 0.409 0.427 0.417 0.416 0.412 0.446 0.418 0.409 0.421 0.324 0.379 0.413 0.427 0.400 0.378 0.415 0.379 0.409 0.390 0.386 0.365 0.379

∆RC 0.253 0.240 0.232 0.247 0.239 0.309 0.252 0.257 0.233 0.227 0.245 0.264 0.276 0.283 0.230 0.348 0.376 0.499 0.443 0.521 0.578 0.596 0.634 0.711 0.778 0.788 0.819 0.845 0.805 0.728 0.706 0.652 0.532 0.395 0.342 0.309 0.284 0.306 0.300 0.270 0.318 0.276 0.291 0.282 0.255 0.258 0.282 0.283 0.248 0.275 0.212 0.240 0.263 0.264 0.279 0.254 0.243 0.257 0.231 0.219 0.234 0.224 0.213 0.224

Observers: C. Gałan, A. Majcher, M. Mikołajewski.

∆IC 0.098 0.090 0.072 0.073 0.085 0.131 0.099 0.106 0.084 0.081 0.086 0.103 0.107 0.140 0.111 0.192 0.214 0.255 0.253 0.352 0.389 0.425 0.510 0.508 0.564 0.531 0.604 0.589 0.602 0.520 0.497 0.454 0.332 0.226 0.167 0.119 0.107 0.117 0.112 0.115 0.116 0.099 0.101 0.101 0.107 0.081 0.126 0.108 0.120 0.074 0.068 0.074 0.065 0.107 0.111 0.088 0.085 0.072 0.047 0.037 0.029 0.040 0.047 0.059

∆c⋆ 0.495 0.439 0.405 0.435 0.426 0.427 0.420 0.412 0.426 0.280 0.417 0.465 0.433 0.543 0.515 0.636 0.576 0.669 0.616 0.749 0.785 0.888 0.879 0.933 0.969 1.026 1.087 1.056 1.009 0.969 0.899 0.868 0.733 0.559 0.515 0.485 0.565 0.457 0.454 0.474 0.464 0.464 0.456 0.511 0.436 0.456 0.511 0.464 0.490 0.457 0.432 0.296 ... ... 0.447 ... ... ... ... ... ... ... ... ...

∆Hβ⋆ 0.326 0.358 0.371 0.358 0.426 0.365 0.355 0.433 0.346 ... 0.395 0.321 0.386 0.432 0.427 0.406 0.589 0.653 0.654 0.703 0.693 0.760 0.897 0.914 1.038 0.884 0.978 1.015 1.149 0.848 0.860 0.799 0.685 0.518 0.484 0.431 0.447 0.397 0.418 0.500 0.516 0.390 0.358 0.470 0.414 0.415 0.433 0.470 0.417 0.327 0.350 0.268 ... ... 0.403 ... ... ... ... ... ... ... ... ...

σU 0.013 0.012 0.014 0.011 0.013 0.043 0.010 0.011 0.021 ... 0.014 0.012 0.011 0.029 0.026 0.010 0.013 0.009 0.016 0.014 0.002 0.004 0.017 0.028 0.003 0.006 0.016 0.004 0.034 0.015 0.014 0.002 0.026 0.001 0.024 0.013 0.030 0.008 0.020 0.026 0.010 0.013 0.010 0.008 0.010 0.010 0.016 0.005 0.007 0.015 0.040 0.019 0.010 0.017 0.014 0.009 0.012 0.021 0.011 0.013 0.018 0.016 0.010 0.018

σB 0.010 0.011 0.015 0.008 0.026 0.031 0.024 0.011 0.012 ... 0.014 0.011 0.011 0.025 0.025 0.023 0.009 0.026 0.019 0.001 0.010 0.009 0.001 0.027 0.002 0.021 0.008 0.014 0.023 0.015 0.017 0.049 0.025 0.011 0.001 0.016 0.028 0.011 0.011 0.020 0.009 0.010 0.015 0.008 0.012 0.009 0.024 0.013 0.011 0.011 0.038 0.014 0.008 0.017 0.011 0.010 0.009 0.010 0.008 0.014 0.009 0.009 0.011 0.009

σV 0.008 0.010 0.012 0.008 0.007 0.013 0.018 0.008 0.013 ... 0.013 0.013 0.006 0.027 0.025 0.017 0.015 0.029 0.006 0.012 0.002 0.006 0.001 0.033 0.018 0.023 0.008 0.001 0.028 0.014 0.014 0.012 0.027 0.013 0.019 0.010 0.008 0.010 0.005 0.016 0.010 0.011 0.008 0.010 0.006 0.006 0.014 0.006 0.007 0.011 0.032 0.012 0.008 0.009 0.015 0.009 0.009 0.014 0.011 0.009 0.008 0.008 0.013 0.010

σRC 0.009 0.009 0.008 0.006 0.008 0.012 0.016 0.008 0.010 0.029 0.011 0.010 0.007 0.032 0.020 0.023 0.005 0.029 0.018 0.012 0.009 0.018 0.019 0.038 0.011 0.019 0.001 0.015 0.017 0.010 0.008 0.017 0.003 0.008 0.011 0.012 0.010 0.005 0.007 0.016 0.007 0.013 0.012 0.008 0.006 0.007 0.023 0.006 0.009 0.017 0.023 0.007 0.007 0.009 0.010 0.004 0.006 0.008 0.010 0.008 0.008 0.008 0.009 0.008

σIC 0.010 0.007 0.013 0.008 0.007 0.017 0.019 0.010 0.011 0.024 0.012 0.011 0.009 0.027 0.029 0.016 0.014 0.031 0.011 0.001 0.022 0.007 0.001 0.001 0.011 0.030 0.001 0.006 0.018 0.007 0.008 0.026 0.008 0.018 0.017 0.008 0.007 0.005 0.006 0.020 0.004 0.007 0.005 0.006 0.004 0.006 0.015 0.008 0.010 0.025 0.020 0.010 0.007 0.009 0.008 0.006 0.010 0.009 0.006 0.011 0.007 0.007 0.008 0.013

σc 0.019 0.018 0.023 0.013 0.034 0.020 0.005 0.009 0.008 0.029 0.007 0.008 0.006 0.027 0.016 0.006 0.020 0.021 0.018 0.022 0.013 0.022 0.008 0.001 0.026 0.017 0.063 0.012 0.016 0.019 0.014 0.017 0.016 0.006 0.026 0.028 0.038 0.016 0.021 0.023 0.011 0.022 0.015 0.025 0.014 0.005 0.027 0.026 0.013 0.012 0.018 0.023 ... ... 0.020 ... ... ... ... ... ... ... ... ...

σHβ 0.031 0.026 0.033 0.024 0.027 0.024 0.008 0.013 0.006 ... 0.015 0.016 0.020 0.020 0.009 0.010 0.003 0.040 0.058 0.014 0.010 0.006 0.023 0.018 0.053 0.040 0.001 0.014 0.025 0.048 0.020 0.048 0.004 0.018 0.022 0.013 0.044 0.029 0.032 0.019 0.032 0.030 0.040 0.042 0.030 0.007 0.031 0.028 0.028 0.021 0.001 0.041 ... ... 0.022 ... ... ... ... ... ... ... ... ...

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 8

Table B.7. U BV(RI)C photometry obtained at Rozhen Observatory⋆ (Bulgaria) during the 2003 eclipse (E = 9). The 2 m RitcheyChr´etien telescope with a CCD camera was used. The differential magnitudes are given with respect to BD +55◦ 2690. The columns labelled JD+ denote the fraction of the day. JD 2452754 2452759 2452760 2452791 2452792 ⋆

JD+ ... ... ... .5259 .5465

∆U ... ... ... 0.751 0.680

JD+ ... ... ... .5222 .5529

∆B ... ... ... 1.089 0.959

JD+ .5367 ... .5024 .5231 .5410

∆V 0.399 ... 0.376 0.892 0.797

JD+ .5364 .5023 .5023 .5276 .5392

∆RC 0.343 0.338 0.298 0.840 0.534

JD+ .5368 ... ... .5298 .5356

∆IC 0.100 ... ... 0.682 0.451

Observers: M. Gromadzki, D. Kolev.

Table B.8. Photometry in the V filter obtained at Rozhen Observatory⋆ (Bulgaria) during the 2003 eclipse (E = 9). The 0.5/0.7 m Schmidt telescope with a CCD camera was used. The differential magnitudes are given with respect to the BD +55◦ 2690 comparison star. JD 2452756.4912 2452758.5752 2452759.5894 ⋆

∆V 0.427 0.381 0.369

Observers: G. Apostolovska, B. Bilkina, M. Gromadzki, D. Kolev.

Table B.9. U BV photometry obtained at Rozhen Observatory⋆ (Bulgaria) during the 2003 eclipse (E = 9). The 0.6 m Cassegrain telescope with a one-channel photomultiplier was used. The differential magnitudes are given with respect to BD +55◦ 2690. JD 2452760.575 2452761.571 2452799.505 2452801.516 2452811.510 2452821.503 ⋆

∆U 0.021 0.079 0.497 0.402 0.089 0.070

∆B 0.404 0.463 0.845 0.749 0.469 0.450

∆V 0.412 0.437 0.802 0.731 0.438 0.439

Observer: D. Dimitrov.

Table B.10. U BV(RI)C photometry obtained at Skinakas Observatory⋆ (Crete, Greece) during the 2003 eclipse (E = 9). The 1.3 m Ritchey-Chr´etien telescope with a CCD camera was used. The differential magnitudes are given with respect to BD +55◦ 2690. JD 2452798.578 2452799.585 2452801.577 2452802.579 2452803.599 2452804.587 2452805.587 2452806.579 2452807.579 ⋆

∆U ... 0.67 0.52 0.43 0.36 0.29 0.26 0.24 0.22

∆B 0.98 0.94 0.79 0.70 0.63 0.63 0.54 0.525 0.515

∆V 0.91 0.87 0.73 0.64 0.58 0.53 0.49 0.48 0.46

∆RC 0.77 0.74 0.61 0.53 0.48 0.42 0.39 0.38 0.36

∆IC 0.55 0.52 0.40 0.34 0.29 0.23 0.205 0.19 0.175

Observer: E. Semkov.

Table B.11. BV(RI)C photometry obtained at Piszk´estet¨o Observatory⋆ (Hungary) during the 2003 eclipse (E = 9). The 0.6/0.9 m Schmidt telescope with an AT200 CCD camera was used. The differential magnitudes are given with respect to BD +55◦ 2690. HJD 2452776.563 2452778.565 2452779.568 ⋆

Observers: B. Cs´ak, B. Gere, P. N´emeth.

∆B 0.592 0.620 0.660

∆V 0.516 0.545 0.590

∆RC 0.393 0.430 0.460

∆IC 0.215 0.245 0.270

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 9

Table B.12. BV(RI)C photometric data obtained at Altan Observatory⋆ (Czech Republic) during the 2008/9 eclipse (E = 10). The 0.2 meter RL Vixen VMC200L telescope with a G2-0402 CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690 together, with the corresponding standard deviations. HJD 2454810 2454824 2454828 2454829 2454830 2454831 2454832 2454835 2454840 2454843 2454844 2454845 2454854 2454857 2454860 ⋆

HJD+ .1966 .3541 .3614 .1900 .1965 .1936 .2061 .1856 .3251 .2002 .2440 .2532 .2473 .2190 .2400

∆B 0.476 0.536 0.569 0.591 0.693 0.730 0.738 0.711 0.937 0.961 0.915 0.891 0.597 0.565 0.530

σB 0.029 0.012 0.014 0.014 0.008 0.011 0.005 0.068 0.014 0.009 0.010 0.021 0.002 0.013 0.012

HJD+ .1989 .3596 .3529 .1927 .1975 .1926 .2070 .1792 .3222 .1967 .2431 .2541 .2483 .2161 .2390

∆V 0.422 0.477 0.490 0.551 0.602 0.640 0.627 0.667 0.836 0.842 0.842 0.779 0.525 0.474 0.459

σV 0.004 0.006 0.013 0.002 0.003 0.005 0.005 0.009 0.008 0.007 0.005 0.004 0.004 0.011 0.007

HJD+ .1966 .3533 .3595 .1917 .1952 .1917 .2061 .1879 .3212 .1958 .2441 .2532 .2474 .2152 .2381

∆R 0.298 0.352 0.393 0.424 0.461 0.503 0.490 0.569 0.699 0.686 0.702 0.645 0.389 0.365 0.319

σRC 0.010 0.005 0.006 0.002 0.004 0.005 0.005 0.049 0.013 0.009 0.007 0.005 0.004 0.005 0.004

HJD+ .1895 .3533 .3485 .1896 .1945 .1946 .2045 .1820 .3203 .1986 .2450 .2542 .2464 .2032 .2371

∆I 0.161 0.183 0.215 0.245 0.281 0.317 0.310 0.299 0.524 0.484 0.490 0.467 0.208 0.188 0.170

σIC 0.013 0.005 0.009 0.004 0.002 0.004 0.004 0.012 0.022 0.007 0.003 0.015 0.004 0.003 0.002

Observer: L. Br´at.

Table B.13. BV(RI)C photometric data obtained at Białk´ow Observatory⋆ (Poland) during the 2008/9 eclipse (E = 10). The 0.6 m Cassegrain telescope with a CCD camera was used. Differential magnitudes are given with respect to BD +55◦2690. The columns labelled HJD+ denote the fraction of the day. HJD 2454814 2454815 2454816 2454831 2454834 2454837 2454838 2454840 2454843 2454844 2454845 ⋆

HJD+ .30228 .17723 .21367 .16875 .22008 .20076 .18539 .29154 .18047 .17864 .18903

∆B 0.521 0.518 0.505 0.701 0.689 0.733 0.779 0.903 0.924 0.883 0.834

HJD+ .31205 .18402 .20595 .17475 .22197 .20672 .19092 .29343 .18543 .18479 .19402

∆V 0.459 0.460 0.444 0.617 0.607 0.660 0.708 0.823 0.841 0.812 0.765

HJD+ .31825 .18773 ... .17954 .22323 .21128 .19458 .29468 .18913 .18909 .19771

∆RC 0.348 0.346 ... 0.494 0.485 0.541 0.587 0.689 0.708 0.684 0.641

HJD+ .29353 .17027 .19731 .18382 .22447 .21535 .19824 .29593 .19283 .19280 .20141

∆IC 0.176 0.179 0.170 0.318 0.315 0.368 0.410 0.501 0.517 0.494 0.463

Observers: G. Kopacki, A. Majewska, A. Narwid, E. Niemczura, A. Pigulski, M. Ste¸s´licki

Table B.14. BV(RI)C photometric data obtained at Green Island Observatory⋆ (North Cyprus) during the 2008/9 eclipse (E = 10). The 0.35 m telescope (Meade 14”LX200R ) with a Meade DSI II Pro CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690 together with the corresponding standard deviations. The columns labelled JD+ denote the fraction of the day. JD 2454810 2454820 2454849 2454852 2454854 2454858 2454860 2454865 2454878 ⋆

¨ gmen. Observer: Y. O˘

JD+ .20398 .23238 .17309 .18026 .21422 .18768 .19138 .17912 ...

∆B 0.500 0.488 0.702 0.599 0.561 0.509 0.503 0.496 ...

σB 0.005 0.005 0.015 0.004 0.005 0.010 0.001 0.005 ...

JD+ .19671 .23920 .18015 .18916 .22135 .19550 .18434 .18599 .18347

∆V 0.443 0.447 0.657 0.543 0.502 0.459 0.440 0.438 0.455

σV 0.009 0.010 0.012 0.016 0.020 0.019 0.009 0.003 0.009

JD+ .20988 .24587 .18716 .19609 .22853 .20248 .19978 .19291 .18899

∆R 0.325 0.326 0.526 0.428 0.369 0.343 0.323 0.316 0.325

σRC 0.012 0.006 0.008 0.006 0.003 0.008 0.008 0.005 0.010

JD+ .21571 .25252 .19584 .20456 .23729 .21265 .17670 .20348 .19432

∆I 0.178 0.195 0.346 0.268 0.244 0.188 0.172 0.183 0.169

σIC 0.007 0.003 0.023 0.019 0.015 0.019 0.016 0.004 0.009

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 10

Table B.15. BV(RI)C photometric data obtained at Furzehill House Observatory⋆ (Ilston, Swansea, United Kingdom) during the 2008/9 eclipse (E = 10). The 0.35 m Schmidt-Cassegrain telescope with an SXVF-H16 CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690, together with the corresponding standard deviations. The columns labelled HJD+ denote the fraction of the day. HJD 2454815 2454816 2454827 2454828 2454829 2454831 2454834 2454835 2454837 2454838 2454839 2454852 2454855 2454858 2454866 2454869 2454871 2454878 ⋆

HJD+ .39684 .36785 .26603 .26105 .27405 .25665 .28341 .25826 .25763 .26906 .33017 .32291 .30354 .30088 .29978 .30427 .32916 .29032

∆B 0.496 0.478 0.539 0.551 0.595 0.673 0.679 0.657 0.725 0.780 0.845 0.602 0.534 0.502 0.487 0.489 0.474 0.503

σB 0.005 0.009 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.006 0.004

HJD+ .39406 .35943 .26977 .26495 .27958 .26239 .30354 .27667 .27688 .29043 .35110 .34376 .33404 .33170 .31625 .33609 .30698 .30275

∆V 0.472 0.439 0.512 0.506 0.532 0.622 0.604 0.614 0.678 0.754 0.773 0.555 0.515 0.459 0.455 0.437 0.466 0.461

σV 0.004 0.006 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.004 0.004 0.006 0.004 0.004 0.004 0.005 0.006

HJD+ ... ... .27370 .26900 .28370 .26650 .29910 .27270 .27270 .28560 .34680 .33940 .32830 .32312 .31257 .32837 .30204 .29972

∆R ... ... 0.392 0.410 0.426 0.506 0.500 0.492 0.549 0.596 0.659 0.453 0.389 0.370 0.333 0.332 0.342 0.352

σRC ... ... 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.004 0.004 0.005 0.006

HJD+ ... ... .27740 .27280 .28984 .27228 .29261 .26649 .26606 .27763 .34021 .33353 .31159 .31639 .30715 .32114 .29362 .29484

∆I ... ... 0.221 0.236 0.256 0.333 0.329 0.331 0.383 0.439 0.481 0.277 0.222 0.202 0.182 0.157 0.168 0.197

σIC ... ... 0.009 0.007 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.008

Observer: I. Miller.

Table B.16. Photometry in the V filter obtained at Observatorio Astron´omico ”Las Pegueras”⋆ (Navas de Oro, Segovia, Spain) during the 2008/9 eclipse (E = 10). The 0.35 m Reflector with a CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690. JD 2454815.2834 2454817.2900 2454820.2953 2454823.2650 2454824.2668 2454825.2556 2454826.2524 2454836.3460 2454839.2727 2454842.2511 2454843.2532 2454846.2701 2454848.3420 2454849.2724 2454856.3162 2454863.3053 ⋆

∆V -0.43 -0.39 -0.42 -0.40 -0.39 -0.37 -0.35 -0.21 -0.07 0.01 0.00 -0.15 -0.20 -0.22 -0.37 -0.43

Observer: T. A. Heras.

Table B.17. Photometry obtained at Ostrava Observatory⋆ (Czech Republic) with standard BV(RI)C filters during the 2008/9 eclipse (E = 10). The 0.3 m Schmidt-Cassegrain telescope with a CCD camera has been used. Differential magnitudes are given with respect to BD +55◦ 2690. The columns labelled JD+ denote the fraction of the day. JD 2454830 ⋆

Observer: R. Koci´an.

JD+ .3938

∆B 0.652

JD+ .3913

∆V 0.581

JD+ .3912

∆RC 0.440

JD+ .3928

∆IC 0.248

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 11

Table B.18. BV(RI)C photometry obtained at Rozhen Observatory⋆ (Bulgaria) during the 2008/9 eclipse (E = 10). The 2 m RitcheyChr´etien telescope with a CCD camera was used. Differential magnitudes are given with respect to BD +55◦ 2690. The columns labelled JD+ denote the fraction of the day. JD 2454827 ⋆

JD+ .370

∆B 0.52

JD+ .365

∆V 0.47

JD+ .363

∆RC 0.36

JD+ .361

∆IC 0.21

Observers: S. Peneva, E. Semkov.

