Journal of Environmental Studies [JES]

2 downloads 0 Views 8MB Size Report
Hewing, Alvin, N. Nethercutt, Richard, and. Andrews, T. (1995). “Reducing ... Metcalf, Tchobanoglous, George and Burton,. Franklin, L. (2008). Wastewater.
Volume IX, Dec. 2012.

Journal of Environmental Studies [JES]

An International Journal edited by Community Service and Environmental Development Sector, Sohag University [SU]. Sohag University Publication

Contact details: E-Mail [email protected] Web site http://www.jes.sohag.edu.eg [email protected]

Journal of Environmental Studies An International Journal edited by Community Service and Environmental Development Sector, Sohag University [SU].

Volume IX, Dec. 2012.

Volume content Mohammed J. Ali Al-atabi, 2012. Removal of Lead Ions From Industrial Waste Water. Journal of Environmental Studies, JES, Vol., IX: 1-7. Makarim M. B. Younus, Mohammed Al- Hamdany, Sahar Na'eem, Iman Abbas, Nabeel Noori, Hayder Shaghi and Ayad Hasan, 2012. QStudy of Cotton lints Discoloration Phenomenon and its Relation with Seedling Emergence. Journal of Environmental Studies, JES, Vol., IX: 9-14. Makarim M.B.Younus, Hasan Y. Jabir Nabeel N. M. Ali, Ayad H. Kadhim, Hasan A.W.Abbas, Sahar N. Abed- Alwahab, Abed Al-kareem M. Taki, Kifaya A.Atiyah, 2012. Detection of pathological changes in Tilletia spp. The causal agent of covered smut (Bunt) disease in Iraq. Journal of Environmental Studies, JES, Vol., IX: 15-19. Faiza Ez. Gharib, Talib A. Al-Sarify, Ali F. Atshan, Zainab Talib Al-Sharify, Muna Abed Jaffar, 2012. Improve Thermal Insulation And Physical Properties of The Iraqi Plaster Using Natural Additives. Journal of Environmental Studies, JES, Vol., IX: 2128. Hassanein A. M., Galal E., Soltan D., Abed-Elsaboor K., Saad G. K., Gaboor G. M., El-Mogy N. S., 2012. Germination of jojoba (Simmondsia chinensis L) seeds under the influence of several conditions. Journal of Environmental Studies, JES, Vol., IX: 29-35. Waleed M. Sh. Alabdraba, Afaf J. Obed, Masuod M. Hazaa, Safa Badeaa and Manolea Aiden, 2012. Comparison Between Continuous and Batch Flow Activated Sludge Reactor to Remove Nitrate and Phosphate From Domestic Wastewater. Journal of Environmental Studies, JES, Vol., IX: 37-42. Ali Salim Joodi, 2012. Modeling of the heating transfer in the karst aquifers for Val d'Orléans city (France). Journal of Environmental Studies, JES, Vol., IX: 43-51. Sadiq Salman Muhsun, 2012. Characteristics of the Hydraulic Jump in Trapezoidal Channel Section. Journal of Environmental Studies, JES, Vol., IX: 53-63. A. A. El-Khatib, D. E. M. Radwan, A. A. Alramah-Said, 2012. Morpho-Anatomical Characteristics of Olive (Olea europaea L.) Trees Leaf as Bio-indicator of Cement Dust Air Pollution in Libya. Journal of Environmental Studies, JES, Vol., IX: 65-72. Mohammad Abed Abu-qulah, 2012. Following characteristics of knowledge management to achieve quality assurance of higher education. Journal of Environmental Studies, JES, Vol., IX: 73-81.

‫‪Journal of Environmental Studies [JES] 2012. 9: 1-7‬‬

‫‪Original Paper‬‬

‫إزا أ ت اص  ا ا ‬ ‫   ا ‬ ‫ ا  ا‪ -‬آ ا ‪ ،‬ا!  ا  ‪ ،‬ب ا "‪ % ،‬اد – ااق‬

‫ا)م‪ ٦ :‬رس‪2 ٢٠١٢ ،‬ل‪ ٢١ :‬أ ‪٢٠١٢ 3‬‬

‫ا‬ ‫? إزا ا=< ‪ ،tA‬وز&دة ‪ G3‬ر; ا"*ء و> ‪K‬‬ ‫دة ‪ O>9‬ا"‪  +‬ور‪+  P3‬ى أداء أ‪Y‬ء ه‪O+N‬‬ ‫ا"‪+‬ر&  وا" ‪ 3; ،O3 K‬إ"‪ 5‬ر‪ P3‬آ‪K Q‬‬ ‫ا"!ت ا"‪ R1‬ا"‪=> G+‬م ‪ O‬و‪ 9‬ا"‪+M‬ت ا"‪ W‬‬ ‫‪ t W+& ،O‬ا) >‪ hOJ GJ1‬إدارة ا"‪ K B" " 3‬أه‪B‬‬ ‫‪ G3‬ا"‪ A‬ت ‪ B 3J> dL‬و ‪. B" B‬و ‪KA& ،B‬‬ ‫‪ AI l‬ا"را )‪ N‬ا"‪-: "+‬‬ ‫‪ -١‬ه‪ 7‬ه‪5‬ك ‪ =; 89‬ا‪ ,‬ا < ;‪ :‬ا‪>:‬‬ ‫ا'ر@? )أ!اد ا! ( ون  دة ا‬ ‫! ا‪$‬ت ا*رد& ا‪ +,‬؟ و@‪ = HI5‬ه‪G‬ا ا?‪F‬ال‬ ‫ا? ا*ول ا*)> ا‪ /‬ا‪- : K‬‬ ‫)‪ (١-١‬ه‪HIJ " Q‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  ‬ ‫)أ‪3‬اد ا"‪; G3 * ( 3‬ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا)رد‪ C‬ا"! ؟‬ ‫)‪ (١-٢‬ه‪1!" Q‬ة ‪ Y‬ه‪ N‬ا"‪+‬ر& * ‪; G3‬ن‬ ‫دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ؟‬ ‫)‪(١-٣‬ه‪VC +& Q‬م إدارة ;‪ X1‬ا"‪M‬دة ‪ G3‬ا"‪ A‬ت‬ ‫ا"! ا)رد‪ C‬؟‬ ‫)‪ (١-٤‬ه‪; & +& Q‬ن ا"‪M‬دة؟‬ ‫‪ -٢‬ه‪ 7‬ه‪5‬ك ا ‪ %5I‬ا ‪ 5$‬ا(ت‬ ‫ون دة ا ! ا‪$‬ت ا*رد& ا‪ +,‬؟ و@‪HI5‬‬ ‫= ه‪G‬ا ا?‪F‬ال ا? ا‪ &H‬ا*)> ا‪ /‬ا ‪:‬‬ ‫)‪ (٢-١‬ه‪ 1" Q‬و>‪ P&J‬ا"‪ 1+A‬ا‪; 5  6‬ن دة‬ ‫ا"‪ A "  +‬ت ا)رد‪ C‬ا"! ؟‬ ‫)‪ (٢-٢‬ه‪ Q " Q‬ا"‪ "JA+‬ا"&‪ R‬ا‪; G3 6‬ن‬ ‫دة ا"‪ A "  +‬ت ا)رد‪ C‬ا"! ؟‬ ‫أه'اف ا'را) وأه‪::‬‬ ‫>]>‪ G‬أه ه‪ dm‬ا"را إ"‪ 5‬أن ‪ 6‬ا>‪M‬هت ‪L+‬ا&ة ‪G3‬‬ ‫ا"‪I‬آت ‪ G3 9‬ا"[‪+‬ة ا"" ‪Q&> G3 QR+> ،‬‬ ‫أ"‪ O‬إ"‪ 5‬أل ‪ 5  B‬ا"‪ 3‬و>&‪ Q‬ا"‪I‬آت‬ ‫إ"‪b 5‬آت ‪ 5  B‬ا"‪ 3‬أو ‪b‬آت ‪ 3 " B *9‬‬ ‫آ"‪ x‬ت ا"‪ cF ،  +‬أ‪ y 2+16‬ه‪ dm‬ا"‪I‬آت‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ FMC‬ها ‪ G3‬إدار>‪ ، 3 " O‬وآ‪ M+C 2C‬ه‪ dm‬ادارة‬ ‫ا"‪M‬ة ا"‪[+‬ق وا"‪=+‬م وا"‪ P 3J‬ا"‪I‬آت ا"‪1A‬ى ‪G3‬‬ ‫‪ .O>DM‬و‪VC‬ا " ‪ y B+==F‬ا"‪ x‬ت ا"‪1A‬ة ‪K‬‬ ‫‪FMC‬ت هة ‪ M+C‬ا"م وا"‪ K 3‬ا" ‪O&" K‬‬ ‫‪ QAI> cF‬ا"‪> W=C 3‬ل ‪ G3‬ا"‪VJ‬ت و‪ 89‬‬ ‫ا"‪R+‬ة ‪ .OJ‬و" " ‪ K 3‬اه‪+‬ت "^‪VJ G3 B‬ت‬ ‫ا)ل وا"‪1+& G+‬ه ا"‪ y1‬ا"‪1!" ‪R‬ي ا"‪VJ‬ت ‪ G3‬ز&دة إ‪ O++C‬وا"‪ K Q =+‬ا)‪W9‬ء‬ ‫و"‪=C M‬ط ا"‪ zY‬إن وت‪.‬‬ ‫أه'اف ا'را) ‪:‬‬ ‫‪':‬ف ه‪ NG‬ا'را) إ  ا*ه'اف ا ‪-:‬‬ ‫‪ - 1‬ن ا‪ 789 6‬ا"‪; G3 3‬ن دة ا"‪G3  +‬‬ ‫ا"‪ A‬ت ا)رد‪ C‬ا"! ‪+D ،‬د  ‪:5‬‬ ‫أ‪ 789 -‬أ‪Y‬ء ا"‪NO‬ت ا"‪+‬ر&  ا" ‬ ‫‪ cF K ،O3‬ا"‪HIJ‬ت ا"  ا"‪LMJ& G+‬و‪OC‬‬ ‫أ‪Y‬ء ا"‪ NO‬ا"‪+‬ر&  و‪19‬ا>‪. O‬‬ ‫ب‪ 789 -‬ا"‪ J1‬ا"‪ "JA+" ++‬ا" ت‬ ‫‪ Z > G3‬ا"‪ A‬ت‪ 1F cF K ،‬و>‪ P&J‬ا"‪ 1+A‬‬ ‫و ا"‪ Q‬ا"‪ "JA+‬ا"&‪. R‬‬ ‫ج‪ -‬ا‪ 789 6‬ا"‪VC G3 3‬م ا"‪M‬دة‬ ‫‪ G3‬ا"‪ A‬ت ا"! ‪.‬‬ ‫د‪ -‬ا‪ 789 6‬ا"‪; & G3 3‬ن‬ ‫ا"‪M‬دة‪.‬‬ ‫‪O> – ٢‬ف ا"را " !وج ‪ K BM‬ا"‪ +‬ت‬ ‫ا"‪O‬د‪ 3‬إ"‪ };> 5‬أه إدارة ا"‪. 3‬‬ ‫‪ }+3 - ٣‬ا"‪M‬ل أم ا"‪ KJ‬وا" ‪ G3 K‬إدارات‬ ‫‪ x‬ت ا"‪  +‬ا""‪ G‬ا)رد‪[ G3 3‬دة ا"‪ x G3  +‬ت ا"‪  +‬ا""‪G‬‬ ‫ا)رد‪. C‬‬ ‫!ت ا'را) ‪:‬‬ ‫‪; G3‬ء ‪ AI‬ا"را وأ‪K+;3 l > O+ N‬‬ ‫ر ‪ K+ K+‬و"‪ B;3 QA‬ر ‪K+3 K+;3 B‬‬ ‫‪ K+‬و ‪ 5‬ا"‪ J‬ا"‪-:G"+‬‬ ‫ا‪ /‬ا? ا*و‪:‬‬ ‫‪ * > D :H-1‬ذات د‪ B"D‬إ‪ K 8F‬ا"!‪78‬‬ ‫ا"‪ O P++& G+‬أ‪Y‬ء ا"‪ NO‬ا"‪+‬ر&  )أ‪3‬اد ا"‪ ( 3‬و‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪J‬‬ ‫ ‪+‬ى د‪(05.0 ≥ α) B"D‬‬ ‫و@‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬ ‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ * > D :HO-1-2‬ذات د‪ B"D‬إ‪K 8F‬‬ ‫ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  و ;ن‬ ‫دة ا"‪  +‬و& ;ن ا"‪M‬دة ‪ G3‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪+  J‬ى د‪.(05.0 ≥ α) B"D‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ * > :H-1.3‬ذات د‪ B"D‬إ‪19 K 8F‬ة ‪Y‬‬ ‫ه‪ N‬ا"‪+‬ر& و ;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪+  J‬ى د‪(.05.0 ≥ α ) B"D‬‬ ‫ا‪ /‬ا? ا‪: &H‬‬ ‫‪ & D :HO-1.4‬ا‪ 78!" 6‬ا"‪ J1‬ا"‪"JA+" ++‬‬ ‫ا" ت  ‪; 5‬ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪،‬‬ ‫و‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬

‫‪74‬‬

‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ & D :HO-1-2‬ا‪ 1" 6‬و>‪ P&J‬ا"‪5  1+A‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ Q " 6€ & D :HO-2-2‬ا"‪ "JA+‬ا"&‪5  R‬‬ ‫;ن دة ا"‪  +‬وا‪+‬د & ;ن ا"‪M‬دة و>‪‪I‬‬ ‫"[‪ O‬ا"‪.(Stromquist, 2000:3) X‬‬ ‫‪ - ٢‬إدارة ا"‪ : 3‬ه‪ G‬رة ا"[د  ‪ 5‬ا)‪b‬ء و>‪L‬ه‬ ‫‪B^8 B = G3‬‬ ‫أو ا"=رة ا"‪ OA +& G+‬ا"[د و&!‪OCL+‬‬ ‫‪9‬ا‪.(Wit Meyer 1998:76) B3 X‬‬ ‫‪ -٣‬إدارة ا"‪ : 3‬ه‪ GC M G‬و[ه و‪=+‬ات‬ ‫ا"[د ‪B1I‬‬ ‫و>‪8‬رات ذه‪ > K " BJ‬ؤ‪D‬ت‬ ‫‪ B>FH‬و==‪ B‬إا>‪ && " B‬أن &‪M) B3‬ب‪،‬‬ ‫‪.(٢٠:٢٠٠٢‬‬ ‫‪-٤‬إدارة ا"‪ : 3‬ه‪ G‬ا"=‪VJ" d‬ت أل ا"م وا"[‪+‬ح‬ ‫"‪*AI Q‬ت ا)ل ا"^‪) Y‬ا"‪(٤٦:٢٠٠٢ ،G1 A‬‬ ‫‪-٥‬إدارة ا"‪ : 3‬ه‪  G‬ت ‪ K‬ا"‪ KL‬و ة " ‪C1‬ت‬ ‫ا"‪ JO‬و‪C‬ذج " ‪* +‬ت وا" ل ا"‪P Q+ " J‬‬ ‫ا"‪*AI‬ت إ"‪ tC 5‬ا"‪ 3‬ا"‪ VJ " 88!+‬‬ ‫)ا"‪LJ‬ي‪(١٢٨:٢٠٠١،‬‬ ‫"= ‪F‬د ا"‪RF1‬ن ‪ 789 9‬دارة ا"‪ 3‬وه‪-:G‬‬ ‫‪8> -١‬غ ‪= G3‬ل ا)‪3‬اد "‪ ، M+‬و>‪ M+C Q8‬‬ ‫> ‪+ O‬ار‪.‬‬ ‫‪ -٢‬إدارة ا"‪+I 3‬آ‪ K B‬آ‪ 3‬ا"[‪N‬ت وا"‪+M‬ت‬ ‫ا‪ W‬ا"!‪1‬ات ا"‪+I‬آ ‪.‬‬ ‫‪ J; Q=J>-٣‬أو ‪ }& QAI‬أو ‪BM Z +& P+M‬‬ ‫‪ K‬ا"‪ 3‬ا" وا"‪ B3‬ا"!‪.  8‬‬ ‫‪ -٤‬أ‪+D &F OC‬ار& إدارة و>‪ &W‬ا"‪VJ‬ت‬ ‫وو‪ O>F‬و>‪ t W+‬آ [‪ B‬آ‪*" d1‬آ‪ +‬ب و>‪ }18‬أ‪J K6‬‬ ‫>‪ t +A‬و‪ K‬ا"‪ OO3 t8‬و>و&‪ OY‬و>=‪ O‬و ‪O+C‬‬ ‫وا ‪.O +‬‬ ‫‪J" ]O+>  -٥‬ع ‪ K K‬ا)ل و‪ 9) 3+> D‬و&‪G^1J‬‬ ‫ا"‪ PJ" O  V3‬ا‪ = K O9 J+‬ا"‪VJ‬ت وا‪[+F‬ظ‬ ‫ا"‪ BVJ‬رف أ‪ " OY‬ع إ"‪> J O‬آ‪Q " O‬‬ ‫إدارة ا! ‪:‬‬ ‫>‪ GJ‬دور ا"‪MC G3 3‬ح ‪VJ‬ت ا)ل ‪P‬‬ ‫ ه‪ Z > Q&> G3 O+‬ا"‪VJ‬ت إ"‪ 5‬ا‪8+ D‬د ا""‪G‬‬ ‫ا"‪ &M‬ا"‪m‬ي ت &ف  ‪8+‬د ا"‪ ، 3‬وا"‪m‬ي &‪x‬آ  ‪5‬‬ ‫رأس ا"ل ا"[‪A‬ي وا"‪ 5  3‬ا"‪*9 K 3J+‬ل‬ ‫ا"=رات ا"‪ K *Y3 ، &I1‬دوره ا" ‪> G3‬ل‬ ‫ا"‪VJ‬ت إ"‪+M 5‬ت ‪ B3‬ا"‪> G+‬ث ا"‪^+‬‬ ‫ا"‪mM‬ري ‪ G3‬ا"‪ P zA++" VJ‬ا"‪ ^+‬ا" &‪O+N G3 P‬؛‬ ‫و‪ K‬ه‪ J‬اآ‪O[ &> t +‬م ا"‪ 3‬أه‪cF ، 9 B‬‬ ‫أن [‪O‬م ا"‪ G3 3‬ا" م ا‪ 5  Q+I& +D‬ا‪F‬‬ ‫ا"‪ K 9‬ا" ‪ K‬أو آ*ه‪ ،‬ا)ول‪ I& ،‬إ"‪ 5‬ا"‪M+‬رب‬ ‫ا"‪ VJ‬وا‪1+9‬ر ا"[;ت ا"‪ I> G+‬إ"‪C 5‬ذج‬ ‫;‪ B‬و>[ &‪ O[" B‬ا"‪ ،X‬وآ‪ 2C‬أآ‪ R‬ا‪M>D‬هت‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ G3 b‬ا" م ا‪ +D‬وا‪8+ D‬د& >‪ Q‬إ"‪ 5‬ا"‪ M+‬‬ ‫وا"‪1‬هن‪ &W+" ،‬ا"* ا" ‪ K 11‬ا"‪^+‬ات وا"[‪Q8‬‬ ‫‪ &+" OJ‬ا‪ ،O+"*=+‬أ ا"‪ Q9‬ا"‪Q9 O3 ،GCR‬‬ ‫ا‪RCD‬و"‪ GM‬وا"‪+‬ر&ˆ ا"‪m‬ي از ا"‪+‬ا‪ K Q9‬ا"=ى‬ ‫أ‪ O B+D‬وا"‪m‬ي &[‪ QY‬ا"‪F‬ة  ‪ 5‬ا"[‪،Q8‬‬ ‫و&آ‪  L‬ادارة  ‪ 5‬ا"‪ Q9‬ا)ول‪.‬‬ ‫و;‪ K‬ا"‪O+‬ت ادار& ‪3‬ن ه‪J‬ك >‪ G3 K&1‬و‪O‬ت‬ ‫‪ VC‬ا"‪ K88!+‬وا"‪+A‬ب ‪ &> G3‬ا"[‪O‬م ا"  " OC] (1998, 34‬ا"‪ B3‬ا"‪ JY‬و‬ ‫>‪19 K BJY+‬ات وأ‪A3‬ر و‪O‬رات &‪ O1 +A‬ا"[د و‪K‬‬ ‫ا"‪ B3‬ا"‪V‬ه‪ d‬ا"‪ K M>J‬ا"‪ P Q[+‬ا"‪ N1‬ا"!ر " ‪.‬‬ ‫)‪ ,٢٠٠٨, MC‬ص‪.(٥٩- ٥٨‬‬ ‫أه ا! ! ا‪?)F‬ت‪-:‬‬ ‫‪I‬ز أه ا! ! ا‪?)F‬ت (= ‪9‬ل ( @‪:‬‬ ‫‪ -١‬ار إ‪IC‬ء ا"‪ F G3 VJ‬ذا>‪5  b1 QAI +& B‬‬ ‫‪ MF‬ا"‪ 3‬ا"‪3) F+‬ص ا‪R+D‬ر‪_ ،‬وف ا" ق‪،‬‬ ‫ا"ض وا"‪ 5  t W‬ا"‪M+J‬ت وا"!ت‪ 1H ،‬‬ ‫ا"‪ K 3J‬و را>‪ ، O‬ا"*ء ا"‪ +‬ن و‪.( O>&l‬‬ ‫‪ 3> -٢‬ا"‪& 3‬د ا"=ار ا)‪M" QR‬ل ا"‪IJ‬ط ا" ‪G‬‬ ‫" ‪ ، x‬ا"‪ O3 z_> G+‬أا"‪ O‬وارده ا"‪، F+‬‬ ‫وذ"‪*9 K Z‬ل ا"‪ 3‬ا"‪) +‬ا"‪V‬وف ا‪8+ D‬د& ‬ ‫ا" ‪ ،‬ا"‪D+‬ت ا"‪M‬ر& وا"‪ ، +‬ا"‪J=+‬ت ا" ة‬ ‫وا"‪.(  +‬‬ ‫‪> -٣‬د ‪ C‬ا"‪ 3‬ا"‪ VJ+‬وادار& ا"‪ F+‬‬ ‫" ‪ ، VJ‬و‪ "3‬وآ[ءة  >=م ‪ B‬ادارة ‪ 8> K‬‬ ‫هآ ‪ O‬ا"‪ BVJ+‬وا"_[ و‪ VC‬ا"‪ Q‬وا‪+9‬ر >=‪J‬ت‬ ‫ا)داء‪.‬‬ ‫‪ -٤‬ا"‪ 3‬ا"‪19 K 1 +A‬ات و>‪M‬رب اŒ‪ ،K&9‬وا"‪G+‬‬ ‫>‪ G3 6x‬ارات إدة ا"‪ AO‬وإدة ا"‪ JO‬و‪l‬ه ‪K‬‬ ‫و‪D‬ت ا"‪ &W+‬وا"‪ G3 K +‬أداء ا"‪VJ‬ت‪.‬‬ ‫‪ t > -٥‬ا"‪ 3‬ا"‪ J=+‬وادار& ا"‪" F+‬ى ا"&&‪K‬‬ ‫دورا رزا ‪ G3‬إ‪MC‬ح ا"‪ XW!+‬وا" ت ا‪ +C‬‬ ‫وا"‪ =& +‬وا"" وا"‪ QR> G+‬ا"=ل ا"‪ G3 O‬ا"‪Q‬‬ ‫اداري‪.‬‬ ‫‪+> -٦‬ج ا"‪ VJ‬إ"‪ 5‬ا"‪ 3‬ا"‪M+‬دة ‪b1 G3‬ة‬ ‫ ت ا‪+9‬ر و>‪ 8‬وإ‪+C‬ج ا" ‪ P‬وا"!ت و>‪&W‬‬ ‫ا"د ‪.OJ‬‬ ‫ا‪R‬دة ! (‪?)F‬ت ا ا‪:‬‬ ‫إن ‪ } W8‬ا"‪M‬دة ه )س [‪O‬م ا ‪8+‬دي _‪O‬‬ ‫‪J‬ء  ‪ 5‬ا"‪ 3J+‬ا"‪ GJ8‬وا"‪ K G"JA+‬ا"ول‬ ‫ا"‪ J8‬ا"‪O ، =+‬ف ا ‪ 1‬دة ا‪+C‬ج وآ ‪ =6 t‬‬ ‫ا" ق وا"‪+I‬ي‪ ،‬و"‪+> G"+‬آ‪ L‬ا"‪M‬دة  ‪ 5‬ا"‪[+‬ق‬ ‫وا‪+D‬ز "‪ J‬ا"‪ G3 h+J‬أي ‪M‬ل‪ ،‬و"= >‪J‬ول ا"‪RF1‬ن‬ ‫‪ G3‬درا>‪; O‬ع ا"‪M‬دة و‪ dI C‬و"‪ BM‬ا"‪RA‬ون‪،‬‬ ‫وه‪m‬ا أدى إ"‪J> 5‬ع و>د ا"‪[&+‬ت ا"! ‪mO‬ا ا"[‪O‬م‪،‬‬ ‫و‪ K‬أ‪[&> Ob‬ت ا"‪M‬دة ه >&‪ z‬ا"‪ M‬ا)&‪ A‬‬ ‫" د‪ ،d‬و  ‪" 23‬ا"" ا"‪+‬آ €و ا‪1 W+ O‬ت‬ ‫‪ (1999:507 Bonser,) .B +‬وف )‪J.M.‬‬ ‫‪ (Juran,‬وز ‪ ،B‬ا"‪M‬دة إ‪ OC‬ى * ا"‪h+J‬‬ ‫"*‪+‬ل‪ .‬و‪ 23‬ا"‪M‬دة  ‪ 5‬إ‪ OC‬ى ا"‪P =W‬‬ ‫ا"‪1 W+‬ت‪ .‬أ ا"ا [ ا"و" ‪=3 ISO 9000:2000‬‬ ‫‪ 23‬ا"‪M‬دة‪ OC] :‬در > ‪ M 1‬ا"!‪78‬‬ ‫‪75‬‬

