Isolation and Pharmacological Characterization of -Elapitoxin ... - MDPI

3 downloads 0 Views 2MB Size Report
Feb 29, 2016 - Academic Editor: Bryan Grieg Fry .... Stephen's Banded snake ..... a postsynaptic neurotoxin from the venom of the Stephen's banded snake.
toxins Article

Isolation and Pharmacological Characterization of α-Elapitoxin-Ot1a, a Short-Chain Postsynaptic Neurotoxin from the Venom of the Western Desert Taipan, Oxyuranus temporalis Carmel M. Barber 1 , Muhamad Rusdi Ahmad Rusmili 1,2 and Wayne C. Hodgson 1, * 1 2

*

Monash Venom Group, Department of Pharmacology, Monash University, Clayton, VIC 3168, Australia; [email protected] Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota 23800, Malaysia; [email protected] Correspondence: [email protected]; Tel.: +61-3-9905-4861

Academic Editor: Bryan Grieg Fry Received: 22 December 2015; Accepted: 19 February 2016; Published: 29 February 2016

Abstract: Taipans (Oxyuranus spp.) are elapids with highly potent venoms containing presynaptic (β) and postsynaptic (α) neurotoxins. O. temporalis (Western Desert taipan), a newly discovered member of this genus, has been shown to possess venom which displays marked in vitro neurotoxicity. No components have been isolated from this venom. We describe the characterization of α-elapitoxin-Ot1a (α-EPTX-Ot1a; 6712 Da), a short-chain postsynaptic neurotoxin, which accounts for approximately 30% of O. temporalis venom. α-Elapitoxin-Ot1a (0.1–1 µM) produced concentration-dependent inhibition of indirect-twitches, and abolished contractile responses to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The inhibition of indirect twitches by α-elapitoxin-Ot1a (1 µM) was not reversed by washing the tissue. Prior addition of taipan antivenom (10 U/mL) delayed the neurotoxic effects of α-elapitoxin-Ot1a (1 µM) and markedly attenuated the neurotoxic effects of α-elapitoxin-Ot1a (0.1 µM). α-Elapitoxin-Ot1a displayed pseudo-irreversible antagonism of concentration-response curves to carbachol with a pA2 value of 8.02 ˘ 0.05. De novo sequencing revealed the main sequence of the short-chain postsynaptic neurotoxin (i.e., α-elapitoxin-Ot1a) as well as three other isoforms found in O. temporalis venom. α-Elapitoxin-Ot1a shows high sequence similarity (i.e., >87%) with other taipan short-chain postsynaptic neurotoxins. Keywords: α-Elapitoxin-Ot1a; Oxyuranus temporalis; postsynaptic neurotoxin; antivenom; snake

1. Introduction The Oxyuranus genus consists of three species of highly venomous Australo-Papuan elapids; i.e., inland taipan (O. microlepidotus), coastal taipan (O. scutellatus; found in Australia and Papua New Guinea) and the more recently discovered O. temporalis (Western Desert taipan, [1]). Due to the remote location of O. temporalis, only a handful of specimens have been caught and, as such, limited information exists about this species [1–3]. We recently showed that O. temporalis venom displays marked post-synaptic neurotoxic activity in isolated skeletal muscle [4]. Typically taipan venoms contain presynaptic and postsynaptic neurotoxins and have also been shown to contain natriuretic-like peptides [5,6], prothrombin activators [6–9], reversible calcium channels blockers (i.e., taicatoxin, [6,10]), cysteine-rich secretory proteins (CRISP) [6] and Kunitz-type plasma kallikrein inhibitors [6,11]. The presynaptic neurotoxins isolated from taipan venoms are