Table B.19. U BV(RI)C photometry obtained at Rozhen Observatory⋆ (Bulgaria) during and near the 2008/9 eclipse (E = 10). The 0.5/0.7 m Schmidt telescope with a CCD camera was used. The differential magnitudes are given with respect to BD +55◦ 2690. The columns labelled JD+ denote the fraction of the day. JD 2454762 2454764 2454830 2454842 2454843 2454844 2454845 ⋆

JD+ ... ... ... ... .191 .190 ...

∆U 0.12 0.12 ... ... 0.62 0.57 ...

JD+ ... ... ... .191 .186 .186 .294

∆B 0.46 0.46 ... 0.95 0.94 0.90 0.81

JD+ ... ... ... .186 .183 .183 .269

∆V 0.42 0.41 ... 0.86 0.85 0.82 0.75

JD+ ... ... .275 .182 .180 .180 .265

∆RC 0.32 0.31 0.48 0.73 0.73 0.69 0.64

JD+ ... ... .270 .176 .175 .176 .250

∆IC 0.16 0.15 0.29 0.52 0.54 0.49 0.45

Observers: S. Peneva, E. Semkov.

Table B.20. Photometry obtained at Rozhen Observatory⋆ (Bulgaria) during the 2008/9 eclipse (E = 10) with standard U BV(RI)C (Bessell) filters. The 0.6 m Cassegrain telescope with a FLI PL09000 CCD camera was used. Differential magnitudes are given with respect to BD +55◦2690. Each point is the mean value obtained from several frames. The columns labelled HJD+ denote the fraction of the day. HJD 2454808 2454808 2454810 2454832 2454858 2454869 2454886 ⋆

HJD+ .34867 .41329 .24350 .17438 ... .21210 .21908

∆U 0.190 0.178 0.197 0.420 ... 0.185 0.178

HJD+ .35088 .41551 .24571 .17467 .23000 .21241 .22383

∆B 0.502 0.494 0.511 0.698 0.533 0.497 0.483

HJD+ .35202 .41054 .24685 .17611 .23000 .21034 .22219

∆V 0.451 0.424 0.454 0.615 0.453 0.445 0.440

HJD+ .35264 .41115 .24746 .17721 .23000 .21155 .22340

∆RC 0.348 0.332 0.355 0.501 0.362 0.341 0.326

HJD+ .35308 .41159 .24791 .17795 .23000 .21494 .22425

∆IC 0.146 0.133 0.159 0.296 0.163 0.155 0.136

Observers: D. Dimitrov, V. Popov.

Table B.21. BV(RI)C photometry obtained at Kryoneri Observatory⋆ (Greece) at the beginning of the 2008/9 eclipse (E = 10). The 1.2 m Cassegrain telescope with a CCD camera was used. Differential magnitudes are given with respect to BD +55◦2691. The columns labelled HJD+ denote the fraction of the day. HJD 2454774 2454775 ⋆

HJD+ .2517 .3071

Observers: I. Bellas-Velidis, A. Dapergolas.

∆B -0.413 -0.372

HJD+ .2792 .3043

∆V -0.458 -0.456

HJD+ .2863 .2932

∆RC -0.576 -0.560

HJD+ .2911 .3011

∆IC -0.761 -0.748

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 12

Table B.22. BV(RI)C photometry obtained at Sonoita Research Observatory⋆ (Arizona, USA) during and near the 2008/9 eclipse (E = 10). The 0.5 m Cassegrain telescope with an SBIG STL 6303 CCD camera was used. Comparisons were made against two stars designated with the AAVSO Unique Identifiers as: 000-BCQ-040, 000-BJJ-300. The former is a d object from Meinunger’s comparison star sequence (Meinunger 1975). The apparent magnitudes are also given with respect to BD +55◦ 2690 (calculated with the adoption of BV(RI)C magnitudes of BD +55◦ 2690 given in Mikołajewski et al. (2003)). The columns labelled HJD+ denote the fraction of the day. HJD 2454790 2454791 2454792 2454801 2454804 2454806 2454807 2454809 2454810 2454811 2454812 2454816 2454821 2454829 2454828 2454830 2454837 2454838 2454839 2454840 2454841 2454842 2454843 2454844 2454846 2454847 2454848 2454849 2454850 2454857 2454858 2454860 2454861 2454862 2454863 2454864 2454865 2454867 2454869 2454870 2454879 2454881 2454882 2454885 2454890 2454891 2454893 2454894 2454895 ⋆

HJD+ .6019 .7615 .7133 .5847 .7281 .6826 .7415 .7298 .6454 .6918 .6638 .7199 .6856 .5868 .6799 .5858 .57280 .57290 .57145 .58085 .59040 .61965 .57510 .61630 .61500 .61645 .57710 .60140 .60925 .58720 .59370 .58890 .58450 .58525 .58500 .58570 .58600 .58970 .58750 .58935 .59660 .59585 .59465 .02960 .02490 .01930 .01010 .01105 .01540

Observer: B. Staels.

B 11.140 11.155 11.170 11.155 11.160 11.170 11.170 11.175 11.185 11.180 11.175 11.195 11.190 11.290 11.260 11.325 11.440 11.480 11.560 11.605 11.625 11.625 11.600 11.565 11.485 11.440 11.410 11.380 11.340 11.200 11.195 11.180 11.160 11.175 11.180 11.180 11.180 11.170 11.150 11.160 11.195 11.200 11.190 11.175 11.165 11.165 11.145 11.175 11.125

∆B 0.460 0.475 0.490 0.475 0.480 0.490 0.490 0.495 0.505 0.500 0.495 0.515 0.510 0.610 0.580 0.645 0.760 0.800 0.880 0.925 0.945 0.945 0.920 0.885 0.805 0.760 0.730 0.700 0.660 0.520 0.515 0.500 0.480 0.495 0.500 0.500 0.500 0.490 0.470 0.480 0.515 0.520 0.510 0.495 0.485 0.485 0.465 0.495 0.445

HJD+ .6022 .7618 .7135 .5850 .7282 .6827 .7417 .7300 .6457 .6920 .6640 .7201 .6859 .6801 .5875 .5861 .57295 .57310 .57170 .58115 .59065 .61995 .57540 .61655 .61530 .61665 .57735 .60165 .60955 .58745 .59395 .58915 .58470 .58550 .58525 .58595 .58625 .58990 .58825 .58960 .59685 .59615 .59490 .02985 .02520 .01955 .01040 .01125 .01570

V 10.800 10.805 10.810 10.815 10.825 10.815 10.820 10.830 10.825 10.830 10.830 10.835 10.835 10.895 10.930 10.950 11.060 11.115 11.180 11.230 11.230 11.240 11.215 11.175 11.110 11.080 11.055 11.010 10.985 10.850 10.830 10.820 10.815 10.825 10.845 10.830 10.820 10.815 10.795 10.815 10.820 10.830 10.830 10.825 10.815 10.815 10.810 10.815 10.770

∆V 0.420 0.425 0.430 0.435 0.445 0.435 0.440 0.450 0.445 0.450 0.450 0.455 0.455 0.515 0.550 0.570 0.680 0.735 0.800 0.850 0.850 0.860 0.835 0.795 0.730 0.700 0.675 0.630 0.605 0.470 0.450 0.440 0.435 0.445 0.465 0.450 0.440 0.435 0.415 0.435 0.440 0.450 0.450 0.445 0.435 0.435 0.430 0.435 0.390

HJD+ .6003 .7618 .7136 .5851 .7282 .6828 .7417 .7301 .6458 .6920 .6640 .7202 .6859 .6802 .5876 .5861 .57310 .57320 .57175 .58120 .59065 .61995 .57540 .61660 .61530 .61670 .57740 .60170 .60955 .58750 .59400 .58920 .58475 .58550 .58530 .58600 .58630 .58995 .58830 .58965 .59690 .59615 .59495 .02990 .02525 .01960 .01045 .01135 .01575

RC 10.510 10.515 10.525 10.525 10.585 10.560 10.610 10.545 10.555 10.545 10.545 10.550 10.540 10.610 10.640 10.660 10.765 10.810 10.870 10.920 10.930 10.925 10.910 10.885 10.825 10.785 10.760 10.725 10.690 10.575 10.555 10.550 10.530 10.535 10.535 10.550 10.545 10.530 10.495 10.540 10.515 10.545 10.525 10.540 10.525 10.525 10.525 10.525 10.485

∆RC 0.420 0.425 0.435 0.435 0.445 0.435 0.440 0.455 0.465 0.455 0.455 0.460 0.450 0.520 0.550 0.570 0.675 0.720 0.780 0.830 0.840 0.835 0.820 0.795 0.735 0.695 0.670 0.635 0.600 0.485 0.465 0.460 0.440 0.445 0.445 0.460 0.455 0.440 0.405 0.450 0.425 0.455 0.435 0.450 0.435 0.435 0.435 0.435 0.395

HJD+ .6020 .7618 .7134 .5850 .7282 .6827 .7416 .7300 .6456 .6919 .6639 .7201 .6859 .6801 .5875 .5860 .57280 .57310 .57165 .58105 .59050 .61980 .57530 .61645 .61515 .61655 .57725 .60155 .60940 .58740 .59380 .58905 .58460 .58545 .58515 .58585 .58615 .58980 .58815 .58950 .59675 .59590 .59485 .02975 .02510 .01945 .01030 .01105 .01560

IC 10.155 10.165 10.165 10.180 10.200 10.195 10.195 10.190 10.215 10.200 10.205 10.210 10.215 10.270 10.285 10.290 10.415 10.460 10.515 10.550 10.560 10.545 10.555 10.530 10.470 10.435 10.410 10.370 10.345 10.215 10.210 10.205 10.200 10.200 10.190 10.200 10.205 10.190 10.165 10.195 10.205 10.210 10.205 10.180 10.185 10.185 10.180 10.200 10.160

∆IC 0.285 0.295 0.295 0.310 0.330 0.325 0.325 0.320 0.345 0.330 0.335 0.340 0.345 0.400 0.415 0.420 0.545 0.590 0.645 0.680 0.690 0.675 0.685 0.660 0.600 0.565 0.540 0.500 0.475 0.345 0.340 0.335 0.330 0.330 0.320 0.330 0.335 0.320 0.295 0.325 0.335 0.340 0.335 0.310 0.315 0.315 0.310 0.330 0.290

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 13

Table B.23. BV(RI)C photometry obtained at Sonoita Research Observatory⋆ (Arizona, USA) during and near the 2008/9 eclipse (E = 10). The 0.5 m Cassegrain telescope with an SBIG STL 6303 CCD camera was used. The apparent magnitudes are also given with respect to BD +55◦2690 (calculated by adopting BV(RI)C magnitudes of BD +55◦ 2690 from Mikołajewski et al. (2003)). JD 2454790.60 2454791.76 2454801.58 2454804.72 2454806.68 2454807.74 2454809.73 2454810.64 2454811.69 2454812.66 2454816.72 2454821.68 2454828.68 2454829.58 2454830.58 2454838.57 2454839.57 2454840.58 2454841.59 2454842.62 2454843.57 2454844.61 2454846.61 2454847.61 2454848.57 2454849.60 2454850.61 2454857.58 2454858.60 2454860.59 2454861.58 2454861.58 2454862.58 2454863.58 2454865.59 2454867.59 2454869.58 2454870.59 2454879.59 ⋆

B 11.14 11.15 11.16 11.17 11.17 11.18 11.18 11.19 11.19 11.19 11.19 11.19 11.26 11.18 11.36 11.49 11.56 11.61 11.63 11.62 11.6 11.56 11.49 11.44 11.41 11.38 11.34 11.2 11.2 11.18 11.18 11.18 11.18 11.17 11.18 11.18 11.17 11.18 11.19

Observers: L. Elder, J. Hopkins, J. Pye.

∆B 0.46 0.47 0.48 0.49 0.49 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.58 0.50 0.68 0.81 0.88 0.93 0.95 0.94 0.92 0.88 0.81 0.76 0.73 0.70 0.66 0.52 0.52 0.50 0.50 0.50 0.50 0.49 0.50 0.50 0.49 0.50 0.51

σB 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.02 0.02 ... 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 ... 0.03 0.03 0.02

V 10.79 10.79 10.79 10.78 10.8 10.79 10.81 10.82 10.81 10.81 10.82 10.81 10.87 10.94 10.96 11.09 11.15 11.21 11.21 11.21 11.2 11.16 11.1 11.07 11.04 11 10.97 10.83 10.82 10.81 10.8 10.8 10.81 10.8 10.8 10.8 10.8 10.81 10.81

∆V 0.41 0.41 0.41 0.40 0.42 0.41 0.43 0.44 0.43 0.43 0.44 0.43 0.49 0.56 0.58 0.71 0.77 0.83 0.83 0.83 0.82 0.78 0.72 0.69 0.66 0.62 0.59 0.45 0.44 0.43 0.42 0.42 0.43 0.42 0.42 0.42 0.42 0.43 0.43

σV 0.01 0.01 0.01 0.04 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 ... 0.01 0.01 0.02

RC 10.38 10.38 10.39 10.4 10.4 10.42 10.41 10.42 10.4 10.41 10.4 10.4 10.46 10.49 10.54 10.67 10.73 10.78 10.78 10.78 10.77 10.74 10.69 10.65 10.62 10.58 10.54 10.43 10.42 10.4 10.39 10.39 10.39 10.39 10.4 10.41 10.38 10.39 10.37

∆RC 0.29 0.29 0.30 0.31 0.31 0.33 0.32 0.33 0.31 0.32 0.31 0.31 0.37 0.40 0.45 0.58 0.64 0.69 0.69 0.69 0.68 0.65 0.60 0.56 0.53 0.49 0.45 0.34 0.33 0.31 0.30 0.30 0.30 0.30 0.31 0.32 0.29 0.30 0.28

σRC ... 0.02 ... 0.07 0.04 0.09 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ... 0.01 0.02 0.02

IC 10 10.01 10.01 10.02 10.02 10.03 10.05 10.04 10.03 10.03 10.04 10.04 10.09 10.11 10.14 10.29 10.34 10.37 10.38 10.37 10.37 10.35 10.29 10.27 10.23 10.19 10.17 10.04 10.04 10.03 10.02 10.02 10.02 10.02 10.02 10.02 10.02 10.01 10.03

∆IC 0.13 0.14 0.14 0.15 0.15 0.16 0.18 0.17 0.16 0.16 0.17 0.17 0.22 0.24 0.27 0.42 0.47 0.50 0.51 0.50 0.50 0.48 0.42 0.40 0.36 0.32 0.30 0.17 0.17 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.16

σIC 0.02 0.02 0.02 0.01 0.02 0.01 0.06 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 ... 0.01 0.02 0.02

Table B.24. Photometry obtained at Athens Observatory⋆ (Greece) with standard BV(RI)C (Bessell) filters during and near the 2008/9 eclipse (E = 10). The 0.4 m Cassegrain telescope with an SBIG ST-8XMEI CCD camera was used. Differential magnitudes are given with respect to three comparison stars: a = BD +55◦2690, b = GSC-3973:2150, and c = BD +55◦ 2691. Each point is the mean value obtained from several frames. The columns labelled HJD+ denote the fraction of the day. ∆B



HJD+ .3793 .4465 .1741 .1742 .1734 .1717 .3406 .1721 .1886 .1990 .2032

v−a 0.470 0.465 0.461 0.462 0.475 0.495 0.525 0.530 0.630 0.521 0.506

v−b -0.293 -0.317 -0.295 -0.300 -0.292 -0.268 -0.239 -0.234 -0.137 -0.255 -0.258

∆V v−c -0.343 -0.348 -0.350 -0.348 -0.345 -0.319 -0.301 -0.284 -0.189 -0.305 -0.310

HJD+ .3805 .4477 .1753 .1754 .1746 .1729 .3417 .1733 .1895 .2000 .2042

v−a 0.428 0.423 0.421 0.425 0.432 0.455 0.479 0.488 0.583 0.457 0.437

v−b -0.419 -0.444 -0.426 -0.424 -0.427 -0.396 -0.366 -0.356 -0.272 -0.375 -0.408

v−c -0.431 -0.440 -0.435 -0.436 -0.433 -0.408 -0.389 -0.378 -0.289 -0.388 -0.420

HJD+ .3812 .4484 .1759 .1761 .1752 .1736 .3424 .1740 .1901 .2005 .2047

∆RC v−a v−b 0.305 -0.602 0.305 -0.603 0.302 -0.599 0.314 -0.596 0.320 -0.596 0.336 -0.577 0.354 -0.546 0.374 -0.525 0.465 -0.442 0.340 -0.559 0.320 -0.586

∆IC v−c -0.564 -0.569 -0.573 -0.564 -0.565 -0.538 -0.519 -0.503 -0.411 -0.537 -0.541

HJD+ .3818 .4490 .1766 .1767 .1758 .1742 .3431 .1746 .1906 .2011 .2053

v−a 0.152 0.153 0.138 0.145 0.148 0.166 0.184 0.194 0.286 0.168 0.142

v−b -0.799 -0.814 -0.825 -0.813 -0.813 -0.796 -0.771 -0.753 -0.667 -0.761 -0.814

v−c -0.721 -0.723 -0.736 -0.728 -0.712 -0.708 -0.688 -0.676 -0.589 -0.670 -0.739

Observers: K. Gazeas, A. Liakos, P. Niarchos.

Table B.25. Photometry obtained at Hankasalmi Observatory⋆ (Finland) with standard BV(RI)C (Bessell) filters during the 2008/9 eclipse (E = 10). The 0.4 m RCOS telescope with an SBIG STL-1001 CCD camera was used. Differential magnitudes are given with respect to three comparison stars: a = BD +55◦ 2690, b = GSC-3973:2150, and c = BD +55◦2691. Each point is the mean value obtained from several frames. The columns labelled HJD+ denote the fraction of the day. ∆B HJD 2454828 2454833 2454836 2454839 2454848 2454862 2454865 ⋆

HJD+ .3851 .1808 .1388 .2096 .3753 .3108 .1540

v−a 0.579 0.705 0.693 0.854 0.768 0.502 0.496

v−b -0.195 -0.057 -0.061 0.093 -0.020 -0.265 -0.262

v−c -0.245 -0.112 -0.118 0.034 -0.080 -0.313 -0.317

HJD+ .3822 .1779 .1358 .2070 .3722 .3082 .1511

∆V v−b -0.340 -0.228 -0.217 -0.068 -0.171 -0.403 -0.409

v−c -0.351 -0.242 -0.235 -0.086 -0.192 -0.419 -0.422

HJD+ .3872 .1827 .1406 .2116 .3772 .3129 .1559

∆RC v−b -0.506 -0.400 -0.381 -0.250 -0.351 -0.569 -0.567

∆IC v−c -0.470 -0.370 -0.359 -0.221 -0.316 -0.542 -0.539

HJD+ .3862 .1848 .1430 .2135 .3790 .3147 .1579

v−a 0.195 0.292 0.315 0.430 0.370 0.140 0.131

v−b -0.755 -0.668 -0.640 -0.522 -0.595 -0.812 -0.819

v−c -0.662 -0.574 -0.547 -0.431 -0.512 -0.723 -0.731

Observer: A. Oksanen.