‫ا"رو‪ G3 6‬ا"‪1 W+" h+J‬ت ا"‪ ،Q‬وف )‪-17‬‬ ‫‪ (Feignbaum, A.V. 1991‬ا"‪M‬دة ]‪Q[> h>C :OC‬‬ ‫‪HIC 789‬ت ا"‪ K KA& d‬ت ا"‪ Q‬ور‪.B>1l‬‬ ‫‪:/( +5‬م ا‪R‬دة‪:‬‬ ‫‪> O‬د [‪O‬م ا"‪M‬دة إ‪ D‬أ‪ G3 G=+ > OC‬أر ‪ J‬‬ ‫ر ‪ ،B‬وه‪:G‬‬ ‫‪ .١‬ا‪R‬د‪ :N‬در ا‪:7T/‬‬ ‫‪M"3‬دة >‪ V" GJ‬ا"‪J‬س ا"‪ ،QY[+‬إي >[‪5  B  QY‬‬ ‫  أ‪9‬ى‪.‬‬ ‫‪ .٢‬ا‪R‬دة‪ :‬ا‪)9 ;U‬ل‪:‬‬ ‫>ف ا"‪M‬دة ]‪) OC‬ا"ا "*‪+‬ل( وذ"‪) Z‬ه ‬ ‫ا"‪M‬دة ‪ G3‬ا"‪ 8+‬وا‪ cF K B+CD‬ا" ‪L +‬ت‬ ‫ا"‪Y‬ور& " ‪ G3‬ت ا"‪Q‬‬ ‫ا"‪V‬ه& وا"‪) . JY‬ا"‪ GW‬و اد‪.(٢٧٥ ٢٠٠٣ ،d‬‬ ‫(‪IU‬ت ‪ IU‬ا‪R‬دة ! ا‪Z5‬ت ا ‪:‬‬ ‫إن أه ‪1 W+‬ت >‪ و‪.O=1W> G3 OC‬‬ ‫‪ -٣‬ود أهاف د‪ K B=+I ،d‬ا‪+F‬ت ا"[‪N‬ت‬ ‫ا" ‪ 3O+‬و‪ G‬ادارة وا" ‪.O==+"  K‬‬ ‫‪ }J -٤‬ا" ‪ K‬ا"‪ =R‬و>‪ 5  OMI‬أداء ا"‪ Q‬و>=&‬ ‫ا"‪ OJ L+‬دون ا"‪ G3 Q9+‬ا‪MC‬زا>‪ OJ> 5+F O‬ا"‪ =R‬‬ ‫‪ G3‬ر أ"‪ O‬دون ار>‪A‬ب ا)‪W9‬ء‪.‬‬ ‫‪ -٥‬ا‪+D‬د آ  ‪  K‬ا"‪ z&!+‬وا"‪+‬ه‪،5[W8) t‬‬ ‫ا)‪8C‬ري‪(٢٠ :٢٠٠٢ ،‬‬ ‫!ا' ‪ IU‬ا‪R‬دة ! ا ا‪:‬‬ ‫أن ‪3‬ا >‪ G‬‬ ‫‪ &W> -١‬ا"‪VJ‬م اداري ‪ G3‬ا"‪ M+C M‬و;ح‬ ‫ا)دوار و>& ا" ‪x‬و"ت‪.‬‬ ‫‪ -٢‬ا‪D‬ر>=ء  ‪+‬ى ا"!ت ا"‪  +‬ا"= " ‪*W‬ب‬ ‫ا"‪ 5  AJ> G+‬ا‪. O>8!b tC‬‬ ‫‪ -٣‬ز&دة ا"‪[A‬ءة ا"‪  +‬ور‪+  P3‬ى ا)داء "‪PM‬‬ ‫ا)آد&‪ K‬وادار&‪.K‬‬ ‫‪ -٤‬ا"‪3‬ء ‪1 W+‬ت ا"‪*W‬ب وا"‪ P+M‬وا"‪ 21‬ا" ‪G‬‬ ‫وا" ل إ"‪ 5‬ر;ه ‪.‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ K  3> -٥‬ا"‪[+‬ه وا"‪+‬ون وا"* ت ا‪ C C‬‬ ‫ا"  ‪ K‬ا" ‪.K‬‬ ‫‪ KA> - ٦‬إدارة ا"‪ QF K M‬ا"‪*AI‬ت "‪W‬ق ا"  ‬ ‫ا"‪ 8‬وا"‪*9 K O Q+‬ل‪.‬‬ ‫ااءات ا"‪ 8+‬وا"  "‪F PJ‬و‪.*1=+  O6‬‬ ‫‪ -٧‬ر‪+  P3‬ى ا"‪" G‬ى ا" ‪9 K K&[+‬ت ا"‪ M‬‬ ‫‪*9 K‬ل إاز ا‪L+"D‬ام ‪VJ‬م ا"‪M‬دة‪.‬‬ ‫‪ -٨‬ا"‪+‬ا‪ X‬وا"‪ P K QA+‬ا)آد&‪ K‬وادار&‪G3 K‬‬ ‫ا"‪ M‬وا"‪ Q‬وح ا"[&< ا"ا‪.F‬‬ ‫‪VC -٩‬م إدارة ا"‪M‬دة ا"‪ }J& I‬ا"‪ M‬ا‪+F‬ا‬ ‫و>=&ا و ر‪ d‬ده‪ BJ‬ا&‪.BM‬‬ ‫) ‪٨٤- ٢٠٠٢:٨٣ ،Y9‬؛ م‪.(٦٧٧ :٢٠٠٥ ،‬‬ ‫(ا‪ 7.‬دة ا‪:‬‬ ‫إن دة ا"‪ =J>  +‬إ"‪ 5‬ة ا‪ QF‬وه‪:G‬‬ ‫ا‪ .‬ا*و‪ F) :‬ا"‪ :( =+‬و&‪ O1 +‬ا"‪+‬ف‬ ‫ ‪ 5‬ا";‪ P‬ا"= "‪-:cF K  A‬‬ ‫ا‪CA‬ت ا"د& وا"‪ &I1‬وا"‪ =&W‬ا"‪ O = ‪  J‬ا"  ا"‪.  +‬‬ ‫ا‪ .‬ا‪ &W> F) : &H‬و>‪VC ‪B&&W> BW9 m[J‬‬ ‫‪[+D B b‬ء ‪1 W+‬ت ا"‪M‬دة ‪*9 K‬ل إ‪IC‬ء د"‪Q‬‬ ‫ا"‪M‬دة وإاءا>‪ .O‬و> ت ا"‪ Q‬و‪ K BWW9‬ا‪Q‬‬ ‫;ن ا"‪8‬ل  ‪VC 5‬م ا"‪M‬دة ا"‪ W‬ب وذ"‪+" Z‬ون‬ ‫‪ G[_ P‬ا"‪  A‬و‪ 6 K‬ا‪+‬د‪ K d‬ادارة ا" ‬ ‫ا‪ .‬ا‪VC F) : HH‬م ا"‪M‬دة(‪ :‬و&‪ +‬‬ ‫‪VC‬م ا"‪M‬دة ‪ G3‬ا"‪ A‬ت وأ ‪ O‬ا"  و‪ 5+F‬و‪F‬ا>‪O‬‬ ‫ادار& وا"[‪ ، J‬و>=م ا"‪I‬آ ا"‪x‬ه و‪ K‬و>‪  ت ‪VC‬م ا"‪M‬دة‪.‬‬ ‫ا‪ .‬اا; ‪ F) :‬إاد ا‪ h‬واد ا"‪+‬ر&‪:(t‬‬ ‫‪ G3 +& cF‬ه‪ dm‬ا"‪ F‬إاد اد ا"‪+‬ر&‪ t‬وا"‪  +‬‬ ‫"!‪ z +‬ا" ‪&+‬ت ادار& ‪*9‬ل ‪+3‬ة >‪ ر&‪ G1 +J K BM t‬ا"‪VC 5   A‬م ا"‪M‬دة‬ ‫)ا)&‪L‬و‪ (٩٠٠٢ :‬و>‪ B>=1W‬و&=م ه‪Dx‬ء ‪ m[J+‬ا"‪+‬ر&‪t‬‬ ‫‪ =1" =FD‬ا" ‪ K‬و&آ‪ L‬ا"‪+‬ر&‪ 5  t‬ا"‪ =&W‬ا"‪5 R‬‬ ‫اء ا"ا ا"ا‪.  9‬‬ ‫ا‪ .‬ا?د) ‪ F) :‬ا"ا ا"!ر (‪ 2F :‬أن‬ ‫ا"‪ OM‬ا"‪OI " C‬دة >=م "ا ‪ K‬ا‪ + Q‬‬ ‫ا‪[+‬ء ‪VC‬م ا"‪M‬دة "‪1 W+‬ت ا"ا [ واآ‪I+‬ف ‪DF‬ت‬ ‫م ا"‪ =W‬وا>!ذ ااءات ا"‪ 8+‬وا"  ‬ ‫""‪.O+M‬‬ ‫ا‪ %.‬ا?;‪ F) :%‬ا"‪ :(79+‬وا"‪  +> G+‬إ>م‬ ‫ا"ا ا"!ر ‪ K‬ا"‪ OM‬ا"‪OI " C‬دة &‪ +‬ا>!ذ‬ ‫ا"=ار ‪I‬ن ‪Ob }J‬دة ا"‪M‬دة ا"" )ا)&‪L‬و ‪G3 (٩٠٠٢‬‬ ‫ا"" ا"‪ " +‬ا [ ‪ 1) .‬ا"‪(٦٥ ،٢٠٠٤ ،KF‬‬ ‫ا'را)ت ا?; ‪:‬‬ ‫ا'را)ت ا; ‪:‬‬ ‫‪ -١‬درا )أ ‪ ،B1‬ه ‪J .(٢٨,٢٠٠٤ ،1‬ان‬ ‫ى >‪ ‪ Z > ا‪ 3‬و_‪ z‬إدارة ا"‪ 3‬وأ‪6‬ه ‪G3‬‬ ‫‪  3‬ا"&&‪ G3 K‬ا"زارات ا)رد‪ ، C‬و ‬ ‫ه‪ 23‬ا"را إ"‪ &W> 5‬إ‪H‬را [ه‪" G‬أس‬ ‫ا"ل ا"[‪A‬ي و‪ G3 B>CA‬ا"‪M‬ت‪ ،‬وآ‪Z"m‬‬ ‫>‪ &W‬أدا‪ K B=+" d‬ا‪ B Q‬و>‪   b‬‬ ‫إدار>‪ ،B‬و> ‪ 2‬ا"را إ"‪ 5‬ا"& ‪ K‬ا"‪، h+J‬‬ ‫أزه أن ه‪J‬ك * ‪H‬د&‪ K B‬ا"‪QAI  +‬‬ ‫م وا)داء ا‪8+ D‬دي أو ا‪. +C‬‬ ‫‪ -٣‬م )ا" ‪ (٢٠٥، ١٩٩٧ ،G‬را ‪J‬ان‬ ‫ادارة "‪J> ، 3‬و"‪L 2‬ات ‪ 8‬ا"‪ 3‬‬ ‫وا" ت‪1+ ،‬ر‪ d‬ا"آ‪L‬ة ا) ‪J G3‬ء‬ ‫ا‪8+ D‬د ا"‪،GJH‬آ‪> Z"m‬ث ‪ K‬ا‪=+CD‬ل إ"‪5‬‬ ‫‪ 8‬ا"‪. 3‬‬ ‫‪ -٤‬درا )ا" ا‪" (٧٨,٢٠٠١ ،GC‬إدارة ا"‪" 3‬‬ ‫وا"‪ G+‬ه‪ 23‬إ"‪ 5‬ا"‪+‬ف  ‪ 1H 5‬ا"‪ 3‬‬ ‫ا"‪ ، VJ+‬وأ‪ ،O"Ab‬وا‪ ،O 9‬و‪28 9‬‬ ‫‪Y‬ورة >‪  PMI‬ت ا"‪ +‬وا"‪1+‬دل ا"‪G3‬‬ ‫‪ K‬أ‪Y‬ء ا"‪ ، VJ‬وأآت  ‪ 5‬أه ا"‪8J‬‬ ‫ا"‪I1‬ي ‪ m[J> G3‬ا‪+‬ا>‪M‬ت إدارة ا"‪، 3‬‬ ‫و> ‪ 2‬إ"‪ 5‬أه ا"‪8‬ب وا"=‪1‬ت ‪F‬ل إدارة‬ ‫ا"‪. 3‬‬ ‫‪ -٥‬أى )ا"!‪ (٤٦,١٩٩٦ ،GM3‬درا ‬ ‫‪J‬ان"ا"‪ Q9‬ا"‪ Q > G3 G3‬ا‪+9D‬ر‬ ‫ا‪+D‬ا>‪ :GM‬درا ا‪+9‬ر&‪ J G3 B‬ا"‪K+‬‬ ‫ا"ا  " ه‪ 23‬إ"‪ 5‬أن ه‪J‬ك ‪*Y‬ت ‪B&A3‬‬ ‫‪ B&VC‬و>‪ K B=1W‬أه‪_ Q > O‬ه>‪G‬‬ ‫ا"‪ 3‬ا"‪ VJ+‬وا‪+9D‬ر ا‪+D‬ا>‪GM‬‬ ‫و>[ ه‪.‬‬ ‫‪ -٦‬درا أاه ا"‪LJ‬ي‪ G   ،‬و "}‬ ‫)‪J (٢٠٠٨,٢٦٨‬ان" إدارة رأس ا"ل ا"[‪A‬ي‬ ‫‪VJ G3‬ت ا)ل" ‪ cF‬أآ أن " ‪ 3‬‬ ‫‪ GO3 .789‬وا"‪m‬آء &ان ا"دان ‪+‬ز‬ ‫‪ G3‬أ& ‪ VJ‬أل‪ ،‬و&‪6x‬ان ‪ G3‬ا)داء ا""‪G‬‬ ‫وا"‪ VJ " G A‬وه ا"اد ا"!م " ‪BM+JC‬‬ ‫و‪ ،B1C‬وا"= ا"== " ‪Q=C G3 KA> VJ‬‬ ‫ا"‪ 3‬إ"‪ 5‬وا ‪ ،P‬و>=< أداء ‪[+‬ق و ر‪d‬‬ ‫>‪.B 3J‬‬ ‫ا'را)ت ا*‪I5‬‬ ‫‪ -١‬درا )‪ ،(Laszlo, 2002,66‬و  ه‪23‬‬ ‫ا"را إ"‪ 6*6 };> 5‬أل ت ‪ O‬إدارة‬ ‫ا"‪ ، 3‬وه‪ G‬ا"‪ QM‬ا)ول‪ cF :‬رآ‪5  L‬‬ ‫ه ا"‪ 3‬وإدار>‪*9 K O‬ل اآ‪ +‬ب ا"‪m‬آء‬ ‫ا"‪ "JA> G3 QR+‬رأس ا"ل ا"[‪A‬ي‪ ،‬أ‬ ‫ا"‪ QM‬ا"‪ :GCR‬رآ‪ 5  L‬ا"د ‪ K‬إدارة‬ ‫ا"‪+ D 3‬اح  ‪A+‬ن  ‪*9 K B‬ل‬ ‫ ت ا"‪ +‬وا‪A+D‬ر و د ه‪m‬ا ا"‪ QM‬ا"‪VJ‬ت‬ ‫ا"‪  +‬و‪ KA‬ا" ‪ K‬وا"‪M‬ت ‪ K‬ااع‬ ‫وا"‪ C B+‬ا"‪ QM‬ا"‪ c"R‬ا"‪m‬ي رآ‪5  L‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫ا‪IA+‬ف ا" ‪+" Q1=+‬آ‪ G^1J&  5  L‬أن‬ ‫>‪A‬ن  ‪ B‬إدارة ا"‪. 3‬‬ ‫‪ -٢‬درا )‪ ،(Mathotra. 2003,91‬و  ه‪23‬‬ ‫ا"را إ"‪ 5‬و;‪ P‬م و>& & ‪ 1J‬‬ ‫"=س ا) ل ا"‪ ، 3‬و‪J‬ء ‪C‬ذج  ‪B‬‬ ‫‪ 1J‬وآ‪ Z"m‬آ[ >‪ &W‬رات وإ‪CA‬ت‬ ‫ا"=‪W‬ع ا"م ‪ G3‬ه‪m‬ا ا"‪M‬ل‪ 2=1H cF ،‬ه‪dm‬‬ ‫ا"را ‪ G3‬ا"‪&D‬ت ا"‪+‬ة آ‪LM‬ء ‪IC K‬ط‬ ‫ا) ا"‪+‬ة ‪ G3‬ا"‪HIJ‬ت ا‪ +D‬وا"  ‪.‬‬ ‫‪ -٣‬م )‪(1998, 134 Brain&Newman,‬‬ ‫را ‪F‬ل "‪C‬ذج إدارة ا"‪ ،" 3‬و‪ G3‬ه‪dm‬‬ ‫ا"را ا‪+‬ض ا"‪ cF1‬ا" ا" "‪QR‬‬ ‫ه‪m‬ا ا"‪J‬ذج ‪+‬د ا"ا ‪ z‬وا)د‪ ،‬و‪b‬د‬ ‫ا"‪ 5  cF1‬أه دور ‪F‬ة ا"‪ ، 3‬وا"‪ J‬‬ ‫ا"‪6x‬ة وا‪+‬ده آ‪ O 8J‬ودا ‪G3‬‬ ‫‪C‬ذ‪.B‬‬ ‫‪ G3 -٤‬درا ) ‪Mentzer & Mastunol, 2000,‬‬ ‫‪ > (26‬إاء ه‪ dm‬ا"را  ‪& K BJ 5‬ي‬ ‫ا"‪b G3 ‪ zJ8‬ا"‪ 3‬إ"‪BJ; 5‬‬ ‫&‪ O P++‬ا)‪3‬اد أو ‪3‬ق ا"‪ ،Q‬و>‪1‬ز ‪G3‬‬ ‫ا"‪[A‬ءة ا"‪ l QAI ، 8!I‬ر‪ ،G‬و ‪5‬‬ ‫ا"‪ VJ‬أن >‪.O  3‬‬ ‫‪ -٦‬درا )‪ zJ (Taylor, 2000:2‬ا"‪ 3‬أ‪OC‬‬ ‫_ه‪ d‬و;‪ BJ‬و&‪ KA‬أن >‪A‬ن = >‪ Y‬‬ ‫>[  ‪ Q +" G11‬ا"=م ث ‪ ،K‬و‪BW‬‬ ‫>=م  ‪ 5‬ا"‪ M+‬دون >[  ا"ث‬ ‫ا\[ر ا 'را) ‪:‬‬ ‫>‪J+‬ول ا"را ا"‪ MOJ z&+‬ا"را وإاءا>‪،O‬‬ ‫‪ hOJ  J& cF‬و‪ P+M‬و‪ J‬وأداة ا"را ‪ ،‬وض‬ ‫ا"‪ h+J‬و‪ 6 K‬ا"‪ +‬ت‪.‬‬ ‫(‪ R:5‬ا'را) ‪:‬‬ ‫"= ا‪!+‬م ا"‪ cF1‬ا"‪ hOJ‬ا" [‪ G‬وا"‪MCD G  +‬ز ه‪dm‬‬ ‫ا"را ‪ ،‬و  ا‪+‬ت ا"را ا"‪ hOJ‬ا" [‪*9 K G‬ل‬ ‫ا‪*HD‬ع  ‪ 5‬ا"ا‪ P‬وا"رات ا)‪9‬ى ذات ا"‪ ، 8‬أ‬ ‫‪ cF K‬ا"‪ hOJ‬ا"‪ =3 G  +‬ا>‪ 21‬ا"را ا" } ا"ا‪GC‬‬ ‫وا‪ 2!+‬أداة ا‪ PM" C1+D‬ا" ت ‪ K‬أ‪3‬اد ا"‪ J‬‬ ‫و>  ‪L>  O‬ه‪.‬‬ ‫(‪ K61‬ا‪789 6‬‬ ‫ا"‪ J1‬ا"‪ "JA+" ++‬ا" ت  ‪; 5‬ن‬ ‫دة ا"‪ ،  +‬وآ‪ Z"m‬در ا"‪=+‬رب او ا"‪CM+‬‬ ‫‪ G3‬إت ه‪Dx‬ء ا"‪ ! K61‬ا"[; ‬ ‫ا"  ‪.‬‬ ‫‪ -٤‬ا‪1+9‬ر ‪*" Reliabilty‬ت ا"‪1R‬ت "‪1‬رات‬ ‫ا)داة‪.‬‬ ‫‪'+‬ق أداة ا'را) و‪::I‬‬ ‫"  ف  ‪ 5‬ق =& أداة ا"را م ا"‪cF1‬‬ ‫ض ا"‪1‬رات ا"‪^+ O+JY> G+‬ات ا"را  ‪5‬‬ ‫‪ K BM‬أ‪Y‬ء ه‪ N‬ا"‪+‬ر& "‪M‬ت ا)رد‪، C‬‬ ‫وآ‪ K BM 5  Z"m‬ا"ر‪ K‬ا"‪ ،K88!+‬و  > ‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫إد‪9‬ل ‪ y‬ا"‪*&+‬ت  ‪ 5‬ا)داة ‪; G3‬ء *‪. O>VF‬‬ ‫و‪1 2Y9‬رات ا‪1+9D BC1+‬ر *ت ا"‪1R‬ت‬ ‫‪ K ت ا]‬

‫ا'د‬

‫ا‪I?5‬‬ ‫ا>@ ‪%‬‬

‫ا‪b5R‬‬

‫أ‪5RC‬‬ ‫ذآ‬

‫‪١٧‬‬ ‫‪٣٥‬‬

‫‪٣٥.٧‬‬ ‫‪٦٧.٣‬‬

‫‪J ٥ – ١‬ات‬ ‫‪J ١٠ – ٦‬ات‬ ‫‪]3 J ١١‬آ‪R‬‬

‫‪٢٦‬‬ ‫‪٢١‬‬ ‫‪٥‬‬

‫‪٥٠‬‬ ‫‪٤٠.٤‬‬ ‫‪٩.٦‬‬

‫ا‪F‬ه‪ 7‬ا‬

‫‪"A‬ر&س‬ ‫د م "‪G‬‬ ‫درات  ‬

‫‪٦‬‬ ‫‪٣٣‬‬ ‫‪١٣‬‬

‫‪١١.٥‬‬ ‫‪٦٣.٥‬‬ ‫‪٢٥‬‬

‫ا‪[05‬ت ا‬

‫‪ IC‬ث‬ ‫>"‪ z‬آ‪+‬ب‬ ‫‪>x‬ات   ‬

‫‪٢٢‬‬ ‫‪١٢‬‬ ‫‪١٨‬‬

‫‪٤٢.٣‬‬ ‫‪٢٣.١‬‬ ‫‪٣٤.٦‬‬

‫ا‪I,‬ة‬

‫ا‪'R‬ول ر‪ 789 .(٢)8‬ا"‪.K61‬‬

‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٢‬أ*‪ ،d‬أن ‪ 1"l‬‬ ‫ا)‪3‬اد ا"‪ K61‬آ‪C‬ا ‪ K‬ا"‪m‬آر إذ  ‪ p‬ده ‪3 ٣٥‬د‬ ‫و&‪ AI‬ن ‪ K %٦٧.٣ B+1J‬إ"‪ G‬ا"‪ ،K61‬وان ه‪m‬ا‬ ‫ا"‪ QR+‬ا">[‪ G3 P‬ا"‪ P M J& J‬وا ‪> P‬ز&‪ P‬ا" ‪K‬‬ ‫‪ G3‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫أ >ز&‪ P‬ا"‪ t F K61‬ا"!‪1‬ة ‪ =3‬آ‪ 2C‬ا"[‪ N‬ا"‪P=> G+‬‬ ‫‪J ٥ – ١ K‬ات ه‪ G‬ا"[‪ N‬ا)آ‪*R> R‬؛ ‪ p  cF‬د‬ ‫أ‪3‬اده ‪3 ٢٦‬د و‪ K %٥٠ 1 J‬ا"‪M‬ع‪ N3 O & ،‬‬ ‫ا)‪3‬اد ا"‪J ١٠ – ٦ K O>19 K&m‬ات؛ ‪ p  cF‬د‬ ‫أ‪3‬اده ‪3 ٢١‬د و‪ N3 O & 6 ،٤٠.٤ 1 J‬ا)‪3‬اد ا"‪K&m‬‬ ‫‪]3 J ١١ O>19‬آ‪ R‬وه‪ G‬ا ‪^+ t F *R> N3 Q‬‬ ‫ا"!‪1‬ة‪ ،‬إذ  ‪ p‬د أ‪3‬اده ‪ ٥‬أ‪3‬اد و‪.%٩.٦ &N B1 J‬‬ ‫أ "‪ 1 J‬إ"‪ 5‬ا"‪+‬ز&‪ t F P‬ا"‪x‬ه‪ Q‬ا" ‪ =3 ،G‬آ‪2C‬‬ ‫‪ N3‬ا)‪3‬اد ا"‪ & K&m‬ن در د م "‪ G‬ه ا)‪ ، 1 l‬إذ‬ ‫ ‪ p‬ده ‪3 ٣٣‬د و‪ K %٦٣.٥ 1 J‬ا"‪M‬ع‪O & ،‬‬ ‫ا"[‪ N‬ا"‪ Q> G+‬در ا"رات ا" ‪ p  cF ،‬د‬ ‫أ‪3‬اده ‪3 ١٣‬د و‪ N3 6 ،%٢٥ &N B1 J‬ا)‪3‬اد ا"‪K&m‬‬ ‫& ن در ا"‪"A1‬ر&س وه‪ G‬ا ‪t F *R> N3 Q‬‬ ‫‪ ^+‬ا"‪x‬ه‪ Q‬ا" ‪G‬؛ إذ  ‪ p‬د أ‪3‬اده ‪ ٦‬أ‪3‬اد و‪B1 J‬‬ ‫‪.%١١.٥ &N‬‬ ‫أ "‪ 1 J‬إ"‪ 5‬ا"‪+‬ز&‪ t F P‬ا"‪HIJ‬ت ا"  ‪=3 ،‬‬ ‫آ‪ N3 2C‬ا)‪3‬اد ا"‪IJ& K&m‬ون ث ه ا)‪ ، 1 l‬إذ  ‪p‬‬ ‫ده ‪3 ٢٢‬د و‪ K %٤٢.٣ B1 J‬ا"‪M‬ع‪ O & ،‬ا"[‪ N‬‬ ‫ا"‪+I> G+‬ك ‪ G3‬ا"‪>x‬ات ا"  ‪ p  cF ،‬د أ‪3‬اده‬ ‫‪3 ١٨‬د و‪ N3 6 ،%٣٤.٦ &N B1 J‬ا)‪3‬اد ا"‪K&m‬‬ ‫&‪["x‬ن ا"‪ t+A‬وه‪ G‬ا ‪ ^+ t F *R> N3 Q‬ا"‪HIJ‬ت‬ ‫ا"  ‪ ،‬إذ  ‪ p‬د أ‪3‬اده ‪3 ١٢‬د و‪%٢٣.١ &N B1 J‬‬ ‫‪78‬‬

‫ض &_ ا'را) ‪:‬‬ ‫&‪ KY+‬ه‪m‬ا ا"[‪ h+J " ; Q8‬ا"‪ 2 > G+‬إ"‪O‬‬ ‫ا"را ‪*9 K‬ل ا ‪ > K‬ؤ‪ ،O>D‬وا‪1+9‬ر‬ ‫‪ O>;3‬و ‪ 5‬ا"‪ J‬ا)>‪-:G‬‬ ‫ا‪ /‬ا? ا*و‪:‬‬ ‫‪ * >D :HO-1‬ذات د‪ B"D‬إ‪ K 8F‬ا"!‪78‬‬ ‫ا"‪ O P++& G+‬أ‪Y‬ء ا"‪ NO‬ا"‪+‬ر&  )أ‪3‬اد ا"‪( 3‬‬ ‫و;ن ا"‪M‬دة ‪ G3‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪+  J‬ى‬ ‫د‪(٠.٠٥ ≥α ) B"D‬‬ ‫و@‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬ ‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ * > D :HO-1-1‬ذات د‪ B"D‬إ‪K 8F‬‬ ‫ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  و ;ن‬ ‫دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪+  J‬ى‬ ‫ ‪+‬ى د‪.(٠.٠٥ ≥α ) B"D‬‬ ‫" ‪ K‬ه‪ dm‬ا"[; > ا‪!+‬ام > ‪ Q‬ا"‪ K&1+‬ا)‪F‬دي‬ ‫) ‪ ،( Anova‬وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪.(١‬‬ ‫‪ :f‬ا?;‬