Toxins 2016, 8, 58; doi:10.3390/toxins8030058

www.mdpi.com/journal/toxins

Toxins 2016, 8, 58

2 of 12

Toxins 2016, 8, 58 

2 of 12 

paradoxin (O. microlepidotus, [12]), taipoxin (O. scutellatus, [13]) and cannitoxin (O. s. canni, [14]), each consists of three subunits (α, β and γ) with molecular masses between 45 and 47 kDa [12–15].  each consists of three subunits (α, β and γ) with molecular masses between 45 and 47 kDa [12–15].  AA number of postsynaptic neurotoxins have been isolated from taipan venoms including; oxylepitoxin‐1  number of postsynaptic neurotoxins have been isolated from taipan venoms including; oxylepitoxin-1  (O. microlepidotus, [16]), α-scutoxin 1 (O. scutellatus, [17]), α-oxytoxin 1 (O. s. canni, [17]), taipan toxin 1  (O. microlepidotus, [16]), α‐scutoxin 1 (O. scutellatus, [17]), α‐oxytoxin 1 (O. s. canni, [17]), taipan toxin 1  (O. These short‐chain  short-chainneurotoxins  neurotoxinshave  have (O. scutellatus, scutellatus, [18]) [18]) and and taipan taipan  toxin toxin  22 (O. (O. scutellatus, scutellatus,  [18]). [18]).  These  molecular Da. Many  Many of these  of thesepostsynaptic  postsynapticneurotoxins  neurotoxinshave also  have alsobeen  been molecular masses masses between between  6726–6789 6726–6789 Da.  pharmacologically characterized in vitro using the chick biventer cervicis nerve-muscle preparation, pharmacologically characterized in vitro using the chick biventer cervicis nerve‐muscle preparation,  with neurotoxicity and reversibility, asas  well as as  determination of potency (i.e.,  with an an examination examination ofof their their  neurotoxicity  and  reversibility,  well  determination  of  potency  pA values) and the effectiveness of antivenom in preventing their effects (as reviewed in [19]). 2 (i.e., pA2 values) and the effectiveness of antivenom in preventing their effects (as reviewed in [19]).  The to isolate  isolate and  and pharmacologically  pharmacologically characterize  characterizethe  themajor  major  The aim aim  of of  the the  present present  study study  was was  to  short-chain postsynaptic neurotoxin from O. temporalis venom. short‐chain postsynaptic neurotoxin from O. temporalis venom.  2.2. Results  Results 2.1. Fractionation of Venom via Reverse-Phase HPLC 2.1. Fractionation of Venom via Reverse‐Phase HPLC  Fractionation of O. temporalis venom using a Jupiter semi preparative C18 column yielded Fractionation of O. temporalis venom using a Jupiter semi preparative C18 column yielded five  five major peaks and a number of minor peaks (Figure 1a). Peak two, eluting around 15 min, major peaks and a number of minor peaks (Figure 1a). Peak two, eluting around 15 min, showed  showed marked postsynaptic neurotoxicity in the chick biventer cervicis nerve-muscle preparation. marked postsynaptic neurotoxicity in the chick biventer cervicis nerve‐muscle preparation. This peak  This peak wasfor  chosen for analysis.  further analysis. α-Elapitoxin-Ot1a (peak was collected and purified using was  chosen  further  α‐Elapitoxin‐Ot1a  (peak  2)  was 2)collected  and  purified  using  an  an analytical C18 column, where α-elapitoxin-Ot1a eluted as a single peak around approximately analytical C18 column, where α‐elapitoxin‐Ot1a eluted as a single peak around approximately 15 min  15 min (Figure 1b). α-Elapitoxin-Ot1a (and its isoforms) was found to make up 30.1% of O. temporalis (Figure 1b). α‐Elapitoxin‐Ot1a (and its isoforms) was found to make up 30.1% of O. temporalis venom  venom based on the area under the curve of the HPLC profile. based on the area under the curve of the HPLC profile. 

(b) 2

3×106

Absorbance (214nm)

Absorbance (214 nm)

(a) 5 3

2×106 4 1

1×106 0 0

20

40

Time (min)

60

3×106 2×106 1×106 0 0

20

40

Time (min)

60

 

Figure 1. RP‐HPLC chromatograph of (a) O. temporalis venom run on a Jupiter semi preparative C18  Figure 1. RP-HPLC chromatograph of (a) O. temporalis venom run on a Jupiter semi preparative C18 column and (b) α‐elapitoxin‐Ot1a run on a Jupiter analytical C18 column.  column and (b) α-elapitoxin-Ot1a run on a Jupiter analytical C18 column.