Table B.26. Photometry obtained at Ostrava Observatory⋆ (Czech Republic) with standard BV(RI)C filters during the 2008/9 eclipse (E = 10). The 0.2 m Newton telescope with an SBIG ST8-XME CCD camera has been used. Differential magnitudes are given with respect to three comparison stars: a = BD +55◦2690, b = GSC-3973:2150, and c = BD +55◦2691. Each point is the mean value obtained from several frames. The columns labelled HJD+ denote the fraction of the day. ∆B HJD 2454810 2454815 2454841 2454843 2454850 2454857 ⋆

HJD+ .3006 .3856 .3133 .2011 .2206 .2009

v−a 0.475 0.504 0.929 0.925 0.662 0.504

Observer: H. Kuˇca´ kov´a.

v−b -0.245 -0.223 0.209 0.200 -0.070 -0.221

∆V v−c -0.317 -0.295 0.139 0.137 -0.125 -0.282

HJD+ .2972 .3822 .3099 .1970 .2194 .1975

v−a 0.438 0.447 0.848 0.846 0.611 0.461

v−b -0.412 -0.398 -0.009 0.003 -0.248 -0.391

v−c -0.421 -0.406 -0.009 -0.016 -0.249 -0.398

HJD+ .2983 .3833 .3087 .1982 .2206 .1986

∆RC v−a v−b 0.327 -0.564 0.346 -0.548 0.709 -0.184 0.724 -0.167 0.494 -0.404 0.352 -0.543

∆IC v−c -0.540 -0.520 -0.153 -0.152 -0.379 -0.509

HJD+ .3017 .3844 .3121 .1993 .2217 .1998

v−a 0.152 0.162 0.493 0.510 0.303 0.168

v−b -0.784 -0.781 -0.454 -0.431 -0.647 -0.774

v−c -0.700 -0.701 -0.358 -0.359 -0.559 -0.684

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 14

HJD 2454791 2454792 2454796 2454798 2454804 2454809 2454824 2454825 2454851 2454882 2454883

Table B.27. U BV(RI)C photometry obtained at Krak´ow Observatory⋆ (Poland) during and near the 2008/9 eclipse (E = 10). The 0.5 m Cassegrain telescope with a CCD camera was used. The differential magnitudes are given with respect to three comparison stars: a = BD +55◦ 2690, b = GSC-3973:2150, and c = BD +55◦ 2691. Each point is the mean value obtained from several to tens of frames. The columns labelled HJD+ denote the fraction of the day. ∆U



HJD+ ... ... .3144 ... ... ... ... ... ... ... ... .1689 ... ... .2096 .2160 .3385 .3318 .2844 .3050 .2493 .2018 .2219 .2471 .2223 .2407 .2349 .2346 .2723 .2306 .2211 .2302 .6501

v−a ... ... 0.091 ... ... ... ... ... ... ... ... 0.104 ... ... 0.151 0.165 0.327 0.389 0.381 0.360 0.323 0.565 0.596 0.604 0.550 0.495 0.319 0.302 0.145 0.130 0.147 0.128 0.109

v−b ... ... -0.381 ... ... ... ... ... ... ... ... -0.360 ... ... -0.311 -0.300 -0.130 -0.089 -0.091 -0.102 -0.132 0.099 0.132 0.137 0.080 0.041 -0.176 -0.169 -0.325 -0.332 -0.336 -0.341 -0.351

∆B v−c ... ... -0.483 ... ... ... ... ... ... ... ... -0.474 ... ... -0.425 -0.410 -0.230 -0.194 -0.206 -0.210 -0.235 0.000 0.023 0.020 -0.016 -0.073 -0.261 -0.268 -0.401 -0.446 -0.438 -0.456 -0.453

HJD+ .5043 .2875 .3174 .2463 .3773 .4528 .2080 .2612 .4971 .2532 .2542 .1725 .1906 .2001 .2100 .1902 .3572 .3328 .2854 .3056 .2497 .2026 .2224 .2484 .2260 .2413 .2357 .3316 .2757 .2383 .2219 .2301 .6512

v−a 0.473 0.466 0.455 0.465 0.449 0.479 0.478 0.470 0.477 0.471 0.477 0.472 0.486 0.516 0.502 0.514 0.667 0.703 0.697 0.686 0.670 0.904 0.941 0.924 0.882 0.830 0.667 0.624 0.517 0.490 0.494 0.492 0.475

∆V v−b -0.305 -0.305 -0.293 -0.290 -0.301 -0.292 -0.295 -0.294 -0.301 -0.293 -0.292 -0.272 -0.267 -0.248 -0.245 -0.237 -0.084 -0.095 -0.055 -0.064 -0.083 0.155 0.192 0.174 0.137 0.083 -0.081 -0.129 -0.236 -0.262 -0.262 -0.260 -0.277

v−c -0.348 -0.354 -0.341 -0.340 -0.352 -0.345 -0.345 -0.349 -0.345 -0.358 -0.344 -0.332 -0.320 -0.304 -0.304 -0.291 -0.137 -0.045 -0.108 -0.118 -0.134 0.099 0.130 0.119 0.082 0.026 -0.134 -0.184 -0.294 -0.318 -0.311 -0.313 -0.327

HJD+ .5045 .2899 .3185 .2505 .3795 .4516 .2081 .2611 .4969 .2571 .2585 .1731 .1909 .2004 .2103 .1912 .3491 .3329 .2844 .3059 .2507 .2028 .2226 .2486 .2284 .2414 .2360 .2316 .2761 .2387 .2222 .2317 .6521

v−a 0.420 0.415 0.393 0.396 0.385 0.432 0.428 0.425 0.419 0.417 0.434 0.403 0.420 0.458 0.437 0.444 0.566 0.600 0.599 0.594 0.585 0.800 0.838 0.827 0.787 0.742 0.593 0.552 0.459 0.420 0.430 0.426 0.411

v−b -0.424 -0.424 -0.458 -0.459 -0.472 -0.413 -0.417 -0.416 -0.421 -0.422 -0.402 -0.445 -0.437 -0.385 -0.419 -0.417 -0.289 -0.253 -0.260 -0.264 -0.272 -0.054 -0.026 -0.033 -0.066 -0.091 -0.263 -0.301 -0.405 -0.439 -0.422 -0.433 -0.444

Observers: E. Kuligowska, T. Kundera, M. Kurpi´nska-Winiarska, A. Ku´zmicz, T. Szyma´nski, M. Winiarski, S. Zoła.

v−c -0.432 -0.430 -0.454 -0.457 -0.468 -0.426 -0.431 -0.429 -0.433 -0.433 -0.419 -0.446 -0.438 -0.389 -0.420 -0.409 -0.286 -0.249 -0.259 -0.265 -0.271 -0.051 -0.028 -0.033 -0.067 -0.105 -0.259 -0.299 -0.399 -0.435 -0.416 -0.430 -0.443

HJD+ .5046 .2954 .3195 .2533 .3820 .4478 .2089 .2614 .4973 .2590 .2504 .1731 .1910 .2006 .2105 .1898 .3494 .3337 .2861 .3064 .2506 .2029 .2228 .2478 .2298 .2416 .2368 .2302 .2756 .2398 .2224 .2333 .6519

∆RC v−a v−b 0.310 -0.582 0.308 -0.581 0.295 -0.599 0.297 -0.603 0.287 -0.623 0.311 -0.587 0.316 -0.576 0.316 -0.575 0.307 -0.590 0.304 -0.587 0.323 -0.570 0.305 -0.586 0.323 -0.578 0.348 -0.547 0.341 -0.558 0.348 -0.553 0.456 -0.441 0.488 -0.411 0.483 -0.414 0.484 -0.417 0.478 -0.416 0.682 -0.214 0.712 -0.198 0.702 -0.191 0.673 -0.222 0.634 -0.259 0.480 -0.420 0.455 -0.443 0.352 -0.554 0.316 -0.583 0.304 -0.570 0.318 -0.582 0.311 -0.586

∆IC v−c -0.555 -0.556 -0.565 -0.569 -0.582 -0.558 -0.551 -0.552 -0.565 -0.559 -0.546 -0.554 -0.548 -0.516 -0.529 -0.516 -0.404 -0.379 -0.382 -0.387 -0.383 -0.184 -0.165 -0.165 -0.191 -0.230 -0.368 -0.414 -0.520 -0.552 -0.539 -0.542 -0.550

HJD+ ... ... .3203 ... .3788 ... ... ... ... ... ... .1729 .1911 ... .2103 .1903 .3589 .3330 .2848 .3069 .2508 .2031 .2230 .2489 .2308 .2418 .2363 .2292 .2763 .2383 .2212 .2323 .6519

v−a ... ... 0.124 ... 0.122 ... ... ... ... ... ... 0.132 0.148 ... 0.162 0.170 0.265 0.295 0.294 0.294 0.297 0.470 0.498 0.495 0.471 0.430 0.302 0.267 0.169 0.144 0.153 0.141 0.133

v−b ... ... -0.821 ... -0.826 ... ... ... ... ... ... -0.811 -0.804 ... -0.789 -0.778 -0.680 -0.655 -0.653 -0.655 -0.655 -0.475 -0.457 -0.445 -0.478 -0.508 -0.647 -0.675 -0.779 -0.804 -0.794 -0.806 -0.814

v−c ... ... -0.732 ... -0.739 ... ... ... ... ... ... -0.721 -0.709 ... -0.702 -0.685 -0.590 -0.559 -0.563 -0.563 -0.564 -0.385 -0.361 -0.365 -0.387 -0.416 -0.565 -0.589 -0.688 -0.712 -0.698 -0.716 -0.721

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 15

HJD 2454751 2454753 2454761 2454762 2454766 2454773 2454780 2454781 2454782 2454786 2454795 2454799 2454807 2454814 2454816 2454824 2454830 2454831 2454832 2454834 2454835 2454840 2454841 2454843 2454844 2454845 2454850 2454851 2454857 2454865 2454882 2454884 2454891

Table B.29. U BV(RI)C photometry obtained at Piwnice Observatory⋆ (Poland) during and near the 2008/9 eclipse (E = 10). The 0.6 m Cassegrain telescope with SBIG STL-1001 CCD camera was used. Differential magnitudes are given with respect to three comparison stars: a = BD +55◦ 2690, b = GSC-3973:2150, and c = BD +55◦ 2691. Each point is the mean value obtained from several to tens of frames. The columns labelled HJD+ denote the fraction of the day. ∆U HJD+ .4537 .5803 .4483 .5375 .4016 .3733 .2238 .2837 .5217 ... .4656 .4096 .4526 .4313 .3870 .4816 .5118 .4035 .4395 .3093 ... ... .5846 .4481 .4318 ... .4231 .4145 ... .4889 .5773 .2914 .2763 .2490 .2543 .2014 .3691 .2116 ... ... .2763 .3080 .2991 .1929 .3225 ... .3147 .1837 .1843 .1751 .1785

v−a 0.131 0.163 0.158 0.175 0.163 0.154 0.148 0.226 0.165 ... 0.161 0.164 0.186 0.188 0.169 0.165 0.177 0.155 0.172 0.159 ... ... 0.186 0.173 0.171 ... 0.178 0.177 ... 0.179 ... 0.178 0.189 0.198 0.178 0.176 0.187 ... ... ... 0.190 0.170 0.196 0.189 0.211 ... 0.246 0.244 0.211 0.222 0.403

∆B v−b -0.343 -0.353 -0.349 -0.347 -0.337 -0.341 -0.365 -0.270 -0.338 ... -0.360 -0.357 -0.330 -0.324 -0.333 -0.377 -0.353 -0.363 -0.346 -0.358 ... ... -0.336 -0.339 -0.340 ... -0.347 -0.341 ... -0.330 -0.362 -0.325 -0.333 -0.322 -0.335 -0.337 -0.335 -0.365 ... ... -0.331 -0.333 -0.311 -0.322 -0.287 ... -0.271 -0.263 -0.298 -0.272 -0.140

v−c -0.429 -0.419 -0.427 -0.437 -0.424 -0.430 -0.449 -0.348 -0.428 ... -0.437 -0.432 -0.411 -0.413 -0.401 -0.400 -0.417 -0.431 -0.392 -0.436 ... ... -0.415 -0.419 -0.428 ... -0.435 -0.424 ... -0.412 -0.423 -0.414 -0.411 -0.422 -0.427 -0.414 -0.411 -0.383 ... ... -0.400 -0.431 -0.426 -0.403 -0.361 ... -0.365 -0.372 -0.372 -0.368 -0.215

HJD+ .4460 .5708 .4395 .5421 .4056 .3709 .2201 .2778 .5134 ... .4608 .4029 .4478 .4273 .3918 .4730 .5058 .3989 .4301 .2999 .2293 .2699 .5795 .4439 .4281 .3847 .4125 .4064 .3964 .4840 .5725 .2875 .2725 .2430 .2435 .2047 .3723 .2206 .1675 .2186 .2687 .3014 .2899 .1806 .3182 .1511 .3011 .1818 .1736 .1676 .1723

v−a 0.459 0.439 0.447 0.459 0.456 0.451 0.453 0.468 0.457 ... 0.471 0.468 0.456 0.450 0.436 0.492 0.483 0.497 0.456 0.453 0.460 0.461 0.467 0.459 0.460 0.466 0.463 0.455 0.465 0.467 0.451 0.481 0.483 0.470 0.475 0.466 0.461 0.473 ... 0.470 0.477 0.457 0.487 0.494 0.482 0.499 0.520 0.527 0.505 0.515 0.635

∆V v−b -0.307 -0.313 -0.306 -0.306 -0.299 -0.299 -0.307 -0.304 -0.308 ... -0.295 -0.297 -0.302 -0.315 -0.303 -0.287 -0.286 -0.270 -0.295 -0.310 -0.306 -0.316 -0.302 -0.308 -0.297 -0.303 -0.299 -0.308 -0.284 -0.292 -0.312 -0.274 -0.278 -0.287 -0.282 -0.294 -0.294 -0.268 ... -0.284 -0.284 -0.296 -0.266 -0.266 -0.269 -0.261 -0.231 -0.245 -0.250 -0.247 -0.075

v−c -0.367 -0.365 -0.372 -0.370 -0.363 -0.355 -0.363 -0.364 -0.365 ... -0.362 -0.364 -0.358 -0.357 -0.354 -0.354 -0.355 -0.345 -0.359 -0.357 -0.355 -0.356 -0.352 -0.361 -0.353 -0.358 -0.354 -0.357 -0.342 -0.344 -0.355 -0.338 -0.336 -0.347 -0.343 -0.348 -0.350 -0.327 -0.351 -0.343 -0.334 -0.343 -0.322 -0.335 -0.319 -0.319 -0.304 -0.287 -0.311 -0.294 -0.131

HJD+ .4407 .5681 .4365 .5439 .4074 .3699 .2177 .2722 .5071 .5313 .4569 .3978 .4435 .4249 .3795 .4709 .4974 .3952 .4271 .2968 .2323 .2668 .5777 .4387 .4228 .3805 .4096 .4045 .3939 .4827 .5707 .2830 .2700 .2395 .2441 .2077 .3741 .2178 .1729 .1968 .2657 .2986 .2742 .1776 .3104 ... .2966 .1778 .1610 .1612 .1709

v−a 0.411 0.394 0.405 0.411 0.419 0.407 0.405 0.415 0.402 0.347 0.433 0.429 0.396 0.394 0.393 0.442 0.437 0.431 0.417 0.404 0.413 0.404 0.418 0.403 0.408 0.399 0.409 0.411 0.425 0.415 0.415 0.434 0.437 0.427 0.420 0.419 0.432 0.407 0.426 0.412 0.432 0.416 0.433 0.445 0.439 ... 0.476 0.456 0.467 0.457 0.582

v−b -0.437 -0.453 -0.442 -0.442 -0.434 -0.426 -0.443 -0.443 -0.439 -0.514 -0.421 -0.425 -0.452 -0.452 -0.443 -0.412 -0.414 -0.420 -0.426 -0.440 -0.436 -0.451 -0.429 -0.439 -0.434 -0.437 -0.430 -0.440 -0.417 -0.424 -0.441 -0.430 -0.415 -0.430 -0.430 -0.418 -0.435 -0.421 -0.431 -0.425 -0.417 -0.427 -0.427 -0.416 -0.411 ... -0.364 -0.381 -0.387 -0.395 -0.245

v−c -0.452 -0.460 -0.457 -0.459 -0.447 -0.439 -0.456 -0.452 -0.452 -0.473 -0.452 -0.454 -0.456 -0.450 -0.446 -0.438 -0.431 -0.437 -0.453 -0.442 -0.437 -0.453 -0.433 -0.448 -0.442 -0.449 -0.438 -0.450 -0.432 -0.439 -0.444 -0.441 -0.443 -0.435 -0.433 -0.442 -0.441 -0.427 -0.449 -0.436 -0.430 -0.432 -0.426 -0.436 -0.416 ... -0.392 -0.404 -0.397 -0.390 -0.269

HJD+ .4615 .5735 .4531 .5450 .4086 .3716 .2265 .2907 .5045 .5305 .4702 .4163 .4417 .4355 .3991 .4755 .5007 .4075 .4329 .3032 .2351 .2727 .5890 .4405 .4249 .3752 .4157 .4096 .4001 .4853 .5747 .2845 .2801 .2569 .2492 .2125 .3751 .2260 ... ... .2726 .3033 .2927 .1867 .3128 .1453 .3061 .1792 .1681 .1658 .1754

∆RC v−a v−b 0.288 -0.608 0.294 -0.625 0.300 -0.605 0.304 -0.598 0.303 -0.595 0.298 -0.585 0.296 -0.612 0.295 -0.598 0.291 -0.603 0.275 -0.616 0.290 -0.609 0.296 -0.602 0.313 -0.594 0.305 -0.594 0.291 -0.592 0.308 -0.594 0.300 -0.600 0.298 -0.599 0.305 -0.585 0.299 -0.601 0.299 -0.608 0.292 -0.604 0.304 -0.600 0.291 -0.608 0.300 -0.593 0.289 -0.600 0.311 -0.582 0.301 -0.598 0.313 -0.580 0.312 -0.594 0.290 -0.610 0.320 -0.578 0.321 -0.577 0.329 -0.580 0.319 -0.584 0.311 -0.586 0.316 -0.587 0.335 -0.560 ... ... ... ... 0.320 -0.588 0.307 -0.588 0.328 -0.574 0.329 -0.567 0.329 -0.568 0.345 -0.561 0.365 -0.533 0.355 -0.551 0.348 -0.558 0.358 -0.544 0.461 -0.431

∆IC v−c -0.579 -0.583 -0.586 -0.578 -0.583 -0.562 -0.578 -0.584 -0.574 -0.575 -0.577 -0.580 -0.574 -0.568 -0.568 -0.574 -0.564 -0.559 -0.568 -0.564 -0.576 -0.570 -0.567 -0.575 -0.561 -0.568 -0.572 -0.574 -0.557 -0.581 -0.570 -0.571 -0.561 -0.574 -0.564 -0.562 -0.561 -0.561 ... ... -0.555 -0.560 -0.547 -0.551 -0.535 -0.533 -0.511 -0.521 -0.529 -0.512 -0.406

HJD+ .4647 .5759 .4545 .5459 .4093 .3721 .2275 .2946 .5031 .5293 .4719 .4179 .4399 .4375 .4012 .4772 .5032 .4092 .4352 .3044 .2365 .2743 .5907 .4418 .4261 .3665 .4183 .4110 .4041 .4862 .5759 .2856 .2812 .2591 .2514 .2116 .3759 .2338 ... ... .2713 .3045 .2943 .1843 .3155 .1476 .3088 .1802 .1649 .1639 .1766

v−a 0.109 0.106 0.123 0.124 0.121 0.113 0.106 0.110 0.104 0.096 0.112 0.112 0.120 0.115 0.114 0.113 0.110 0.116 0.133 0.113 0.132 0.124 0.126 0.113 0.120 0.122 0.129 0.131 0.139 0.148 0.109 0.139 0.135 0.155 0.141 0.138 0.137 0.132 ... ... 0.136 0.134 0.149 0.142 0.144 0.156 0.178 0.153 0.162 0.178 0.273

v−b -0.840 -0.848 -0.830 -0.834 -0.829 -0.816 -0.844 -0.842 -0.833 -0.833 -0.835 -0.842 -0.832 -0.829 -0.832 -0.836 -0.842 -0.840 -0.815 -0.839 -0.827 -0.837 -0.831 -0.838 -0.819 -0.822 -0.822 -0.827 -0.809 -0.824 -0.840 -0.809 -0.810 -0.806 -0.804 -0.810 -0.815 -0.781 ... ... -0.826 -0.816 -0.810 -0.805 -0.804 -0.800 -0.773 -0.803 -0.796 -0.775 -0.661

v−c -0.746 -0.755 -0.755 -0.751 -0.746 -0.741 -0.755 -0.774 -0.750 -0.750 -0.751 -0.758 -0.753 -0.743 -0.748 -0.741 -0.740 -0.734 -0.733 -0.740 -0.754 -0.760 -0.734 -0.740 -0.731 -0.741 -0.736 -0.744 -0.727 -0.731 -0.737 -0.736 -0.732 -0.743 -0.738 -0.733 -0.731 -0.725 ... ... -0.728 -0.731 -0.721 -0.729 -0.709 -0.722 -0.688 -0.719 -0.707 -0.689 -0.591