‫‪ :f‬ا‪'R‬و‪%‬‬

‫(?ى ا'‪e‬‬ ‫ا‪0.05 =( 78‬‬ ‫‪٠.٠٠٠‬‬

‫ا‪/‬‬ ‫ا*و‬ ‫‪٣.٨٩‬‬ ‫‪٩.٧٨٦‬‬ ‫‪H1‬‬ ‫ا‪'R‬ول ر‪ Q > h+C .(١)8‬ا"‪ K&1+‬ا)‪F‬دي )‪(Anova‬‬

‫"‪HIJ " ^+‬ت ا"  ‪.‬‬ ‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (١‬أ*‪ ،d‬أن  ف‬ ‫ا"  )‪ (٩.٧٨٦‬وه‪ G‬اآ‪ B K 1‬ف ا"‪M‬و" ‬ ‫ا"‪ ،(٣.٨٩) ^"1‬و ‪+‬ى د‪ (٠.٠٠٠) B"D‬وه‪ G‬ا ‪K Q‬‬ ‫)‪ t&  ،(٠.٠٥‬ر‪ y3‬ا"[; ا" و ‪1‬ل‬ ‫ا"[; ا"‪ &1‬وا"‪ 5  7J> G+‬ود * ذات د‪B"D‬‬ ‫إ‪ K 8F‬ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬‬ ‫ا"‪+‬ر&  و ;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪.‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ * > D‬ذات د‪ B"D‬إ‪19 K 8F‬ة ا"‪ NO‬‬ ‫ا"‪+‬ر&  و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪+  J‬ى د‪.( ٠.٠٥ ≥α ) B"D‬‬ ‫" ‪ K‬ه‪ dm‬ا"[; > ا‪!+‬ام > ‪ Q‬ا"‪ K&1+‬ا)‪F‬دي‬ ‫) ‪ ،( Anova‬وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪:(٣‬‬ ‫ ‪+‬ى ا"‪ "D‬‬ ‫‪ :f‬ا"‪M‬و"‪B‬‬ ‫‪:f‬‬ ‫ا"[; ‬ ‫ا ‪0.05 K Q‬‬ ‫ا"  ‬ ‫ا)و"‪5‬‬ ‫‪٠.٠٤٩‬‬ ‫‪٣.٨٩‬‬ ‫‪٣.٢١٦‬‬ ‫‪H2‬‬ ‫ا‪'R‬ول ر‪ Q > h+C .(٣) 8‬ا"‪ K&1+‬ا)‪F‬دي )‪^+" (Anova‬‬ ‫" ‪HIJ‬ت ا"  ‪.‬‬

‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٣‬أ*‪ ،d‬أن  ف‬ ‫ا"  )‪ (٣.٢١٦‬وه‪ G‬اآ‪ B K 1‬ف ا"‪M‬و" ا"‪ ^"1‬‬ ‫)‪ ،(٣.٨٩‬و ‪+‬ى د‪ (٠.٠٤٩) B"D‬وه‪ G‬ا ‪،(٠.٠٥) K Q‬‬ ‫ &‪ t‬ر‪ y3‬ا"[; ا" و ‪1‬ل ا"[; ا"‪ &1‬‬ ‫وا"‪ 5  7J> G+‬ود * ذات د‪ B"D‬إ‪K 8F‬‬ ‫‪19‬ة ا"‪ NO‬ا"‪+‬ر&  و;ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪ %/‬ا?‪ %‬ا‪:%&H‬‬ ‫‪ & D :HO -2‬ا‪ 78!" 6‬ا"‪ J1‬ا"‪"JA+" ++‬‬ ‫ا" ت  ‪; 5‬ن دة ا"‪  +‬و>‪VC ،(٤–١‬إ&‪M‬د ا"‪W+‬ت ا"  وا‪CD‬ا‪3‬ت‬ ‫ا"ر& وا">‪ t‬ودرت ا"ر )‪3‬اد ‪ J‬ا"را ‬ ‫‪ G3‬ا"‪ A‬ت وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪.(٤‬‬

‫و‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬ ‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ & D :HO -1-2‬ا‪ 1" 6‬و>‪ P&J‬ا"‪5  1+A‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪8‬‬

‫ا‪I‬رة‬

‫ا)‪ h‬ا?;‬

‫ا‪&e‬اف اري‬

‫‪١‬‬

‫ا‪$‬‬ ‫(‪I$‬ت‬ ‫‪I).‬‬ ‫و‪ =( '@X@ :@5‬ا‪I‬ث‬ ‫ا‬ ‫ا‪I$‬ت‬ ‫?' ‪I).‬‬ ‫و‪ ! :@5‬ا)ب ‪ P&J‬ا"‪ 1+A‬و;ن‬ ‫دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬

‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٤‬أ*‪ ،d‬ن أ‪3‬اد ‪ J‬‬ ‫ا"را &ون ن ه‪J‬ك * ‪ 1F K‬و>‪ P&J‬ا"‪ 1+A‬‬ ‫‪ G3‬ا"‪  A‬و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪ p  cF ،‬ا"‪ X+‬ا" ‪ G‬ا"م "‪ dmO‬ا"[; ‬ ‫)‪ (٤.٠٣٠٤٧٥‬ور ر "‪F cF ،B‬زت ا"[=ة‬ ‫ر )‪ 5  (٢‬ا">‪ 1‬ا)و"‪ 5‬ور ر "‪،B‬‬ ‫وا"‪ 1F  > "5  7J> G+‬ا"‪1+A‬ت ‪ G3‬ا‪+‬ب‬ ‫‪ P‬ا"ا‪ P‬وا"ور&ت "‪F KF G3 ،‬زت ا"[=ة )‪(٤‬‬ ‫ ‪ 5‬ا">‪ 1‬ا)‪9‬ة ور ر "‪ ،B‬وا"‪28C G+‬‬ ‫ ‪ 1F  > "5‬ا"‪1+A‬ت و>‪ G3 O&J‬ا"‪8‬ل  ‪5‬‬ ‫ا"   "‪ ،‬وآ‪=3 P 2C‬ات ا"[; أ‪1‬ب‬ ‫ا" ‬

‫ا"‪1‬رة‬

‫"‪ y3‬ا"[; ا" و ‪1‬ل ا"[; ا"‪ &1‬ا"‪7J> G+‬‬ ‫ ‪ 5‬ود * ‪ 1F K‬و>‪ P&J‬ا"‪ 1+A‬و;ن دة‬ ‫ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ & D :HO -2-2‬ا‪ Q " 6‬ا"‪ "JA+‬ا"&‪5  R‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫" ‪ K‬ه‪ dm‬ا"[; وا"‪J> G+‬و"‪=3 2‬ات ا‪ C1+D‬‬ ‫‪ > ،(٤ – ١) K‬إ&‪M‬د ا"‪W+‬ت ا"  وا‪CD‬ا‪3‬ت‬ ‫ا"ر& وا">‪ t‬ودرت ا"ر )‪3‬اد ‪ J‬ا"را ‬ ‫‪ G3‬ا"‪ A‬ت وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪.(٥‬‬ ‫ا"‪ X‬ا" ‪G‬‬ ‫‪٤.١٧٠٧‬‬ ‫‪٣.٧٨٠٥‬‬

‫ا‪CD‬اف‬ ‫ا"ري‬ ‫‪١.٠٢٢٣١‬‬ ‫‪١.٢٣٥١٦‬‬

‫ا">‪ 1‬‬

‫در ‬ ‫ا"ر ‬ ‫"‪B‬‬

‫>‪ 3‬ا"‪  A‬ا"‪ Q‬ا"‪ "JA+‬ا"&‪ + " R‬‬ ‫‪١‬‬ ‫>‪ 3‬ا"‪  A‬دورات >ر&‪ G3 1‬آ‪ 3‬ا"‪DM‬ت‬ ‫‪٢‬‬ ‫"‪B‬‬ ‫‪٣‬‬ ‫ا"‪ 88!+‬‬ ‫‪١.١١٦٩٤‬‬ ‫‪٤.٠٤٨٨‬‬ ‫>اآ‪ t‬ا"‪  A‬ا"ا‪ G3 6‬أ"‪ t‬ا"‪  +‬‬ ‫‪٣‬‬ ‫"‪B‬‬ ‫‪٢‬‬ ‫ا"‪W+‬رة‬ ‫‪١.٥٣٤٥٦‬‬ ‫‪٣.٥٣٦٦‬‬ ‫>‪ 3‬ا"‪  A‬آ‪ 3‬ا" ‪L +‬ت ا"  ا"&‪ R‬‬ ‫‪٤‬‬ ‫"‪B‬‬ ‫‪٤‬‬ ‫ا"*ز ‬ ‫"‪B‬‬ ‫‬‫‪١.٢٢٧٢٤‬‬ ‫‪٣.٨٨٤١٥‬‬ ‫ا"ر ا"‪  A‬‬ ‫ا‪'R‬ول ر‪ .(٥) 8‬ا"‪W+‬ت ا"  وا‪CD‬ا‪3‬ت ا"ر& ودرت ا"ر "ا ‪ K P‬ا"‪ Q‬ا"‪ "JA+‬ا"&‪ R‬‬ ‫‪١‬‬

‫و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا"‪ &1‬ا"‪ 5  7J> G+‬ود * ‪ K‬ا"‪Q‬‬ ‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٥‬أ*‪ ،d‬ن أ‪3‬اد ‪ J‬‬ ‫ا"‪ "JA+‬ا"&‪ R‬و ;ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا"را &ون ن ه‪J‬ك * ‪ K‬ا"‪ Q‬ا"‪ "JA+‬‬ ‫ا)رد‪ C‬ا"! ‪.‬‬ ‫ا"&‪ R‬و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪،‬‬ ‫‪ p  cF‬ا"‪ X+‬ا" ‪ G‬ا"م "‪ dmO‬ا"[; ‬ ‫ا‪ _5‬وا‪+‬ت‪:‬‬ ‫)‪ (٣.٨٨٤١٥‬ور ر "‪F cF ،B‬زت ا"[=ة‬ ‫أو ً‪ :e‬ا‪_5‬‬ ‫‪ 2 > –١‬ا"را إ"‪ 5‬ود * ذات د‪ "D‬إ‪ 8F‬‬ ‫ر )‪ 5  (١‬ا">‪ 1‬ا)و"‪ 5‬ور ر "‪,B‬‬ ‫‪ K‬ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  و‬ ‫وا"‪ 3> "5  7J> G+‬ا"‪  A‬ا"‪ Q‬ا"‪ "JA+‬ا"&‪ R‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! و ‪+‬ى‬ ‫" ‪F G3 ،" +‬زت ا"[=ة )‪ 5  (٤‬ا">‪ 1‬ا)‪9‬ة‬ ‫د‪.(٠.٠٠٠) "D‬‬ ‫ور ر "‪ ,B‬وا"‪ 3> " 5  28C G+‬ا"‪  A‬‬ ‫آ‪ 3‬ا" ‪L +‬ت ا"*ز ا"&‪ ،" R‬وآ‪=3 P 2C‬ات‬ ‫ا"[; أ‪1‬ب "‪ y3‬ا"[; ا" و ‪1‬ل ا"[; ‬ ‫‪79‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ –٢‬آ > ‪ 2‬ا"را ود * ذات د‪ "D‬إ‪ 8F‬‬ ‫‪19 K‬ة ا"‪ NO‬ا"‪+‬ر&  ‪ G3‬و;ن دة ا"‪G3  +‬‬ ‫ا"‪ A‬ت ا)رد‪ C‬ا"! و ‪+‬ى د‪.(٠.٠٠٠) "D‬‬ ‫‪ –٣‬و> ‪ 2‬ا"را إ"‪ 5‬ود ا‪ 1" 6‬و>‪P&J‬‬ ‫ا"‪; 5  1+A‬ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪.‬‬ ‫‪ –٤‬آ > ‪ 2‬ا"را إ"‪ 5‬ود ا‪Q " 6‬‬ ‫ا"‪ "JA+‬ا"&‪; 5  R‬ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا)رد‪ C‬ا"! ‬ ‫‪ m+ -٥‬ا'را) إ 'م ‪Z& IU‬م ا‪R‬دة !‬ ‫ا‪$‬ت ا*رد&‬ ‫‪ m+ -٦‬ا'را) إ 'م اد (@ &‪Z‬م ا‪R‬دة‬ ‫ا'ة (= وزارة ا ا‬ ‫&‪ :‬ا‪+‬ت‬ ‫‪ G > –١‬ا"را ‪Y‬ورة أن >=م ا"‪  A‬ا" ا"*زم‬ ‫" ‪HIJ‬ت ا"  " ‪ NO‬ا"‪+‬ر&  وذ"‪IC L[+" Z‬‬ ‫ا"‪1‬ث و>]"‪ z‬ا"‪ t+A‬وا"‪I‬رآ ‪ G3‬ا"‪>x‬ات ا"  ‪.‬‬

‫‪ –٢‬آ > ‪ G‬ا"را ‪Y‬ورة أن >‪ K‬ا"‪  A‬أ‪Y‬ء‬ ‫ا"‪ NO‬ا"‪+‬ر&  أ ب ا"!‪1‬ات ا"" وذ"‪[ " Z‬ظ‬ ‫ ‪ 5‬دة ا"‪.  +‬‬ ‫‪ –٣‬آ > ‪ G‬ا"را ‪Y‬ورة أن >‪L‬ز ا"‪ 1F  A‬‬ ‫ا"‪ 1+A‬و>‪ K O" " O&J‬ا‪ G3 6‬دة ا"‪K  +‬‬ ‫‪*9‬ل ز&دة ا"‪1‬ث ا"  وا‪+‬ب ا"‪) 1+A‬آ‪ 1‬آ‪B‬‬ ‫‪ K‬ا"ا‪ P‬وا"ور&ت و>‪ PMI‬ا"ر‪ K‬وا"‪ 1 W‬‬ ‫"‪&L‬ر>‪ O‬و> ‪ QO‬ا"‪8‬ل  ‪ 5‬ا"   ‪.[+  " B‬‬ ‫‪ -٤‬آ و> ‪ G‬ا"را ‪Y‬ورة أن >‪ 3‬ا"‪  A‬آ‪ 3‬‬ ‫ا"‪ Q‬ا"‪ "JA+‬ا"&‪ K O" " R‬ا‪ G3 6‬دة‬ ‫ا"‪*9 K  +‬ل >‪ 3‬دورات >ر&‪ 88!+ B1‬واآ‪ 1‬‬ ‫ا"ا‪ G3 6‬أ"‪ t‬ا"‪  +‬و>‪ 3‬آ‪ 3‬ا" ‪L +‬ت ا"  ‬ ‫ا"&‪ R‬ا"*ز ‪.‬‬ ‫‪ G > -٥‬ا"را ‪Y‬ورة >‪VC -٦‬ا"را ‪Y‬ورة >‪ & ‪G3 O&J‬‬ ‫ا‪+‬ب ‪ P‬ا"ا‪ P‬وا"ور&ت‬ ‫>‪ 1F PMI‬ا"‪1+A‬ت و>‪O&J‬‬ ‫ا"ر‪ K‬وا"‪ 5  1 W‬ز&ر>‪O‬‬ ‫>  ‪ 1F‬ا"‪1+A‬ت و>‪G3 O&J‬‬ ‫ا"‪8‬ل  ‪ 5‬ا"   ‬ ‫>‪ 3‬ا"‪  A‬ا"‪ Q‬ا"‪ "JA+‬‬ ‫ا"&‪ + " R‬‬ ‫>‪ 3‬ا"‪  A‬دورات >ر&‪ G3 1‬آ‪ 3‬‬ ‫ا"‪DM‬ت ا"‪ 88!+‬‬ ‫>اآ‪ t‬ا"‪  A‬ا"ا‪ G3 6‬أ"‪t‬‬ ‫ا"‪  +‬ا"‪W+‬رة‬ ‫>‪ 3‬ا"‪  A‬آ‪ 3‬ا" ‪L +‬ت ا"  ‬ ‫ا"&‪ R‬‬ ‫>‪ 5J1+‬ا"‪VC  A‬م ;‪ X1‬ا"‪M‬دة‬

‫‪١٠‬‬

‫>‪ :٣٩٤‬ز‪.‬‬ ‫م‪ ،‬زآ&‪ " .(٢٠٠٤) ،‬ى إدراك أه إدارة‬ ‫ا"‪ 3‬ا"‪ G3 1‬ا"‪I‬آت ا"‪ J8‬‬ ‫ا" ه ا" ا)رد‪ ،" C‬ر"  ‪+‬‬ ‫‪IJ l‬رة‪ ،‬ا"‪ M‬ا)رد‪. C‬‬ ‫ا"‪ ،GW‬ر ؛ ادة‪ " .(٢٠٠٣) ،5  ،‬إدارة ا"‪M‬دة‬ ‫ا"‪O[ : I‬م وإ‪H‬ر " ‪ G3  ‪K‬‬ ‫ ‪&+‬ت ا)داء "‪ >x ،‬آ  ا‪8+ D‬د وا" م‬ ‫ادار& ا"‪  ،GCR‬ا"‪L‬ر ء ا)ه  ‪ ،‬ا)ردن‪.‬‬ ‫‪1‬ا"‪" .(٢٠٠٤) ، ،KF‬ا"‪J‬ه‪ h‬ا"‪+‬ر&  ‬ ‫ا"‪ hOJ : A+‬إدارة ا"‪M‬دة ا"‪QI‬ة "‪ ،‬آ‪L‬‬

Journal of Environmental Studies [JES] 2012. 9: 73-81

Wiig, karl M. (2003, 76). "Knowledge Management Founation : Thinking sike, B. & Alan, F. (2000, 87). "The transfer of knowledge & The Retenation of Expertise: the continuing for globel assignments,journal of knowledge mgt V. (4) N (2) Stomquist, n. & Samoff, j. (2000, 3). knowledge of management system journal of comparative education, V. (30) issue (3) Taylor, R. (2000, 2). "KM" The management Process of Ensuring The Organizations Existing Knowlewdge assets Johnson, G. & Scholes, K. (1997, 34). "Exploring Corporate Strategy"4th ed., Prentice-Hall,Europe &‫و‬$e‫< ا‬8‫اا‬ C‫ا)رد‬ G""‫ا‬  +"‫ا‬ ‫وزارة‬ P  www.mohe.gov.jo

1W"‫ ا‬،( PMEC) ‫ "دارة‬JO"‫ات ا‬1!"‫ا‬ . "‫ ا‬8 &‫ر‬O ،‫ ا"=هة‬، CR"‫ا‬ ‫ إدارة‬z_‫ و‬3‫ " ى >ا‬.(٢٠٠٦) ،‫ ز&د‬، C‫ر‬W="‫ا‬ G3 K&&"‫  ا‬3 G3 ‫ه‬6‫ وأ‬3"‫ا‬ l +  "‫ ر‬،" C‫ا"زارات ا)رد‬ .‫ ا)ردن‬، >x  ،‫رة‬IJ hC " .(٢٠٠٢) ، ،‫ري‬8C)‫ ا‬،F‫ ا‬،5[W8 ‫ل‬M"‫ ا‬G3 O>=1W>‫ و‬I"‫دة ا‬M"‫إدارة ا‬ t&‫ر‬+ " G"‫ ا‬L‫ ا"آ‬،W ،" ‫ي‬+"‫ا‬ .h !"‫ي "ول ا‬+"‫ا‬ ‫ ا"[ه‬: 3"‫( "إدارة ا‬٢٠٠٨) ،‫د‬1 MC ، MC IJ " ‫ دار ا"راق‬،" ‫ت وا" ت‬M>‫ا‬+D‫وا‬ .‫ ا)ردن‬،‫ ن‬, CR"‫ ا‬1W"‫ ا‬،P&‫ز‬+"‫وا‬ ‫ إدارة رأس ا"ل‬،٢٠٠٨ }" ‫ و‬G   ،‫ي‬LJ"‫ا‬ ‫ت ا)ل‬VJ G3 ‫ي‬A["‫ا‬ I5*‫ اا< ا‬-‫ب‬ Bonser, C. (1999,36). "Total Quality Education " ،Public administration Review, No. 52. Laszlo, A-Laszlo, K. (2002, 66). " Evolving Knwledge for Development :The Role of Knowledge Management in Changing World". (JKM vol. 6).

Abstract

Following characteristics of knowledge management to achieve quality assurance of higher education Mohammad Abed Abu-qulah

The study aimed to know the effect of following some of the characteristics of knowledge to achieve the quality assurance of education "study applied to private Jordan colleges," The study indicated, there is significant statistical relationship between the activities carried out by faculty staff members and ensure the quality of education. In addition, the study indicated that a trace of computing, diversification of the library contents and provide the means of modern technology are important to ensure the quality of education. The study provided a set of recommendations, including the college offers support for the scientific activities of the faculty, and to appoint members of the owners of high expertise, and enhance and diversify the computerization of the library, and provide the necessary technological means for education.

81

‫‪Journal of Environmental Studies [JES] 2012. 9: 9-14‬‬

‫‪Original Paper‬‬

‫درا ه ة ن  ات ور ا و"!  وغ ادرات‬ ‫رم   ‪   ،‬ا ا ا‪ ،   ،‬إ ن س‪  ،‬ري‪ % ،‬ر ‪ #$‬وأد ‪&'%‬‬ ‫‪ '-‬أاض ا‪+‬ت‪ /‬آ‪ 2 / 0‬و‪ &' /‬ا‪+‬ت ‪ /‬دا‪5‬ة ا ث ا‪0‬را‪ /2‬وزارة ا‪8‬م وا‪ : ،6+7‬اد‪ /‬ااق‬

‫إ‪'در‬ M_* .(١٩٨١) .‫ آ  ا‬Y ‫ء ا داود و‬: ‫  ا(م‬g* (N‫ و‬A‫ اا‬J &‫ق ا‬ ‫ ب‬4&‫ ا‬.'-3‫ ا‬D 43‫( ا‬4‫' ا‬D & E ' ‫را‬.‫' ا '  ث ا‬qP ‫ي‬3‫ا‬ .٦٢-٢:٥١ ،') -4‫ا‬ ‫ & رم‬، ! "  ،K N‫   ا‬،‫اا‬  ،‫ ر‬R ‫ ! ل  ا‬،$  B V ‫ ر‬، ‫ أ د  آ‬،‫  اا س‬    ،  ‫   ري‬،‫ ن‬-‫آ‬ .(٢٠١١) .)*  &‫اه ب و  ا‬ iA ‫ ف‬3R‫   | أ‬MŠ4 ' RZ‫أ ط ا‬ (4‫ت   ت ض ا‬I. \ 'A‫ ا‬ .‫ ت ) و' اض‬M‫ أو ر‬i‫\ و‬1 $‫ا‬ .٧-١ :(٢) ٢٩ ،' ‫ ' ا‬A‫' ا‬X  ،‫ إ اه‬#D ‫ر‬3&‫ أ‬،‫  د د‬،‫اوف‬ .‫  و د  ا ي‬3X‫ا  س ا‬ 3 ‫(ات ) و' ض‬L ‫اث‬4‫ ا‬.(١٩٩٥) .e  R "3h‫ ا‬X‫ ه‬D ‫' ا دي‬-3‫ا‬ -٢١٣ :٢٤ ،' ‫را‬.‫' م ا‬A‫' اا‬X‫ا‬ .٢١٩ .‫ زآ' د‬، ‫ ر و‬4‫   ا‬،X‫ا‬ ,$3 Œ‫ دار ا‬.i)‫ أاض ا‬.(١٩٩٢) ٢١٥ ،'‫ ا&' ا ' اد‬،‫ا ض‬ .'(R Al-Baldawi, A.A. (1993). Occurrence and importance of wheat and barley diseases in Iraq. Pages 105-113 In: Proc. Workshop on the Technology Transfer in the Production of Cereals and Legumes, September 20-22, 1993, Mosul, Iraq. AL- Maroof, E.M., Faidh, F.A. and Queli. A.I. (2004). Efficiency of some fungicides in common bunt disease control in wheat. Page 329-336 In: Proc. 2nd Int. Conf. Of Development and the Environment in the Arab World, March, 23-25. Bonde, M.R., Prescott, J.M., Matsumoto, T.T. & Peterson, G.L. (1987). Possible dissemination of teliospores of Tilletia indica by the practice of burning wheat stubble. Phytopathology, 77: 639 (abstr.). Fischer, G.W. & Holton, C.S. (1943). Studies of the susceptibility of forage grasses to cereal smut fungi IV. Cross-inoculation experiments with Urocystis tritici, U. occulta and U. agropyri. Phytopathology, 33: 910-921. Gaudete, D.A. and Puchalski, B.L. (1989). Races of common bunt (Tilletia 18

Journal of Environmental Studies [JES] 2012. 9: 15-19

Varenitsa, E.T., Saakyan, l.Y., Mozgovoi, A.F., Kochetygov, G.V. and Gradskov. S.M. (1987). Using derivatives of the variety Zarya as donors of resistance to bunt. Lenina, 4: 3-5. Yarham, D. (1993). Soil borne spores as a source of inoculums for wheat bunt Plant Pathology. 42: 654-656.

Parlak, Y. (1981). Seed-borne pathogens on wheat (particularly smut). EPPO Bul. 11: 83- 86. Souza, E., Windes, J.M., Sunderman, D.W., Whitmore, J., Kruk, M. & Goates, B. (1995). Registration of ‘Bonneville’ hard red winter wheat. Crop Sci., 35: 1218-1219.

Abstract Detection of pathological changes in Tilletia spp. The causal agent of covered smut (Bunt) disease in Iraq Six isolates of Tilletia caries and T. foetida, the causal agents of wheat common bunt have been collected from six regions in Iraq and identified by their reaction to 10 differential wheat lines, each containing single bunt resistant gene. Diversity of the pathogen isolates was confirmed according to their reactions. BU6 from Al-Qayarah (Mosul) was the most virulent isolate which overcome all the resistant genes except Bt7and Bt10. The least virulent isolates were BU1 and BU4. Bt7 ، Bt10 genes stayed resistant to all the isolates and the infection didn’t exceed 10%, although the isolates were mixture of Tilletia tritici and Tilletia laevis, followed by Bt5 which was resistant to most of the isolates except for BU5 and BU6 which excelled this resistance. Key words: Common bunt of wheat. Iraqi isolates. Differential sets.