2.2. Intact Protein Analysis with MALDI‐TOF Mass Spectrometry  2.2. Intact Protein Analysis with MALDI-TOF Mass Spectrometry Intact protein analysis of α‐elapitoxin‐Ot1a using MALDI‐TOF showed the molecular weight to  Intact protein analysis of α-elapitoxin-Ot1a using MALDI-TOF showed the molecular weight to be 6712 Da (Figure 2).  be 6712 Da (Figure 2).

Toxins 2016, 8, 58

3 of 12

Toxins 2016, 8, 58 

3 of 12 

Toxins 2016, 8, 58 

3 of 12 

  Figure 2. MALDI‐TOF of α‐elapitoxin‐Ot1a indicating a molecular weight of 6712 Da. Proteins were 

Figure 2. MALDI-TOF of α-elapitoxin-Ot1a indicating a molecular weight of 6712 Da. Proteins were analysed in Linear mode with a mass range of 5kDa to 120kDa.  analysed in Linear mode with a mass range of 5 kDa to 120 kDa.

2.3. Identification and de Novo Sequencing by LCMS/MS 

 

Figure 2. MALDI‐TOF of α‐elapitoxin‐Ot1a indicating a molecular weight of 6712 Da. Proteins were  2.3. Identification and de Novo Sequencing by LCMS/MS

Protein  identification  and  de  novo  sequencing  with  PEAKS  Studio  7  software  (Version  7.0,  analysed in Linear mode with a mass range of 5kDa to 120kDa.  Bioinformatics  Solution  Inc.,  ON,  Canada, with 2014) PEAKS generated  the  following  sequence  for    7.0, Protein identification and Waterloo,  de novo sequencing Studio 7 software (Version α‐elapitoxin‐Ot1a:  2.3. Identification and de Novo Sequencing by LCMS/MS  Bioinformatics Solution Inc., Waterloo, ON, Canada, 2014) generated the following sequence for

α-elapitoxin-Ot1a: MTCYNQQSSQ AKTTTTCSGG VSSCYRKTWS DTRGTIIERG CGCPSVKKGI ERICCGTDKC NN  Protein  identification  and  de  novo  sequencing  with  PEAKS  Studio  7  software  (Version  7.0,  Bioinformatics  Solution  Inc.,  Waterloo,  ON,  Canada,  2014)  generated  the  following  sequence  for   

This  sequence  was  identified  to  have  the  highest  signal  by  ESI‐LCMS/MS  and  de  novo  MTCYNQQSSQ AKTTTTCSGG VSSCYRKTWS DTRGTIIERG CGCPSVKKGI ERICCGTDKC NN α‐elapitoxin‐Ot1a: 

sequencing.  Three  other  isoforms  of  this  short‐chain  postsynaptic  neurotoxin  were  also  detected,  however only partial sequences could be detected (data not shown). α‐Elapitoxin‐Ot1a showed a high  MTCYNQQSSQ AKTTTTCSGG VSSCYRKTWS DTRGTIIERG CGCPSVKKGI ERICCGTDKC NN  This sequence was identified to have the highest signal by ESI-LCMS/MS and de novo sequencing. degree of sequence similarity with short‐chain postsynaptic neurotoxins from other taipan species  This  sequence  was short-chain identified  to postsynaptic have  the  highest  signal  by  ESI‐LCMS/MS  and however de  novo  only Three other isoforms of this neurotoxin were also detected, (>87%) (Figure 3 and Table 1).  sequencing.  Three  other  isoforms  of  this  short‐chain  postsynaptic  neurotoxin  were  also  detected,  partial sequences could be detected (data not shown). α-Elapitoxin-Ot1a showed a high degree however only partial sequences could be detected (data not shown). α‐Elapitoxin‐Ot1a showed a high  of sequence similarity with short-chain postsynaptic neurotoxins from other taipan species (>87%) degree of sequence similarity with short‐chain postsynaptic neurotoxins from other taipan species  (Figure 3 and Table 1). (>87%) (Figure 3 and Table 1). 