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 16

HJD 2453545 2453580 2453602 2453613 2453648 2453663 2453745 2453760 2453863 2453868 2453899 2453940 2453983 2454024 2454128 2454249 2454290 2454321 2454382 2454407 2454530 2454536 2454571 2454606 2454648 2454621 2454662 2454677 2454700 2454720 2454734 2454735 2454742 2454750 2454757 2454763 2454771 2454780 2454781 2454782 2454784 2454793 2454801 2454804 2454810 2454811 2454814 2454815 2454822 2454824 2454830

Table B.29. continued. ∆U



HJD+ .1749 .4419 .3498 .3027 .3540 ... .2597 .1798 .2835 .2648 .1954 .2508 .2111 .2273 .2197 ... .2266 .2390 .2865 .2480 .2744 .5776 .5187 .5827 .4503 .4991 .3724 .3655 .3257 .4112 .2620 .2429 .2370 .2016 .2812 .3936 .1918 .2149 ... .2667 ... ... ... ... ... .2602 ... .5519 .5037

v−a 0.455 ... 0.543 0.568 0.621 ... 0.676 0.660 0.570 0.499 0.372 0.218 0.218 0.202 0.222 ... 0.225 0.198 0.204 0.197 0.179 0.171 0.170 0.182 0.145 0.151 0.184 0.186 0.168 0.158 0.156 0.161 0.169 0.168 0.142 0.171 0.166 0.142 ... 0.172 ... ... ... ... ... 0.163 ... 0.157 0.162

∆B v−b -0.075 ... -0.016 0.011 0.098 ... 0.128 0.112 0.050 -0.093 -0.148 -0.307 -0.280 -0.313 -0.283 ... -0.316 -0.309 -0.324 -0.326 -0.349 -0.319 -0.365 -0.320 -0.357 -0.358 -0.363 -0.351 -0.342 -0.351 -0.335 -0.356 -0.362 -0.345 -0.411 -0.344 -0.354 -0.390 ... -0.346 ... ... ... ... ... -0.348 ... -0.366 -0.356

v−c -0.111 -0.112 -0.042 -0.013 0.004 ... 0.070 0.057 -0.023 -0.122 -0.227 -0.399 -0.367 -0.380 -0.363 ... -0.374 -0.383 -0.394 -0.414 -0.418 -0.431 -0.409 -0.406 -0.439 -0.420 -0.437 -0.417 -0.402 -0.444 -0.422 -0.431 -0.426 -0.423 -0.446 -0.396 -0.427 -0.391 ... -0.468 ... ... ... ... ... -0.415 ... -0.430 -0.436

HJD+ .1694 .4379 .3485 .2993 .3465 .4393 .2403 .1846 .2697 .2600 .1879 .2458 .2170 .2169 .2331 .2281 .2262 .2391 .2717 .2412 .2697 .5723 .5131 .5794 .4374 .4951 ... .3580 ... .4065 .2521 .2319 .2298 .1954 .2775 .3884 .1857 .2067 .2330 .2605 .2437 .2491 .6493 .2712 .2729 .2520 .5304 .5448 .4953

v−a 0.697 0.683 0.743 0.782 0.847 0.928 0.954 0.884 0.852 0.715 0.630 0.504 0.484 0.492 0.519 0.500 0.501 0.502 0.481 0.476 0.469 0.467 0.459 0.465 0.457 0.461 ... 0.427 ... 0.425 0.445 0.455 0.452 0.441 0.458 0.458 0.465 0.443 0.444 0.453 0.452 0.438 0.438 0.446 0.454 0.447 0.449 0.461 0.458

∆V v−b -0.045 -0.076 -0.015 0.033 0.090 0.184 0.166 0.130 0.095 -0.059 -0.121 -0.259 -0.263 -0.270 -0.240 -0.254 -0.267 -0.259 -0.282 -0.292 -0.290 -0.302 -0.291 -0.299 -0.323 -0.312 ... -0.319 ... -0.305 -0.291 -0.306 -0.318 -0.314 -0.308 -0.305 -0.303 -0.309 -0.315 -0.328 -0.317 -0.323 -0.315 -0.318 -0.309 -0.332 -0.310 -0.317 -0.313

v−c -0.097 -0.136 -0.068 -0.026 0.039 0.081 0.144 0.060 0.038 -0.108 -0.176 -0.317 -0.318 -0.325 -0.296 -0.305 -0.316 -0.313 -0.341 -0.334 -0.341 -0.357 -0.351 -0.356 -0.364 -0.357 ... -0.348 ... -0.353 -0.342 -0.355 -0.360 -0.367 -0.357 -0.358 -0.353 -0.362 -0.361 -0.377 -0.369 -0.377 -0.361 -0.367 -0.361 -0.370 -0.365 -0.371 -0.368

HJD+ .1671 .4365 .3471 .3053 .3399 .4408 .2333 .1874 .2724 .2510 .1926 .2455 .2200 .2227 .2308 ... .2264 .2390 .2807 .2390 .2651 .5705 .5110 .5746 .4330 .4938 .3480 .3561 .3030 .4048 .2492 .2289 .2262 .1922 .2762 .3854 .1838 .2045 .2305 .2547 .2462 .2467 .6471 .2684 .2700 .2545 .5282 .5420 .4929

v−a 0.630 0.617 0.674 0.718 0.800 0.829 0.875 0.829 0.771 0.644 0.582 0.454 0.448 0.445 0.461 ... 0.453 0.449 0.439 0.422 0.417 0.435 0.402 0.436 0.399 0.404 0.420 0.426 0.405 0.412 0.427 0.414 0.399 0.399 0.411 0.416 0.418 0.397 0.401 0.402 0.395 0.397 0.389 0.396 0.401 0.404 0.401 0.412 0.404

v−b -0.221 -0.233 -0.194 -0.138 -0.056 0.006 0.020 -0.024 -0.075 -0.212 -0.267 -0.402 -0.401 -0.405 -0.409 ... -0.405 -0.402 -0.416 -0.437 -0.426 -0.424 -0.431 -0.410 -0.450 -0.437 -0.430 -0.419 -0.434 -0.433 -0.428 -0.441 -0.443 -0.454 -0.444 -0.438 -0.441 -0.447 -0.448 -0.470 -0.450 -0.446 -0.450 -0.455 -0.442 -0.443 -0.447 -0.448 -0.449

´ Observers: P. Dobierski, S. Fra¸ckowiak, C. Gałan, G. Maciejewski, P. R´oz˙ a´nski, E. Swierczy´ nski, M. Wie¸cek, P. Wychudzki.

v−c -0.223 -0.250 -0.187 -0.146 -0.078 -0.045 -0.002 -0.046 -0.092 -0.226 -0.273 -0.411 -0.410 -0.414 -0.400 ... -0.408 -0.411 -0.434 -0.440 -0.438 -0.432 -0.442 -0.425 -0.446 -0.443 -0.435 -0.456 -0.452 -0.442 -0.459 -0.440 -0.451 -0.459 -0.453 -0.445 -0.448 -0.454 -0.451 -0.465 -0.454 -0.461 -0.456 -0.462 -0.447 -0.457 -0.457 -0.452 -0.459

HJD+ .1715 .4389 .3435 .3052 .3422 .4412 .2473 .1898 .2749 .2539 .1913 ... .2224 .2210 .2287 ... .2276 .2383 .2794 .2431 .2670 .5739 .5151 .5763 .4415 .4962 ... .3602 .3040 .4081 .2567 .2347 .2239 .1893 .2784 .3825 .1879 .2085 .2285 .2512 .2479 .2515 .6513 .2734 .2757 .2560 .5328 .5473 .4977

∆RC v−a v−b 0.497 -0.398 0.497 -0.403 0.554 -0.353 0.590 -0.306 0.655 -0.244 0.673 -0.208 0.726 -0.195 0.694 -0.203 0.647 -0.251 0.531 -0.389 0.467 -0.430 ... ... 0.334 -0.563 0.331 -0.578 0.344 -0.555 ... ... 0.332 -0.579 0.319 -0.554 0.321 -0.581 0.310 -0.596 0.316 -0.579 0.315 -0.582 0.294 -0.585 0.303 -0.591 0.279 -0.617 0.288 -0.602 ... ... 0.282 -0.612 0.287 -0.606 0.291 -0.598 0.301 -0.588 0.298 -0.601 0.287 -0.606 0.284 -0.618 0.298 -0.604 0.299 -0.600 0.300 -0.603 0.281 -0.618 0.272 -0.622 0.269 -0.645 0.284 -0.614 0.275 -0.618 0.266 -0.616 0.261 -0.623 0.275 -0.613 0.272 -0.632 0.283 -0.620 0.284 -0.623 0.283 -0.620

∆IC v−c -0.370 -0.374 -0.319 -0.286 -0.214 -0.182 -0.149 -0.180 -0.228 -0.344 -0.400 ... -0.538 -0.541 -0.532 ... -0.541 -0.523 -0.552 -0.568 -0.546 -0.559 -0.559 -0.569 -0.581 -0.556 ... -0.579 -0.575 -0.574 -0.565 -0.565 -0.574 -0.584 -0.569 -0.573 -0.571 -0.585 -0.585 -0.606 -0.590 -0.589 -0.585 -0.596 -0.584 -0.592 -0.587 -0.586 -0.589

HJD+ .1723 .4395 .3579 .3047 .3433 .4417 .2510 .1920 .2772 .2559 .1903 .2456 .2248 .2192 .2260 .2287 .2278 .2390 .2741 .2442 .2682 .5751 .5162 .5777 .4397 .4967 ... .3613 .3051 .4087 .2548 .2368 .2217 .1871 .2789 .3806 .1890 .2124 .2271 .2456 .2506 .2529 .6526 .2749 .2781 .2487 ... .5490 .4993

v−a 0.272 0.305 0.330 0.390 0.463 0.482 0.505 0.481 0.452 0.326 0.262 0.167 0.144 0.148 0.164 0.139 0.144 0.152 0.142 0.128 0.121 0.129 0.112 0.129 0.112 0.112 ... 0.129 0.109 0.110 0.146 0.117 0.105 0.102 0.101 0.115 0.111 0.091 0.086 0.078 0.081 0.090 0.075 0.086 0.083 0.088 ... 0.093 0.088

v−b -0.667 -0.657 -0.605 -0.565 -0.499 -0.466 -0.481 -0.472 -0.502 -0.656 -0.675 -0.792 -0.802 -0.814 -0.796 -0.804 -0.812 -0.800 -0.818 -0.817 -0.809 -0.834 -0.827 -0.827 -0.835 -0.828 ... -0.815 -0.830 -0.833 -0.811 -0.835 -0.836 -0.854 -0.850 -0.834 -0.843 -0.872 -0.864 -0.883 -0.872 -0.865 -0.866 -0.862 -0.860 -0.871 ... -0.867 -0.876

v−c -0.564 -0.548 -0.528 -0.474 -0.413 -0.380 -0.372 -0.387 -0.443 -0.543 -0.586 -0.714 -0.714 -0.718 -0.695 -0.736 -0.726 -0.710 -0.729 -0.721 -0.723 -0.743 -0.729 -0.731 -0.742 -0.746 ... -0.739 -0.738 -0.733 -0.719 -0.744 -0.745 -0.754 -0.736 -0.744 -0.751 -0.753 -0.759 -0.785 -0.774 -0.773 -0.767 -0.771 -0.770 -0.777 ... -0.765 -0.771

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 17

HJD 2454831 2454834 2454837 2454838 2454839 2454840 2454843 2454844 2454845 2454849 2454851 2454860 2454865 2454872 2454878 2454881 2454883 2454884 2454891 2454903 2454909 2454922 2454938 2454950 2455017 2455027 2455040 2455063 2455083 2455099 2455111 2455120 2455138 2455150 2455156 2455162 2455164 2455210 2455233 2455253 2455264 2455267 2455270 2455271 2455272 2455274 2455294 2455303 2455311

Table B.30. U BV(RI)C photometry obtained at Suhora Observatory⋆ (Poland) during and near the 2008/9 eclipse (E = 10). The 0.6 m Cassegrain telescope with a CCD camera was used. The differential magnitudes are given with respect to three comparison stars: a = BD +55◦ 2690, b = GSC-3973:2150, and c = BD +55◦ 2691. Each point is the mean value obtained from several to tens of frames. The columns labelled HJD+ denote the fraction of the day. ∆U HJD+ ... ... ... .5766 .1813 ... ... .3391 .3963 .3645 .1750 .1658 .1758 .1602 .1777 .2924 .1743 ... .4590 .2105 .3338 .2614 .1930 .1906 .2140 .2584 .3564 .2628 .3841 .1863 .3335 .1773 .2687 .3549 .2659 .3938 .6764 .2305 .2307 .2276 .6515

v−a ... ... ... 0.150 0.086 ... ... 0.174 0.088 0.092 0.091 0.085 0.101 0.108 0.145 0.146 0.135 ... 0.297 0.264 0.338 0.370 0.355 0.328 0.431 0.569 0.683 0.588 0.728 0.580 0.544 0.497 0.319 0.336 0.197 0.149 0.152 0.137 0.130 0.111 0.117

v−b ... ... ... -0.301 -0.372 ... ... -0.328 -0.388 -0.380 -0.359 -0.363 -0.354 -0.336 -0.309 -0.316 -0.320 ... -0.196 -0.174 -0.123 -0.084 -0.077 -0.121 -0.008 0.104 0.335 0.136 0.259 0.127 0.079 0.045 -0.143 -0.126 -0.242 -0.309 -0.304 -0.302 -0.336 -0.344 -0.344

∆B v−c ... ... ... -0.424 -0.496 ... ... -0.428 -0.504 -0.487 -0.478 -0.484 -0.470 -0.462 -0.430 -0.431 -0.441 ... -0.296 -0.289 -0.241 -0.204 -0.208 -0.248 -0.123 -0.013 0.122 0.018 0.070 0.006 -0.041 -0.084 -0.251 -0.233 -0.386 -0.431 -0.430 -0.421 -0.454 -0.457 -0.471

HJD+ .6504 .5453 ... .5770 .1930 .1804 .1689 .3390 .3960 .3648 .1758 .1662 .1769 .1606 .1789 .2932 .1743 .2193 .4599 .2107 .3361 .2667 .1939 .1912 .2138 .2583 .3573 .2637 .3849 .1880 .3330 .1927 .2696 .3558 .2668 .3945 .6780 .2311 .2321 .2285 .6524

v−a 0.435 0.408 ... 0.475 0.451 0.447 0.460 0.475 0.471 0.454 0.462 0.457 0.464 0.469 0.503 0.501 0.493 0.511 0.569 0.603 0.660 0.698 0.680 0.654 0.767 0.897 0.935 0.928 0.956 0.914 0.879 0.818 0.660 0.633 0.524 0.512 0.498 0.490 0.481 0.466 0.485

∆V v−b -0.304 -0.334 ... -0.265 -0.287 -0.289 -0.260 -0.265 -0.270 -0.285 -0.273 -0.277 -0.267 -0.259 -0.228 -0.235 -0.243 -0.218 -0.182 -0.124 -0.075 -0.040 -0.044 -0.083 0.041 0.165 0.201 0.192 0.209 0.187 0.141 0.095 -0.073 -0.125 -0.209 -0.238 -0.244 -0.246 -0.256 -0.268 -0.263

Observers: M. Dr´oz˙ d˙z, J. Krzesi´nski, W. Ogłoza, M. Siwak, M. Winiarski, S. Zoła.

v−c -0.363 -0.376 ... -0.340 -0.349 -0.344 -0.335 -0.332 -0.335 -0.338 -0.330 -0.336 -0.324 -0.314 -0.294 -0.296 -0.307 -0.284 -0.242 -0.195 -0.134 -0.100 -0.108 -0.132 -0.017 0.099 0.121 0.128 0.138 0.120 0.074 0.031 -0.133 -0.186 -0.268 -0.308 -0.309 -0.314 -0.317 -0.327 -0.316

HJD+ .6507 .5448 .5888 .5772 .1932 .1807 .1699 .3399 .3963 .3651 .1772 .1664 .1771 .1610 .1787 .2934 .1742 .2203 .4602 .2118 .3365 .2682 .1942 .1914 .2140 .2588 .3575 .2560 .3851 .1874 .3332 .1927 .2699 .3566 .2658 .3967 .6776 .2313 .2314 .2288 .6532

v−a 0.403 0.366 0.422 0.407 0.401 0.403 0.408 0.408 0.413 0.410 0.414 0.409 0.418 0.419 0.446 0.453 0.444 0.453 0.484 0.520 0.573 0.605 0.600 0.581 0.688 0.809 0.817 0.837 0.848 0.828 0.759 0.754 0.593 0.555 0.475 0.471 0.440 0.421 0.431 0.410 0.419

v−b -0.450 -0.513 -0.446 -0.451 -0.456 -0.457 -0.442 -0.452 -0.448 -0.456 -0.447 -0.450 -0.440 -0.433 -0.414 -0.412 -0.418 -0.410 -0.377 -0.330 -0.285 -0.258 -0.250 -0.279 -0.159 -0.054 -0.046 -0.025 -0.019 -0.027 -0.095 -0.105 -0.261 -0.311 -0.389 -0.397 -0.421 -0.435 -0.432 -0.453 -0.448

v−c -0.451 -0.469 -0.461 -0.458 -0.457 -0.459 -0.450 -0.452 -0.452 -0.451 -0.447 -0.453 -0.438 -0.435 -0.417 -0.414 -0.426 -0.410 -0.373 -0.336 -0.285 -0.258 -0.259 -0.269 -0.160 -0.054 -0.055 -0.031 -0.025 -0.033 -0.075 -0.116 -0.259 -0.313 -0.394 -0.425 -0.430 -0.435 -0.435 -0.447 -0.449

HJD+ .6509 .5450 .5886 .5779 .1933 .1804 .1701 .3405 .3965 .3635 .1769 .1676 .1772 .1617 .1788 .2923 .1752 .2250 .4604 .2114 .3366 .2692 .1956 .1915 .2141 .2585 .3576 .2641 .3852 .1824 .3371 .1929 .2713 .3561 .2659 ... .6777 .2315 .2316 .2290 .6540

∆RC v−a v−b 0.298 -0.621 0.282 -0.632 0.304 -0.602 0.305 -0.597 0.300 -0.599 0.300 -0.600 0.308 -0.583 0.303 -0.596 0.313 -0.587 0.302 -0.600 0.313 -0.589 0.308 -0.591 0.314 -0.584 0.319 -0.577 0.343 -0.553 0.342 -0.559 0.334 -0.563 0.343 -0.557 0.376 -0.527 0.416 -0.471 0.457 -0.450 0.488 -0.417 0.485 -0.404 0.463 -0.439 0.577 -0.317 0.684 -0.215 0.692 -0.217 0.712 -0.189 0.729 -0.189 0.705 -0.192 0.685 -0.229 0.625 -0.262 0.488 -0.411 0.454 -0.454 0.360 -0.546 ... ... 0.332 -0.563 0.319 -0.578 0.329 -0.574 0.306 -0.597 0.312 -0.592

∆IC v−c -0.576 -0.563 -0.571 -0.575 -0.564 -0.565 -0.556 -0.565 -0.554 -0.559 -0.553 -0.559 -0.547 -0.539 -0.523 -0.529 -0.534 -0.528 -0.482 -0.449 -0.408 -0.383 -0.379 -0.383 -0.281 -0.185 -0.182 -0.159 -0.163 -0.161 -0.192 -0.233 -0.372 -0.422 -0.505 ... -0.538 -0.549 -0.544 -0.551 -0.556