19

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫‪Original Paper‬‬

‫'‪ %&#‬ال ا‪#‬اري وااص ا   اا  ام ا ت ا‬ ‫‪٣‬‬

‫ ة ا ‪  ،١‬ز‪  ،٢‬ن ن‪ ،١‬ز  ز‪   !" ،١‬ا ي‬ ‫‪١‬آ‪ *1‬ا‪ ،*/0‬ا‪ *".‬ا'‪) ،*+,-‬ب ا'&‪ ،%‬ص‪.‬ب ‪9) ،١٤١٥٠‬اد‪ ،‬اق‪.‬‬ ‫‪٢‬آ‪ *1‬ا;م ا‪ *" ،*1/0‬اا‪  ،‬ا'‪ ،*+,-‬ص‪.‬ب ‪9) ،٤٦٠٣٦‬اد‪ ،‬اق‪.‬‬ ‫‪ ٣‬وزارة ا;م وا‪9) ،1 ;;?,‬اد‪ ،‬اق‪.‬‬

‫ا‪@,/‬م‪ ٣ :‬د‪;C ٢٠١١ ،'-‬ل‪٢٠١٢  ١٨ :‬‬

‫ا)(‪:‬‬ ‫‪ G‬ا‪F‬ا ‪ " E‬أآ‪ H‬ا?;ارث ‪  ً ;1L‬ا'‪  J‬و‪ ,C‬ا‪N ،F‬ا أ‪O PQ‬ورً ‪ %1'+G‬ا'‪R‬ت وا'‪;') J‬اد "‪T‬و"*‬ ‫‪ .EF‬أ\[ ه‪ YN‬ا';اد "دة ا‪ W1 ،X.‬ا‪ UVF,/‬أ‪;J‬اع " ا_;اح ا‪T" *1+.‬و"* ‪ `' EF‬ا‪T,Ja‬ل ا‪F `-‬ارة‬ ‫_ اء ا'‪e‬ة ا_‪d‬ى و‪ " 0,'F‬ا‪N ،b,‬ا ازدادت ا‪ * F‬إ! درا‪ */‬آ‪;d 1-FG *11‬اص ا‪ X.‬اا‪,' .C‬ز ا‪X.‬‬ ‫اا‪ *1?1J?1" X +h) C‬و‪ *1 *1  1‬ا‪;.‬دة )‪TJ -‬وة ا';اد ا_و‪ *1‬ا'‪) 0" `+‬ا‪;h+‬ر ا‪ (*1+.‬وا‪*JT,‬‬ ‫ا'‪;,‬رة  ا‪,Jl‬ج‪ ? ،‬هك )‪ m‬ا‪1-‬ت ا‪ ,‬أدت إ! ‪ *C‬ا ‪ o1‬و‪ U‬دون إ‪ * L‬ا‪h,/‬ا"‪ o‬آ‪'" o?/'G * -‬‬ ‫‪h,/p % @" 1 o.‬ام آ'دة را)*‪T" *C ،‬و"‪0 _ o,‬دات ا‪ ،‬م "‪T‬و"‪ *); o,‬و ‪q '" Y'.G * /‬دي إ!‬ ‫‪-d‬رة آ‪1‬ة " ا‪ X.‬أ‪V‬ء ا'[ )‪ ،o‬و)‪q ,‬دي إ! زدة آ* اء‪ ! 9, .‬ه‪ YN‬ا‪1-‬ت ‪  %G‬ه‪N‬ا ا‪ WF‬ا‪h,/‬ام‬ ‫إ‪O‬ت "\ت ‪ X +d 1-F,‬ا‪ X.‬اا‪ %G W1 .C‬ا‪h,/‬ام أ‪;J‬اع ة " ا'\ت ا‪ *11‬وا‪ ,‬ه )ا‪،,‬‬ ‫‪;C‬ر از‪J ،‬رة ا‪ ،h‬ا?ؤو‪ (1‬و)‪ *1" -‬ودرا‪" */‬ى ‪ 1VeG‬ه‪ YN‬ا'\ت ! ا‪;h‬اص ا‪ *1  1‬وا'‪*1?1J?1‬‬ ‫‪ X.‬اا‪ ،C‬إ‪ *O‬إ! درا‪ -J 1VeG */‬ه‪ YN‬ا';اد ا'\* ! ا ل ا‪F‬اري ‪ X.‬اا‪1,da C‬ر أ\[ "دة‬ ‫"\* "` ا‪F‬ظ ! ;دة ا'دة و)‪T‬ءه ‪ 'O‬ا';ا‪Q‬ت ا‪ *1/1T‬ا‪_ X.) *Qh‬اض اء‪ XF %G .‬ا ل‬ ‫ا‪F‬اري  إ‪ *O‬ا?ؤو‪ ،1‬ا‪;C ،,‬ر از و ‪J‬رة ا‪ h‬و)‪ -‬ا;ز‪ *h *-J % (١٥ ،١٠، ٥ ،٣) *1J‬ا_‪/‬س‬ ‫" ا‪ X.‬وا'ء‪ .‬و‪ C‬أ‪0w‬ت ا‪ VeG x ,‬ا ل ا‪F‬اري )?[ آ‪ *-) 1‬ا'ء إ! ا‪ X.‬و); ‪ *1‬ا'دة ا'\*‪ ) ،‬دة‬ ‫‪ *-J‬ا'دة ا‪ *11‬ا'\* ‪ *-J‬إ! ا‪ *h‬ا_‪/‬س ا‪  *1/1T‬داد ا ل ا‪F‬اري و ‪ 0w‬ه‪N‬ا وا‪  ًFO‬ا‪h,/‬ام ‪J‬رة‬ ‫ا‪ h‬وا‪ ,‬و ‪;C‬ر از‪ ،‬أ"  إ‪ *O‬ا?ؤو‪ oJy 1‬ا‪ -‬ا‪ G o" *1T‬زدة  ا ل ا‪F‬اري أآ‪" H‬‬ ‫ا'\ت ا_‪d‬ى وذ‪,' oJ_ z‬ز )‪T‬ان "ء ا‪;,‬ر وا‪N‬ي ?[ ‪G " %15 ً TG‬آ‪ o"G  o1‬ار‪ ،‬إ‪ a‬إ‪ oJ‬آ'‬ ‫زادت ‪ o,-J‬إ! ا‪ *h‬ا_‪/‬س ‪ [C‬ا ل ا‪F‬اري وذ‪;?G *C -) z‬ن ا?* ا‪.*)a‬‬ ‫ا‪

+‬ت اا‪ :‬ا‪ X.‬اا‪ ،C‬ا ل ا‪F‬اري‪ XF ،‬ا‪9\Ja‬ط ‪،‬ا‪;C ،,‬ر از‪J ،‬رة ا‪ ،h‬ا?ؤو‪.1‬‬ ‫ا ‪:,-‬‬ ‫ إ‪-J‬ن وادي اا أ‪C‬م " إ‪h,/‬م ا‪;h+‬ر‬ ‫ا‪ *1+.‬و ا‪ " ! X.‬ا‪;+‬ر )‪;L *a‬ا‪ Xd‬ا‪+‬وح‬ ‫ا‪\F‬ر* ا'‪ " ! *C,‬ا‪;+‬ر‪ ،‬أ"  ا‪;T‬د ا_‪1d‬ة‬ ‫‪ b \G T‬ا‪,Jl‬ج '‪@d " ً 1‬ل )ء ا'‪ `J+‬و‪1-FG‬‬ ‫إ‪ 0,1 ,J‬وا‪.," UVF,/‬ت ة أآ‪;G H‬رًا ) ‪،%/‬‬ ‫‪ .(٢٠٠٠‬ا‪" X.‬آ آ‪'1‬وي ‪;?,‬ن " " ‪ " x‬ة‬ ‫";اد‪;?, W1 ،‬ن )‪;+‬رة ر ‪ " *1-1‬آ‪,‬ت ا?‪;1-‬م‪،‬‬ ‫;  ا‪  X.‬ااق )?[ ‪/G‬ت وا‪  */‬أ‪FJ‬ء آ‪1H‬ة‬ ‫" ااق  "‪ ,T‬دي وا‪?/l‬ر* وا_را‪O‬‬ ‫ا;ا‪ '01) *C‬و "‪ " *C," E‬ااق‪[0- '" ،‬‬ ‫‪ ً 1F" o1+G‬و)?‪ .*\h" b‬إن "دة ا‪;+) ['G X.‬رة‬ ‫‪ *11‬آ'&;"* رش "‪T‬و"* ‪ EF‬ذ‪a z‬ن ا‪;,F X.‬ي‬ ‫ ! ;ا ‪ " %٢١‬ا'ء ا'‪ 'O F,‬ا‪,‬آ‪ 1‬ا;ري إذ‬ ‫‪F,‬ر آ‪h‬ر ‪ E1‬و‪ dq‬ا‪T,J‬ل ا‪F‬ارة‪ .‬ا‪ X.‬ا'‪+,‬‬ ‫ " ‪,‬ض ‪) [F, EF‬ر ت ارة )‪٢٠٠-١٠٠ 1‬‬ ‫در * "‪ *1d) *;R‬و‪d‬ون‪ .(٢٠٠٢ ،‬إن إى أه‪%‬‬ ‫ا'‪.,‬ت ا‪ *1+.‬ه " ‪ 0" [',-‬آ‪;e‬اح ز* ‪F‬ارة‬ ‫) ‪;') od‬اد ز* ‪ *11‬أو آ‪'1‬و* ‪o,1"-" "  G‬‬ ‫و‪ [" `G‬ا ل ا‪F‬اري‪ W1 ،‬و  أن إ‪ *O‬ا';اد‬ ‫ا‪ *1G‬ذات ا_‪1‬ف ا‪;1-‬ز* آرة ا‪  G h‬ا ل‬ ‫‪21‬‬

‫‪* Corresponding author:‬‬ ‫‪Dr. Zainab Talib Al-Sharify‬‬ ‫‪[email protected]‬‬

‫ا‪F‬اري وا‪; G;+‬اح ا‪ *1d) *1+.‬و‪d‬ون‪،‬‬ ‫‪.(٢٠٠٠‬‬ ‫ا_‪1‬ف ا‪;," *11‬ة  "&‪ %‬ا_‪C‬ر ا"‪ *1‬و‪,FG‬ج‬ ‫إ! در * ‪ " *1C‬ا'‪T" *.‬ر‪ ‚J `" *J‬ا‪ %.F‬أو ا;زن‬ ‫'&‪ %‬ا_‪1‬ف ا * ‪N‬ا ‪y‬ن آ* "‪ ,G 0,.‬ا‪+,C‬د*‪.‬‬ ‫إن ا‪h,/‬ام ا_‪1‬ف ا‪ `" *11‬ا‪ X.‬و)‪Ce‬ر ‪19Q‬ة‬ ‫و‪," 1‬ا)* و" "‪+‬در "‪;" *,h‬ز * )?[ ;ا ‬ ‫ ا'دة ا'‪ *h *R‬ا‪;G ! [' X.‬ز` ا‪0 l‬دات‪،‬‬ ‫‪T"  G‬و"* ا‪ ،ET,‬زدة "‪T‬و"* ا‪ [+‬وا_'ل‬ ‫ا‪ -F ،*1 .‬ا'و‪+,"a *J‬ص ا‪;+) *C‬رة أ\[‬ ‫و  " ‪;d‬اص ا ل ا‪ G;+‬وا‪F‬اري ) ‪،%/‬‬ ‫‪ .(٢٠٠٠‬إن ا'‪,‬ت ا_‪1 *1//‬ف ا‪ *11‬‬ ‫ا‪  P1-, 0',/‬ا'دة ا‪T" *1J/h‬و"* ‪، *1‬‬ ‫""[ ا'و‪;C ، *J‬ة ا‪,‬ا)ƒ "` ا‪ P-‬ا'‪,‬ك 'دة‬ ‫ا‪V ،*1J/h‬ت ‪  1‬ا?[‪T" ،‬و"* ‪;' *1‬اد‬ ‫ا?‪'1‬و*‪ ،‬زل ‪F 1‬ارة‪ .‬ه‪ z‬أ‪;J‬اع ة " ا_‪1‬ف‬ ‫ا‪ *11‬ا‪ ,‬ا‪ U"h,/‬آ';اد ‪ *hh," P1-G‬آ‪1e‬ف ;ز‬ ‫ا‪ ،0‬أ‪1‬ف ا‪ -‬ال‪ ،‬أ‪1‬ف "‪h‬ت ‪ +C‬ا‪ ،?-‬أ‪1‬ف‬ ‫ا‪ 1h‬ران‪ ،‬أ‪1‬ف ‪ b/‬ا‪ ،[1h‬أ‪1‬ف ا?‪,‬ن‪ ،‬أ‪1‬ف ا‪h‬‬ ‫و)‪ m‬أ‪1‬ف ا‪\h‬وات‪ U'G .‬درا‪ */‬د آ‪;" " 1‬اد‬ ‫ا ل ا‪F‬اري " ا_‪1‬ف ا‪ *1G‬آ‪ h‬وا‪? xG ,‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫‪;?G‬ن "‪T‬و"* ‪F‬ا ‪ E‬وا"‪+,‬ص ا'ء‪ ،‬ا‪ 1‬ا‪N‬ي ‪`+‬‬ ‫" ‪F‬ء ا‪ .‬و‪h,-‬م ! ‪ [?L‬أ;اح  ا‪.‬ران ا‪,‬‬ ‫‪,FG‬ج إ! ل و‪h,-G C‬م ! ‪;F-" [?L‬ق وآ‪ zN‬ا‪1‬‬ ‫ا‪h+‬ي ا‪N‬ي ‪;?,‬ن " ‪;Q‬ف ‪hQ‬ي "' وج "` ‪`C‬‬ ‫‪19Q‬ة " ا‪" `" h‬دة ‪ *TQa‬إ‪  *1,/‬و‪h,-G‬م ه‪YN‬‬ ‫ا'دة  ل "‪h‬زن ا‪ ,‬وا'„ت وا‪;1‬ت ا‪*+1d‬‬ ‫)أده‪ .(١٩٨٤ ،%‬أ‪1‬ف ا‪ ,‬ه ‪;J‬ع " أ‪1‬ف ا_ ب‬ ‫ا'‪;,‬ة )?‪H‬ة  "&‪ %‬دول ا‪ be,G ،%‬أ‪1‬ف ا‪" ,‬‬ ‫أ* " ا_‪1‬ف ا‪T) ƒ1FG ,‬ت ‪ !'-G *1T‬أ‪F‬ء‬ ‫ا_و وا‪) ,‬ا‪;?, ،1;.G 0d‬ن ا‪@9‬ف " ‪*11 @d‬‬ ‫ ة ‪ Xh,-G W1‬أ‪1‬ف ا‪ " ,‬ه‪ YN‬ا‪ .@h‬أن ا‪*T‬‬ ‫ا_‪@h,/a *1//‬ص أ‪1‬ف ا‪ ,‬ه " أ_ ب ا‪ *1-‬إذ‬ ‫‪ `TG‬ا‪G‬ت ا‪ *.O‬و‪ ƒ)G‬آزم ‪') '9G‬ء 'ة ;ا‬ ‫أر)* أ‪ 0@d [F,G `1)/‬ا‪T‬ة ‪G‬رآ* ا_‪1‬ف ‪ G W1‬ع‬ ‫أ_‪1‬ف  ا‪T1-‬ن و و‪ .‚') b.G %V [-9G‬أن ‪[?L‬‬ ‫ا_‪1‬ف "‪;?G T 19,‬ن "‪ 0T‬دا * أو "‪ *1,-‬أو‬ ‫)‪\1‬و*‪ ،‬وآ‪ 19, zN‬ا‪ T‬ا'?† " ‪,'1" ٤-١‬‬ ‫و‪;?G‬ن ا_‪1‬ف );ل ‪ ,'1" ١.٥‬وا;زن ا;  ‪; 0‬ا‬ ‫‪ FQ) ٠.٦٩‬و‪d‬ون‪;G .(١٩٨٩ ،‬د "‪F‬و‪a‬ت ا‪h,/‬ام‬ ‫‪J‬رة ا‪ h‬آ'دة ‪d 'O‬ت ا‪ X.‬إ! "‪ *R‬م‬ ‫‪ ،ًTG‬و‪ C‬و  أن ا'دة ا‪F‬و* ! ا‪;1-‬ز ‪*J," "  G‬‬ ‫ا‪ ،X.‬و‪ C‬أ ‪;F) U‬ث ة ;ل ا‪',/‬ل ‪J‬رة‬ ‫ا‪  h‬إ‪,J‬ج ا‪;T-‬ف ا''; *‪ ،‬ا‪- ƒ1,‬ت‬ ‫ا'رات‪ ،‬أ;اح ا‪;-‬ح ا'‪ 1T) *1‬واد '` ا;)*‬ ‫و;اح ‪ *1d‬ا;زن ‪  [',-,‬إ‪J‬ء "‪-‬آ "‪*\h‬‬ ‫ا?* ) ‪.(٢٠٠٠،%/‬‬ ‫ت )‪;F‬ث ودرا‪/‬ت ة ‪ m) 1-F,‬ا‪;h‬اص‬ ‫ا‪ *1  1‬وا'‪ *1?1J?1‬وا‪F‬ار* وا‪h,/) X. *1G;+‬ام‬ ‫ا'\ت ا‪ *11‬وا?‪ *1 1'1‬ودرا‪1VeG */‬ه ! ‪;d‬اص‬ ‫ا‪ *-/q' WF) 0" ،X.‬دوآ‪1-‬دس  ‪ ١٩٦٩ */‬‬ ‫"آ[ ا‪ X.‬وا'‪.,‬ت ا‪  *1+.‬ااق وا‪E,G ,‬‬ ‫); ‪ *1‬ا';اد ا_و‪ *1‬وق ا‪,Jl‬ج‪ ،‬و‪ T‬و  إن زدة ‪*-J‬‬ ‫ا'ء إ! ا‪   X.‬ز" ا‪ z/',‬و‪T" [T‬و"* ا‪9\Ja‬ط‪،‬‬ ‫‪N‬ا ‪y‬ن زدة ز" ا‪ ) z/',‬دة ‪ *-J‬ا'ء إ! ا‪ X.‬‬ ‫[ ‪ ! / 1VeG " o ' !O" 1‬ا'‪T‬و"* وا;زن‬ ‫ا;  )‪ G .(Doxiad, 1969‬ا'‪.,‬ت ا‪*"d *1+.‬‬ ‫ار ً ‪N‬ا ‪ 0Jy‬زل اري ‪ ،1‬و)' إن ا‪;,F X.‬ي‬ ‫ ! "‪"-‬ت د‪y *T1C‬ن ‪ o‬دورًا ه" ً  ‪ %1&G‬ا;)* ‪W1‬‬ ‫)‪ U1‬ارا‪/‬ت ا‪J *HF‬هة  ‪ ١٩٧٩ */‬إن ا‪X.‬‬ ‫'‪ X,‬آ'‪h) " *1‬ر ا'ء ا‪;.‬ي " ‪ `GG‬ا‪F‬ارة‬ ‫ودر * ا;)* ‪;1‬د و‪@d  " 0,H‬ل ا‪.‬ف و)‪zN‬‬ ‫ دور "&‪ *); %‬ا‪ ;.‬أ‪V‬ء ا‪ [+‬ا‪F‬ر)‪J‬هة‪،‬‬ ‫‪ .(١٩٧٩‬درس ‪ 1982 */  Malhorta‬ا ل ا‪F‬اري‬ ‫';اد ا‪ *1 Jl‬آ‪ W1 m.‬و  ا‪ " oJ‬ا';اد از*‬ ‫ارً‪ ،‬و دة ‪ o‬ا‪F‬اري ‪C‬م )‪h,/‬ام "\ت ة‬ ‫‪ X.‬آ?ؤو‪;C ،1‬ر از‪; ،[-/ ،‬ت‪ ،‬ا‪،+T‬‬ ‫"‪h‬ت ‪h" ،*1 Q‬ت زرا ‪ *1‬آ_‪1‬ف ا‪ [1h‬وادي‪،‬‬ ‫ا‪;+‬ف‪,‬ا‪;+‬ف ا‪h+‬ي )‪ .(Malhorta, 1982‬درس‬ ‫ا"\‪ ١٩٨٣ */  J‬إ"?‪ *1J‬إ‪,J‬ج آ‪*1d *1+ [,‬‬ ‫ا;زن ) دة ‪ *-J‬ا'ء إ! ا‪ `" X.‬إ‪;C *O‬ر از‬ ‫‪22‬‬

‫)‪ " %٢٠ *-‬ا;زن آآم ‪ b1d‬ا;زن )‪ ،*h‬وآ‪UJ‬‬ ‫‪ *-J‬ا'ء إ! ا‪; % ١.٢ X.‬اح ا‪ *1+.‬ا'‪*"h,-‬‬ ‫آ‪;T‬ا`‪ W1 ،‬ا‪ U\hJ‬ا'‪T‬و"* إ! ‪*1d) ٢%"/UJ ١.٥٦‬‬ ‫و‪d‬ون‪ .(١٩٨٣ ،‬ا‪h,/‬م ";ن  ‪J ١٩٨٣ */‬رة‬ ‫ا‪ h‬آ'\ف ‪ 1‬إ! ا‪ X.‬و)‪ -‬وز‪،١٠ ،٥) o1J‬‬ ‫‪ " % (٢٠ ،١٥‬ا‪ *&h‬ا_‪/‬س‪.(Mohan,1983) .‬‬ ‫أ ى "‪ 'F‬و اس  ‪ ١٩٨٨ */‬درا‪1-FG  */‬‬ ‫‪;d‬اص ا‪ X.‬ا‪;JH‬ي ا'‪;,‬ا   "‪ `T‬و‪ ƒ/‬و ;ب‬ ‫ااق‪ ،‬و  " ‪@d‬ل ا‪.,‬رب ا_و‪ *1‬ا‪ ,‬أ ‪! U‬‬ ‫ه‪N‬ا ا;ع " ا‪e) X.‬ن ‪ *-J‬ا?‪,‬ت وا‪;h‬اص‬ ‫ا‪ [H" *1  1‬ز" ا‪ z/',‬و"‪T‬و"* ا‪9\Ja‬ط "‪*\h‬‬ ‫‪ *Oy) "C zN‬ا‪ X.‬ا_و  ا‪T‬وة إ‪X ) o1‬‬ ‫أو‪;JV X :‬ي( )‪(٦٠:٤٠) ،(٧٠:٣٠) ،(٨٠:٢٠) -‬‬ ‫‪ %‬وآ‪ UJ‬أ\[ ا‪ (٧٠:٣٠) *-J  x ,‬ا‪ ,‬أ ‪U‬‬ ‫زدة ‪ *-J‬ا?‪,‬ت " ‪ %٣٤-٤٢‬وا‪;+F‬ل ! ز"‬ ‫‪ ١٣-١٧ z/'G‬د‪ *T1C‬و"‪T‬و"* ا‪9\Ja‬ط ‪G‬او‪-٩.٤ " U‬‬ ‫‪ ' .٢%"/UJ ١١.٢‬إن ‪;d 1-FG‬اص ا‪ X.‬ا‪;JH‬ي‬ ‫)‪ *Oy‬ا‪ X.‬ا_و ‪ 1‬ا‪+,C‬دي )‪ -‬آ* ‪ [TJ‬ا‪X.‬‬ ‫" ا'‪ `T‬ا‪1.‬ة إ! ""[ و‪ ƒ/‬و ;ب ااق )"‪ 'F‬و‬ ‫‪d‬ون‪ .(١٩٨٨ ،‬أ ت ‪ *1d‬ا"\‪ J‬و‪ /‬ا‪"-‬ا ‬ ‫ ‪h"  ً HF) ١٩٩٩ */‬ت ""[ اŠ  و)‪["" T‬‬ ‫ا‪;,-"H‬ن ‪ W1‬ا‪h,/‬م اآم ا ‪ %‬وا‪  h‬إ‪,J‬ج‬ ‫ا?‪ [,‬ا‪ ،*1+.‬و‪;"C‬ا )‪ y‬اء ‪Q;F‬ت "‪T‬و"* ا‪9\Ja‬ط‬ ‫)‪ *1d‬و‪C .(١٩٩٩ ،/‬م ‪1-F,) ٢٠٠٠ */  [1T‬‬ ‫"‪T‬و"* ا@ت ا‪h‬ا‪ *1J/‬ا'‪ *T-‬ا‪h" *Oy) +‬ت‬ ‫;‪a‬ذ* ‪d  *.GJ *11‬ا* ا‪ `T‬ا;‪a‬ذ* " ا'"[‬ ‫ا‪ *1 ,Jl‬وه; ‪  @)  E1G‬إ‪ *O‬ا_‪1‬ف ا;‪a‬ذ*‬ ‫ا‪ *)l‬ا * ا‪h,/a‬ام ا‪/1C 'O +1+d `+G ,‬ت‬ ‫وأ‪?L‬ل ‪9 *,)V‬ض ‪ 1-FG‬ا ا‪;h‬اص ا'‪*1?1J?1‬‬ ‫‪ *J/h‬وإ‪,J‬ج ‪1e) *F-" *J/d‬ف ;‪a‬ذ* ‪;?G‬ن ا‪[C‬‬ ‫آ* " ا‪ *J/h‬ا‪ *11‬ا * ) ‪ .(٢٠٠٠ ،[1T‬ا‪h,/‬م‬ ‫  ا‹  ‪ ٢٠٠٥ */‬ا‪ 1‬وا‪ ,‬وا‪1T,‬ت ا‪ *1T,‬‬ ‫)ء دار ‪T) *1?/‬ب " "* ا';‪ ،[Q‬وذ‪  z‬دة‬ ‫ا ل ا‪F‬اري‪ ،‬و)‪ 1LG ,‬ا‪@0,/‬ك ا‪ *C‬ا?‪*1 )0‬‬ ‫" ‪@d‬ل ‪ [1TG‬ا‪',/‬ل ا;‪ [ /‬ا'‪ *1?1J?1‬وا‪ *1 +‬‬ ‫ا‪ *R,‬وا‪ ,‬و‪ 0@d‬ا'‪;,-‬ردة وا'?*‪ ،‬و)‪F" ,‬و*‬ ‫‪' ;?G‬رة "‪ `" ً 1R1) *1?,‬ا‪ 1,‬ت ا‪-Jl‬ن ا'‪*11‬‬ ‫و"‪ oG,‬ا‪ *1 ', a‬وا‪+,Ca‬د*‪ W1 ،‬ان  دة ا ل‬ ‫ا‪F‬اري 'دة ا‪ 1‬أ‪ًV‬ا آ‪ً1‬ا  ‪ m1hG‬ة ‪EG‬‬ ‫ا‪F‬ارة " ا‪h‬رج إ! اا‪ [d‬و)?‚‪ .‬آ‪ G zN‬آ‪*H‬‬ ‫"دة ا‪ 1‬دورًا ه" ً  ر` "‪T‬و"‪ o,‬ا‪F‬ار*‪q W1 ،‬دي‬ ‫إ‪h,/‬ام ا‪ 1‬ذات ا‪ *-‬ا‪F‬ار* ا?‪1‬ة إ! زدة ا‪bh,‬‬ ‫ا " "' ‪ ! ŒF‬در ت ا‪F‬ارة ‪) *,)V‬ا‪;_ [d‬ل‬ ‫‪,‬ة "'?* )  ا‹‪.(٢٠٠٥ ،‬‬ ‫ ‪ ٢٠٠٩ */‬إ‪ *O‬ه أ‪1‬ن ا?ؤو‪ 1‬إ! ا);ق‬ ‫‪;d 1-F,‬اص ا);ق ا'‪ Œa W1 1F" x,‬زدة ‪;C‬ة‬ ‫ا‪ ['F,‬وا‪hJ‬ض  ‪J‬ذ* ا);ق ا'‪ x,‬وآ‪ zN‬ا‪hJ‬ض‬ ‫‪ *-J‬ا"‪+,‬ص ا'ء وا‪N‬ي ‪ ,‬ا"[ ا ‪  -1‬ذو)ن‬ ‫ا_"@ح وآ‪ ،0,‬آ' أن ا‪h,/‬ام أ‪1‬ن ا?ؤو‪, a 1‬‬ ‫إ‪ *O‬آ‪ *1 b‬وذ‪) ً1F" Y;, z‬ه‪ .(٢٠٠٩ ،‬أ‪[',/‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫‪@/‬م وهى ‪ ٢٠٠٩ */‬ا‪ %F‬ا ‪@,"a‬آ‪X +d o‬‬ ‫و"'‪ 1‬ات ار* وآ‪'1‬و* و"‪ *1?1J?1‬وآ‪" o?'G *1 )0‬‬ ‫‪ ['FG‬ا&وف ا'‪ *11F‬ا‪ W1 ،*1/T‬ا‪ *R10) Y@',/‬آ‪[,‬‬ ‫"‪ *,h‬ا_)د‪ ،‬إذ ‪ o,R10G %G‬آ'دة أو‪E  *R" *1‬‬ ‫ '‪ *1‬ا‪ F‬وا‪ *)9‬إ! أ‪.‬م ‪ *1" *11‬و)ه '‪*1‬‬ ‫وزن ا?'‪ *1‬ا‪ " *.G‬ه‪ YN‬ا_‪.‬م ا‪ ،*11F‬آ' ‪*R10G %G‬‬ ‫ا'دة اا)* ا‪G  [',G ,‬آ‪ ! 01‬ا?);ن‬ ‫وا‪10‬رو ‪ W1F) 1‬أ‪ ) oJ‬ا'"* ا‪F‬ار* ‪0" bh, a‬‬ ‫‪ 1‬ا?);ن إذ ‪ ,‬ا‪10‬رو ‪ ،1‬و)‪/1T‬ت وز‪*1" o1J‬‬ ‫‪ *1' U'G‬ا‪ ƒh‬ا'‪ ‚J.,‬و '‪ *1‬ا?‚ )\‪ 1" ƒ9‬و"‬ ‫‪ *1' %V‬ا‪;+F b1.,‬ل ! ا‪ X +h‬ا';)* ‬ ‫ا‪ %F‬ا )‪@/‬م وهى‪.(٢٠٠٩ ،‬‬ ‫إ‪h,/‬م ا'  ‪ (٢٠١٠) */‬ا‪ U11‬ا‪  Jl‬ا''ـد‬ ‫ا‪N‬ي ‪ ,‬زل اري و‪ bT/ G;Q‬وا‪.‬ران‪W1 ،‬‬ ‫إن ا‪" U11‬دة ‪,FG a *11‬ق و‪ [ ,G a‬و‪`" 19,G a‬‬ ‫"ور ا " "; ;دة  ا‪;hQ [?L ! *1‬ر )آ‪*1J‬‬ ‫و ـ ‪1 1h-G‬ـت ا‪ U11‬ر * ارة ‪-٩٠٠) *1‬‬ ‫‪ ١٠٠٠‬در * "‪',G (*;R‬د " ‪0'. bO ٢٠ -٤‬‬ ‫ا_‪ *J;?" Q‬د آ‪ " 1‬اات ا‪;0‬ا ‪o1 '" *1‬‬ ‫‪  * *1Qd‬ا ل ا‪F‬اري وا‪ G;+‬آ' أ‪T a oJ‬‬ ‫أي ‪ *1Qd " *-J‬ا ل "` "ور ا " ‪ً&J‬ا ?;‪" oJ‬دة‬ ‫‪ ،*11‬و‪ [F, [)C 1‬أو ا‪T" ،[ ,‬و"* ا‪F‬ا ـ‪E‬‬ ‫وا‪ O 1+F,‬ا‪1‬ان " ‪ 1, /‬إ! أر)` ‪ /‬ت ‪a ;0‬‬ ‫‪ ١٢٨٠ْ!, 0+‬در * "‪) *;R‬ا'‪.(٢٠١٠ ،‬‬ ‫إن ا‪0‬ف ا_‪ " //‬ه‪N‬ا ا‪ WF‬ه; ‪X +d 1-FG‬‬ ‫ا‪ X.‬اا‪ `" C‬ا‪F‬ظ ! ;دة ا'دة و)‪'O 0 T‬‬ ‫"‪,‬ت ود ا';ا‪Q‬ت ا‪ *1/1T‬ا‪X.) *Qh‬‬ ‫_اض اء )‪h,/‬ام أ‪;J‬اع "‪ " *,h‬ا'\ت‬ ‫ا‪ *11‬ا'‪;,‬ة "‪ ً1F‬و)?‪ b‬وا‪ *R‬وا‪,‬ف ! أ\[‬ ‫‪;J‬ع "‪ ،0‬إ‪ *O‬إ! درا‪ 1VeG */‬ا';اد ا'\* !‬ ‫إ"?‪ *1J‬ا‪T" *C ! 9,‬و"* ا‪0 a X.‬دات ا و‪o'FG‬‬ ‫ا'‪ *); mh‬و‪ [TJ *);Q‬ا_;اح ا?‪1‬ة "‪ o‬ا‪,‬‬ ‫‪ [',-G‬آ‪;T‬ا` )ء‪ ،‬إ‪ *O‬إ! ‪q '" Y'.G * /‬دي إ!‬ ‫‪-d‬رة ء آ‪  o" 1‬ا‪.o',/‬‬ ‫ا رب ا  ‪Experimental Work‬‬ ‫ت )‪;F‬ث ودرا‪/‬ت ة  "اآ ا‪;F‬ث‬ ‫وا‪".‬ت ;ل إ‪,J‬ج ‪1 ;J‬ت ‪1‬ة " ا‪h,/) X.‬ام‬ ‫ا‪;h+‬ر ا‪ *1+.‬ا'‪ *'1‬وا'@ '* ‪,Jl‬ج أ‪;J‬اع "‪" *,h‬‬ ‫ا‪ X.‬و‪ *R10G‬ا';اد )' @ ‪ *T %‬ا‪,Jl‬ج و"ا‪') o‬‬ ‫‪) 01‬در * ا‪F‬ارة‪ ،‬ا‪,‬رج ا‪ ... ،1F‬ا( أو "‪*.‬‬ ‫"آ‪h,/) o‬ام ا'\ت ا‪ *11‬ا'‪;,‬ة "‪ ً 1F‬و)?*‬ ‫وا‪  .*R‬ه‪N‬ا ا‪ %G WF‬ا‪h,/‬ام أ‪;J‬اع "‪ " *,h‬ا'\ت‬ ‫ا‪ *11‬آ‪ ,‬و‪J‬رة ا‪ h‬و‪;C‬ر از وا?ؤو‪1‬‬ ‫ا'‪;,‬ة "‪ ،1F‬و‪;G %G‬ز‪; 0‬ا ‪  ً 1‬ا'‪ `T‬ا‪*1?'-‬‬ ‫‪;d 1-F, X.‬اص ا‪ X.‬ا ا‪ `-‬ا‪.+,‬‬ ‫ا اد ا‪0‬و‪:‬‬ ‫ا ا‪:2‬‬ ‫‪ %G‬ا‪h,/‬ام ا‪ X.‬ا ا'‪L " x,‬آ* ا‪ 1L‬ا_ه‪،*1‬‬ ‫‪ %G‬إ اء ا‪ [1F,‬ا?‪ -  1'1‬ا';ا‪ *Q‬ا‪ *1/1T‬اا‪*1C‬‬ ‫ر‪ ٢٦ %C‬وا'‪T‬ر‪F) *J‬ود "‪,‬ت ا';ا‪ *Q‬ا‪ *1/1T‬ر‪%C‬‬ ‫‪23‬‬