  Figure  3.  Sequence  alignment  (from  BLAST  search)  of  α‐elapitoxin‐Ot1a  with  short‐chain  postsynaptic neurotoxins from Oxyuranus spp. Shaded amino acids are similar to α‐elapitoxin‐Ot1a.    Amino  acids  with  (*)  are  fully  conserved  in  all  toxins,  conserved  amino  acids  with  (.)  are  weakly  similar properties group and amino acids with (:) are strongly similar properties group.  Figure  3.  Sequence  alignment  (from  BLAST  search)  of  α‐elapitoxin‐Ot1a  with  short‐chain  Figure 3. Sequence alignment (from BLAST search) of α-elapitoxin-Ot1a with short-chain postsynaptic postsynaptic neurotoxins from Oxyuranus spp. Shaded amino acids are similar to α‐elapitoxin‐Ot1a.  neurotoxins from Oxyuranus spp. Shaded amino acids are similar to α-elapitoxin-Ot1a. Amino acids Amino  acids  with  (*)  are  fully  conserved  in  all  toxins,  conserved  amino  acids  with  (.)  are  weakly  with (*) are fully conserved in all toxins, conserved amino acids with (.) are weakly similar properties similar properties group and amino acids with (:) are strongly similar properties group. 

group and amino acids with (:) are strongly similar properties group.

Toxins 2016, 8, 58

4 of 12

Table 1. Partial or Full N-terminal sequence and molecular mass (Da) of α-elapitoxin-Ot1a in Toxins 2016, 8, 58  comparison to some other Australian elapid postsynaptic neurotoxins.

4 of 12 

Table  1.  Partial α-Neurotoxin or  Full  N‐terminal MW sequence  and  molecular  mass  (Da)  of  α‐elapitoxin‐Ot1a  in  Species Partial/Full N-Terminal Sequence comparison to some other Australian elapid postsynaptic neurotoxins.  MTCYNQQSSQ AKTTTTCSGG VSSCYRKTWS DTRGTIIERG a

O. temporalis Species  O. scutellatus O. temporalis  O. scutellatus O. scutellatus  O. microlepidotus O. scutellatus  O. microlepidotus  O. scutellatus

α-elapitoxin-Ot1a α‐Neurotoxin  α-scutoxin 1 b α‐elapitoxin‐Ot1a a  α-oxytoxin 1 b α‐scutoxin 1 b  c oxylepitoxin-1 α‐oxytoxin 1 b  c oxylepitoxin‐1  Taipan toxin 1 d 