HJD+ .6504 .5450 .5898 .5775 .1933 .1811 .1705 .3401 .3967 .3654 .1767 .1667 .1774 .1612 .1789 .2924 .1753 .2251 .4606 .2121 .3368 .2696 .1946 .1916 .2139 .2590 .3577 .2642 .3854 .1876 .3335 .1931 .2702 .3562 .2661 ... .6778 .2316 .2317 .2291 .6528

v−a 0.122 0.095 0.136 0.124 0.117 0.118 0.125 0.121 0.135 0.124 0.132 0.125 0.133 0.135 0.154 0.152 0.158 0.158 0.199 0.222 0.247 0.282 0.287 0.270 0.380 0.471 0.483 0.492 0.490 0.488 0.470 0.432 0.290 0.263 0.183 ... 0.157 0.140 0.143 0.097 0.133

v−b -0.854 -0.869 -0.825 -0.820 -0.828 -0.834 -0.813 -0.827 -0.814 -0.830 -0.816 -0.824 -0.815 -0.809 -0.790 -0.800 -0.790 -0.790 -0.756 -0.706 -0.704 -0.667 -0.652 -0.681 -0.564 -0.474 -0.470 -0.457 -0.464 -0.457 -0.479 -0.509 -0.652 -0.699 -0.776 ... -0.794 -0.804 -0.808 -0.846 -0.819

v−c -0.746 -0.744 -0.736 -0.729 -0.733 -0.737 -0.727 -0.736 -0.729 -0.730 -0.722 -0.730 -0.720 -0.717 -0.702 -0.701 -0.698 -0.700 -0.658 -0.632 -0.595 -0.571 -0.567 -0.562 -0.470 -0.384 -0.378 -0.363 -0.364 -0.365 -0.393 -0.418 -0.560 -0.605 -0.678 ... -0.701 -0.718 -0.715 -0.732 -0.724

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 18

HJD 2454758 2454759 2454770 2454774 2454789 2454798 2454799 2454800 2454801 2454802 2454803 2454804 2454807 2454810 2454814 2454815 2454816 2454817 2454828 2454829 2454830 2454831 2454832 2454835 2454838 2454840 2454840 2454841 2454842 2454843 2454844 2454845 2454850 2454851 2454855 2454858 2454858 2454865 2454868 2454869 2454872

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 19

Table B.31. BVIC photometry obtained at GRAS Observatory⋆ (Mayhill, New Mexico, USA) during the 2008/9 eclipse (E = 10). The 0.3 m GRAS-001 Telescope with an FLI IMG 1024 DM CCD camera was used. Differential magnitudes are given with respect to three comparison stars: a = BD +55◦ 2690, b = GSC-3973:2150, and c = BD +55◦ 2691. The columns labelled HJD+ denote the fraction of the day. ∆B HJD 2454816 2454821 2454822 2454825 2454828 2454829 2454830 2454831 2454832 2454833 2454834 2454835 2454839 2454840 2454841 2454843 2454844 2454845 2454846 2454847 2454849 2454850 2454851 2454852 2454853 2454855 2454856 2454857 2454859 2454860 2454861 2454862 2454863 2454865 2454866 2454867 2454868 2454869 2454872 2454874 2454875 2454876 2454877 ⋆

HJD+ .63926 .58581 .59271 .63850 .60494 .70329 .60893 .60554 .59797 .59704 .57529 .61749 .59620 .57656 .56866 .57533 .57236 .57694 .57689 .58281 .57644 .59034 .58991 .58999 .62551 .57829 .58972 .58990 .59015 .59062 .59023 .58953 .58992 .57222 .58951 .57230 .58957 .57300 .58669 .58378 .58655 .57465 .58635

Observer: G. Myers.

v−a 0.502 0.518 0.526 0.512 0.514 0.629 0.651 0.675 0.708 0.679 0.655 0.680 0.848 0.935 0.929 0.905 0.897 0.822 0.823 0.754 0.683 0.673 0.627 0.605 0.574 0.552 0.558 0.531 0.507 0.514 0.509 0.522 0.512 0.517 0.518 0.516 0.509 0.494 0.495 0.509 0.524 0.528 0.534

v−b -0.249 -0.246 -0.214 -0.235 -0.223 -0.114 -0.100 -0.076 -0.039 -0.059 -0.087 -0.073 0.101 0.193 0.178 0.155 0.141 0.071 0.069 0.006 -0.058 -0.082 -0.120 -0.154 -0.187 -0.192 -0.206 -0.217 -0.250 -0.233 -0.245 -0.235 -0.247 -0.246 -0.241 -0.252 -0.256 -0.253 -0.243 -0.252 -0.252 -0.234 -0.227

∆V v−c -0.314 -0.302 -0.281 -0.308 -0.310 -0.187 -0.162 -0.142 -0.119 -0.135 -0.150 -0.128 0.037 0.125 0.116 0.092 0.080 0.013 -0.004 -0.060 -0.124 -0.127 -0.183 -0.208 -0.253 -0.263 -0.286 -0.282 -0.314 -0.307 -0.309 -0.304 -0.307 -0.318 -0.306 -0.315 -0.318 -0.301 -0.317 -0.320 -0.266 -0.305 -0.260

HJD+ .63520 .58205 .58891 .63147 .59898 .69616 .60199 .59850 .59102 .59008 .56834 .61434 .58923 .56960 .56562 .56830 .56526 .56986 .56980 .58032 .57338 .58326 .58276 .58291 .66065 .58145 .58252 .58281 .58307 .58356 .58312 .58245 .58284 .56513 .58243 .56520 .58249 .56591 .57960 .57669 .57946 .60310 .57927

v−a 0.456 0.450 0.438 0.446 0.497 0.528 0.567 0.577 0.592 0.591 0.587 0.611 0.778 0.807 0.847 0.810 0.786 0.739 0.736 0.695 0.629 0.597 0.560 0.548 0.520 0.478 0.487 0.464 0.455 0.451 0.446 0.454 0.447 0.462 0.465 0.465 0.457 0.452 0.457 0.463 0.443 0.451 0.454

v−b -0.402 -0.417 -0.412 -0.408 -0.362 -0.325 -0.290 -0.279 -0.264 -0.266 -0.272 -0.232 -0.076 -0.045 0.004 -0.048 -0.075 -0.112 -0.116 -0.147 -0.207 -0.254 -0.287 -0.312 -0.343 -0.379 -0.376 -0.406 -0.420 -0.413 -0.420 -0.409 -0.416 -0.404 -0.399 -0.405 -0.408 -0.419 -0.411 -0.406 -0.425 -0.401 -0.403

v−c -0.393 -0.423 -0.420 -0.422 -0.378 -0.350 -0.309 -0.301 -0.281 -0.289 -0.288 -0.245 -0.080 -0.067 -0.009 -0.062 -0.088 -0.138 -0.142 -0.158 -0.224 -0.274 -0.306 -0.336 -0.354 -0.400 -0.395 -0.416 -0.430 -0.432 -0.436 -0.431 -0.438 -0.418 -0.420 -0.416 -0.428 -0.427 -0.427 -0.431 -0.431 -0.412 -0.417

HJD+ ... .58963 .59650 .64524 ... .65538 .61564 .61225 .60470 .60378 .58201 .62063 .60181 .58327 .57172 .58206 .57802 .58367 .58362 .58587 .57956 .59704 .59657 .59667 .62100 .57515 .59638 .59656 .59682 .59729 .59691 .59621 .59658 .57888 .59618 .57896 .59623 .57970 .59336 .59044 .59433 .58132 .59302

∆IC v−a v−b ... ... 0.173 -0.784 0.170 -0.783 0.188 -0.756 ... ... 0.239 -0.707 0.276 -0.669 0.301 -0.657 0.305 -0.653 0.290 -0.661 0.297 -0.653 0.308 -0.637 0.491 -0.457 0.520 -0.435 0.494 -0.452 0.488 -0.460 0.492 -0.485 0.427 -0.531 0.429 -0.516 0.390 -0.541 0.310 -0.617 0.303 -0.632 0.272 -0.675 0.253 -0.700 0.218 -0.728 0.203 -0.750 0.194 -0.759 0.183 -0.777 0.170 -0.798 0.149 -0.794 0.163 -0.788 0.164 -0.774 0.157 -0.811 0.163 -0.795 0.166 -0.764 0.154 -0.800 0.166 -0.801 0.148 -0.788 0.153 -0.803 0.156 -0.794 0.145 -0.818 0.173 -0.772 0.160 -0.791

v−c ... -0.681 -0.696 -0.689 ... -0.634 -0.605 -0.589 -0.574 -0.569 -0.576 -0.550 -0.423 -0.371 -0.376 -0.385 -0.399 -0.440 -0.448 -0.470 -0.538 -0.569 -0.605 -0.625 -0.657 -0.678 -0.674 -0.694 -0.704 -0.715 -0.726 -0.712 -0.731 -0.732 -0.708 -0.728 -0.726 -0.716 -0.723 -0.728 -0.722 -0.703 -0.696

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 20

Table B.32. BV photometry obtained at Rolling Hills Observatory⋆ (Florida, USA) during the 2008/9 eclipse (E = 10). The 0.25 m (10”) LX 200 telescope with an SBIG ST-9XE CCD camera was used. Differential magnitudes are given with respect to three comparison stars: a = BD +55◦ 2690, b = GSC-3973:2150, and c = BD +55◦ 2691. The columns labelled JD+ denote the fraction of the day. ∆B JD 2454800 2454804 2454808 2454810 2454812 2454813 2454817 2454818 2454819 2454820 2454821 2454823 2454824 2454826 2454827 2454828 2454829 2454830 2454831 2454834 2454836 2454837 2454838 2454840 2454841 2454842 2454846 2454848 2454850 2454853 2454854 2454857 2454860 2454862 2454863 2454866 2454867 2454868 2454869 2454870 ⋆

JD+ .6208 .5321 .4982 .6058 .4833 .4903 .6049 .4986 .6167 .4903 .5468 .4836 .6126 .5099 .4889 .4880 .4857 .4986 .4951 .4954 .5827 .5547 .4962 .4888 .5101 .4927 .4969 .4954 .4966 .5072 .5189 .5015 .5043 .5092 .4949 .5108 .4992 .5066 .5066 .5238

v−a 0.493 0.488 0.505 0.506 0.486 0.518 0.525 0.503 0.501 0.505 0.512 0.517 0.537 0.548 0.554 0.576 0.628 0.696 0.724 0.691 0.713 0.760 0.794 0.929 0.943 0.950 0.800 0.728 0.674 0.567 0.559 0.527 0.502 0.489 0.489 0.494 0.487 0.492 0.482 0.481

∆V

v−b -0.263 -0.277 -0.247 -0.230 -0.251 -0.230 -0.220 -0.228 -0.248 -0.243 -0.238 -0.224 -0.232 -0.193 -0.196 -0.167 -0.124 -0.058 -0.028 -0.053 -0.026 0.016 0.062 0.195 0.201 0.208 0.058 -0.016 -0.077 -0.180 -0.186 -0.232 -0.246 -0.253 -0.255 -0.253 -0.255 -0.264 -0.260 -0.285

v−c -0.314 -0.329 -0.315 -0.299 -0.317 -0.285 -0.288 -0.303 -0.301 -0.306 -0.305 -0.289 -0.285 -0.259 -0.262 -0.225 -0.185 -0.121 -0.089 -0.118 -0.094 -0.047 0.006 0.125 0.136 0.138 0.003 -0.076 -0.136 -0.243 -0.243 -0.289 -0.302 -0.311 -0.316 -0.310 -0.314 -0.311 -0.325 -0.318

JD+ .6176 .5290 .4955 .6034 .4803 .4861 .6015 .4952 .6133 .4878 .5436 .4807 .6092 .5064 .4852 .4846 .4827 .4952 .4910 .4921 .5793 .5002 .4922 .4854 .5060 .4893 .4937 .4920 .4932 .5033 .5154 .4980 .5009 .5058 .4915 .5069 .4951 .5027 .5032 .5219

v−a 0.418 0.417 0.430 0.438 0.426 0.447 0.446 0.440 0.427 0.429 0.439 0.444 0.459 0.467 0.478 0.486 0.536 0.588 0.611 0.592 0.628 0.668 0.707 0.832 0.839 0.844 0.724 0.653 0.588 0.501 0.485 0.456 0.428 0.432 0.430 0.428 0.412 0.425 0.415 0.420

v−b -0.441 -0.442 -0.429 -0.430 -0.431 -0.411 -0.410 -0.409 -0.426 -0.430 -0.426 -0.412 -0.410 -0.391 -0.376 -0.367 -0.322 -0.277 -0.253 -0.236 -0.226 -0.202 -0.140 -0.028 -0.016 -0.018 -0.132 -0.203 -0.270 -0.361 -0.371 -0.411 -0.429 -0.420 -0.437 -0.432 -0.430 -0.434 -0.443 -0.448

v−c -0.443 -0.445 -0.431 -0.426 -0.436 -0.416 -0.416 -0.423 -0.422 -0.432 -0.423 -0.414 -0.414 -0.392 -0.384 -0.371 -0.328 -0.281 -0.252 -0.269 -0.227 -0.204 -0.145 -0.035 -0.024 -0.025 -0.135 -0.210 -0.269 -0.360 -0.372 -0.409 -0.437 -0.426 -0.435 -0.432 -0.433 -0.438 -0.438 -0.440

Observer: S. Dvorak.

Table B.33. Shifts onto our reference system (Krak´ow Observatory) for the photometric data obtained during and near the 2003 eclipse (E = 9). The shifts were applied to the differential magnitudes shown in Tables B.2–B.10. Observatory Athens Białk´ow Krak´ow Kryoneri Piszk´estet¨o Piwnice Rozhen Rozhen Rozhen Skinakas

country Greece Poland Poland Greece Hungary Poland Bulgaria Bulgaria Bulgaria Greece

Tel. type Cassegrain Cassegrain Cassegrain Cassegrain Schmidt Cassegrain Ritchey-Chr´etien Schmidt Cassegrain Ritchey-Chr´etien

Diameter 0.4m 0.6m 0.5m 1.2m 0.6/0.9m 0.6m 2m 0.5/0.7m 0.6m 1.3m

shi f tU ... ... 0.0 -0.009 ... +0.009 0.0 ... +0.091 -0.036

shi f tB -0.034 ... 0.0 +0.029 +0.013 -0.018 0.0 ... +0.061 +0.005

shi f tV -0.005 +0.038 0.0 +0.037 +0.038 +0.021 +0.068 +0.062 +0.032 +0.020

shi f tRC 0.000 ... 0.0 +0.007 +0.040 +0.053 0.0 ... ... +0.007

shi f tIC -0.032 -0.005 0.0 -0.010 -0.002 +0.016 0.0 ... ... -0.008

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 21

Table B.34. Shifts onto our reference system (Krak´ow Observatory) for the photometric data obtained during and near the 2008/9 eclipse (E = 10). The shifts were applied to the differential magnitudes from Tables B.12–B.23 and reduced to BD +55◦ 2690 average values shown in Tables B.24–B.32. Observatory Altan, Mt Giant Athens Białk´ow Green Island Hankasalmi Furzehill, Swansea Krak´ow Kryoneri GRAS, Mayhill Navas de Oro, Segovia Ostrava Ostrava Piwnice Rolling Hills, Clermont Rozhen Rozhen Rozhen Sonoita, B. Staels Sonoita, HPO Suhora Tenagra-II

country Czech Republic Greece Poland North Cyprus Finland United Kingdom Poland Greece USA (NM) Spain Czech Republic Czech Republic Poland USA (FL) Bulgaria Bulgaria Bulgaria USA (AZ) USA (AZ) Poland USA (AZ)

Tel. type Reflector Cassegrain Cassegrain Ritchey-Chr´etien RCOS Schmidt-Cassegrain Cassegrain Cassegrain Reflector Reflector Newton Schmidt-Cassegrain Cassegrain Reflector Ritchey-Chr´etien Schmidt Cassegrain Reflector Reflector Cassegrain Ritchey-Chr´etien

Diameter 0.2m 0.4m 0.6m 0.35m 0.4m 0.35m 0.5m 1.2m 0.3m 0.35m 0.2m 0.3m 0.6m 0.25m 2m 0.5/0.7m 0.6m 0.5m 0.5m 0.6m 0.81m

shi f tU ... ... ... ... ... ... 0.0 ... ... ... ... ... -0.080 ... ... -0.023 -0.057 ... ... +0.006 -0.084

shi f tB -0.025 -0.004 +0.004 -0.001 -0.009 +0.013 0.0 +0.102 -0.005 ... +0.009 +0.013 -0.006 -0.006 +0.028 -0.004 -0.012 -0.003 -0.007 +0.011 -0.023

shi f tV -0.030 -0.025 -0.014 -0.018 -0.009 -0.020 0.0 +0.025 -0.011 -0.026 -0.016 -0.013 -0.021 -0.005 +0.013 -0.024 -0.023 -0.019 -0.002 -0.000 -0.044

shi f tRC -0.008 -0.009 -0.006 -0.001 -0.012 -0.020 0.0 +0.005 ... ... -0.011 +0.014 -0.014 ... +0.012 -0.022 -0.025 -0.129 +0.010 -0.001 -0.021

shi f tIC -0.020 -0.022 -0.022 -0.031 +0.009 -0.036 0.0 +0.013 -0.014 ... -0.009 +0.011 -0.005 ... -0.025 -0.031 -0.008 -0.187 -0.014 +0.006 -0.028

Table B.35. The mean points of the average U BV(RI)C light curves obtained during and near the 2003 (E = 9) and 2008/9 (E = 10) eclipses. Magnitudes and the corresponding standard deviations are given. Mean magnitudes were obtained by averaging the data (var − a): in the case of the 2003 eclipse from Tables B.2–B.11 and in the case of the 2008/9 eclipse from Tables B.12–B.32. Finally, to obtain magnitudes in the standard Johnson-Cousins photometric system, the comparison star (a=BD+55◦ 2690) magnitudes (according to Mikołajewski et al. (2003)) have been added. The columns labelled JD+ denote the fraction of the day. JD+ .44 .48 .39 .48 .44 .44 .30 ... .63 .60 ... ... ... .61 .58 .60 .60 ... .51 ... ... ... .58 .57 .54 .55 .56 .54 ... ... ... ... ... .51 ... .52 ... ... ... .51 .45 .54 .50 .53 ... .47 .46 .50 .50 .50 .50

U 10.925 10.905 10.884 10.910 10.877 10.918 10.912 ... 10.891 10.954 ... ... ... 10.955 10.961 10.979 10.952 ... 11.000 ... ... ... 10.972 11.030 10.984 10.969 10.983 11.028 ... ... ... ... ... 11.122 ... 11.136 ... ... ... 11.202 11.238 11.248 11.296 11.299 ... 11.324 11.363 11.436 11.505 11.611 11.604

σU ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.006 ... ... ... 0.008 ... ... ... ... ... ... 0.034 ... ... ... ... ... ... ... ... ... 0.004 ... ... ... ... ... ... 0.004 ... ... ... ... 0.014 0.013 0.015 0.019

NU 1 1 1 1 1 1 1 ... 1 1 ... ... ... 1 2 1 1 ... 2 ... ... ... 1 1 1 2 1 1 ... ... ... ... ... 1 ... 2 ... ... ... 1 1 1 2 1 ... 1 1 2 2 2 2

JD+ .44 .48 .39 .48 .44 .44 .30 ... .63 .60 .63 .61 .61 .60 .59 .59 .59 ... .52 ... .59 ... .58 .57 .60 .55 .56 .55 .50 .57 .56 .54 .57 .51 .48 .52 ... .57 .57 .46 .45 .53 .50 .52 .47 .47 .46 .50 .49 .47 .53

B 11.141 11.111 11.117 11.139 11.092 11.126 11.120 ... 11.120 11.138 11.134 11.143 11.116 11.146 11.144 11.154 11.160 ... 11.171 ... 11.158 ... 11.145 11.204 11.166 11.177 11.148 11.198 11.201 11.210 11.212 11.213 11.222 11.254 11.267 11.286 ... 11.313 11.353 11.361 11.363 11.392 11.453 11.447 11.434 11.461 11.515 11.609 11.675 11.737 11.768

σB ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.012 ... ... ... 0.000 ... ... ... ... ... 0.002 0.002 ... ... ... ... ... ... ... 0.024 ... 0.002 ... ... ... ... ... ... 0.013 ... ... ... 0.017 0.004 0.007 0.014 0.018

NB 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 2 1 1 ... 2 ... 1 ... 1 1 2 2 1 1 1 1 1 1 1 2 1 4 ... 1 1 1 1 1 2 1 1 1 2 2 2 3 3