‫‪ ٢٨‬وآ' "‪.) 1‬ول ‪ ١‬أد‪ ،YJ‬أ" ا‪;F‬ص ا‪*1  1‬‬ ‫‪ -‬ا';ا‪ *Q‬ا‪ *1/1T‬اا‪ *1C‬ر‪ ١٩٨٨ *- ٢٧ %C‬آ'‬ ‫";‪.) PO‬ول ‪.٢‬‬ ‫ا ‪ 3+‬ت‬

‫ا‪%4 2‬‬ ‫‪٥١.٤٤‬‬ ‫‪٣٩.٥٨‬‬ ‫‪٠.٠٨‬‬ ‫‪٣.٨٢‬‬ ‫‪١.٠٤‬‬ ‫‪١.٧٢‬‬ ‫‪٤.٣٢‬‬

‫‪6‬ود ا ا( ت‬ ‫ا‪  -‬ر‪٢٨ 7‬‬ ‫‪٤٠  [Ta‬‬ ‫‪٢٦.٧  [Ta‬‬ ‫‪٠.٢٥   a‬‬ ‫‪٩ !  a‬‬ ‫‬‫‬‫‪٩ !  a‬‬

‫‪SO3‬‬ ‫‪CaO‬‬ ‫‪MgO‬‬ ‫‪H2O3‬‬ ‫‪R2O‬‬ ‫ا;ا  ‪SiO2‬‬ ‫ا‪T‬ان )‪F‬ق‬ ‫  در * ‪ ٢٣٠‬م‬ ‫‪:‬ول ‪ x ,J .١‬ا‪ [1F,‬ا?‪ X.  1'1‬ا و"‪T‬ر‪,') 0,J‬ت‬ ‫ا';ا‪ *Q‬اا‪.*1C‬‬ ‫‪3‬ع ا‪#‬‬

‫ا‪4 2‬‬

‫در * ا;"*‬

‫‪٢‬‬

‫ا‪;T‬ام ا‪/1T‬‬ ‫ز" ا‪z/',‬‬ ‫"‪T‬و"* ا‪9\Ja‬ط‬ ‫‪٢‬‬ ‫‪%"/UJ‬‬ ‫‪٢‬‬ ‫"‪ 1‬ا?‪%"/UJ -‬‬ ‫‪;C‬ة ا‪@+‬دة‬

‫‪٥٥‬‬ ‫‪٥‬‬ ‫‪١١,٩‬‬

‫‪6‬ود ا ا( ت ا‪ -‬‬ ‫ر‪٢٧ 7‬‬ ‫‪   a‬ا'‪[h" ! T,‬‬ ‫ر‪%٥ ! ١٦ %C‬‬ ‫‬‫‪٢٠-١٢‬‬ ‫‪٦  [TG a‬‬

‫‪٤‬‬ ‫‪٣‬‬

‫‪٢  [T a‬‬ ‫‪ C   a‬ا‪%" ٥ ! *'H‬‬

‫‪:‬ول ‪ .٢‬ا‪;F‬ص ا‪ X. *1  1‬ا و"‪T‬ر‪,') 0,J‬ت‬ ‫ا';ا‪ *Q‬اا‪*1C‬‬

‫‪ ?3‬رة ا?>‬ ‫‪J  %G‬رة ا‪ h‬وا‪ ,‬ه رة  ا'‪h‬ت‬ ‫ا‪ *1G‬وا'‪;,‬ة )'"[ ا‪.‬رة و" ‪ o,R10G %V‬و‪Y1\FG‬‬ ‫‪ً1‬ا ‪;?1‬ن ‪ " ً 1d‬ا;ا  وا';اد ا?‪'1‬و*‪.‬‬ ‫ا‪ %‬و ?ر از‪:‬‬ ‫‪  %G‬ا‪ " ,‬ا'?‪ G‬ا را ‪ *1‬و‪') Y' %G‬ء 'ة‬ ‫;م آ"[ ‪  oL %V‬إ‪J‬ء "‪ P-‬و‪;0 o\G‬اء وذ‪z‬‬ ‫‪;+F‬ل ! ‪ `" G‬ف آ;‪" oJ‬دة ذات ‪*1)C‬‬ ‫ا"‪+,‬ص ‪' *1‬ء‪ ،‬و)‪ YN0‬ا‪ *-J [1TG ?' *T‬ا'ء‬ ‫ا'\ف إ! ا‪ X.‬أ‪V‬ء '‪ *1‬ا‪ ،ƒh‬و‪‚J [' %,‬‬ ‫اء )‪;T *-‬ر از )ا‪;-‬س(‪.‬‬ ‫أ‪ C‬ن ا‪ +‬ؤو‪:%‬‬ ‫‪ %G‬ا‪h,/‬ام أ‪1‬ن ا?ؤو‪ 1‬ا‪ " 0 ) *11‬ا'‪P-‬‬ ‫ا‪ *T"   ;;1.‬دو‪ *&F"  *h‬ا‪Ja‬ر‪ ;G W1 ،‬‬ ‫أ‪1‬ن ا?ؤو‪1‬ت ا‪/G  *11‬ت )'‪ *T‬دو‪ .*h‬إن‬ ‫أ‪1‬ن ا?ؤو‪ 1‬أ‪1‬ن ر‪;?G *1);/‬ن ! ‪1 [?L‬ت‬ ‫‪1T) *' J‬س أ‪?1" ٢ " [C‬ون و‪G‬آ‪ 01‬ا;ري " ا;ع‬ ‫ا‪-‬ا‪ /‬ا'‪ P-‬ذو ا‪T‬ت‪ 0GJ;?" ،‬ا?‪ *1 1'1‬ا_‪*1//‬‬ ‫)‪ H2O (14)% -‬و ‪ AL2O3 (39,5)%‬و‪SiO2‬‬ ‫)‪.%(46,5‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫'‪ RS‬ا‪-‬ا> وا ت‬ ‫‪ %G ٢‬ا‪h,/‬ام ‪;C‬ا * )";ا‪ 1L‬و "?ت( ر)‪U‬‬ ‫)‪?y‬م و‪ [C U&J‬ا‪h,/a‬ام‪ ،‬و" ‪*T) 0, G %G %V‬‬ ‫‪L) *1d‬ة '` ‪ EQ@G‬ا';ذج "` ا‪ T‬و‪*;0/‬‬ ‫إ‪d‬ا ‪ .o‬ا‪;T‬ا ا'‪ XF *"h,-‬ا‪9\Ja‬ط ه‬ ‫‪;C‬ا * أ)ده اا‪- (١٠×١٠×١٠) *1d‬‬ ‫ا';ا‪ *Q‬ا_"?‪ .(ASTM C 472-84) *1‬أ"‬ ‫ا‪;T‬ا )ا';ا‪ (1L‬ا'‪ XF *"h,-‬ا‪FJl‬ء آ‪UJ‬‬ ‫)‪)e‬د )‪ - %/ (٥٠×١٠×١٠‬ا';ا‪ *Q‬اا‪*1C‬‬ ‫ر‪.١٩٨٨ *- ٢٧ %C‬‬ ‫‪ ٣‬إن '‪ `1‬ا';اد اا‪  *d‬ا‪h‬ت ‪;?G‬ن "‪e10‬ة‬ ‫و ه ة ‪;/ ƒh‬اء آ‪ X UJ‬أو "ء ‪ ƒd‬أو‬ ‫ا'\ت ا‪ *-J FG %G W1 ،*11‬ا'ء إ!‬ ‫ا‪;+F X.‬ل ! ا‪;T‬ام ا‪ *h /1T‬ا' ‪*1‬‬ ‫و‪ `1'.‬ا‪h‬ت "` ا';اد ا'\* و?[ ا‪- -‬‬ ‫ا';ا‪ *Q‬ا‪ *1/1T‬اا‪ *1C‬ر‪ .٢٧ %C‬إن ا'\ت‬ ‫ا‪,FG *11‬ج إ! ‪;d‬ات ‪'\ *1\FG‬ن إ‪0J‬‬ ‫‪q,/‬دي دوره ا';ب  ا‪ *h‬و‪ "  G‬ا ل‬ ‫ا‪F‬اري ‪ X.‬آ' ه; ";‪  PO‬ا?[ ‪*-) ١‬‬ ‫رة ا‪ .h‬أ" )‪ " o  , *-‬ا'?‪G‬‬ ‫ا را ‪') '9 *1‬ء 'ة ‪  * / ٢٤‬ا'ء و‪,‬ك‬ ‫‪' b.1‬ة ‪ * / ٢٤‬أ‪d‬ى‪ ،‬و" ‪;TJ %V‬م )‪*Oy‬‬ ‫ا‪ X.‬و‪ -‬ا‪ -‬ا'‪ .*1‬إن ا‪ ' " *9‬ا‪,‬‬ ‫ ا'ء ه; ‪ [1T,‬ا"‪+,‬ص ا'ء أ‪V‬ء '‪ *1‬ا‪.+‬‬

‫ا;ز‪ *-J %(١٥ ،١٠ ،٥ ،٣) *1J‬إ! ا‪ *h‬ا' ‪*1‬‬ ‫) ‪ X‬و"ء(‪.‬‬ ‫‪ ) ٤‬إآ‪',‬ل '‪ *1‬ا‪L" ƒh‬ة ‪ Q *1' %,G‬ا‪*1.‬‬ ‫ا'‪  *J;?,‬ا‪;T‬ا ا‪*&@" `" ،ًT-" 0,R10G %G ,‬‬ ‫‪;G‬ز` ا‪;+) *1.‬رة "‪-,‬و*  ا‪) T‬آ' ";‪PO‬‬ ‫ ا‪?La‬ل‪ ٥ ،٤ ،٣ ،٢‬أد‪ .(YJ‬إن '‪ *1‬ا‪ +‬آ‪UJ‬‬ ‫‪  %,G‬د‪ً&J E C‬ا ‪ +G * -‬ا‪ X.‬وآ‪@, zN‬‬ ‫‪;+‬ل ‪T‬ت ز* ‪," 1‬ا)* "` "ا ة '‪*1‬‬ ‫اص أ‪V‬ء ا‪" %G .+‬ء ا‪ T‬أآ‪ " H‬ا‪a‬ر‪G‬ع‬ ‫ا';ب ور` ا ا  ‪;+F‬ل ! و ‪;,-" o‬ي‬ ‫‪;,,‬زع ا‪0 l‬دات )‪;+‬ر "‪-,‬و* أ‪V‬ء ا‪.XF‬‬ ‫‪ * - ٥‬إ‪'.J‬د ا‪ X.‬و'` ‪;+‬ل ‪ [ G‬آ‪1)  1'1‬‬ ‫"دة ا‪ X.‬و ا‪ %,G T‬إزا* ا‪;T‬ا ) ‪٢٤‬‬ ‫‪.* /‬‬

‫‪ X *d .٢ K+T‬و"ء "` إ‪ *O‬آؤو‪1‬‬

‫‪ ?3‬رة ا?>‬

‫‪ ?3  F‬رة ا?>   ء  ة ‪I  ٢٤‬‬

‫‪ K&F‬ا‪ 2‬ا ا ء ا ري أو ا‪  J‬ا ‪+‬ر   ء‬

‫‪ X *d .٣ K+T‬و"ء "` إ‪ *O‬ا‪,‬‬ ‫'‪ Q‬ا‪J 2‬ض ا‪O#‬ل ‪ ?3 NI‬رة ‪  : ?, >?M‬ا&‪L‬‬

‫‪ ƒh" :١ K+T‬ا'‪1‬ت ا';)* ‪J 1\F,‬رة ا‪h‬‬

‫ا‪ U‬وا‪>O‬‬ ‫) ‪ *R10G‬ا‪;T‬ا و‪ *d *R10G‬ا‪ X.‬وا'ء ‪ -‬ا‪-‬‬ ‫ا‪ % @G !,‬ا‪ 1,l‬ت ا';)* " ا ل ا‪F‬اري‪%,G ،‬‬ ‫ '‪ *1‬ا‪  ƒh‬و ء " ج ز   ‪„, [)C 1‬آ[ و‪%,‬‬ ‫ا‪ ƒh‬وً‪ `O; .‬ا‪ ٥١٠٠ *1'?) X.‬ام ‪\G %V‬ف إ‪o1‬‬ ‫آ'‪ " *1‬ا'ء )'‪T‬ار ‪ ٢٠٠٠‬ام "` ا‪',/a‬ار  '‪*1‬‬ ‫ا‪ ƒh‬ا‪1‬وي أ‪V‬ء '‪ *1‬إ‪ *O‬ا'ء '` وث ‪@,?G‬ت‬ ‫* " ا‪ X.‬وا‪ ' ،‚J.," ƒ1d ! [+F‬إن ‪,‬ة‬ ‫‪*Oy) a‬‬ ‫ا‪;?G ƒh‬ن )‪ ٣-١ 1‬د‪ .*T1C‬أن '‪ *1‬ا‪ %,G ƒh‬أو ً‬ ‫ا'ء إ! ا‪;+F X.‬ل ! ا‪;T‬ام ا‪*h /1T‬‬ ‫ا' ‪ ،*1‬أ"  * ا‪h,/‬ام ا'\ت ا‪ *11‬آ‪,‬‬ ‫‪ " %,1‬ج ا‪ `" ,‬ا‪;+) X.‬رة ‪1‬ة )ون إ‪ *O‬ا'ء‬ ‫'‪ *-J.‬ا‪ %V ƒ1h‬اء )‪ *Oy‬ا'ء ‪G‬ر‪ 1.‬وا‪ ƒh‬وً‪،‬‬ ‫‪ %,G W1‬إ‪ *O‬ا'\ت ا‪) *11‬ا‪;C ،,‬ر از‪،‬‬ ‫‪J‬رة ا‪ ،h‬ا?ؤو‪ Y ! *1 [? (1‬و)‪-‬‬ ‫‪24‬‬

‫‪ X *d .٤K+T‬و"ء "` إ‪J *O‬رة ا‪[?L ! h‬‬ ‫";‪;L‬ر‬

‫‪ X *d .٥ K+T‬و"ء "` إ‪;C *O‬ر از ! ‪;L;" [?L‬ر‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫ا‪ 4, 3‬ا  وا‪ (#‬ت ا ‪:‬‬ ‫ ‪ #‬ا‪ 2#30‬ء‪:‬‬ ‫‪'J XF %G‬ذج ا‪ X.‬ا‪1T *Qh‬س "‪T‬و"* ا‪FJa‬ء ‬ ‫‪ 1,TJ  load [' ƒ1-G E‬و‪;?G‬ن ا'‪ *-‬ا‪*1+‬‬ ‫)‪ 1‬ا'‪ %/ ٤٠ -‬و‪ %,‬ا‪ %/ ٢٠ *-" ! [1'F,‬‬ ‫ا'‪ -‬ا‪N‬ي   * ا‪;',‬ج ‪ .%/ ٥‬وه‪ YN‬ا‪19,G %1T‬‬ ‫‪ -‬ا‪ XF‬ا‪N‬ي ‪.1/‬ي )‪ %G T J-' *-‬إ‪h,/‬ام‬ ‫إ‪;/‬ا‪J‬ت ‪Q‬ة  ا'ن و);ل "‪-‬وي ض ا‪T‬‬ ‫\'ن ‪+G‬ف ه‪ YN‬ا‪;T‬ا آ'‪'\ *1-) J-‬ن ‪;G‬ز`‬ ‫ا‪ ! ['F‬ض ا‪;+) T‬رة "‪-,‬و*‪.‬‬ ‫ ‪ #‬ا‪ J 3Z‬ط‪:‬‬ ‫‪?" XF %G‬ت ا‪ X.‬ا‪1T) *Qh‬س "‪T‬و"* ا‪9\Ja‬ط‬ ‫  ‪;C ƒ1-G E‬ى "‪;F‬ر* "‪L‬ة ! ‪ P/‬ا';ذج‬ ‫)‪;? W1F‬ن و ‪0‬ن "‪@)T,‬ن ا! ‪;C‬ى ا‪9\Jl‬ط و ‪ %,‬إ اء‬ ‫‪ XF‬ا‪9\Jl‬ط )‪h,/‬ام ‪0‬ز "‪T‬و"* ا‪9\Jl‬ط‪.‬‬

‫‪;'J .٨ K+T‬ذج ا‪XF‬‬

‫‪ .٩ K+T‬ا‪  *1‬و‪ 0O‬دا‪ [d‬ا‪0.‬ز‬

‫‪;'J .٦ K+T‬ذج '‪ XF [H‬ا‪FJa‬ء‬

‫ ‪ #‬ال ا‪#‬اري‪:‬‬ ‫‪ %G‬إ اء ‪ XF‬ا ل ا‪F‬اري 'ذج ‪ -‬ا';ا‪*Q‬‬ ‫ا‪F‬اري‬ ‫ا ل‬ ‫)‪0.‬ز‬ ‫اا‪*1C‬‬ ‫ا‪*1/1T‬‬ ‫‪ Thermoinsulating‬وا‪N‬ي ‪Q " be,‬وق ‪d‬‬ ‫"‪ [1,-‬أ)د‪ o) `O;G %/ (١٠×١٠×٥٠) Y‬ا‪;?G *1‬ن‬ ‫ ! ‪ `)" [?L‬و)‪ %/ ٢.٥ z'-‬و"‪-‬ة " ا‪1J.‬‬ ‫)‪ 1G19Q 1,1d 1,T‬و ‪0‬ز )‪ " o‬دوج اري‬ ‫)‪;,-"V‬ن( د ‪ ٢‬ا_ول  اف ‪ [C‬ا‪) *1‬إد‪d‬ل(‬ ‫وا‪  JH‬اف ) ا‪) *1‬إ‪d‬اج( ‪1T‬س ا‪) 19,‬ر *‬ ‫ا‪F‬ارة )آ' ";‪  *FO‬ا_‪?L‬ل ‪ ٧‬و ‪ ٨‬و ‪ ٩‬أد‪ ،(YJ‬و‪C‬‬ ‫‪ Nde) 'C‬ة ‪C‬اءات ‪ *1‬ا;اة '@&* اق ‬ ‫در * ا‪F‬ارة‪ W1 ،‬أ‪Nd‬ت أول ‪C‬اءة  )ء ا;‪ UC‬و" ‪%V‬‬ ‫‪;?G‬ن ا‪,‬ة )‪ 1‬آ[ ‪C‬اءة ‪ ١٥‬د‪.*T1C‬‬