6712 MW 6781 6712  6770 6781  6789 6770  6789  6726

O. scutellatus  O. scutellatus O. scutellatus 

Taipan toxin 1 d  Taipan toxin 2 d Taipan toxin 2 d 

6726  6781 6781 

P. colletti P. colletti 

α-elapitoxin-Pc1a e α‐elapitoxin‐Pc1a e 

6759.6 6759.6 

P. porphyriacus P. porphyriacus 

α-elapitoxin-Ppr1 e α‐elapitoxin‐Ppr1 e 

6746.5 6746.5 

P.P. papuanus  papuanus H. stephensi  H. stephensi

Papuantoxin-1f f Papuantoxin‐1  Hostoxin‐1  Hostoxin-1gg 

6738 6738  6660  6660

CGCPSVKKGI ERICCGTDKC NN Partial/Full N‐Terminal Sequence MTCYNQQSSE AKTTTTCSGG VSSCYKKTWY DGRGTRIERG MTCYNQQSSQ AKTTTTCSGG VSSCYRKTWS DTRGTIIERG  CGCPSVKKGI ERICCGTDKC NN  MTCYNQQSSE AKTTTTCSGG VSSCYKETWY DGRGTT MTCYNQQSSE AKTTTTCSGG VSSCYKKTWY DGRGTRIERG  MTCYNQQSSE AKTTTTCSGG VSSCYKETWY MTCYNQQSSE AKTTTTCSGG VSSCYKETWY DGRGTT  MTCYNQQSSE AKTTTTCSGG VSSCYKKTWS DGRGTIIERG MTCYNQQSSE AKTTTTCSGG VSSCYKETWY  CGCPSVKKGI ERICCRTDKC NN MTCYNQQSSE AKTTTTCSGG VSSCYKKTWS DGRGTIIERG  CGCPSVKKGI ERICCRTDKC NN  MTCYNQQSSE AKTTTTCSGG VSSCYKKTWS DIRGTIIERG CGCPSVKKGI ERICCRTDKC NN MTCYNQQSSE AKTTTTCSGG VSSCYKKTWS DIRGTIIERG  CGCPSVKKGI ERICCRTDKC NN  MTCCNQQSSQ PKTTTTCAGG ETSCYKKTWS DHRGSRTERG MTCCNQQSSQ PKTTTTCAGG ETSCYKKTWS DHRGSRTERG  CGCPHVKPGI KLTCCKTDEC NN CGCPHVKPGI KLTCCKTDEC NN  MTCCNQQSSQ PKTTTTCAGG ESSCYKKTWS DHRGSRTERG MTCCNQQSSQ PKTTTTCAGG ESSCYKKTWS DHRGSRTERG  CGCPHVKPGI KLTCCETDEC NN CGCPHVKPGI KLTCCETDEC NN  MTCCNQQSSQ PKTTTT MTCCNQQSSQ PKTTTT  MTPCNQQSSQ PKTTK  MTPCNQQSSQ PKTTK

Note: Underlined amino acid residues have been deduced from the sequences of other short chain  Note: Underlined amino acid residues have been deduced from the sequences of other short chain α-neurotoxins;   a current study;a b [17]; c [16]; d [18]; e [20]; f [21]; g [22].e c [16],  d [18],   current study, b [17],   [20], f [21], g [22].  α‐neurotoxins; 

2.4. In Vitro Neurotoxicity 2.4. In Vitro Neurotoxicity  α-Elapitoxin-Ot1a (0.1 µM and 1 µM) caused concentration-dependent inhibition of twitches in α‐Elapitoxin‐Ot1a (0.1 μM and 1 μM) caused concentration‐dependent inhibition of twitches in  the indirectly-stimulated chick biventer preparation (n = 3, Figure 4). At 1 µM, α-elapitoxin-Ot1a the indirectly‐stimulated chick biventer preparation (n = 3, Figure 4). At 1 μM, α‐elapitoxin‐Ot1a was  was strongly neurotoxic with t90 value ˘ 0.4 min(Table  (Table2).  2).α‐Elapitoxin‐Ot1a  α-Elapitoxin-Ot1aalso  also abolished  abolished strongly  neurotoxic  with  a  t90a  value  of  of 9.8 9.8 ±  0.4  min  contractile responses to to  exogenous ACh ACh  and CCh while only reducing responses by approximately contractile  responses  exogenous  and  CCh  while  only KCl reducing  KCl  responses  by  50% (Figure 5). approximately 50% (Figure 5).  (b)

(a)

80 60 40

80 60

*

40 20

20 0

100

* Twitch height (% of initial)

Twitch height (% of initial)

100

0

20

40

Time (min) toxin (0.1 M) toxin (0.1 M) + AV (10 U/mL)

60

0

0

20

40

60

Time (min) toxin (1 M) toxin (1 M) + AV (10 U/mL)

Figure  4. Effect Effect of of (a) (a) α-elapitoxin-Ot1a α‐elapitoxin‐Ot1a  (0.1  μM)  alone  and  in  the  presence  of  taipan  antivenom  Figure 4. (0.1 µM) alone and in the presence of taipan antivenom (AV;   (AV;  10  U/mL)  or  (b)  α‐elapitoxin‐Ot1a  (1  μM)  alone  and  in  the  presence  of  taipan  antivenom  10 U/mL) or (b) α-elapitoxin-Ot1a (1 µM) alone and in the presence of taipan antivenom (AV; 10 U/mL)   (AV;  10  U/mL)  on ofindirect  the  chick  biventer preparation. cervicis  nerve‐muscle  preparation.  on indirect twitches the chicktwitches  biventerof  cervicis nerve-muscle * p < 0.05, unpaired t-test,   * p