JD+ .44 .48 .39 .48 .44 .44 .30 ... .63 .60 .62 .61 .61 .60 .59 .59 .59 .54 .51 .49 .58 .59 .54 .57 .59 .55 .56 .55 .59 .58 .55 .54 .57 .51 .48 .53 .53 .54 .57 .57 .45 .53 .52 .63 .49 .59 .50 .62 .51 .48 .55

V 10.824 10.789 10.787 10.805 10.804 10.800 10.799 ... 10.807 10.829 10.812 10.803 10.802 10.823 10.806 10.820 10.829 10.847 10.856 10.869 10.823 10.811 10.824 10.849 10.834 10.836 10.820 10.859 10.877 10.866 10.874 10.886 10.884 10.912 10.917 10.936 10.949 10.959 11.008 11.006 11.009 11.031 11.072 11.085 11.089 11.130 11.168 11.239 11.307 11.365 11.403

σV ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.003 ... ... ... 0.017 ... 0.000 ... 0.000 ... 0.005 0.010 ... ... 0.013 ... ... ... ... 0.005 ... 0.004 ... 0.010 ... 0.005 ... ... 0.004 0.005 ... 0.010 0.003 0.014 0.005 0.003 0.002

NV 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 2 1 1 1 2 1 2 1 2 1 2 3 1 1 2 1 1 1 1 2 1 5 1 2 1 2 1 1 3 2 1 2 3 3 3 3 3

JD+ .44 .48 .39 .48 .44 .44 .30 .32 .63 .60 .62 .61 .61 .60 .59 .59 .59 .54 .51 ... .59 .50 .50 ... .60 .55 .57 .55 .49 .57 .55 .47 .57 .51 .48 .52 ... .57 .57 .48 .45 .53 .50 .52 .49 .47 .46 .50 .49 .48 .53

RC 10.396 10.382 10.375 10.390 10.382 10.400 10.376 10.370 10.388 10.407 10.406 10.400 10.398 10.425 10.405 10.416 10.423 10.433 10.431 ... 10.413 10.428 10.388 ... 10.422 10.413 10.417 10.447 10.447 10.453 10.466 10.459 10.471 10.485 10.507 10.523 ... 10.560 10.590 10.576 10.586 10.597 10.657 10.654 10.667 10.721 10.742 10.794 10.847 10.918 10.949

σRC ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.014 ... ... ... 0.006 ... ... ... ... ... 0.005 0.020 ... ... ... ... ... ... ... 0.006 ... 0.002 ... ... ... ... ... ... 0.007 ... ... ... 0.003 0.017 0.007 0.002 0.009

NRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 ... 1 1 1 ... 2 3 1 1 1 1 1 1 1 2 1 4 ... 1 1 1 1 1 2 1 1 1 2 2 2 3 3

JD+ .44 .48 .39 .48 .44 .44 .30 .32 .63 .60 .63 .61 .61 .60 .58 .59 .59 .54 .52 ... .59 ... ... ... .59 .55 .56 .55 .49 .58 .55 .52 .57 .50 .47 .53 .52 .57 .57 .48 .45 .53 .51 .52 .50 .47 .49 .50 .51 .48 .55

IC 9.984 9.976 9.957 9.959 9.971 9.991 9.970 9.967 9.972 9.989 9.982 10.006 9.986 9.991 9.986 9.999 9.990 9.970 10.009 ... 9.999 ... ... ... 10.003 10.008 10.038 10.029 10.024 10.031 10.035 10.031 10.045 10.067 10.071 10.087 10.109 10.118 10.138 10.146 10.139 10.177 10.225 10.238 10.236 10.275 10.305 10.371 10.404 10.450 10.491

σIC ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.007 ... ... ... 0.016 ... ... ... ... ... 0.001 0.006 ... ... ... ... ... ... ... 0.011 ... 0.003 ... ... ... ... ... ... 0.007 ... ... ... 0.003 0.025 0.005 0.001 0.002

NIC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 ... 1 ... ... ... 2 3 1 1 1 1 1 1 1 2 1 5 1 1 1 1 1 1 3 1 1 1 3 2 3 3 3

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 22

JD 2452520 2452528 2452537 2452550 2452567 2452618 2452644 2452706 2452711 2452723 2452739 2452742 2452743 2452744 2452746 2452750 2452751 2452754 2452755 2452756 2452758 2452759 2452760 2452761 2452764 2452765 2452766 2452767 2452769 2452770 2452771 2452772 2452773 2452774 2452775 2452776 2452777 2452778 2452779 2452781 2452782 2452783 2452784 2452785 2452786 2452787 2452788 2452789 2452790 2452792 2452793

Table B.35. continued. JD+ .48 .47 ... .45 .52 .48 .55 .52 .53 .53 .59 .58 .53 .44 .51 ... .51 .47 .44 ... .52 .48 .46 .45 .52 .51 ... .51 .57 .47 .47 .45 .55 .47 ... ... .53 .51 .49 .45 ... ... ... .56 ... .42 .29 .37 .29 .26 .53 .42 .45 .47 .49

U 11.662 11.649 ... 11.538 11.482 11.405 11.348 11.221 11.179 11.113 11.084 11.064 11.045 11.031 11.071 ... 11.040 10.990 10.951 ... 11.014 10.999 10.987 11.020 11.008 10.965 ... 10.972 10.971 10.969 10.995 10.978 10.959 10.948 ... ... 10.941 10.916 10.914 10.965 ... ... ... 10.923 ... 10.940 10.919 10.941 10.982 10.914 10.983 10.964 10.896 10.924 10.887

σU 0.002 0.011 ... 0.006 0.012 ... 0.005 0.032 0.002 0.001 ... ... 0.001 0.003 ... ... ... ... ... ... ... ... ... ... 0.013 ... ... 0.001 ... ... ... ... ... 0.011 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NU 2 2 ... 2 4 1 2 2 3 2 1 1 2 2 1 ... 1 1 1 ... 1 1 1 1 2 1 ... 2 1 1 1 1 1 2 ... ... 1 1 1 1 ... ... ... 1 ... 1 1 1 1 1 1 1 1 1 1

JD+ .50 .51 .50 .49 .52 .48 .54 .50 .51 .50 .53 .57 .51 .47 .54 .54 .47 .50 .41 .47 .50 .48 .46 .45 .52 .51 .40 .51 .57 .47 .50 .45 .53 .48 .39 ... .53 .51 .49 .45 ... ... ... .56 ... .42 .29 .37 .29 .26 .53 .42 .45 .47 .49

B 11.807 11.792 11.754 11.671 11.626 11.560 11.480 11.387 11.314 11.265 11.228 11.212 11.204 11.194 11.202 11.213 11.210 11.192 11.184 11.217 11.174 11.174 11.191 11.165 11.182 11.151 11.196 11.173 11.200 11.180 11.186 11.168 11.155 11.144 11.160 ... 11.144 11.119 11.151 11.148 ... ... ... 11.144 ... 11.130 11.089 11.107 11.130 11.123 11.126 11.146 11.122 11.122 11.127

σB 0.003 0.010 ... 0.004 0.015 0.007 0.005 0.004 0.002 0.006 0.002 0.002 0.006 0.013 0.009 ... 0.000 0.010 0.013 ... ... ... ... ... 0.009 ... ... 0.024 ... ... ... ... ... 0.007 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NB 3 3 1 3 4 3 4 4 4 3 4 2 4 3 2 1 2 2 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 ... 1 1 1 1 ... ... ... 1 ... 1 1 1 1 1 1 1 1 1 1

JD+ .51 .51 .61 .50 .53 .49 .54 .54 .52 .62 .54 .60 .54 .47 .54 .68 .47 .57 .41 .47 .50 .48 .43 .45 .53 .51 .40 .51 .57 .47 .47 .46 .54 .48 .39 .48 .53 .51 .49 .45 .47 .61 .62 .59 .63 .42 .29 .37 .29 .26 .53 .42 .45 .47 .49

V 11.437 11.426 11.382 11.312 11.277 11.207 11.134 11.053 10.976 10.921 10.890 10.880 10.858 10.853 10.853 10.841 10.847 10.856 10.833 10.852 10.835 10.850 10.855 10.836 10.840 10.820 10.839 10.837 10.873 10.853 10.860 10.838 10.823 10.836 10.828 10.837 10.818 10.817 10.812 10.847 10.843 10.842 10.840 10.824 10.834 10.810 10.779 10.814 10.827 10.800 10.778 10.815 10.780 10.809 10.790

σV 0.002 0.007 0.012 0.003 0.005 0.006 0.004 0.004 0.002 0.009 0.003 0.001 0.001 0.006 0.008 0.008 0.003 0.004 0.015 ... ... ... 0.005 ... 0.011 ... ... 0.027 ... ... ... ... ... 0.009 ... ... ... ... ... ... ... ... ... 0.006 ... ... ... ... ... ... ... ... ... ... ...

NV 3 4 2 4 3 4 4 5 4 4 4 3 5 3 2 2 2 3 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

JD+ .50 .49 .52 .49 .53 .48 .54 .50 .52 .52 .53 .58 .51 .47 .54 .56 .43 .51 .41 .47 .50 .48 .46 .45 .55 .51 .40 .51 .57 ... .49 .45 .54 .47 .39 ... .53 .51 .49 .45 ... ... ... .56 ... .42 .29 .37 .29 .26 .53 .42 .45 .47 .49

RC 10.976 10.978 10.945 10.873 10.842 10.788 10.709 10.640 10.564 10.526 10.486 10.472 10.466 10.455 10.440 10.461 10.460 10.449 10.446 10.460 10.428 10.413 10.461 10.429 10.427 10.419 10.445 10.431 10.442 ... 10.450 10.426 10.410 10.413 10.423 ... 10.398 10.401 10.425 10.426 ... ... ... 10.391 ... 10.418 10.406 10.407 10.422 10.397 10.386 10.400 10.374 10.362 10.377

σRC 0.007 0.005 ... 0.004 0.004 0.004 0.003 0.012 0.005 0.005 0.001 0.005 0.007 0.003 0.013 ... ... 0.000 0.003 ... ... ... ... ... ... ... ... 0.003 ... ... ... ... ... 0.012 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NRC 3 3 1 3 3 3 3 4 4 4 4 2 4 3 2 1 1 2 2 1 1 1 1 1 1 1 1 2 1 ... 1 1 1 2 1 ... 1 1 1 1 ... ... ... 1 ... 1 1 1 1 1 1 1 1 1 1

JD+ .51 .52 .52 .50 .53 .50 .54 .51 .52 .52 .54 .58 .51 .47 .54 .54 .43 .50 .41 .47 .50 .48 .46 .45 .55 .51 .40 .51 .57 .47 .50 .45 .54 .49 .38 .48 .53 .51 .49 .45 .47 .61 .62 .59 .63 .42 .29 .37 .29 .26 .53 .42 .45 .47 .49

IC 10.507 10.499 10.479 10.413 10.383 10.336 10.266 10.204 10.148 10.100 10.065 10.049 10.041 10.013 10.002 10.019 10.024 10.009 10.004 10.006 10.009 10.001 10.002 10.003 10.004 9.985 10.025 9.995 10.009 9.984 10.036 10.010 10.000 9.991 10.008 9.988 9.993 9.967 10.012 9.994 9.994 9.986 9.984 9.991 9.982 9.959 9.951 9.993 9.997 9.974 9.971 9.958 9.933 9.923 9.915

σIC 0.008 0.008 ... 0.003 0.001 0.004 0.003 0.005 0.002 0.004 0.004 0.003 0.004 0.005 0.009 ... ... 0.007 0.006 ... ... ... ... ... ... ... ... 0.008 ... ... ... ... ... 0.002 ... ... ... ... ... ... ... ... ... 0.016 ... ... ... ... ... ... ... ... ... ... ...

NIC 3 4 1 4 3 4 3 4 4 4 4 2 4 3 2 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 23

JD 2452794 2452795 2452796 2452798 2452799 2452800 2452801 2452802 2452803 2452804 2452805 2452806 2452807 2452808 2452809 2452810 2452811 2452812 2452813 2452814 2452815 2452817 2452818 2452820 2452821 2452823 2452824 2452825 2452826 2452827 2452832 2452834 2452836 2452837 2452838 2452841 2452853 2452856 2452863 2452869 2452872 2452885 2452887 2452888 2452889 2452929 2452985 2453008 2453035 2453057 2453124 2453150 2453159 2453170 2453202

Table B.35. continued. JD+ .46 .58 .49 .45 .58 .45 .54 .40 .37 .22 .28 .52 ... .47 .41 .45 .43 .39 .48 .51 .40 .44 .31 ... ... .58 .45 ... .43 .42 .41 ... .49 .58 .29 .28 .25 ... ... .25 ... ... .31 .20 .20 .20 ... ... .37 ... ... .58 ... .21 ...

U 10.919 10.894 10.877 10.938 10.948 10.945 10.948 10.952 10.946 10.929 11.021 10.951 ... 10.939 10.943 10.966 10.968 10.963 10.947 10.954 10.938 10.963 10.940 ... ... 10.963 10.956 ... 10.952 10.950 10.955 ... 10.964 10.945 10.964 10.966 10.969 ... ... 10.957 ... ... 10.949 10.957 10.960 10.957 ... ... 10.965 ... ... 11.018 ... 10.963 ...

σU ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NU 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 ... ... 1 1 ... 1 1 1 ... 1 1 1 1 1 ... ... 1 ... ... 1 1 1 1 ... ... 1 ... ... 1 ... 1 ...

JD+ .46 .58 .49 .45 .57 .44 .54 .41 .37 .22 .28 .51 ... .46 .40 .45 .43 .39 .47 .51 .40 .43 .30 .23 .27 .58 .44 .38 .43 .41 .41 .40 .48 .57 .29 .27 .24 .50 .29 .24 .65 .55 .32 .22 .20 .20 .38 ... .37 .45 .25 .58 .31 .21 .21

B 11.144 11.132 11.084 11.128 11.120 11.122 11.127 11.131 11.132 11.127 11.133 11.127 ... 11.137 11.135 11.131 11.125 11.126 11.150 11.147 11.160 11.133 11.128 11.132 11.129 11.137 11.129 11.134 11.136 11.136 11.129 11.146 11.143 11.127 11.156 11.156 11.144 11.142 11.137 11.149 11.125 11.102 11.142 11.142 11.141 11.136 11.134 ... 11.138 11.149 11.159 11.159 11.200 11.154 11.142

σB ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.006 ... ... ... ... ... ... ... ... ... 0.006 0.003

NB 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 ... 1 1 1 1 1 2 2

JD+ .46 .58 .49 .44 .57 .44 .54 .41 .37 .22 .27 .51 .53 .46 .40 .44 .42 .38 .47 .50 .40 .43 .30 .23 .27 .58 .44 .38 .42 .41 .40 .39 .48 .57 .28 .27 .24 .50 .29 .24 .65 .54 .32 .23 .21 .20 .38 .59 .37 .45 .28 .58 .30 .21 .22

V 10.787 10.766 10.779 10.769 10.756 10.764 10.765 10.775 10.776 10.764 10.769 10.766 10.715 10.782 10.779 10.758 10.759 10.763 10.793 10.793 10.787 10.775 10.769 10.775 10.762 10.780 10.767 10.766 10.773 10.776 10.769 10.787 10.779 10.772 10.783 10.788 10.783 10.803 10.802 10.781 10.788 10.749 10.775 10.776 10.782 10.766 10.763 10.792 10.781 10.813 10.787 10.787 10.789 10.795 10.792

σV ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.001 ... ... ... ... ... ... ... ... ... 0.013 0.016

NV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2

JD+ .46 .58 .49 .46 .57 .45 .55 .41 .37 .23 .29 .50 .53 .47 .42 .44 .44 .40 .48 .50 .41 .43 .30 .24 .27 .59 .44 .38 .42 .42 .41 .40 .49 .57 .28 .28 .26 .50 .30 .25 .65 .55 .32 .23 .21 .20 .38 .59 .38 .45 .29 .58 .29 .22 .26

RC 10.367 10.356 10.367 10.367 10.362 10.370 10.376 10.375 10.384 10.369 10.371 10.372 10.362 10.368 10.372 10.382 10.381 10.377 10.380 10.379 10.380 10.384 10.378 10.372 10.373 10.379 10.370 10.374 10.382 10.386 10.377 10.392 10.379 10.370 10.391 10.395 10.392 10.401 10.401 10.391 10.379 10.374 10.387 10.386 10.388 10.378 10.371 10.388 10.390 10.399 10.389 10.389 10.405 10.406 10.407

σRC ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.002 ... ... ... ... ... ... ... ... ... 0.001 ...

NRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1

JD+ .46 .58 .49 .46 .58 .45 .55 .41 .37 .23 .29 .50 .53 .47 .42 .44 .44 .40 .48 .50 .41 .44 .30 .24 .27 .59 .44 .37 .43 .42 .41 .40 .49 .58 .29 .28 .26 ... ... .25 .65 .55 .32 .20 .21 .20 .38 .59 .38 ... .29 .58 .30 .23 ...

IC 9.926 9.933 9.945 9.978 9.971 9.983 9.983 9.986 9.989 9.973 9.968 9.977 9.975 9.979 9.974 9.982 9.985 9.982 9.982 9.980 9.984 9.999 9.982 9.987 9.979 9.991 9.982 9.990 9.994 9.994 9.990 10.005 10.001 9.981 10.002 10.001 10.006 ... ... 10.003 9.984 9.971 9.995 9.999 10.002 9.989 9.990 10.002 10.001 ... 10.002 10.002 10.015 10.012 ...

σIC ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NIC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... ... 1 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 ...

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 24

JD 2453226 2453249 2453291 2453545 2453580 2453602 2453613 2453648 2453663 2453745 2453760 2453863 2453868 2453899 2453940 2453983 2454024 2454128 2454249 2454290 2454321 2454382 2454407 2454530 2454536 2454571 2454606 2454621 2454648 2454662 2454677 2454700 2454720 2454734 2454735 2454742 2454750 2454751 2454753 2454757 2454758 2454759 2454761 2454762 2454763 2454764 2454766 2454770 2454771 2454773 2454774 2454774 2454775 2454780 2454781

Table B.35. continued. JD+ ... ... .28 ... .18 ... ... ... ... ... .31 ... ... ... .17 ... ... .35 ... .36 .18 .18 ... ... .18 ... .38 ... ... ... .24 ... ... .62 ... ... .25 .24 .19 ... ... ... ... ... ... .60 .65 .18 .59 ... ... .20 ... ... ...

U ... ... 10.971 ... 10.949 ... ... ... ... ... 10.953 ... ... ... 10.963 ... ... 10.957 ... 10.952 10.961 10.965 ... ... 10.969 ... 10.987 ... ... ... 10.995 ... ... 10.980 ... ... 11.017 11.015 11.006 ... ... ... ... ... ... 10.991 10.989 10.998 10.998 ... ... 11.019 ... ... ...

σU ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.015 ... ... ... 0.009 ... ... ... ... 0.006 ... ... ... 0.008 ... ... ... ... ... 0.005 0.006 0.006 ... ... ... ... ... ... ... ... ... ... ... ... 0.007 ... ... ...

NU ... ... 1 ... 1 ... ... ... ... ... 1 ... ... ... 1 ... ... 2 ... 1 1 2 ... ... 1 ... 2 ... ... ... 3 ... ... 1 ... ... 2 2 2 ... ... ... ... ... ... 1 1 1 1 ... ... 2 ... ... ...

JD+ .22 .50 .27 .25 .19 .60 .38 .76 .45 .71 .30 .25 .17 .18 .17 .34 .62 .34 .58 .36 .18 .17 .66 .68 .18 .74 .38 .50 .17 .73 .25 .63 .15 .67 .60 .49 .25 .29 .24 .69 .22 .60 .50 .62 .23 .55 .63 .17 .59 ... .48 .26 .61 .17 .64

B 11.147 11.145 11.152 11.142 11.141 11.135 11.148 11.148 11.137 11.167 11.139 11.149 11.142 11.141 11.157 11.162 11.164 11.162 11.152 11.146 11.155 11.155 11.158 11.165 11.164 11.170 11.166 11.173 11.173 11.172 11.171 11.183 11.172 11.181 11.173 11.193 11.196 11.194 11.182 11.184 11.205 11.198 11.183 11.176 11.167 11.174 11.185 11.181 11.200 ... 11.193 11.195 11.199 11.208 11.187

σB ... ... ... ... ... 0.002 ... 0.005 ... ... ... ... ... 0.001 0.001 ... ... 0.004 0.001 ... ... 0.005 0.003 0.002 0.004 0.003 0.004 ... ... 0.001 0.003 0.001 ... 0.002 0.005 ... 0.003 0.003 0.004 0.004 ... ... ... ... ... 0.003 0.001 ... 0.008 ... ... 0.002 ... ... ...