‫‪0 .٧K+T‬ز ‪ XF‬ا ل ا‪F‬اري‬

‫‪25‬‬

‫ا‪ 4 2‬وا ‪:? 2‬‬ ‫‪ Ve,‬ا ل ا‪F‬اري )?[ آ‪ *-) 1‬ا'ء إ! ا‪X.‬‬ ‫)ا‪;T‬ام ا‪ (/1T‬و‪ *1 ;J‬ا'دة ا'\* و‪ 0,-J‬و)‪*T‬‬ ‫ا‪ *R10G  ƒh‬ا'ذج‪ ،‬إذ إن ا دة  ‪ *-J‬ا'ء إ!‬ ‫ا‪qG X.‬دي إ! ‪  G‬ا‪R .‬ت  )\‪ 0‬ا‪ m‬و‪G‬ك‬ ‫ات )‪ hG  01‬ا'ء "' ‪q‬دي إ! إ‪hJ‬ض ‬ ‫ا ل ا‪F‬اري‪N ،‬ا ‪ .‬ا‪ *-) %?F,‬ا'دة ا'\* ‪@,‬‬ ‫ه‪N‬ا ا‪hJl‬ض‪ .‬إن إ‪ *O‬ا'ء إ! ا‪ X.‬ا‪ " b+‬‬ ‫)‪;F, (CaSo4. ½ H2O‬ل إ! ‪R‬ت ‪(CaSo4.2 ) *1 V‬‬ ‫‪ P+, H2O‬آ‪ *,‬ا';ذج ‪',/l *.1,J *Q‬ار* ‪;?G‬ن‬ ‫ا;رات ا‪ *)l‬و‪  W1 0?)G‬داد ز" ا‪; ;) z/',‬د‬ ‫ا'دة ا'\*‪ ) ،‬دة ‪ *-J‬ا'دة ا'\*  داد ز"‬ ‫ا‪ *-) z/',‬أآ _‪ [CG 0J‬و‪;Q‬ل ا'ء إ! ا;رات‬ ‫و‪ ;?G dqG‬ا?* ا;ر* ا‪  ًQ;+d *)l‬إ‪*O‬‬ ‫ا?ؤو‪ 1‬ا‪h‬م ‪ [+1‬ز" ا‪ X. z/',‬إ! ‪ ٢٨‬د‪.*T1C‬‬ ‫ إ اء  اام ا   ا  و‬ ‫ا ت ‪ #‬ادة ا  و ا‪ .‬آ)* )('&‬ ‫اام ا   ا  ‪  %٦٨.٥٥‬ا‪،1‬‬ ‫و‪ => :8‬ز;دة )‪ 2‬اء إ‪ 3‬ا  ا ‬ ‫ا ‪ .‬أ‪ :? #‬إ‪9 4‬داد ‪ 78‬إ‪6(#‬ص ا‬ ‫'ء )‪ -‬ا‪ *1)T‬ا‪h *1‬م ا?ؤو‪+,"l 1‬ص ا'ء‪.‬‬ ‫‪ XF %G‬ا ل ا‪F‬اري  إ‪ *O‬ا?ؤو‪ ،1‬ا‪،,‬‬ ‫‪;C‬ر از و ‪J‬رة ا‪ h‬و)‪ -‬ا;ز‪،١٠، ٥ ،٣) *1J‬‬ ‫‪ *h *-J % (١٥‬ا_‪/‬س " ا‪ X.‬وا'ء‪ ،‬آ' "‪*1‬‬ ‫ ا_‪(١٧ ،١٦ ،١٥ ،١٤ ،١٣ ،١٢ ،١١ ، ١٠) [?L‬‬ ‫وا‪ PO;G ,‬أن ) دة ‪ *-J‬ا'دة ا‪ *11‬ا'\* أ ‪U‬‬ ‫زدة  ا ل ا‪F‬اري ‪ *-J‬إ! ا‪ *h‬ا_‪/‬س ا‪*1/1T‬‬ ‫و ‪ 0w‬ه‪N‬ا وا‪  ًFO‬ا‪h,/‬ام ‪J‬رة ا‪ h‬وا‪ ,‬و‬ ‫‪;C‬ر از‪ ،‬أ"  إ‪ *O‬ا?ؤو‪y 1‬ن )‪ -‬ا‪*1T‬‬ ‫أ ‪ U‬زدة  ا ل ا‪F‬اري أآ‪ " H‬ا'\ت ا_‪d‬ى‬ ‫)ا‪;C ،,‬ر از و ‪J‬رة ا‪,' oJ_ (h‬ز )‪T‬ان "ء‬ ‫ا‪;,‬ر وا‪N‬ي ?[ ‪G " %15 ًTG‬آ‪o"G  o1‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫ار‪ ،‬إ‪ a‬إ‪ oJ‬آ' زادة ‪ o,-J‬إ! ا‪ *h‬ا_‪/‬س ‪ [C‬ا ل‬ ‫ا‪F‬اري وذ‪;?G *C -) z‬ن ا?* ا‪ ً' ،*)a‬إن‬ ‫ز" ا‪ *h z/',‬ا_‪/‬س ‪ X.‬ه; ‪ ٥‬د‪ E C‬و ‬ ‫إ‪ *O‬ا?ؤو‪ ٣ *-) 1‬و‪ ! % ٥‬ا‪;,‬ا زاد ز"‬ ‫ا‪ z/',‬إ! ‪ ١٥‬د‪ ،*T1C‬وإن ا'&‪ 0‬ا‪h‬ر  ‪1‬ت ا‪X.‬‬ ‫) إ‪ *O‬ا?ؤو‪ 1‬آ‪;) UJ‬ن ا)‪ .m1‬و" ا‪*1‬‬ ‫ا‪+,Ca‬د* ن آ* ا‪ X.‬ا'‪ *Oy) -F‬ا?ؤو‪o1 1‬‬ ‫زدة ‪ *1C‬و‪T" *1 ,G‬ر‪ `" *J‬ا‪ -F,‬ا'‪;F‬ظ ‬ ‫‪ *1 ;J‬ا‪ `1'  X.‬ا‪;h‬اص‪.‬‬ ‫  درا‪ */‬و‪ [1FG‬ا‪Q;F x ,‬ت ا‪;d 1G ,‬اص‬ ‫ا ل ا‪F‬اري  إ‪J *O‬رة ا‪ h‬إ! ‪ *d‬ا‪X.‬‬ ‫;Œ إن إ‪J *O‬رة ا‪ h‬إ! ا‪*1)C "   X.‬‬ ‫ ‪ o‬ا‪F‬اري‪ ،‬إ‪ a‬إن زدة ‪J‬رة ا‪*1 -) h‬‬ ‫‪q‬دي إ! ‪ *1)C [1TG‬ا‪ X. [19,‬ا‪F‬وي ! ‪J‬رة‬ ‫ا‪ *1)C -) *1 -) h‬ا"‪+,‬ص 'ء‪ ) .‬دة‬ ‫"‪;,F‬ى ‪J‬رة ا‪  h‬ا‪qG X.‬دي إ! زدة ز"‬ ‫ا‪ +,‬ا‪_  0‬ن ه‪ YN‬ارة ‪;,FG‬ي ! ا‬ ‫وا‪?-‬ت وا‪;1-‬ز وا?‪ 1‬وا‪ 1,‬وا‪! VqG ,‬‬ ‫ '‪ *1‬ا_"ه‪ o‬و ‪ " Xh,‬ه‪N‬ا ا‪ 1Ve,‬ا\ر ‪ e.J‬إ!‬ ‫ا'‪ *.‬ا'‪ *T-‬رة‪ ،‬أ" ز" ا‪ +,‬ا‪,)a‬ا  ‪[T oJy‬‬ ‫); ;د ارة _‪ X,'G 0J‬ءًا " "ء ا‪ .ƒh‬إن زدة‬ ‫‪ *-J‬ارة  ا‪qG X.‬دي إ! إ‪hJ‬ض  ‪ *1)C‬ا‪[19,‬‬ ‫"' ‪q‬دي إ! زدة ‪ *-J‬ا'ء إ! ا‪;+F X.‬ل !‬ ‫‪ *1)C‬ا‪ [19,‬ا';ب و? ذ‪;? z‬ن ! ‪-‬ب‬ ‫ا'‪T‬و"*‪ .‬إن "‪T‬و"* ا‪9\Ja‬ط ‪ X.‬ا‪F‬وي ! ‪J‬رة‬ ‫ا‪;?G h‬ن "‪ *,‬إ! "‪ *\h‬ا ‪',‬دا ! ‪J *-J‬رة‬ ‫ا‪T" [TG W1 h‬و"* ا‪9\Ja‬ط ) دة ‪J *-J‬رة‬ ‫ا‪ .h‬إن ا‪ X.‬ا‪F‬وي ! ‪J‬رة ا‪;?G h‬ن ‪*1d‬‬ ‫ا;زن ‪N0‬ا '? ا‪h,/‬ا"‪_ 0‬اض ا ل ا‪.G;+‬‬

‫‪ XF .١٤ K+T‬ا ل ا‪F‬اري '\ت ا‪%٣ *-) *11‬‬

‫‪ XF .١٠ K+T‬ا ل ا‪F‬اري  إ‪J *O‬رة ا‪.h‬‬

‫‪ XF .١٥ K+T‬ا ل ا‪F‬اري '\ت ا‪%٥ *-) *11‬‬

‫‪ XF .١١ K+T‬ا ل ا‪F‬اري  إ‪ *O‬ا‪.,‬‬

‫‪ XF .١٦ K+T‬ا ل ا‪F‬اري '\ت ا‪.%١٠ *-) *11‬‬

‫‪26‬‬

‫‪ XF .١٢ K+T‬ا ل ا‪F‬اري  إ‪ *O‬ا?ؤو‪.1‬‬

‫‪ XF .١٣ K+T‬ا ل ا‪F‬اري  إ‪;C *O‬ر از‬

Journal of Environmental Studies [JES] 2012. 9: 21-28

:*11‫ت ا'رة ا‬1TG‫ [ و‬/‫ "و‬،1‫ ا‬b/; ‹‫  ا‬ ‫ام "دة‬h,/) *1?/ ‫*  )ء دار‬1T1G *).G ،[Q;'‫ "* ا‬،*1/0‫* اا ا‬." ."1‫ا‬ .٢٠٠٥ ،٢‫ اد‬،١٣ ." ‫  ا‬b,‫* ا‬-J ‫ب زدة‬/‫* أ‬/‫ "درا‬، [/) ‫ه‬ */0‫* ا‬." ."‫ر‬h‫ ه );ق ا‬,‫هة ا‬w‫ف و‬.‫ا‬ ،٤٣٧-٤٢٣ *FQ ،١٢‫ اد‬،٢٧ ." ،1 ;;?,‫وا‬ .٢٠٠٩ 19,‫ ا‬1VeG */‫ "درا‬،%/ 1- ‫  و هى‬1- ‫@م‬/ ! C‫ ا اا‬%F ‫ اء ا;ري‬ ،1 ;;?,‫* وا‬/0‫* ا‬." ."*1 )0?‫ ا‬X +h‫ا‬ .٢٠٠٩ ,٦٠٥-٥٩٥ *FQ ١٦‫ اد‬،٢٧ ." ،"U1‫ وا;ر";آ‬U11‫ * ا‬+ *+'‫ "ا‬،'F" '‫ا‬ :U1J,Ja‫?* ا‬L ! [1Q,‫ ا‬.٢٠١٠ http://www.perlite.com ."‫  ااق‬1‫ * ا);ق ا‬Q" ،‫;ري‬.‫  " ا‬V *".‫ ا‬،‫ءات‬Jl‫* اء وا‬/‫د);م   ه‬ .٢٠٠٠ ،*1 ;;?,‫ا‬ ‫ _اض‬X.‫ "ا‬،٢٨ %C‫* ر‬1C‫* اا‬1/1T‫* ا‬Q‫ا';ا‬ ،*1 ;‫ة ا‬1-‫‚ وا‬11T, ‫ز ا'آ ي‬0.‫ ا‬."‫اء‬ .١٩٨٨ *1  1‫;ص ا‬F‫ "ا‬،٢٧ %C‫* ر‬1C‫* اا‬1/1T‫* ا‬Q‫ا';ا‬ ‚11T, ‫ز ا'آ ي‬0.‫ ا‬."‫ _اض اء‬X. .١٩٨٨ ،*1 ;‫ة ا‬1-‫وا‬ Taneja, A. and Killo, F.,, "Development Of Hydrolic Binder Based On Gypsum Plaster”. Building Research Center, Baghdad, Vol. 6, No.2, ppp.50-63, (1987). Doxiad- QBE-5, 5, “Survey of the problems of Juss and Juss production in Iraq”. Building research Center, Baghdad, pp.1 pp.185, (1969). Khairia Al-Ramadani Ramadani and Taneja, G., "Development of Gypsum plaster products for use in buildings”. Building Research, search, R.P. 77/88, pp.37-40, pp.37 (1983). Mohan, R. Manjit, S. “Gypsum as a building material”, Central 32 Building Research, India, No. 14, pp. 1-6, (1983 1983). Malhorta H.L, ”Properties of materials at high temperature”. Journal of materials and structure, Vol. 15, pp. 170, (1982). ISO 3048-74, 74, “Gypsum PlastersPlasters General Test conditions” 1st edition, (1974). (

%١٥ *-) *11‫اري '\ت ا‬F‫ ا ل ا‬XF :١٧ K+T

:‫ در‬O ‫ا‬ ‫ اض‬oG"‫ا‬h,/‫ ا‬%‫ واه‬h‫ "ا‬،%w‫ آ‬Q %/ ،*1 ;;?,‫"* ا‬.‫ ا‬، ‫ د);م‬WF) ."*1 Jl‫ا‬ .٢٠٠٠ ،‫;ر‬-.‫* اق وا‬/‫ه‬ ،‫  ا;هب‬/ ‫در و‬T‫  ا‬,J\"‫*  ا‹ ا‬1d *1LT‫* ا‬TF‫ ا‬."‫ وا;رة  اء‬X.‫ام ا‬h,/‫"إ‬ .٢٠٠٢ ،٢‫ ص‬،*1C‫ اا‬1',‫?ن وا‬/l‫;زارة ا‬ ،‫  ا;هب‬/ ‫در و‬T‫  ا‬,J\"‫*  ا‹ ا‬1d ."(X.‫* )اŠ  وا‬V_‫* و ا‬1 ‫ ا';اد ا‬X +d" ‫ت‬/‫ را‬T,‫د ا' وا‬/p !‫* ا_و‬1;‫اوة ا‬ ،٢٤‫ ص‬،*1C‫ر* اا‬N‫* ا‬C‫ "&'* ا‬،*V_‫ا‬ .٢٠٠٠ ‫\ري‬F‫اري  اء ا‬F‫ "ا ل ا‬،’1‫` ا‬/  %‫أده‬ * Q‫'ط اء  ا; ا) و‬J‫* أ‬J‫ر‬T"‫و‬ ،*1)‫ ا' ا‬WF‫‚ ا‬." ‫د‬FG‫ إ‬."1‫ا);ق ا‬ .١٩٨٤ ،٢٩٧ -٢٩٢ ‫ ص‬،‫اد‬9) ‫;اص‬h‫ ا‬1-FG" ,J‫'ا‬F‫[ ا‬+1 ‫ري واس‬.‫ ا‬FQ ."*\'‫'ل ا';اد ا‬,/) ‫ ا‬X. *1  1‫ا‬ ،١‫ ء‬،٤." ،‚"h‫' ا' ا‬Gq'‫;ث ا‬F) ` C‫و‬ .١٩٨٩ ،١١٨-١٠٢ ‫ص‬ ‫;ر وا'دن‬h+‫ء ا‬1'1‫; آ‬1 " ،;T‫ ا‬%?‫هة  ا‬J ،١٠٢‫ ص‬."‫‚  ااق‬.‫` ا‬C‫ ";ا‬-*1 +‫ا‬ .١٩٧٩ 1-FG" ،J‫'ا‬F‫[ ا‬+1 ‫ر ا  و اس‬1 'F" ‚.‫ " ا‬x,'‫ص ا‬h‫ع ا‬T‫ ا‬X ‫;اص‬d ‫ ص‬،١‫ د‬،٧ ." ،‫;ث اء‬F) *." ،"‫;ي‬JH‫ا‬ .١٩٨٨ ،١٠٩-٨٥ , ‫"ا‬-‫  ا;هب ا‬/ ‫ و‬J\"‫*  ا‹ ا‬1d ."ً ‫ آ';اد ز* ار‬X.‫ وا‬1‫");ق اء ا‬ ،(‫* ا';اد‬/‫ )ه‬JH‫ ا‬J‫* ا_رد‬1J'‫* ا‬/0‫' ا‬Gq" .١٩٩٩ ،٢٥٦-٢٤٥ ‫ ص‬،‫ا_ردن‬ ‫;اص‬d m) 1-FG" ،‫;ي‬/;'‫ ا‬%w‫! آ‬/;" [1T *‫ا‬d ‫ت‬h" ‫ف‬1‫* أ‬Oy) *1J/h‫ا@ت ا‬ ‫* اء‬/‫  ه‬1,- " *‫ أو‬."‫ا'دن‬ .٢٠٠٠ ،*1 ;;?,‫"* ا‬.‫ ا‬،‫ءات‬Jl‫وا‬

27

Journal of Environmental Studies [JES] 2012. 9: 21-28

Improve Thermal Insulation And Physical Properties Of The Iraqi Plaster Using Natural Additives Abstract Fires are considered to be one of the most common disasters in the buildings at the present time; therefore it becomes necessary to design the buildings with fire-resistant materials. Many types of stucco panels’ fire-resistant material have been created to prevent heat transfer to other parts of the institution, and to protect it from damage, so intensify increased to study how to improve the properties of the Iraqi plaster. Iraqi plaster differs from other types of plasters with its high quality mechanical and physical characteristics and this is because of the purity of its raw materials (rock stucco) and the advanced technology used in the production. However, there are some negative aspects that led to the lack of demand for it and, make it unsuitable for use as a binding agent, such as the lack of resistance to stresses tensile, lack of resistance to moisture and freezing speed leading to a significant loss of plaster during working with it, and thus lead to increased construction costs. In order to improve the properties of the Iraqi plaster many types of natural additives have been used in this research which are; Hay, Rice husks, sawdust and Alcaúlan, with a suitable ratios. The research also include studying the effect of this additives on physical and mechanical characteristic of Iraqi plaster, and studying the effect of the ratios of these additives on thermal insulation of the Iraqi plaster to choose the best additives type and to keep the high quality as possible of the material while maintaining the quality of the material and to make it remains within the standard specifications of plaster for construction purposes. Thermal insulation have been investigated after adding caúlan, Hay, Rice husks and sawdust with addition ratios of;3, 5, 10, 15% by weight of plasters. Results showed that the thermal insulation highly related to the ratio of water to plaster and with the type of the additives material. Increasing the ratio of natural additives led to an increase in the thermal insulation and this appears clearly with sawdust, Hay and Rice husks. While adding only small ratios of caúlan gives the highest thermal insulation bigger than other types of additives, this is because of its characteristic of losing the crystallization water, which constitutes approximately about 15% of its formulation when dealing thermally with it, but whenever caulan ratio increases the thermal insulation decreases due to the obstruction of the needle network formation.

28

Journal of Environmental Studies [JES] 2012. 9: 29-35

Original Paper

Germination of jojoba (Simmondsia chinensis L) seeds under the influence of several conditions Hassanein A. M.1, Galal E.2, Soltan D.1, Abed-Elsaboor K.2, Saad G. K.1, Gaboor G. M.1, El Mogy N. S.3 1

Central Laboratory of Genetic Engineering, Faculty of Science, Sohag University, 82524 Sohag, Egypt. 2 Genetics Department, faculty of Agriculture, Sohag University, Sohag, Egypt. 3 Al Obour Buildings 4, Salah Salem Road, Nasr City – Cairo, Egypt. Rec. 20 Mar, 2012 Accpt. 2 May, 2012

Abstract Our study indicates that jojoba is suitable plant for cultivation of the Egyptian marginal soils, in the desert area, where the seeds were germinated and grown in sandy soil of marginal fertility. To study the effect of NaCl and mannitol on seeds germination, jojoba seeds were placed on cotton layer flooded with solution containing different concentrations of them. Salinity stimulated seed germination, especially, when the seeds were subjected to relatively low concentration of NaCl (0.5 – 3 gm/l). Increase the concentration of NaCl over 3 gm/l resulted in inhibition of seed germination as well as radicle growth. Application of 2 or 3 gm/l mannitol in germination medium improved the seed germination, vice versa was detected under progressive increase of mannitol in germination medium. Mannitol as same as NaCl delayed seed germination of jojoba plant. On the other hand, jojoba seeds can be germinated in low frequency under high concentration of mannitol, up to 100 gm/l, when seeds were placed on three cotton layers just wetted by distilled water containing mannitol. Temperature may be the most critical factor during jojoba seed germination, therefore summer was the best season for seed germination; also, 30 oC was the best temperature degree for seed germination and emergence of radical in the shortest time. Key words: Desert cultivation, Jojoba, mannitol, sodium chloride, seed germination, stress. Plantations are established by using seeds, Introduction: Jojoba [Simmondsia chinensis (Link) seedlings, rooted cuttings, or plantlets Schneider] is a desert shrub which tolerates produced from tissue culture (Roussos et al., salinity and drought. The chromosome 1999; Roussos et al., 2006; Mohasseb et al., number of jojoba is 2n = 52 (Weiss, 1983). 2009). The male plants outnumber the Its natural life span appears to be between females when raised from seeds (Harsh et 100 and 200 years. Jojoba seeds contain a al., 1987). Jojoba plants obtained from seeds liquid wax of economic importance in showed a high variability in most industry (machine lubricant) as well as in characteristics including yield because it is medicine, where it can be used in cosmetics dioecious, and obligate cross-pollinated and anticancer compounds. Jojoba was used species (Gentry, 1958). Previous reports as a medicine for cancer, stomach ache, indicated that only a small proportion of the kidney disorders, easing childbirth and in plant population (less than 1%) originating tending wounds (Weiss, 1983). Jojoba has from seeds of native plants has the potential attracted interest as a landscape plant; also it to produce economically acceptable yields can be sued for soil conservation. The plant (Purcell and Purcell, 1988; Ramonet-Razon, has a deep root system; therefore it can be 1988). Therefore, comprehensive selection used in highway and roadside plantings and and breeding program was conducted in hedges. It can also be used as a soil stabilizer many countries all over the world to obtain in green belts around desert cities suffering elite cultivars. from particulate air pollution. It is the only Salinity is considered one of the most plant known that synthesizes liquid wax. The important factor restrict the horticultural seeds contain about 50% of simple wax production, especially in soils of the arid and esters of mono-unsaturated fatty acids and semi-arid regions on the earth. Few alcohols. economical plant species can be grown * Corresponding author: Dr. Hassanein A.M. [email protected]

29

Journal of Environmental Studies [JES] 2012. 9: 29-35

successfully in saline soil. It is worth to mention that the total area of arable land is gradually decreasing due to the progressive salinization of the soil (Botti et al., 1998). While jojoba is known as salt tolerant species (Jensen and Salisbury, 1988; Benzioni et al., 1992). salt damage can occur and differences in response among clones had been observed (Rasoolzadegan et al., 1980; Benzioni et al., 1992). indicating the possibility of developing clones with increased levels of salt resistance or tolerance. Elongation and thickening of stems (Bartolini et al., 1991). the total leaf area and leaf size (Bartolini et al., 1991). shoot and leaf expansion, number of leaves and flowers were reduced in response to increased levels of salinity (Rasoolzadegan et al., 1980; Benzioni et al., 1992). Increasing in leaf thickness was also reported when jojba plants were subjected to salt stress (Sa´nchez-Blanco et al., 1991). Benzioni et al., 1999 reported that some clones exhibited excellent vegetative traits related to yield potential such as a high survival rate, rapid growth, extensive branching, high node density, high flower density, high percentage of fruit set, high seed weight, and high wax content in the seed. The clones also differed in their wax composition. Under Egyptian condition, jojoba maximally utilizes 50-70 liters of water weekly in summer and 10-30 liters in winter but when it irrigated by flooding, 1215 irrigation times per year is needed. Mature shrubs characterize by their strong ability to survive without irrigation for long time where they can survive for a whole year without watering. Jojoba can also tolerate up to 3,000 p.p.m. without any impact to the yield. Therefore, Jojoba is considered one of the most practical and scientific solutions for desert plantation in Egypt. In spite of its importance, very few studies aim to understand the effects of abiotic stresses on the development and yield of the jojoba. This article covers the research on jojoba ecophysiology, with emphasis on the effects of water and salt stress on seed germination. Material and Methods: Plant material: For the experiments, seeds were obtained from the Egyptian Natural Oil Co. S.A.E., Ismailia Farm, Salam Zone, Manayef, Ismailia, Cairo, Egypt. The farm is

planted in Ismailia in 1991 and it is about 88,200sq.m of jojoba plants, it was used for research and production. Effect of soil type on seed germination: Thirty jojoba seeds were sown in plastic pots containing two Kg of soils composed from sand, soil or both according to the following table: Soil structure Sandy soil Clay soil 100% 0% 75% 25% 50% 50% 25% 75% 0% 100%

After 40 days percentage of seed germination and germination period were estimated. An emerged radicle was the criterion for germination (Côme, 1982). and the growth of the seedlings was laboratory or greenhouse conditions. Effect of season on seed germination: Thirty jojoba seeds were sown in plastic pots containing two kg of soil containing 1 and 1, sand and clay soil, respectively. After 40 days percentage of seed germination and germination period were estimated. Effect of temperature on seed germination: Jojoba seeds were grown on cotton in glass jars contained 50 ml Hogland solution and incubated at 30°C, 40°C, and room temperature (maximum 18°C). Germination frequency, length of roots, length of shoots and number of leaves per shoot were determined after four, nine, and 21 days of seedling. Effect of NaCl on seed germination: Under sterilized condition, Jojoba seeds were grown on cotton in glass jars contained 50 ml of Hogland solution supplemented with several concentrations of NaCl (0, 0.5, 1, 2, 3, 4 g/l). Jars were incubated at 30°C. Germination frequency, length of roots, length of shoots and number of leaves per shoot were determined after four, nine, and twenty one days of seedling. Effect of mannitol on seed germination: Jojoba seeds were flooded on cotton layer in sterilized glass jars contained 50 ml Hogland solution supplemented with several concentrations of mannitol (0, 0.5, 1, 2, 3, 4 g/l). Jars were incubated at 30°C. Germination frequency, length of roots, 30

Journal of Environmental Studies [JES] 2012. 9: 29-35

length of shoots and number of leaves per shoot were determined after four, nine, and twenty one days of seedling. In addition, jojoba seeds were placed on three cotton layers wetted with 50 ml and containing different concentration of mannitol. The percentage of seed germination was determined in 40 days. Results and discussion: The used jojoba seeds were usually smooth, brown to black in colour, their dimensions are 8 – 17 mm in length and 511 mm in cross-section. One hundred seed weight can vary from 61 - 157.8 gm/100 seed. Positive correlation was detected between seed size and oil content but the quality of the oil was exhibited very little variation regardless of the geographic origin of the seed (Yermanos, 1979). As was reported previously, the seeds contain little or no endosperm and consist mainly of the undifferentiated tissue of the cotyledons (Weiss, 1983). In this work, seeds were obtained after two months of harvesting date and they showed germination when they were subjected for suitable condition for seed germination. They were readily germinated in sandy or clay soil or in mixture from them under wide range of temperature from 18- 40 oC, it was in accordance with others studies (Gentry, 1958; Yermanos, 1982). Data in this work (Table 1) indicated that sandy soil is the most suitable soil for seed germination of jojoba plant, where it is expressed the highest percentage of germinated seeds in short time. Therefore, our study indicates that jojoba is suitable Age of seedling 3 days 5 days 7 days 15 days

plant for cultivation of the Egyptian marginal soils, in the desert area, where the plant can grow in sandy soil of marginal fertility and needs little water. It withstands salinity and it does not seem to need fertilizers or other polluting chemical treatments. Consequently, jojoba can be generally cultivated in well-drained, coarse, desert soils, where the soil is composed of sandy alluviums and mixtures of gravels and clays derived from such igneous materials as granitics and volcanics. For all of the previous reasons, jojoba is recommended for cultivation in Egyptian desert. Soil structure Sand Clay y soil soil

Percentage Germinat of seed ion germination period (%) (day) 100% 0% 75.0 13 75% 25% 65.0 15* 50% 50% 62.5 17* 25% 75% 55.0 21* 0% 100% 45.0 23* Table 1. Effect of soil type on percentage of seed germination and germination period.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution at 30°C at P < 0.05. Temperature may be the most critical factor in growing jojoba. Jojoba is living in the bright desert sun and tolerates the extreme daily fluctuations of temperature which commonly range through -1 oC during the morning to daily extremes of 46 oC (shade readings). In our work, increase of temperature stimulated seed germination, shortened the time needed for emergence of radical (Table 2).