NB 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 3 3 2 2 2 2 1 1 2 5 3 1 3 3 1 4 5 4 3 1 1 1 1 1 2 5 1 2 ... 1 4 1 1 1

JD+ .20 .50 .27 .26 .19 .60 .38 .76 .45 .71 .30 .26 .18 .18 .17 .34 .62 .34 .58 .37 .18 .17 .66 .68 .18 .74 .38 .50 .17 .73 .24 .63 ... .67 .60 .49 .25 .29 .24 .69 .26 .60 .50 .61 .27 .55 .63 .16 .59 .27 .48 .26 .61 .21 .63

V 10.779 10.803 10.790 10.802 10.783 10.784 10.784 10.787 10.771 10.791 10.781 10.819 10.778 10.782 10.789 10.789 10.793 10.790 10.792 10.788 10.794 10.788 10.792 10.797 10.799 10.794 10.794 10.805 10.809 10.809 10.804 10.811 ... 10.810 10.807 10.821 10.832 10.824 10.811 10.822 10.832 10.821 10.817 10.808 10.805 10.803 10.813 10.823 10.815 10.821 10.821 10.826 10.826 10.847 10.818

σV ... ... ... ... ... 0.004 ... 0.001 ... ... ... ... ... 0.002 0.004 ... ... 0.002 0.004 ... ... 0.003 0.008 0.001 0.002 0.007 0.014 ... ... 0.002 0.002 0.004 ... 0.001 0.003 ... 0.004 0.003 0.005 0.005 0.001 ... ... ... 0.004 0.001 0.002 ... 0.000 ... ... 0.003 ... 0.004 ...

NV 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 3 3 2 2 2 2 1 1 2 5 3 ... 3 3 1 4 5 4 3 2 1 1 1 2 2 5 1 2 1 1 5 1 2 1

JD+ ... .50 .27 .26 .19 .60 .38 .76 .45 .71 .30 .25 .18 .18 .17 .34 ... .34 .58 .36 .18 .18 .72 .68 .18 .74 .38 ... .17 .73 .25 .64 .15 .67 .66 ... .25 .26 .19 .72 .23 ... ... ... .25 .61 .68 .17 .60 ... ... .26 ... .17 ...

RC ... 10.394 10.393 10.396 10.391 10.385 10.387 10.388 10.385 10.396 10.387 10.413 10.384 10.391 10.400 10.392 ... 10.402 10.398 10.393 10.402 10.399 10.410 10.410 10.408 10.430 10.405 ... 10.415 10.418 10.413 10.428 10.417 10.413 10.418 ... 10.436 10.429 10.426 10.416 10.431 ... ... ... 10.415 10.410 10.411 10.421 10.422 ... ... 10.435 ... 10.456 ...

σRC ... ... ... ... ... 0.005 ... 0.002 ... ... ... ... ... 0.001 0.001 ... ... 0.001 0.002 ... ... 0.003 ... ... 0.002 ... 0.008 ... ... 0.002 0.002 0.002 ... 0.002 0.002 ... 0.002 0.001 0.002 0.006 ... ... ... ... ... ... 0.001 ... ... ... ... 0.001 ... ... ...

NRC ... 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 ... 2 2 1 1 3 1 1 2 1 2 ... 1 2 5 2 1 3 2 ... 4 4 2 2 1 ... ... ... 1 1 3 1 1 ... ... 4 ... 1 ...

JD+ ... ... .27 ... .19 .60 .38 .76 .45 .71 .30 ... .18 .18 .17 .34 ... .35 .58 .37 .18 .18 .72 .68 .18 .74 .38 ... .17 .73 .24 .64 .15 .67 .66 ... .26 .26 .19 .72 .23 ... ... ... .25 .61 .65 .16 .60 ... ... .26 ... .17 .65

IC ... ... 9.998 ... 9.996 9.977 10.000 9.987 9.995 9.978 9.999 ... 9.982 9.992 10.005 9.996 ... 10.009 9.994 9.998 10.008 10.001 10.010 10.007 10.013 10.012 10.002 ... 10.010 10.020 10.015 10.027 10.015 10.017 10.017 ... 10.033 10.022 10.027 10.024 10.033 ... ... ... 10.034 10.018 10.028 10.023 10.031 ... ... 10.037 ... 10.045 10.045

σIC ... ... ... ... ... 0.009 ... 0.009 ... ... ... ... ... 0.001 0.000 ... ... 0.001 0.002 ... ... 0.003 0.004 0.001 0.003 0.004 0.007 ... ... 0.017 0.001 0.001 ... 0.003 0.001 ... 0.006 0.003 0.005 0.002 ... ... ... ... ... ... 0.003 ... 0.003 ... ... 0.003 ... ... ...

NIC ... ... 1 ... 1 2 1 2 1 1 1 ... 1 2 2 1 ... 2 2 1 1 3 2 2 2 2 2 ... 1 2 6 2 1 3 2 ... 3 4 3 2 1 ... ... ... 1 1 4 1 2 ... ... 4 ... 1 1

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 25

JD 2454782 2454782 2454784 2454786 2454789 2454790 2454791 2454791 2454792 2454792 2454793 2454795 2454796 2454798 2454799 2454800 2454800 2454801 2454801 2454802 2454803 2454804 2454804 2454806 2454807 2454807 2454808 2454808 2454809 2454809 2454810 2454810 2454811 2454811 2454812 2454813 2454814 2454815 2454816 2454816 2454817 2454817 2454818 2454819 2454820 2454820 2454821 2454822 2454822 2454823 2454823 2454824 2454824 2454825 2454825

Table B.35. continued. JD+ ... ... ... ... .46 ... .21 ... .28 ... .26 ... .22 ... ... ... .31 ... .22 ... ... ... .35 ... .26 ... .35 ... .23 ... .24 ... ... ... .22 ... .23 ... .23 ... ... ... ... ... ... .26 ... .25 ... .26 ... ... ... ... ...

U ... ... ... ... 11.145 ... 11.144 ... 11.188 ... 11.240 ... 11.230 ... ... ... 11.223 ... 11.194 ... ... ... 11.313 ... 11.325 ... 11.392 ... 11.429 ... 11.457 ... ... ... 11.452 ... 11.413 ... 11.358 ... ... ... ... ... ... 11.246 ... 11.176 ... 11.171 ... ... ... ... ...

σU ... ... ... ... ... ... ... ... 0.011 ... 0.002 ... 0.004 ... ... ... ... ... 0.002 ... ... ... ... ... 0.015 ... ... ... 0.001 ... 0.000 ... ... ... 0.004 ... 0.005 ... 0.004 ... ... ... ... ... ... ... ... 0.009 ... 0.016 ... ... ... ... ...

NU ... ... ... ... 1 ... 1 ... 3 ... 3 ... 3 ... ... ... 1 ... 2 ... ... ... 1 ... 2 ... 1 ... 2 ... 2 ... ... ... 4 ... 4 ... 3 ... ... ... ... ... ... 1 ... 2 ... 3 ... ... ... ... ...

JD+ ... .51 .32 .49 .37 .62 .22 .59 .29 .57 .23 .55 .22 .60 .18 .60 .31 .54 .22 .62 .14 .58 .27 .56 .24 .55 .30 .58 .31 .56 .27 .56 .29 .58 .21 .57 .23 .60 .24 .58 ... .57 .60 .38 .55 .22 .59 .24 .58 .27 .59 .25 .59 .57 .23

B ... 11.224 11.230 11.224 11.241 11.254 11.277 11.297 11.348 11.341 11.383 11.372 11.379 11.381 11.379 11.359 11.368 11.351 11.355 11.357 11.371 11.390 11.418 11.436 11.466 11.480 11.530 11.545 11.596 11.607 11.620 11.617 11.632 11.620 11.613 11.591 11.568 11.562 11.518 11.500 ... 11.484 11.434 11.423 11.405 11.382 11.372 11.352 11.342 11.307 11.306 11.287 11.279 11.241 11.246

σB ... ... 0.002 ... 0.006 0.001 0.016 0.006 0.002 0.010 0.003 0.022 0.006 ... ... ... 0.004 0.014 0.004 ... ... ... 0.001 0.001 0.002 0.002 0.004 0.010 0.005 0.003 0.001 0.004 0.006 0.003 0.002 0.004 0.003 0.005 0.008 ... ... 0.003 0.002 ... 0.001 0.001 0.004 0.001 0.004 0.001 ... 0.009 ... 0.001 0.006

NB ... 1 2 1 4 3 3 3 5 4 6 2 4 1 1 1 4 2 4 1 1 1 3 2 4 3 3 3 6 4 3 4 2 3 7 3 6 3 6 1 ... 4 3 1 3 2 3 3 4 4 1 2 1 2 2

JD+ .25 .51 .32 .49 .37 .61 .23 .59 .29 .57 .23 .49 .22 .59 .18 .59 .32 .53 .24 .61 .24 .58 .28 .54 .24 .55 .29 .58 .31 .55 .26 .56 .27 .58 .21 .57 .23 .60 .23 .57 .27 .57 .60 .36 .55 .23 .59 .24 .58 .24 .58 .27 .58 .58 .23

V 10.871 10.843 10.867 10.854 10.861 10.868 10.899 10.914 10.950 10.946 10.985 10.983 10.977 10.962 10.981 10.958 10.970 10.966 10.967 10.991 11.001 11.006 11.030 11.038 11.075 11.091 11.144 11.154 11.188 11.208 11.211 11.215 11.223 11.215 11.209 11.191 11.174 11.156 11.130 11.109 11.071 11.099 11.068 11.028 11.034 11.006 11.000 10.974 10.967 10.934 10.935 10.910 10.913 10.881 10.869

σV ... ... 0.005 ... 0.007 0.003 0.004 0.009 0.002 0.007 0.002 ... 0.003 ... ... ... 0.002 0.011 0.004 ... 0.011 ... 0.004 0.003 0.001 0.003 0.005 0.004 0.002 0.002 0.001 0.004 0.004 0.004 0.004 0.006 0.006 0.001 0.001 ... ... 0.003 0.004 0.007 0.003 0.007 0.006 0.002 0.001 0.003 ... 0.005 ... 0.006 0.006

NV 1 1 2 1 4 4 3 4 5 4 6 1 4 1 1 1 4 2 3 1 2 1 3 2 3 3 4 3 6 3 3 4 3 3 8 3 6 3 5 1 1 4 3 2 3 3 3 3 4 4 1 2 1 2 2

JD+ ... ... .32 ... .37 .68 .23 .58 .29 .58 .24 ... .22 ... .18 ... .32 ... .24 ... .14 ... .28 .57 .25 .57 .30 .57 .31 .58 .27 .59 .28 .62 .21 .57 .23 .61 .24 ... ... .61 .61 .38 .57 .22 .60 .24 .61 .24 ... .27 ... ... .24

RC ... ... 10.462 ... 10.474 10.476 10.504 10.505 10.545 10.541 10.578 ... 10.572 ... 10.578 ... 10.571 ... 10.564 ... 10.593 ... 10.624 10.636 10.669 10.681 10.730 10.741 10.773 10.790 10.794 10.796 10.801 10.793 10.795 10.780 10.768 10.753 10.722 ... ... 10.698 10.658 10.630 10.630 10.608 10.593 10.575 10.556 10.543 ... 10.520 ... ... 10.464

σRC ... ... 0.000 ... 0.003 0.006 0.004 0.006 0.001 0.010 0.002 ... 0.003 ... ... ... 0.001 ... 0.003 ... ... ... 0.003 ... 0.001 0.001 0.002 0.001 0.003 0.001 0.003 0.006 0.003 0.003 0.001 0.001 0.004 0.003 0.003 ... ... 0.002 0.002 ... 0.001 0.008 0.003 0.003 0.006 0.002 ... 0.003 ... ... 0.007

NRC ... ... 2 ... 4 2 3 2 6 2 6 ... 4 ... 1 ... 4 ... 3 ... 1 ... 3 1 4 2 3 2 6 2 3 2 2 2 6 2 6 2 6 ... ... 2 2 1 2 2 2 3 2 4 ... 2 ... ... 2

JD+ ... ... .32 ... .37 .68 .23 .61 .29 .59 .24 .61 .22 .60 .18 .60 .32 .58 .22 .62 .14 ... .28 .57 .25 .57 .23 .58 .31 .58 .27 .58 .28 .62 .21 .58 .23 .60 .24 .58 ... .60 .60 .38 .57 .23 .59 .24 .61 .24 .60 .27 .60 .62 .24

IC ... ... 10.055 ... 10.071 10.079 10.097 10.097 10.133 10.120 10.162 10.149 10.162 10.157 10.169 10.151 10.165 10.154 10.158 10.171 10.195 ... 10.212 10.228 10.261 10.275 10.316 10.330 10.348 10.363 10.363 10.364 10.361 10.357 10.362 10.356 10.340 10.338 10.307 10.283 ... 10.282 10.254 10.240 10.219 10.182 10.181 10.166 10.160 10.135 10.128 10.109 10.107 10.075 10.071

σIC ... ... 0.000 ... 0.003 0.004 0.004 0.001 0.003 0.009 0.003 ... 0.002 ... ... ... 0.002 ... 0.004 ... ... ... 0.005 ... 0.004 0.002 0.003 0.003 0.002 0.004 0.004 0.006 0.003 0.001 0.005 0.007 0.002 0.003 0.004 ... ... 0.003 0.003 ... 0.004 0.003 0.002 0.003 0.003 0.002 ... 0.002 ... ... 0.013

NIC ... ... 2 ... 4 2 3 3 6 3 6 1 4 1 1 1 4 1 4 1 1 ... 3 1 4 2 3 3 5 3 3 3 2 2 7 3 6 3 6 1 ... 3 3 1 2 2 3 3 3 4 1 2 1 1 2

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 26

JD 2454826 2454826 2454827 2454827 2454828 2454828 2454829 2454829 2454830 2454830 2454831 2454831 2454832 2454832 2454833 2454833 2454834 2454834 2454835 2454835 2454836 2454836 2454837 2454837 2454838 2454838 2454839 2454839 2454840 2454840 2454841 2454841 2454842 2454842 2454843 2454843 2454844 2454844 2454845 2454845 2454846 2454846 2454847 2454848 2454848 2454849 2454849 2454850 2454850 2454851 2454851 2454852 2454852 2454853 2454854

Table B.35. continued. JD+ ... .27 ... ... ... .27 ... .39 .68 ... .25 ... ... ... ... ... ... ... .22 ... ... ... ... .23 ... .22 ... ... ... .23 .65 ... ... ... ... .22 ... ... ... .22 ... .23 .23 ... .22 ... .29 .65 ... ... ... .25 .27 .58 .52

U ... 11.066 ... ... ... 11.013 ... 11.013 11.016 ... 10.989 ... ... ... ... ... ... ... 11.005 ... ... ... ... 10.990 ... 10.984 ... ... ... 10.988 10.977 ... ... ... ... 11.010 ... ... ... 10.998 ... 10.996 10.986 ... 10.981 ... 10.980 10.975 ... ... ... 10.970 10.955 10.958 10.950

σU ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.007 ... ... ... ... ... ... 0.004 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 0.002 ... ... ... ... ... ... ... ... ... ... ... ...

NU ... 1 ... ... ... 1 ... 1 1 ... 1 ... ... ... ... ... ... ... 3 ... ... ... ... 1 ... 2 ... ... ... 1 1 ... ... ... ... 1 ... ... ... 1 ... 1 2 ... 1 ... 1 1 ... ... ... 1 1 1 1

JD+ .52 .29 .58 ... .59 .23 .56 .28 .62 .59 .23 .57 .58 .31 .57 ... .56 .59 .20 .58 .30 .55 .56 .23 .55 .25 .56 .57 .33 .22 .62 .58 .59 .57 .59 .26 .59 .23 .60 .21 .59 .21 .23 .03 .22 .02 .15 .65 .01 .01 .02 .24 .27 .57 .51

B 11.235 11.222 11.230 ... 11.220 11.204 11.198 11.194 11.190 11.179 11.181 11.179 11.171 11.175 11.176 ... 11.172 11.177 11.173 11.177 11.180 11.178 11.172 11.172 11.170 11.169 11.162 11.160 11.167 11.165 11.173 11.177 11.200 11.194 11.213 11.195 11.188 11.180 11.197 11.183 11.187 11.177 11.175 11.172 11.151 11.162 11.157 11.159 11.142 11.172 11.122 11.149 11.145 11.135 11.138

σB ... 0.005 ... ... ... 0.008 0.003 0.003 0.003 ... 0.003 0.003 0.005 ... 0.005 ... 0.005 ... 0.002 0.003 ... 0.010 0.004 ... 0.006 0.007 0.006 0.007 ... ... 0.003 ... ... ... ... 0.001 0.005 ... ... 0.008 ... 0.006 0.001 ... ... ... 0.005 ... ... ... ... ... ... ... ...

NB 1 2 1 ... 1 3 4 4 3 1 3 4 4 1 4 ... 4 1 5 3 1 2 4 1 2 3 4 3 1 1 2 1 1 1 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1

JD+ .52 .30 .58 .32 .58 .23 .56 .29 .62 .58 .22 .57 .58 .31 .56 .31 .56 .59 .21 .58 .32 .54 .56 .23 .54 .26 .56 .57 .31 .22 .62 .58 .58 .60 .58 .24 .59 ... .60 .21 .59 .22 .24 .03 .22 .03 .15 .65 .01 .01 .02 .24 .27 .57 .51

V 10.862 10.863 10.846 10.851 10.852 10.827 10.828 10.822 10.815 10.815 10.807 10.806 10.800 10.805 10.810 10.791 10.809 10.811 10.802 10.808 10.815 10.815 10.805 10.809 10.809 10.797 10.795 10.799 10.826 10.804 10.807 10.822 10.809 10.826 10.824 10.817 10.804 ... 10.811 10.818 10.811 10.802 10.805 10.806 10.797 10.796 10.793 10.790 10.791 10.796 10.751 10.777 10.780 10.788 10.772

σV ... 0.012 ... ... ... 0.003 0.001 0.006 0.002 ... 0.002 0.003 0.003 ... 0.003 ... 0.006 ... 0.002 0.009 ... 0.013 0.008 ... 0.011 0.003 0.008 0.005 ... ... 0.012 ... ... ... ... 0.002 0.004 ... ... 0.006 ... 0.007 0.002 ... ... ... 0.003 ... ... ... ... ... ... ... ...

NV 1 2 1 1 1 3 4 4 3 1 3 4 4 1 4 1 4 1 5 3 1 2 4 1 2 3 4 3 1 1 2 1 1 1 1 3 2 ... 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1

JD+ ... .30 ... ... ... .23 .58 .25 .62 ... .22 .59 .58 .31 .58 ... .58 .59 .21 .59 .31 ... .59 .23 ... .26 .58 .59 .30 .22 .65 ... ... ... ... .24 .59 ... .60 .21 .59 .22 .24 .03 .22 .03 .15 .65 .01 .01 .02 .24 .27 .57 .52

RC ... 10.453 ... ... ... 10.439 10.443 10.433 10.426 ... 10.407 10.416 10.400 10.408 10.403 ... 10.403 10.421 10.408 10.413 10.403 ... 10.411 10.415 ... 10.402 10.378 10.406 10.412 10.404 10.400 ... ... ... ... 10.418 10.383 ... 10.416 10.416 10.396 10.405 10.411 10.411 10.391 10.396 10.396 10.402 10.396 10.396 10.356 10.382 10.397 10.392 10.384

σRC ... 0.006 ... ... ... 0.004 0.003 0.004 0.002 ... 0.006 0.006 0.000 ... 0.003 ... 0.003 ... 0.001 0.003 ... ... 0.010 ... ... 0.002 0.012 0.006 ... ... ... ... ... ... ... 0.002 0.003 ... ... 0.007 ... 0.001 0.003 ... ... ... 0.000 ... ... ... ... ... ... ... ...

NRC ... 2 ... ... ... 3 2 3 3 ... 2 2 3 1 2 ... 2 1 5 2 1 ... 2 1 ... 3 2 2 1 1 1 ... ... ... ... 3 2 ... 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1

JD+ ... .29 .58 ... .60 .23 .59 .25 .62 .60 .22 .59 .59 .31 .59 ... .59 .59 .21 .59 .31 .60 .59 .23 .60 .26 .58 .59 .29 .22 .62 .59 .59 .58 .59 .24 .59 .23 .60 .21 .59 .22 .24 .03 .22 .03 .15 .65 .01 .01 .02 .24 .27 .58 .52

IC ... 10.054 10.056 ... 10.051 10.036 10.030 10.029 10.027 10.020 10.018 10.015 10.010 10.021 10.014 ... 10.004 10.013 10.016 10.011 10.016 10.029 10.005 10.017 10.011 9.997 9.999 10.002 10.002 10.009 10.007 10.009 9.999 10.030 10.022 10.022 10.017 10.003 10.023 10.030 10.018 9.996 10.014 9.993 9.998 9.998 10.000 10.004 9.993 10.013 9.973 10.000 10.000 9.988 9.989

σIC ... 0.002 ... ... ... 0.003 0.003 0.003 0.002 ... 0.004 0.002 0.002 ... 0.005 ... 0.001 ... 0.002 0.004 ... ... 0.001 ... ... 1 0.010 0.010 0.006 ... ... 0.000 ... ... ... ... 0.007 0.001 ... ... 0.005 ... 0.010 0.004 ... ... ... 0.002 ... ... ... ... ... ... ... ...

NIC ... 2 1 ... 1 3 3 3 3 1 3 3 4 1 3 ... 3 1 5 3 1 1 3 1 3 3 2 1 1 2 1 1 1 1 3 2 1 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 27

JD 2454854 2454855 2454855 2454856 2454856 2454857 2454857 2454858 2454858 2454859 2454860 2454860 2454861 2454862 2454862 2454863 2454863 2454864 2454865 2454865 2454866 2454866 2454867 2454868 2454868 2454869 2454869 2454870 2454871 2454872 2454872 2454874 2454875 2454876 2454877 2454878 2454879 2454881 2454881 2454882 2454882 2454883 2454884 2454885 2454886 2454890 2454891 2454891 2454893 2454894 2454895 2454903 2454909 2454922 2454938

Table B.35. continued. JD+ .58 .45 .50 .37 .37 .33 .41 .26 .24 .24 .20 .28 .39 .19 .21 ... .27 ... ... ... ... ... .26 ... .55 .50

U 10.970 10.934 10.942 10.946 10.957 10.959 10.939 10.951 10.943 10.945 10.951 10.913 10.962 10.946 10.938 ... 10.937 ... ... ... ... ... 10.951 ... 10.938 10.941

σU ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NU 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 ... ... ... ... ... 1 ... 1 1

JD+ .58 .44 .50 ... .36 ... .41 .25 .23 .23 .20 .28 .39 .19 .21 .23 .26 .24 .25 .65 .27 .27 .25 .53 .54 .50

B 11.136 11.123 11.130 ... 11.119 ... 11.122 11.137 11.131 11.124 11.119 11.130 11.131 11.136 11.123 11.122 11.115 11.121 11.112 11.120 11.120 11.127 11.114 11.124 11.124 11.125

σB ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NB 1 1 1 ... 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

JD+ .57 .43 .49 .35 .36 .30 .40 .25 .23 .23 .19 .28 .39 .18 .20 .23 .25 .25 .25 .65 .27 .27 .25 .53 .54 .49

V 10.796 10.763 10.770 10.780 10.779 10.768 10.774 10.775 10.773 10.764 10.757 10.767 10.773 10.772 10.761 10.763 10.751 10.759 10.759 10.756 10.755 10.766 10.763 10.761 10.766 10.761

σV ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

JD+ .58 .44 .50 ... .36 .30 .41 .26 .23 .22 .19 .28 .38 .19 .21 .23 .25 .25 .25 .65 .27 .28 .26 .53 .55 .50

RC 10.381 10.361 10.377 ... 10.364 10.369 10.373 10.383 10.378 10.369 10.361 10.375 10.376 10.376 10.360 10.355 10.340 10.360 10.356 10.355 10.348 10.360 10.350 10.359 10.359 10.358

σRC ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NRC 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

JD+ .58 .44 .50 ... .36 .31 .41 .25 .24 .22 .19 .28 .38 .19 .21 .23 .25 .25 .25 .65 .27 .28 .25 ... .55 .50

IC 9.994 9.982 9.983 ... 9.995 9.984 9.985 10.009 9.983 9.978 9.968 9.975 9.983 9.976 9.959 9.958 9.940 9.949 9.954 9.951 9.955 9.955 9.950 ... 9.957 9.951

σIC ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

NIC 1 1 1 ... 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 28

JD 2454950 2455017 2455027 2455040 2455063 2455083 2455099 2455111 2455120 2455138 2455150 2455156 2455162 2455164 2455210 2455233 2455253 2455264 2455267 2455270 2455271 2455272 2455274 2455294 2455303 2455311

Table B.36. List of spectra obtained during and near the last three eclipses (from E = 8 to E = 10) and names of the corresponding FITS files. HJD-2400000 50997.5455 51087.3657 51087.4682 52598.2560 52598.2830 52599.1691 52599.2161 52741.6210 52754.5710 52755.5370 52755.5813 52757.4720 52759.6095 52774.3798 52776.4294 52778.5614 52781.5289 52782.4191 52788.4713 52793.4638 52793.5076 52793.5204 52793.5701 52793.5881 52794.4294 52796.5167 52797.4549 52797.4995 52797.5227 52797.5525 52798.4831 52798.5071 52800.4531 52800.4872 52800.5046 52800.5516 52800.5786 52801.4903 52805.4710 52805.5186 52805.8380 52806.3958 52807.3604 52807.8400 52808.8113 52809.4252 52809.4535 52809.5520 52810.4722 52811.4271 52812.8408 52813.7531

Phase 8.12387 8.16769 8.16774 8.90473 8.90474 8.90517 8.90520 8.97466 8.98098 8.98145 8.98147 8.98240 8.98344 8.99064 8.99164 8.99268 8.99413 8.99457 8.99752 8.99995 8.99997 8.99998 9.00000 9.00001 9.00042 9.00144 9.00190 9.00192 9.00193 9.00195 9.00240 9.00241 9.00336 9.00338 9.00339 9.00341 9.00342 9.00387 9.00581 9.00583 9.00599 9.00626 9.00673 9.00697 9.00744 9.00774 9.00775 9.00780 9.00825 9.00872 9.00941 9.00985

Epoch 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Observatory Rozhen Rozhen Rozhen Rozhen Rozhen Rozhen Rozhen Rozhen Piwnice Piwnice Asiago Piwnice Asiago Piwnice Piwnice Asiago Asiago Piwnice Piwnice Piwnice Rozhen Asiago Rozhen Rozhen Piwnice Asiago Piwnice Rozhen Rozhen Rozhen Piwnice Rozhen Rozhen Rozhen Rozhen Rozhen Rozhen Terskol Rozhen Rozhen DDO Terskol Terskol DDO DDO Piwnice Terskol Asiago Terskol Terskol DDO DDO

Instrument Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Cassegrain/1.82 AFOSC/echelle Schmidt-Cassegrain/0.9 CCS Cassegrain/1.82 AFOSC/echelle Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Cassegrain/1.82 Echelle Cassegrain/1.82 Echelle Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.0 Coude Cassegrain/1.82 AFOSC/echelle Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Schmidt-Cassegrain/0.9 CCS Cassegrain/1.82 Echelle Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Echelle Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Cassegrain/1.88 Cassegrain Ritchey-Chr´etien/2.0 Echelle Ritchey-Chr´etien/2.0 Echelle Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.0 Echelle Cassegrain/1.82 Echelle Ritchey-Chr´etien/2.0 Echelle Ritchey-Chr´etien/2.0 Echelle Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain

Spectral Region Hα Hα Na i Na i Hα Na i Hα Na i 4800-6800 Å 4800-6800 Å 3600-8800 Å 4800-6800 Å 3600-8800 Å 5400-9250 Å 5400-9250 Å 4600-9200 Å 4600-9200 Å 5200-9200 Å 5100-8900 Å 5100-8900 Å Hα 3600-8800 Å Na i Hβ, Fe ii 5100-8900 Å 4600-9200 Å 5100-8900 Å Hα Na i Hβ, Fe ii 5100-8900 Å Hβ, Fe ii Hβ, Fe ii Na i Hα Na i Hβ, Fe ii 4200-6700 Å Hα Na i Hα 4200-6700 Å 4200-6700 Å Hα Hα 5200-8900 Å 4200-6700 Å 4600-9200 Å 4200-6700 Å 4200-6700 Å Na i Hα

Res. power 15000 15000 15000 15000 15000 15000 15000 15000 4000 4000 3600 4000 3600 2000 2000 20000 20000 2000 2000 2000 15000 3600 15000 15000 2000 20000 2000 15000 15000 15000 2000 15000 15000 15000 15000 15000 15000 13500 30000 30000 16000 13500 13500 16000 16000 2000 13500 20000 13500 13500 16000 16000

Name of FITS file 980703.Rozhen.Ha.fits 980930.Rozhen.Ha.fits 980930.Rozhen.NaI.fits 021119.Rozhen.NaI.fits 021119.Rozhen.Ha.fits 021120.Rozhen.NaI.fits 021120.Rozhen.Ha.fits 030412.Rozhen.NaI.fits 030425.Piwnice.4800 6800.fits 030426.Piwnice.4800 6800.fits 030426.Asiago.3600 8800.fits 030427.Piwnice.4800 6800.fits 030430.Asiago.3600 8800.fits 030514.Piwnice.5400 9250.fits 030516.Piwnice.5400 9250.fits 030519.Asiago.4600 9200.fits 030522.Asiago.4600 9200.fits 030522.Piwnice.5200 9200.fits 030528.Piwnice.5100 8900.fits 030602.Piwnice.5100 8900.fits 030603.Rozhen.Ha.fits 030603.Asiago.3600 8800.fits 030603.Rozhen.NaI.fits 030603.Rozhen.Hb.fits 030603.Piwnice.5100 8900.fits 030606.Asiago.4600 9200.fits 030606.Piwnice.5100 8900.fits 030606.Rozhen.Ha.fits 030607.Rozhen.NaI.fits 030607.Rozhen.Hb.fits 030607.Piwnice.5100 8900.fits 030608.Rozhen.Hb.fits 030609.Rozhen.Hb.fits 030609.Rozhen.NaI.fits 030610.Rozhen.Ha.fits 030610.Rozhen.NaI.fits 030610.Rozhen.Hb.fits 030610.Terskol.4200 6700.fits 030614.Rozhen.Ha.fits 030615.Rozhen.NaI.fits 030615.DDO.Ha.fits 030615.Terskol.4200 6700.fits 030616.Terskol.4200 6700.fits 030617.DDO.Ha.fits 030618.DDO.Ha.fits 030618.Piwnice.5200 8900.fits 030618.Terskol.4200 6700.fits 030619.Asiago.4600 9200.fits 030619.Terskol.4200 6700.fits 030620.Terskol.4200 6700.fits 030622.DDO.NaI.fits 030623.DDO.Ha.fits

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 29

Date [UT] 1998-07-03 1:05:30 1998-09-30 20:46:37 1998-09-30 23:14:09 2002-11-19 18:08:37 2002-11-19 18:47:34 2002-11-20 16:03:32 2002-11-20 17:11:14 2003-04-12 2:54:15 2003-04-25 1:42:16 2003-04-26 0:53:20 2003-04-26 1:57:04 2003-04-27 23:19:40 2003-04-30 2:37:43 2003-05-14 21:06:57 2003-05-16 22:18:17 2003-05-19 1:28:29 2003-05-22 0:41:38 2003-05-22 22:03:26 2003-05-28 23:18:36 2003-06-02 23:07:48 2003-06-03 0:10:58 2003-06-03 0:29:25 2003-06-03 1:40:59 2003-06-03 2:06:55 2003-06-03 22:18:21 2003-06-06 0:24:01 2003-06-06 22:55:03 2003-06-06 23:59:17 2003-06-07 0:32:41 2003-06-07 1:15:38 2003-06-07 23:35:41 2003-06-08 0:10:11 2003-06-09 22:52:27 2003-06-09 23:41:35 2003-06-10 0:06:38 2003-06-10 1:14:20 2003-06-10 1:53:09 2003-06-10 23:46:00 2003-06-14 23:18:11 2003-06-15 0:26:51 2003-06-15 8:06:43 2003-06-15 21:30:00 2003-06-16 20:39:00 2003-06-17 8:09:32 2003-06-18 7:28:13 2003-06-18 22:12:19 2003-06-18 22:53:00 2003-06-19 1:14:56 2003-06-19 23:20:00 2003-06-20 22:15:00 2003-06-22 8:10:49 2003-06-23 6:04:32

Table B.36. continued. HJD-2400000 52813.7885 52814.8188 52815.8306 52816.4410 52817.4111 52821.8187 52822.8442 52824.6928 52826.8423 52828.7734 52829.5145 52829.5545 52843.4295 52848.8581 52850.8590 52851.8175 52862.7475 52866.4063 52866.4346 52925.3451 52925.3736 53092.4776 53092.6067 53094.4800 53303.5201 54754.3480 54754.3695 54810.2758 54810.3114 54810.3153 54810.3495 54811.2995 54811.3198 54820.3649 54822.3979 54829.3157 54837.3307 54838.2919 54843.1827 54843.2152 54843.3484 54844.1997 54844.2534 54844.2573 54874.3417 54908.6118 54908.6656 54909.3709

Phase 9.00987 9.01037 9.01086 9.01116 9.01164 9.01379 9.01429 9.01519 9.01624 9.01718 9.01754 9.01756 9.02433 9.02698 9.02795 9.02842 9.03375 9.03554 9.03555 9.06429 9.06430 9.14582 9.14588 9.14680 9.24877 9.95651 9.95652 9.98379 9.98381 9.98381 9.98383 9.98429 9.98430 9.98871 9.98971 9.99308 9.99699 9.99746 9.99985 9.99986 9.99993 10.00034 10.00037 10.00037 10.01505 10.03176 10.03179 10.03213

Epoch 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Observatory DDO DDO DDO Terskol Piwnice DDO DDO DDO DDO DDO Rozhen Rozhen Rozhen DDO DDO DDO SPM Rozhen Rozhen Rozhen Rozhen Piwnice Piwnice Piwnice Asiago Rozhen Rozhen Piwnice Piwnice Rozhen Rozhen Rozhen Rozhen NOT, La Palma NOT, La Palma NOT, La Palma Piwnice Piwnice Rozhen Piwnice Piwnice Rozhen Rozhen Piwnice NOT, La Palma Piwnice Piwnice Piwnice

Instrument Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Ritchey-Chr´etien/2.0 Echelle Schmidt-Cassegrain/0.9 CCS Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Cassegrain/1.88 Cassegrain Ritchey-Chr´etien/2.12 Echelle Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Cassegrain/1.82 Echelle Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.56 FIES-Echelle Ritchey-Chr´etien/2.56 FIES-Echelle Ritchey-Chr´etien/2.56 FIES-Echelle Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.0 Coude Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.0 Coude Ritchey-Chr´etien/2.0 Coude Schmidt-Cassegrain/0.9 CCS Ritchey-Chr´etien/2.56 FIES-Echelle Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS Schmidt-Cassegrain/0.9 CCS

Spectral Region Na i Na i Hα 4200-6700 Å 5150-8900 Å Hα Hα Hα Hα Hα Na i Hα Hα Hα Hα Hα 3700-6800 Å Hα Na i Na i Hα 5500-9500 Å 5500-9500 Å 5500-9500 Å 4600-9200 Å Hα Na i 6500-10500 Å 3500-7500 Å Hα Na i Hα Na i 3680-7280 Å 3680-7280 Å 3680-7280 Å 4700-6700 Å 4700-6700 Å Hα 4700-6700 Å 4000-8000 Å Na i Hα 4000-8000 Å 3680-7280 Å 3500-5500 Å 5500-7500 Å 5500-7500 Å

Res. power 16000 16000 16000 13500 2000 16000 16000 16000 16000 16000 30000 30000 15000 16000 16000 16000 18000 15000 15000 15000 15000 2000 2000 2000 20000 15000 15000 2000 2000 15000 15000 15000 15000 48000 48000 48000 4000 4000 15000 4000 2000 15000 15000 4000 48000 3000 4000 4000

Name of FITS file 030623.DDO.NaI.fits 030624.DDO.NaI.fits 030625.DDO.Ha.fits 030625.Terskol.4200 6700.fits 030626.Piwnice.5150 8900.fits 030701.DDO.Ha.fits 030702.DDO.Ha.fits 030704.DDO.Ha.fits 030706.DDO.Ha.fits 030708.DDO.Ha.fits 030709.Rozhen.NaI.fits 030709.Rozhen.Ha.fits 030722.Rozhen.Ha.fits 030728.DDO.Ha.fits 030730.DDO.Ha.fits 030731.DDO.Ha.fits 030811.SPM.3700 6800.fits 030814.Rozhen.Ha.fits 030814.Rozhen.NaI.fits 031012.Rozhen.NaI.fits 031012.Rozhen.Ha.fits 040327.Piwnice.5500 9500.fits 040328.Piwnice.5500 9500.fits 040329.Piwnice.5500 9500.fits 041025.Asiago.4600 9200.fits 081014.Rozhen.Ha.fits 081014.Rozhen.NaI.fits 081209.Piwnice.6500 10500.fits 081209.Piwnice.3500 7500.fits 081209.Rozhen.Ha.fits 081209.Rozhen.NaI.fits 081210.Rozhen.Ha.fits 081210.Rozhen.NaI.fits 081219.NOT.3680 7280.fits 081221.NOT.3680 7280.fits 081228.NOT.3680 7280.fits 090105.Piwnice.4700 6700.fits 090106.Piwnice.4700 6700.fits 090111.Rozhen.Ha.fits 090111.Piwnice.4700 6700.fits 090111.Piwnice.4000 8000.fits 090112.Rozhen.NaI.fits 090112.Rozhen.Ha.fits 090112.Piwnice.4000 8000.fits 090211.NOT.3680 7280.fits 090318.Piwnice.3500 5500.fits 090318.Piwnice.5500 7500.fits 090318.Piwnice.5500 7500.fits

C. Gałan et al.: International observational campaigns of the last two eclipses in EE Cep, Online Material p 30

Date [UT] 2003-06-23 6:55:27 2003-06-24 7:39:04 2003-06-25 7:56:06 2003-06-25 22:35:00 2003-06-26 21:52:02 2003-07-01 7:38:53 2003-07-02 8:15:36 2003-07-04 4:37:39 2003-07-06 8:12:56 2003-07-08 6:33:45 2003-07-09 0:20:55 2003-07-09 1:18:28 2003-07-22 22:18:27 2003-07-28 8:35:39 2003-07-30 8:36:55 2003-07-31 7:37:14 2003-08-11 5:56:22 2003-08-14 21:45:07 2003-08-14 22:25:52 2003-10-12 20:17:00 2003-10-12 20:58:00 2004-03-27 23:27:45 2004-03-28 2:33:39 2004-03-29 23:31:12 2004-10-25 0:28:54 2008-10-14 20:21:05 2008-10-14 20:52:09 2008-12-09 18:37:11 2008-12-09 19:28:22 2008-12-09 19:34:00 2008-12-09 20:23:19 2008-12-10 19:11:19 2008-12-10 19:40:29 2008-12-19 20:45:24 2008-12-21 21:33:01 2008-12-28 19:34:40 2009-01-05 19:56:12 2009-01-06 19:00:18 2009-01-11 16:23:01 2009-01-11 17:09:51 2009-01-11 20:21:41 2009-01-12 16:47:36 2009-01-12 18:04:52 2009-01-12 18:10:35 2009-02-11 20:12:01 2009-03-18 2:41:03 2009-03-18 3:58:29 2009-03-18 20:54:07