Temperature of Seed germination Length of Shoot incubation freq. root freq. (℅) 30°C 61 0.26 --Room temperature 55* 0.2 --30°C 72 0.4 --Room temperature 55 0.53 --Room temperature 55 2 33 30°C 72 7 66 Table 2. Effect of temperatures on seed germination frequency.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution at 30°C at P < 0.05. Seed germination was influenced by temperature of the seasons. Seed germination in summer was higher than

Length of shoot --------1.5 0.8

winter (Table 3). Summer was the best season for seed germination it may be due to the highest temperature degree. Also, the shortest time of seed germination was detected when the seeds were subjected for the highest temperature in summer. Seedlings are more sensitive than mature 31

Journal of Environmental Studies [JES] 2012. 9: 29-35

tree (Weiss, 1983). While seeding is sensitive to light frosts of -1 or -2oC below freezing, mature shrubs are known to tolerate temperatures as low as -9 oC. When temperatures reach 50C flowers and terminal portions of young branches of most jojoba

plants are damaged. Wild jojoba plants can withstand very high temperature, cultivated cultivars showed maximum growth between 27 - 36 oC, but. Above 50 oC , the vegetative growth is suppressed, although not lethal (Weiss, 1983).

Parameter

Season Summer Autumn Winter Spring 77 ±3.81 63 ±2.00 58 ±3.81 73 ±2.50 Percentage of seed germination 13 ±1.00 17 ±1.00 26 ±2.00 17 ±1.52 Germination period / day Table 3. Effect of seasons on percentage of seed germination and germination period.

Under germination condition, the number of germinated jojoba seeds increased with time (Table 4, 5 and 6). In four days, salinity delayed seed germination of jojoba seed. While, 61% of seeds showed seed germination on NaCl free medium, 57% of seeds showed seed germination under the influence of 0.5 gm/l NaCl (Table 4). With time on germination medium, salinity stimulated seed germination (Table 5 and 6) especially, when the seeds were subjected for germination in the presence of relatively low concentration of NaCl (0.5 – 3 gm/l). In this work, the negative effect of NaCl on seed germination was detected when the seeds were subjected for 4 gm/l NaCl. While jojoba is known as salt tolerant species (Jensen and Salisbury, 1988; Benzioni et al., 1992), salt damage can occur and differences in response among clones had been observed (Rasoolzadegan et al., 1980; Benzioni et al., 1992). indicating the possibility of developing clones with increased levels of salt resistance or tolerance. Relatively low concentration of NaCl (0.53 gm/l) stimulated seedling growth and resulted in the formation of higher fresh mass than control. On the other hand, germination of seeds on medium containing 4 gm/l NaCl retarded seedling growth with complete avoidance of shoots (Table 5 and 6). Elongation and thickening of stems (Bartolini et al., 1991). the total leaf area and

leaf size (Bartolini et al., 1991). shoot and leaf expansion, number of leaves and flowers were reduced in response to increased levels of salinity (Rasoolzadegan et al., 1980; Benzioni et al., 1992). Increasing in leaf thickness was also reported when jojba plants were subjected to salt stress (Sa´nchez-Blanco et al., 1991). Conc. of Germination DRS NaCl (g/l) freq. (℅) Control 61 0.27 0.5 56.6* 0.17 1 38* 0.13 2 55.4* 0.6 3 44* 0.1 4 34.3* 0.1 Table 4. Effect of NaCl on seed germination after four days under germination condition.

* Means significantly different (t-test) from jojoba seeds cultured on hogland solution without salt at P < 0.05. Increase the concentration of NaCl over 3 gm/l resulted in inhibition of seed germination as well as radicle growth (Table 5). Plumules were completely suppressed when 4 gm/l NaCl were used. These results were in agreement with previous report (Berrichi et al., 2010). They were found that 5g/l of NaCl inhibited completely the emergence of plumules and, 3 g/l of NaCl marked the start of negative effect on the growth jojoba seedlings.

Conc. of Germination Length of root Shoot freq. Length of shoot NaCl (g/l) freq. (℅) (cm) (℅) (cm) Control 66 1.7 16 0.5 0.5 61* 5.3 16 0.3 1 66* 3 16 0.4 2 83 11 33* 0.4 3 75 7.25 33* 0.5 4 41* 0.23* ----Table 5. Effect of NaCl on seed germination after nine days under germination condition.

32

Journal of Environmental Studies [JES] 2012. 9: 29-35

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without salt at P < 0.05. Relatively low concentration of NaCl resulted in enhancement of seedling growth up to 3 gm/l NaCl (Table 6). The data also indicated that 4 gm/l of NaCl resulted in decreasing the radical length and inhibition of plumule formation. Botti et al., (1998) reported that jojoba plants grown under high Conc. of NaCl (g/l)

Germination freq. (℅)

salt levels did not show much difference from those grown under non-saline conditions for most of the morphological and anatomical parameters such as number and size of stomata, density of trichomes, leaf size, branching characteristics and stem diameter. On the other side they found that leaf and cuticle thickness showed a high tendency to increase under saline conditions.

Length of root (cm)

Plumule Length of No. of No. of formation shoot (cm) leaves per shoots freq. (℅) shoot per seed Control 69 2 33.3 0.8 2 1 0.5 66.6* 6.66 50 1 2 1 1 66.6* 3* 50 1 3 1 2 83* 15.3 42.2 4 6 1 3 83.3 14.3 33* 2.3 4 1 4 50* 0.73* --------Table 6. Effect of NaCl on seed germination after fifteen days under germination condition.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without salt at P < 0.05. Mannitol as same as NaCl delayed seed germination of jojoba plant (Table 7). Application of 2 or 3 gm/l mannitol in germination medium improved the seed germination. Comparison between the effect of NaCl and mannitol indicated that incorporation of these both factors in relatively low concentration improved seed germination. Conc. of Germination Length of mannitol (g/l) freq. (℅) roots (cm) Control 61 0.27 0.5 46* 0.1* 1 55* 1.8 2 46* 0.46* 3 33* 0.16* 4 27* 0.1* Table 7. Effect of mannitol on seed germination after four days under germination condition.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without mannitol at P < 0.05. The data in this work indicated that the emergence of plumules were commenced after four days of subjecting the seeds for germination conditions (Table 8 and 9). The commencement of plumules was depend on the concentration of mannitol in the germination medium. While relatively low concentrations of mannitol (1 – 3 gm/l) stimulate plumule formation, 4 gm/l mannitol inhibit completely the emergence of seed plumule. The same results were obtained when 4 gm/l NaCl were used (Table 6).

Conc. of Germination Length of Plumule Length of mannitol freq. (℅) roots (cm) freq. (℅) shoots (cm) (g/l) Control 66 1.7 16 0.5 0.5 55.5* 1.15* 16 0.5 1 55* 8.5 50 0.3 2 66* 7 33 0.2 3 83 3.3 25 1 4 50* 0.5* ----Table 8. Effect of mannitol on seed germination after nine days under germination condition.

33

Journal of Environmental Studies [JES] 2012. 9: 29-35

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without mannitol at P < 0.05. Plumule formation were delayed under the influence of 4 gm/l mannitol where it was only commenced in two weeks (Table 9). On

the other hand, in two weeks, 4 gm/l mannitol stimulated the radical length in comparison to that of control. These data indicated that mannitol in concentration between 1 and 3 m/l stimulated both shoot length and the number of shoots per seed.

Conc. of Germination Length of Plumule Length of No. of No. of mannitol freq. (℅) roots (cm) freq. (℅) shoots (cm) leaves per shoots (g/l) shoot per seed Control 66 2 33 0.8 2 1 0.5 55.5* 2 33 0.8 2 1 1 58* 14.6 50 3.16 2 2 2 83 9 33 1.1 2 1 3 83 7.66 83 1.81.8 2 3 4 50* 5.7 30* 0.66 --1 Table 9. Effect of mannitol on seed germination of seeds placed on one layer of cotton flooded with Hogland solution for fifteen days.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without mannitol at P < 0.05. Placing jojoba seeds on three cotton layers just wetted by germination medium created suitable condition for seed germination although the presence of high concentration of mannitol. Under these conditions, jojoba seeds were able to germinate and form plumule up to 100 gm/ mannitol. Comparision between data in tables 9 and 10 indicated that seed germination was strongly Treatment 0 86

10 96

20 86

30 80

affected by the presence of high water content in germination medium. It was expected since the plant strongly tolerates drought condition but it is sensitive for frost and water flooding. Consequently, jojoba has recently established as a crop in many arid and semi-arid regions of the world (Brown et al., 1996), especially around the Mediterranean basin (Benzioni and Dunstone, 1986; Mills et al., 1997) because it is drought and salt tolerant plant species.

Mannitol concentration (gm/l) 40 50 60 70 80 76* 63* 60* 56* 46*

90 43*

100 36*

110 20*

Percentage of seeds cultured (%) 8 7 9 11 11 13 15 16 17 19 21 25 Germination period (day) 18 27* 12* 10* 8* 7* 6* 5* 3* 2* 1* 0 N .of shoot formation Table 10. Effect of mannitol on seed germination of seeds placed on three layers of cotton and witted with distilled water solution for fifteen days.

* Means significantly different (t-test) from jojoba seeds cultured on distilled water without mannitol at P < 0.05. The data of his work indicated that jojoba is the most suitable plant for the Egyptian conditions especially in desert area. Under Egyptian condition, jojoba maximally utilizes 50-70 liters of water weekly in summer and 10-30 liters in winter but when it irrigated by flooding, 12-15 irrigation times per year is needed. Mature shrubs characterize by their strong ability to survive without irrigation for long time where they can survive for a whole year without

watering. Jojoba can also tolerate up to 3,000 p.p.m. without any impact to the yield. Therefore, Jojoba is considered one of the most practical and scientific solutions for desert plantation in Egypt. References: Bartolini, G., Mazuelos, C., Troncoso, A., (1991). Influence of Na2SO4 and NaCl salts on survival, growth and mineral composition of young olive plants in inert sand culture. Adv. Hortic. Sci. 5, 73–76. Benzioni, A., Nerd, A., Rosengartner, Y., Mills, D. (1992). Effect of NaCl salinity on growth and development of jojoba clones I.

34

Journal of Environmental Studies [JES] 2012. 9: 29-35

Young plants. J. Plant Physiol. 139, 731– 736. Benzioni, A, Shiloh, E., Ventura, M. (1999). Yield parameters in young jojoba plants and their relation to actual yield in later years Industrial Crops and Products 10: 85–95. Berrichi, A., Tazi, R., Bellirou, A., Kouddane, N., Bouali A. (2010). Role of salt stress on seed germination and growth of jojoba plant Simmondsia chinensis (Link) Schneider. IUFS J Biol 69:33-39 Botti, C., Palzkill, D., Munoz, D., Prat, L. (1998). a. Morphological and anatomical characterization of six jojoba clones at saline and non-saline sites. Ind. Crops Prod. 9, 53–62. Brown, J.H., Palzkill, D., Whittaker, C., (1996). The jojoba industry 1994, a status and update. In: Princen, L.H., Rossi, C. (Eds.), Proc. of the Ninth International Conf. on Jojoba and Its Uses, and of the Third International Conf. on New Industrial Crops and Products, 25–30 September 1994, Catamarca, Argentina, pp. 150–154. Côme, D. (1982). Germination. In: Mazliak P., ed. Croissance et développement. Physiologie végétale. II. Paris: Hermann, 129–225. El Mogy, N.S. (1999). Egyptian Experience in Planting Jojoba Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt 431. Jensen, W.A., Salisbury, F.B. (1988). Bota´nica, 2nd ed. Libros McGraw-Hill de Me´xico, Me´xico, 722 pp. Harsh, L.H., Tewari, J.C., Patwal, D.S. and Meena, G.L. (1987). Package of Practices for Cultivation of Jojoba (Simmondsia chinensis) in AridZone, Pp: 1–19. CAZRI, Jodhpur (India). Mohasseb, A.H., Mohamed, K., El-Bahr, M.K., Adam, Z.M., Moursy, H.A. and Solliman,

M. (2009). In Vitro Clonal Propagation of Jojoba (Simmondsia Chinensis (Link) Schn.). Aus tralian Journal of Bas ic and Applied Sciences , 3: 3128-3136. Rasoolzadegan, Y., Hogan, L., Palzkill, D.A. (1980). Response of jojoba to five levels of salinity. In: Puebla, M. (Ed.), Proc. of the IV International Conf. on Jojoba, 5–6 November 1980, Hermosillo, Sonora, Mexico, pp. 113– 120. Roussos, P.A., Tolia-Marioli, A., Pontikis, C.A. and Kotsias, D. (1999). Rapid multiplication of Jojoba seedlings by in vitro culture. Plant Cell, Tissue and Organ Culture 57: 133–137. Roussos, P.A., Tsantili, E., Pontikis, C.A. (2006). Responses of jojoba explants to different salinity levels during the proliferation stage in vitro Industrial Crops and Products 23: 65–72. Sa´nchez-Blanco, M.J., Boları´n, M.C., Alarco´n, J.J., Torrecillas, A. (1991). Salinity effects on water relations in Lycopersicon esculentum and its wild salt-tolerant relative species L. pennelli. Physiol. Plant. 83, 269– 274. Weiss, E.A. (1983). Crambe, niger and jojoba. In: Oilseed Crops. Longman, London, UK, pp.507 - 527. Yermanos, D.M. 1979. Jojoba - a crop whose time has come. California Agriculture (Jul Aug.), pp. 4 - 11. Yermanos, D.M. (1982). Jojoba - A potentially valuable species in the control of desertification. Proceedings of the Conference on Alternative Strategies for Desert Development and Management, 31 May - 10 June 1977, United Nations Institute for Training and Research, Sacramento, California, USA. Agriculture Vol. 2, pp. 374 - 381.

‫ا ا‬

‫إ ت "ور ت ا   ا  اوف‬ ‫ري ا!  رة ا ت  ا ت‬#! ‫ ة‬$%‫ر ا*)(' &را ا  ا‬$+,‫د ا أن ت ا ه ا‬ ‫ي‬# ‫ل‬#)   ‫ور‬7 ‫ ا‬89‫ و‬:2 ‫ف  ا ت‬%‫ ا; وا‬$342  أه‬#‫وآ  در ا‬ .‫و زادة )> ا ت و  ا درات‬X) ‫ در‬٣٠ ‫ور  در ; ارة‬7 ‫> ا‬$C#2 ‫ أن‬1‫ إ ذ‬T9‫ أ‬،T$!‫ا‬

35

‫‪Journal of Environmental Studies [JES] 2012.‬‬ ‫‪201 9: 37- 42‬‬

‫‪Original Paper‬‬

‫‪$‬ر "!  اة ا ذي ان ا وان ا إزا اات‬ ‫وا')('ت  !& او‪%‬ت ا*!‬ ‫و‪ 7-= %0 -‬ا)‪ .‬ر‪ 8 ،١Y‬ف ‪8R‬ن ‪)V0 ،٢-.8‬د ‪ ,V%0‬ه‪:‬اع‪ -;0 ،٣‬أن‪  ،٤‬‬

‫‪٥‬‬

‫‪١‬‬

‫أذ ‪ 2V< / 8V0‬ه ا‪ / 7* )0R / c-.‬ا)اق‬ ‫‪0‬رس ‪ 2V< / 8V0‬ه ا‪ / 7* )0R / c-.‬ا)اق‬ ‫‪٣,٤,٥‬‬ ‫‪ 0‬س ‪ 2V< /‬ه ا‪ / 7* )0R / c-.‬ا)اق‬

‫‪٢‬‬

‫إ‪3‬م‪ ١٩ :‬أ( ‪.< ،٢٠١٢‬ل‪٢٠١٢ 0 ٢٨ :‬‬

‫ا‪:567‬‬ ‫*‪  2‬ه‪6‬ا ا‪ M%.‬ا‪j‬ر; ‪ 0'; ,-‬ا‪$%‬ة ا" ذي ان ا‪ V‬وان ا  إزا اات وا  ت‬ ‫‪ 5-0 ,0‬او‪+‬ت ا‪ (-1"* 2* M-+ ،-:‬و‪ ,-./0 ,-*+‬وا‪+‬ة *)( 'م ا‪$%‬ة ا" ذات ا  ا‬ ‫و‪8‬د أب ان ا‪ V‬وا‪$ ()* -;k‬ب ان ‪ 8‬و*‪34 5-  61* 7‬ت ‪9$0 -:0‬ذة ‪,0‬‬ ‫إ‪+‬ى ‪%0‬ت ا  ‪ ) 7* 0‬أن ‪ 2‬إ‪0‬اره ‪.4< .= >8‬ن ‪ :% (D."0) -;)0‬ااد ا‪ -‬و‪ )0‬‬ ‫‪ ,0‬د‪9‬ل ا‪+‬ة ‪ 2* M-+‬ا"‪ (-1‬ر‪+ R‬ارة ا‪ 7- ../‬ا‪ lI‬أن ا‪8‬د أب ان ‪.0 8‬ع )‪-‬‬ ‫‪:0‬ج ون *  * ق  ‪ 2-< n 9‬ااد ا‪ .P‬ا‪6‬ا‪ .I‬ا‪ TDS -‬وا ‪ --‬ا ‪ -I‬وا‪ ,+‬آ *‪ ,-.‬إن‬ ‫أ‪ (4‬إزا ات و‪ COD‬ا وا‪6‬اب ‪8‬د أب ان ‪ 71 M-+ 71 M-+ 8‬آ ءة ا‪N‬زا‬ ‫‪ %٦٣.٥‬و‪ ٩١.٨٥‬ات واـ ‪ >8 COD‬اا و‪ 7P+‬أ‪ (4‬إزا   ت ا‪6‬اب ‪8‬د أب ان‬ ‫‪.V0 8‬ق ‪:‬ج و ءة إزا ‪ ،%٩٦ 71‬أ‪ 0‬أ‪$% -.-* QIP9 (4‬ة *‪ 2‬ا‪P%‬ل ‪ 8  -8‬ا‪8‬د‬ ‫أب ان ‪ 8‬وأب ان ‪.0 8‬ع ‪:‬ج‪ 2-< U$* 2 .‬ا‪T‬س ا ‪-‬رو‪ 5-0  -R‬او‪+‬ت‬ ‫‪$‬ب ان‪.‬‬ ‫ا ت ا‪8‬ا‪ :‬إزا اات‪ ،‬إزا ا  ت‪'; ،‬م ا‪$%‬ة ا"‪ ،‬او‪+‬ت ا‪ ،-:‬ان ا‪ ،V‬ان ا‪.‬‬ ‫ا‪:8$‬‬ ‫*)ف ‪ 5-0‬ا ‪34‬ت ‪  ;$‬أي ‪ 5-0‬أو ا‪%* (I‬ي‬ ‫‪= >8‬ا‪ ZI‬أو ‪U0‬ت "( ‪ ،Z‬ا‪ ،(I‬أو ‪r‬زات أو‬ ‫‪0‬آ‪  *.‬اآ‪* :-‬ن ]رة إذا ‪P c-. 7+s‬رة‬ ‫ر‪) -V-I‬د و‪R‬د ا"ا‪ 5-0  ZI‬ا ‪34‬ت إ> و‪R‬د‬ ‫ااد ا‪  .P‬اء وااد ا‪ .P‬ر *ن ‪48‬‬ ‫أو ‪  )-.s  48 -r‬ور *‪ t8 (" R‬و‬ ‫‪r‬وي وذا‪ ZI‬أو ‪=$‬ل ‪%0  /0‬ة‪Karia& ) .‬‬ ‫‪.(Christian, 2006‬‬ ‫‪ ,0‬أز ااد ا ‪  +s 2‬إ> ا‪%V‬ت ا‪-I‬‬ ‫ه اات و ا  ت وأن زد*   ا‪%V‬ت ا‪-I‬‬ ‫‪u  8 l‬هة ا‪UN‬اء ا‪61‬ا‪ >8 ZR D6 I‬ا‪V;N‬ن‬ ‫إزا  أو ا‪-U$* ,0 (-j‬ه ) ‪Marthie and Cloete‬‬ ‫‪.(1998‬‬ ‫) ;'م ا‪$%‬ة ا" ذات ا  ا ‪,0‬‬ ‫ا‪ ';T‬ا‪ -%‬ا )  إزا اات وا  ت‬ ‫‪:-‬ه ل ز‪ ,0‬اث ا ‪-‬رو‪%* M-+،-‬ج‬ ‫‪ -8‬ا‪ R‬إ> ا‪T‬وآ‪ (% ,-V‬او‪ ,-R‬إ>‬ ‫;ات ‪* -‬ن ا)‪ -‬ا ) ‪N‬زا اات ه ‪-8‬‬ ‫‪ w8‬ا‪ R‬وا *‪-1 2‬ب ا‪T‬وآ‪ ,-V‬وا ‪ /z0 ٠.٣‬آ ‪ 7-‬اـ‪ lI‬إن‬ ‫إزاـ اـ ‪ V‬ر *‪ ,V%‬آ ا;‪ n /‬ز‪ ,0‬اـث‬ ‫اـ ‪-‬رو‪ n /* - -‬اـ‪ .V‬اـ‪ V  c‬ر ‬ ‫اـ‪$%‬ة ‪:‬دة ‪ 8‬اـ‪$%‬ة‪.‬‬ ‫أ‪R‬ى ا‪k+.‬ن )‪ (Sotirakou et al., 1999‬درا‬ ‫‪ >8 -j+‬إ‪+‬ى ا‪%‬ت ا)‪$ 0‬ب ا‪$%‬ة ا"‬ ‫ذات ا  ا وا *)‪0 5-0 l‬و‪+‬ت ‬ ‫‪j0 |P‬ار‪ ١٢٠٠٠ 5‬م‪/٣‬م و*‪39 ,-.‬ل ارا أن‬ ‫ه‪ 56‬ا‪ (:* %‬ا‪ (" -;0T‬آ‪ 5-0 ,0 (0‬او‪+‬ت‬ ‫و*‪ ,0 %٢٨ (:‬اـ ‪ V‬ر اـ)‪4‬ي و ‪ ,0 %١٥‬اـ ‪ V‬ر‬ ‫اـ وآ;‪ .V; 7‬اـ ‪ V‬ر اـ‪:‬اـ‪/‬اـ‪ Z‬اـ‪I--‬‬ ‫‪x‬وآ‪ ,-V‬اـ‪:‬اـ ه ‪r/z0 ٨‬ام‪.‬‬ ‫8‬ا‪T‬رض‬ ‫‪ lI; 7- M-+‬ارا أن إزا او‪* ,-R‬او‪,- 7+‬‬ ‫)‪* 08 % (٥٤ – ٣٢‬ن ا‪T‬رض ‪:0 -r‬رو‪8‬‬ ‫‪=T‬ر ‪ -‬زادت ;‪ .V‬ا‪N‬زا ‪ (P‬إ> )‪(٨٧ – ٤٧‬‬ ‫‪* 08 %‬ن ا‪T‬رض ا‪  0/V‬ا) ‪:0‬رو‪8‬‬ ‫‪=T‬ر‪.‬و إزاـ اـ  ت *او‪% (٥٤ – ٣٢) ,- 7+‬‬ ‫‪* 08‬ن اـ‪$‬رض ‪:0 -r‬رو‪ 8‬ـ‪=$‬ر ‪ -‬زادت‬ ‫;‪ .V‬اـزاـ ‪ (P‬إ> )‪* 08 % (٨٧ – ٤٧‬ن‬ ‫ا‪T‬رض اـ‪  0/V‬اـ)ـ ‪:0‬رو‪ 8‬ـ‪=$‬ر‪.‬‬ ‫ا)اد و‪A‬ا@? ا>‪:.‬‬ ‫*‪  2‬ه‪ 56‬ارا *"‪ (-1‬و‪ ,-./0 ,-*+‬وا‪+‬ة‬ ‫*)( 'م ا‪$%‬ة ا" ذات ا  ا و‪8‬د‬ ‫‪38‬‬

‫أب ان ا‪ V‬وا‪$ ()* -;k‬ب ان‬ ‫‪ 8‬و*‪34 5-  61* 7‬ت ‪9$0 -:0‬ذة ‪,0‬‬ ‫إ‪+‬ى ‪%0‬ت ا  ‪ ) 7* 0‬أن ‪ 2‬إ‪0‬اره‬ ‫‪.4< .= >8‬ن ‪ :% (D."0) -;)0‬ااد ا‪-‬‬ ‫و‪ ,0  )0‬د‪9‬ل ا‪+‬ة ‪ 2* M-+‬ا"‪ (-1‬ر‪+ R‬ارة‬ ‫ا‪ ./‬و]^ ا"( ر8 -V0 9‬ى ‪ 5-0‬ا ‪34‬ت ‪ Y-‬ا‬ ‫‪s‬اف ‪4‬ن =‪ U %‬آ ‚‪ U$‬ا‪  |P‬ق‬ ‫ا"‪ 7.U M-+ %‬ان اا‪ tj% M-% (9‬ز‪0 ,0‬ث‬ ‫ه‪-‬رو‪j0 -‬ار‪.8 ٢٤ 5‬‬ ‫‪Inlet‬‬ ‫‪Outlet‬‬ ‫‪Sed.‬‬ ‫‪Aeration‬‬ ‫‪Tank‬‬ ‫‪tank‬‬ ‫‪28 cm‬‬ ‫‪8 cm‬‬ ‫‪Diffuser‬‬

‫‪20 cm‬‬

‫‪18 cm‬‬

‫‪٥ cm‬‬

‫‪ (-  * .(١) ./‬و‪+‬ة ان ا‪ V‬ا‪/V‬م  * ‪6-‬‬ ‫ارا )ا)‪.‬ر‪(٢٠٠٠ ،Y‬‬

‫‪)%‬ض ان "‪:4‬‬ ‫=( )‪+ (k (٢‬ض ان ‪-8 2* M-+ 8‬‬ ‫ا) ا ‪ ,-]+‬أا;‪ -‬ا"( ‪ ,0‬ا‪D3.‬‬ ‫ا" ف ‪ (2٢٦) j‬وار* ع )‪ (2٢٥‬و‪ 61* 2‬آ(‬ ‫وا‪ +‬ـ ‪   ١٠‬آ( دورة ‪ () M-+‬ا‪T‬ول ‪(8 * ,0:‬‬ ‫)‪j0 (React‬ار‪ 8 ٢٤ 5‬وا‪8 ٢٤ (8 * ,0: ;k‬‬ ‫‪  Yj.V‬ا‪ +‬ا‪T‬و> ‪:0 -8‬ج ‪ ƒj‬ة ‪,-8‬‬ ‫و)‪  Y.j‬ا‪ +‬ا‪:0 -8 -;k‬ج ة ‪.,-8‬‬ ‫‪26 cm‬‬

‫‪ ^] (٢) ./‬أ)د ‪+‬ض ان ‪ 8‬ا‪/V‬م ‬ ‫* ‪ 6-‬ارا‪.‬‬

‫أ‪ 0‬ا"( )‪ (k (٣‬و‪+‬ات ا'‪ 0‬اد أ‪U‬ء ا)(‬ ‫أ‪./‬ي‬

‫‪ (٣) ./‬و‪+‬ات ا'‪ 0‬اد‬

‫*‪39 2‬ل ة ارا إ‪R‬اء ا ‪ %‬ت ا‪-‬و‬ ‫ا)‪-j j‬س )‪ (COD‬وا‚س ا ‪-‬رو‪pH -R‬‬ ‫و‪,EC‬و ‪TDS‬و‪Salinity‬و‪ PO4‬و‪ NO3‬و*آ‪ :-‬ا8 8‬‬ ‫اـن اـ‪.V‬‬ ‫ ‪ ,-+‬ا;‪ 74 /‬آ ءة اـزاـ إ> ‪8 %٧٧.٨٨‬‬ ‫و‪R‬د ‪:0 -8‬ج ة ‪ -8 (.< ,-8‬اـ  ‬ ‫‪+‬ض اـن ـ‪ 8‬و)‪:‬ى ‪ Z.‬ذ‪ D‬إ> أن ‪ -8‬اـ‪:‬ج *‪V‬‬ ‫‪)V0‬ات اـ‪-+$‬ء اـ  ‪>j.  0 2V< ()R 0‬‬ ‫‪8‬ـ‪ j‬و*‪8 ,0 :‬ر‪ 5‬اـ‪ 5-‬اـ)ـ ‪ 0‬زاد ‪,0‬‬ ‫*آ‪ :-‬اـ ‪ COD‬اـ ‪(Technical Learning‬‬ ‫)‪.College, 2003‬‬

‫‪90‬‬ ‫‪80‬‬ ‫‪70‬‬ ‫‪60‬‬ ‫‪50‬‬ ‫‪40‬‬ ‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬ ‫‪0‬‬

‫‪0‬‬

‫‪* 8‬ا‪+T‬اض ‪ 0‬ا;)‪* >8 w‬آ‪ :-‬ا آ ءة أ‬8 -I‫ها‬3‫ ا‬-Ij;‚‫اض ا‬+T‫ا‬ ‫ة ان" ر‬V‫ة ا" ا‬$%‫ا‬ ( ‫) ا‬0R ، ‫ ا‬-‫ آ‬,-VR0 ‫ات‬+‫ام و‬/‫ "ا‬.(١٩٩٩) 7-= %0 -‫ و‬،Y‫ ر‬.)‫ا‬ )0  0T‫ ا‬s  ‫ة ا" ذات ا‬$%‫ا‬ ، ‫ ا‬-‫ آ‬،-VR0 +‫و‬s‫ أ‬،"‫ت‬+‫ او‬5-0 .( ‫) ا‬0R ‫;ن‬8 ، ‫د و‬+ %0 ،‫د‬+‫ ى و‬،‫ر‬+ -‫ ا‬5-‫ ا‬,0 ‫ "إزا اات‬.(٢٠٠٩) ‫ص‬j0 R-.‫( ا‬8 ‫)ل ا‬ -‫آ‬,- ‫ )م ا‬7* 0 ،",-V‫وآ‬T‫ا‬ ٣ ‫ ا)د‬،١٦ ‫ ا‬،7* )0R ، ‫ا‬ 41

Journal of Environmental Studies [JES] 2012. 9: 37- 42

Vaboliene, G., Matuzevicius, A.B. and Dauknys, R. (2007). "Impact of temperature on biological phosphorus removal from wastewater in Lithuania" EKOLOGIJA. 2007. Vol. 53. No. 4. 95–101 WPCF, APHA and AWWA (1999) "Standard Methods for the Examination of Water and Wastewater " 20th ed, Washington D.C. USA Zou, H., Du, G.C., Ruan, W.Q. and Chen, J. (2006). "Role of nitrate in biological phosphorus removal in a sequencing batch reactor". World Journal of Microbiology & Biotechnology, 22: 701–706.

Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt. Sotirakou, E., Kladitis, G., Diamantis, N. and Grigoropoulou, H. (1999). "Ammonia and Phosphoures removal in municipal waste water treatment plant with extended aeration" Global Nest:the Int J ,Vol.1,No.1 , 47-53. Su, J.L. and Ouyang, C.F. (1996). Nutrient removal using acombined process with activated sludge and fixed biofilm. Wat.Sci. Tech, Vol.34, No.1-2, 477-486. USEnvironmental Protection Agency (2003). (ACTIVATED SLUDGE)State Acceptance List USA, Office of water, Washington.

Comparison Between Continuous and Batch Flow Activated Sludge Reactor to Remove Nitrate and Phosphate From Domestic Wastewater Waleed M. Sh. Alabdraba, Afaf J. Obed, Masuod M. Hazaa, Safa Badeaa and Manolea Aiden

Abstract In this paper a comparison between continuous and batch flow activated sludge reactor to remove nitrate and phosphate from domestic wastewater, tow bench scale units was operated one work as continuous reactor and the second as batch reactor, the raw wastewater brought up from one of the lifting pump stations in Tikrit city and pass it throw metal screen to prevent floating materials from entering the units. The results shows the batch flow reactor followed by mixing without aeration is the best in bring down total dissolved solids , electrical conductivity and salinity while the best removal of nitrate 63.5% and chemical oxygen demand 91.85% achieved in batch flow reactor. The best removal of phosphate is 96% achieved in batch flow reactor with mixing only before the aeration. the batch flow reactor and the batch flow reactor followed by mixing give the best settling characteristic of sludge, while the pH don’t affected by the flow regime. Key Words:-Nitrate Removal, Phosphate Removal, Batch Flow, Continuous Flow

42

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Original Paper

Modeling of the heating transfer in the karst aquifers for Val d'Orléans city (France) Ali Salim Joodi Department of Environmental Eng., Collage of Engineering, Al-Mustansiriya Univ, Baghdad (Iraq) Rec. 17 Nov, 2011 Accpt. 12 Dec, 2011

Abstract: In karst aquifers, temperature distribution play an additional important role since they carry information about internal aquifer structures. The aim of the present work is to develop a two dimensional heat transfer model in a karst aquifer. Navier Stokes equation is used to simulate the groundwater velocity in the conduit system where the porosity tends to one, and means water velocity was taken into account in the fractured rock. Heat transport equation was applied to simulate the temperature distribution in a karst aquifer, and k- turbulent model is used to simulate the turbulent viscosity. The model was applied to the karst system of Val d'Orléans. Temperatures are measured in thirteen wells with different depth in 29 Jun 2011. Results have shown that the model was not sensitive to the variation of water density, but it is sensitive to the variation of specific heat and density of the rock especially in the fractured system. Also, the model was varied sharply with the velocity of water in sinkhole points, and any variation in the depth of saturated zone. The comparison between measured and calculated temperatures in wells is very good. Key word: Karst aquifers, Heat transport, Conduit and diffuse flow systems, Numerical model and Val d'Orléans highly vulnerable compared to other Introduction: Karst forms when groundwater dissolves groundwater systems, since potential pockets of limestone, dolomite, or gypsum in contaminants can easily reach the groundwater bedrock. This dissolution process increases the (Genthon et al., 2005; O’Driscoll and bulk permeability of the massif, developing a DeWalle, 2006; Dogwiler et al., 2007). conduit network of high hydraulic The use of heat as a groundwater tracer, in conductivity, with short water residence time, contrast to the use of chemical tracers, is and preserving micro fractured blocks with attractive because of the ease of measuring long water-residence time (Dogwiler et al., temperature with high precision (errors as low 2007). Thus, karstification provokes flow as ±0.03 _C). Groundwater temperatures are heterogeneity, increasing the permeability influenced by the temperature of recharge, contrast between conduit flow and diffuse mixing of different waters resulting from flow systems. Karst system is mainly groundwater flow. (Andrieux, 1978; Crowther characterized by four elements. The first is and Pitty, 1982; Roy and Benderitter, 1986; sinkholes which recharge the karst system. Lastennet, 1994; Martin and Dean, 1999; Birk The second is the underground drainages or et al., 2004). have used water temperature conduits which are largely influenced by jointly with other natural hydro dynamical and sinkholes and consequently the water flow in hydro chemical responses, as additional these regions is high. The third is fractured information to characterize the different flow system (diffused system) which is weakly types and the structural influenced by sinkhole and consequently the organization of drainage patterns in karst water flow in these regions is slow. The last is aquifers. Groundwater applications have been spring point in which the water is emerged at developed to model quick-flow in karst the surface. In this context, karst systems are conduits, diffuse flow in fractured and, and the * Corresponding author: Dr. Ali Salim Joodi [email protected]

43

Journal of Environmental Studies [JES] 2012. 9: 43- 51

interaction of these two flow regimes. Fluid flow and solute/ heat-transfer numerical models that include both of these flow regimes include (Benderitter et al., 1993; Liedl and Sauter, 2000; Birk, 2000; Andre and Rajaram, 2005; Birk et al., 2004). With these distributed-parameter models, velocities are estimated from the flow simulation and then are used in the transport simulation. Additional insight into general heat-transfer theory for pipe and channel flow is described by (Gnielinski, 1976; Aravinth, 2000; Beek et al., 1999; Benim et al., 2004). As the conduits are highly influenced by the contamination of rivers (as the water of sinkholes), any information on conduit locations usually is unavailable. For cases where wells or springs have a temperature response that is influenced by conduit flow, the conduit network is globally defined. This paper presents a twodimensional numerical water flow /heat transport model that is explored as an alternative that might be useful to locate the conduit networks in the karst system of the Val d'Orléans. This model simulates the temperature response to recharge in wells and assumes that wells receive at least some of its water from a nearby conduit. The water flow will be simulated in conduit system by Navier Stokes equation, but the model does not simulate the water flow in the fractured system (in which the permeability is less than that in the conduit system). The water velocity in the fractured system will be carried out as mean velocity. The results of the model will be verified with temperatures observed in the wells. The viscosity gradient will be calculated by using K epsilon turbulent model. Characteristics of the experimental field area: The karst aquifer of the Val d’Orléans is the largest in France in terms of flow rate (10 m3/s) and provides the mean water resource of the Orléans city (Albéric and Lepiller, 1998). The Val d’Orléans is considered as a vast depression of the major bed of the Loire river, 37 km long and from 4 to 7 km wide (Fig. 1). The karst aquifer is hosted within an Oligocene carbonate lacustrine deposit occurring in the center of the Paris basin and

called the limestone of Beauce (Guillocheau et al., 2000). This latter formation display variable repartition with a significant primary porosity except for micritic facies, this porosity is increased by karstification leading to a relative high permeability (5E-10 to 2E-9 m2) at hectometric scale (Martin and Noyer, 2003). The latter is overlapped by the quaternary alluvia of the Loire river. The Loire river feeds more than 85% of the water hosted in the carbonated karstic aquifer. The estimated inflow of the Loire river in the sinkhole infiltration area of Jargeau varies from 15 to 20 m3/s and it can reach 100 m3/s during floods (Zunino, 1979; Chéry, 1983; Lepiller and Mondain, 1986). Karst networks are well known in the left bank of the Loire river. The water runs from Jargeau through the karst conduits networks towards the direction of the springs of the Loiret river, (Zunino, 1979; Chéry, 1983; Lepiller and Mondain, 1986), as shown in figure (1). The springs of Loiret river are called the Bouillon and the Abîme, they are considered as the main emergences of the water lost close to Jargeau in the Loire river (from 0.3 to 5 m3/s). The mean aquifer outflow is an underground emergence in the Loire river located around the confluence of Loire - Loiret. Previous studies showed the relation between these springs and the sinkholes points at Jargeau within the Loire river using dye tracer tests (Zunino, 1979; Chéry, 1983; Albéric and Lepiller, 1998; Lepiller, 2001; Albéric, 2008). The main karstic conduits were located according to the depressions of the piezometric surface and to the different connections identified by the tracer tests presented in figure (1).

Figure (1): Underground waters karstic circulations of the Val d’Orléans city (Albéric and Lepiller, 1998).

44

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Governing equations: Numerical simulations of fluid flow and heat transport in a karst aquifer were used to investigate the temperature distribution in the karst and by consequence to determine the karstification degree of the karst aquifer. In the present work, Navier Stokes equation is applied to simulate the water velocity in conduit system, as a result to the grand porosity in this system. A uniform velocity is taken in the fractured rock system where the porosity is highly less than that in conduit system. To determine the temperature distribution in the karst, heat transport equation is used. Due o the variation of the temperature in the karst system, the viscosity will be changed, and to calculate this variation K epsilon turbulent model is used. Navier Stokes equation for two dimension is: w

q w  q w w q w  p   2q w    w g t

(1) Heat transport equation in the karst for two dimension is:  (1  )r Cr T   w Cw T q ww CwT  2T t (2)

K epsilon turbulent model for two dimension is: w

w

   k  q w w k   2  k   G  w E t  k 

(3)

   q w  w    2  t  

(4)

  2    C1 G  C2 w k k 

To calculate the turbulent viscosity, the following equation is used:  t  C  w

k2 

…………(5)

Where:

w

is the water density, qw is water velocity vector, t is the time, p is the water pressure, g

is the acceleration gravity,  is the porosity of the karst system,  r is the rock density, C r is the specific heat of the rock, C w is the specific heat of the water, T is the water temperature,  is the heat conductivity, k is the turbulence kinetic energy,  is the dissipation rate of

turbulent kinetic energy, G is the production

 of turbulence kinetic energy,  k ,  , C1 , C 2 , C

are constants. Les valeurs des constantes sont (Leschziner et Rodi, 1983).

C  0.09 , C1=1.44, C2=1.92,   =1.3,  k =1 In the present work, the variation in the density of water and rock can be calculated from equations (6) and (7), respectively. The variation in the specific heat of water and rock can be calculated from equation (8) and (9), respectively (Somerton, 1992; Douglas and Jacob, 2004).  w (T )  1043.196 - 42.966623exp (0.006895T) (6)  r (T ) 

2650 1  (T  20)  0.5  10  4

1 C w (T )  0.0002374  8.06817  108 T  8.03671 1010 T 2

Cr (T )  1234.257 - 454.546exp (-0.0039733T)

(7) ..(8) (9)

Heat transport in the karst system of the Val d'Orléans: Karst system of the Val d'Orléans has many sinkhole points which are located on the Loire river at the city of Jargeau, and it has many spring points as shown in figure (1). In this work, the temperature is monitored at thirteen wells and one spring point located in the karst system of the Val d'Orléans. In general, water in the conduit includes sinking river water and diffuse flow (from fractured system) entering the conduit along its length. In addition to water from the conduit, a well or spring also might receive local diffuse flow that has not interacted with the conduit. For example, a well that is south of the conduit may induce flow from the conduit and also from diffuse flow within the well’s zone of influence on the north, south, and east sides of the well (Fig. 2) and consequently it can be observed a variation in the water temperature of the well. But in the most cases, it can be observed many wells in which the temperature is constant. This can be attributed to the location of the well, the variation of the water temperature in the well decrease when the well far away from the conduit and vice ve

45

Journal of Environmental Studies [JES] 2012. 9: 43- 51

21000 m Sinkhole point Spring source Fractured system

4000 m

Conduit system Well

Figure (2): Schematic diagram of a karst system

Figure (4): Water temperatures measurements in wells of Ligne, Piezometre, Moret 2, and Moret Well of Boires 1 Well of Boires 1

Well of Ligerienne Well of Ligerienne 21

23

20

22 21 20

18

Temperature (C)

Temperature (C)

19

17 16 15 14 13 12 13

18

S

14 13 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Depth (m) Well of 2 2 Well ofBoires Boires

Well of Ormeaux 21

22

20

21

19

19

18

Temperature (C)

20 18 17 16 15 14 13 12 7

8

9

10

11

12

13

14

15

16

17

18

19

17 16 15 14 13 12 8

20

10

12

14

Depth (m)

16

18

20

22

24

26

28

Depth (m)

Figure (5): Water temperatures measurements in wells of Ligerienne, Boires 1, Ormeaux, and Boires 2. Well of of Berruet 1 Well Berruet 1

Berruet 3 WellWell of ofBerruet 3 22 20

Le Berruet 4

Temperature (C)

Temperature (C)

16 14

Le Berruet 3 Le Berruet 1 Le Berruet 6

Well location

8

10

12

14

16

18

20

22

24

26

28

17 16 15 14 13 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

30

Depth (m)

Well of 4 Well ofBerruet Berruet 4

Well of Berruet 6

Well of Berruet 6

22

22

21

21

20

20

19 18 17 16 15 14

19 18 17 16 15 14 13 12

12 7

9

11

13

15

17

Depth (m)

19

21

23

25

6

27

8

10

12

14

16

18

20

22

24

Depth (m)

Figure (3): Wells location in the karst system of the Val d'Orléans

Berruet 7 7 WellWell ofofBerruet

o

22 21

Temperature (C)

In these wells, the variation reaches to 12 C, this means that these wells are close to the conduit system. But the temperature is stable in wells of Ligerienne and Ormeaux. Figure (6) shows the wells of Berruet 1 and Berruet 3 are affected by the conduit system but less than that in wells of Boires 1 and Boires 2.

18

Depth (m)

13

Le Berruet 7

19

12

6

Temperature (C)

Le Moret

18

12

Temperature (C)

la Piézométrie

Width (m)

Les Boires 2 Les Ormeaux Les Boires 1 La Ligérienne

La Ligne

E

15

21

Le Moret 2

W

16

Well of Ormeaux

20

Bouillon spring

17

23

22

Loire river

N

18

Depth (m)

Length (m)

Loiret river

19

12 8

Temperature (C)

Depending on the previous description, the temperature is monitored at thirteen wells and one spring point located in the karst system of the Val d'Orléans. Position of wells in the calculational region is illustrated in Fig. (3). The temperature measurements in wells are shown in figures (4,5 and 6). These measurements are provided in 29/06/2011 when the temperature of Loire river and the Bouillon spring were 26.5 oC and 15.6 oC, respectively. figure (4) shows that the water temperature in wells of Ligne, Piezometre, and Moret is nearly stable but in the well of Moret 2, the temperature deceases 3 oC starting from the depth of 12 m. This variation in the temperature can be attributed to the water coming from the conduit system. The variation of groundwater temperature in wells of Boires 1 and Boires 2 is greater than that in the well of Moret 2, as shown in figure (5).

20 19 18 17 16 15 14 13 12 7

9

11

13

15

17

19

21

23

Depth (m)

Figure (6): Water temperatures measurements in wells of Berruet 1, Berruet 3, Berruet 4, Berruet 6, and Berruet 7

46

Journal of Environmental Studies [JES] 2012. 9: 43- 51

and 9). The initial values of water viscosity, kinetic energy and dissipation rate of turbulent kinetic energy are obtained by the following equations: … (10)   0.077U* h … (11)   Sgq w

21000 m

470 m

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

Sinkhole points

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.8

Bouillon spring

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.10.10.10.80.10.80.80.1

Sinkhole points

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.10.10.10.80.10.80.10.10.1

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.80.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.80.10.10.10.80.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.80.10.10.10.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.10.10.10.10.10.10.10.10.80.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

4000 m

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.80.80.80.80.80.80.10.10.10.1

Where: h is the mean water depth (depth of saturated zone in the karst aquifer), S is the piezometric of the water slope, U* is the friction velocity which is equal to ghS . The piezometric of the water slope is calculated in each region in the study area according to the piezometric map provided by (Zunino, 1979). Equation (5) is used to calculate the initial value of turbulent kinetic energy. Boundary conditions of the study area are illustrated in fig (8). The finite differences technique is used to solve partial differential equations in the present numerical model. The length and width increments are 5 m. Also, the final time of the model is three months and the time step is 5 min, and the thermal conductivity is 1.3 J/sec.m. oC.  u ,v,T ,K ,E   0 y

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

Figure (7): Porosity field and conduit system pathway suggested in the karst system of the Val d'Orléans (Lepiller, 2001; Albéric, 2008).

Loiret river

 u, v, T, K, E   0 x W

P

P

h2

N

Initial conditions constitute values of velocity, temperatures, density and specific heat of the water and rock, water viscosity, turbulent kinetic energy and dissipation rate of turbulent kinetic energy. Concerning the velocity, it is carried out the velocity value measured during the summer season. Then the water velocity inlet to the conduit system is 75 m/hr, this velocity is varied in the conduit system according to Navier Stokes equation, but it is constant in the fractured rock matrix. The velocity inlet to the fractured rock system is a half of previous velocity. Initially the temperature in the study area is that measured in the Bouillon spring on 29 Jun 2011, it was 15.6 oC, expect on the sinkhole points on the Loire river in which the initial water temperature is that measured on Loire river, it was 26.5 oC on 292011. The initial values for the density and specific heat of the water and rock are calculated from equations (6, 7, 8,

Loire river

E

h1 h2 s L

L

S

h1

P: Sinkhole points on Loire river S: Water slope h: Water level

P

Initial values

Mathematical modeling: The study area in the karst aquifer of the Val d'Orléans starts from Jargeau (where the sinkholes on the Loire river are existed) to the last spring point on the Loiret river. The study area is considered as a rectangular area with the length 21000 m and the width 4000m. Two dimension numerical model is carried out to simulate the water temperature distribution in the karst system of the Val d'Orléans. The porosity in conduit system and in the fracture rock system is 90% and 10% respectively. The pathway of the conduit system suggested in the present research is shown in figure (7). This pathway is suggested according to (Lepiller, 2001; Albéric, 2008).

 u ,v,T ,K ,E   0 y

Figure (8): Boundary conditions of the two dimension numerical model

Results and discussions: Many parameters influence on the water temperature distribution in a karst aquifer, as the depth of saturated zone, water velocity, viscosity and density effects, porosity, density and specific heat of the rock. Therefore, it was important to study the effect of the variations of these parameters separately to describe the rate and pattern of heat transport and prioritize their influences. Neglecting the density difference between the temperature of Loire river and groundwater temperature is carried out to study the effect of density on the temperature distribution, and keeping a constant density 47

Journal of Environmental Studies [JES] 2012. 9: 43- 51

during a time period of study equal to initial groundwater density. A comparison between isotherms with and without density effect is shown in fig (9). It can be clearly observed, all isotherms are not influenced by the change of water density. This due to the small temperature difference between Loire river temperature (26.5 oC) and groundwater temperature (15.6 oC). To investigate the effect of the variation of water slope along the study reach which is coming from the piezometric map, a constant water slope along the study reach is taken into account. From fig (10), it can be observed that the water slope parameter influences on the behavior of temperature distribution. When the water slope is varied, the distribution of temperature levels advances more in transverse direction as that when the water slope is constant. Length (m)

a

18000

20000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

2000 2500 3000

°C Width (m)

1500

3500 4000

Length (m)

b

18000

20000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

Width (m)

1500 2000 2500 3000 3500 4000

a) When the water density is varied as a function of temperature b) When the water density is constant along the study reach

Figure (9): Effect of water density on the behavior of groundwater temperature distribution.

The water velocity in sinkhole points on Loire river has a great effect on the behavior of temperature distribution along the study reach. As shown in fig (11), all isotherms are advanced longitudinally and transversely with any increase in the water velocity values. This phenomenon can be attributed to the effect of advective term in the heat transport equation, which is responsible for the advance of isotherm along the study reach. Fig (12) shows the effect of water depth in the saturated zone. According to Albéric and Lepiller (1998). the mean depth of saturated zone for the karst system of the Val d'Orléans is 25 m. Any decrease in the depth of saturated zone causes a retardation of the temperature isotherms along the study reach, as shown in fig (12). This can be attributed to the effect of the depth of saturated zone on the friction velocity and water viscosity and by consequence on the temperature distribution. In order to show the effect of the variation of the specific heat and the density of the rock on the behavior of the temperature distribution, equations (7) and (9) are neglected. This means that the specific heat and the density of the rock are constant in the calculations. In the case of the specific heat and the density of the rock are constant, all isotherms are retarded in the transverse direction, but they are advanced in the longitudinal direction, as shown in fig (13). This may be due to the effect of the specific heat and the density of the rock on the domain of fractured system in the karst aquifers only.

Length (m)

a

20000

18000

16000

14000

12000

10000

Length (m) 8000

6000

4000

2000

a

0

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500

500

1000

2500 3000

b

1500 2000 2500 3000

3500

3500

4000

4000

Length (m) 20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

1000

b

0

°C Width (m)

2000

°C Width (m)

1500

Length (m) 20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500

500

1000

1500

2000

2000

2500

2500

3000

Width (m)

1500

Width (m)

1000

3500

3000

4000

3500 4000

a) When the water slope is varied along the study reach b) When the water slope is constant along the study reach

Figure (10): Effect of water slope on the behavior of groundwater temperature distribution.

a) When the water velocity is 75 m/hr b) When the water velocity is 144 m/hr

Figure (11): Effect of water velocity on the behavior of groundwater temperature distribution.

48

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Length (m)

a

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

°C Width (m)

1500 2000 2500 3000 3500 4000

Length (m)

b

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 500 1000 1000

Width (m)

1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000

a) When the depth of saturated zone is 25 m b) When the depth of saturated zone is 5 m

Figure (12): Effect of the depth of saturated zone on the behavior of groundwater temperature distribution. Length (m)

a

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

2000 2500 3000

°C Width (m)

1500

3500 4000

Length (m)

b

20000

18000

16000

14000

12000

10000

8000

6000

4000

Measured Calculated % temperatur temperatur Erro e e r 15.1 15.7 3.9 Berruet 1 16.2 16 1.2 Berruet 3 13.3 15.1 13.5 Berruet 4 17.3 16 7.5 Berruet 6 17.6 17.8 1.1 Moret 22.1 20.1 9 Boires 1 14.4 15.1 4.8 Ligne 12.9 15.2 17.8 Piezometri 17.3 17.1 1.1 Moret 2 eBoires 2 18.8 18.5 1.5 20.5 20.5 0 Ligerienne Bouillon 15.6 15.1 3.2 spring (1): Comparison between measured and Table calculated temperatures in wells. Well

2000

0

500 1000

2000 2500

Width (m)

1500

3000 3500 4000

a) When the density and specific heat of the rock is varied b) When the density and specific heat of the rock is constant (density= 2649.13 kg/m3, specific heat= 825.1 J/kg.k)

Figure (13): Effect of the density and specific heat of the rock on the behavior of groundwater temperature distribution

In order to verify the accuracy of the present numerical model, a comparison between measured and calculated temperatures in wells is occurred. The best results are obtained when the water velocity in sinkhole points is 80 m/hr, the porosity is 10% in the fractured system and 80% in the conduit system and the depth of saturated zone is 25 m. Table (1) displays this comparison with the percentage error for each well. It can be clearly observed that the results of the model are very good compared with the measured temperature. The percentage error of the model ranges from zero to 17.8 percent.

Conclusions In karst aquifers, temperature signals play an additional important role since they carry information about internal aquifer structures. A two dimension heat transport numerical model was developed to simulate the temperature distribution in a karst aquifers composed conduits and fractured systems. The model was based on the Navier Stokes equation to simulate the groundwater velocity in the conduit system where the porosity tends to one, heat transport equation to simulate the temperature distribution in a karst aquifer, and finally k- turbulent model to simulate the turbulent viscosity. The model was applied to the karst system of the Val d'Orléans. This system is very developed in which there are many sinkhole points on the Loire river and many spring point along the Loiret river. Temperatures are measured in thirteen wells with different depth in 29 Jun2011 when the temperature of Loire river and the Bouillon spring were 26.5 oC and 15.6 oC. Calculated results have shown that the model is not sensitive to the variation of water density, but it is sensitive to the variation of specific heat and density of the rock especially in the fractured system. Also, the model is very sensitive to any variation on the water velocity in sinkhole points, and any variation in the depth of saturated zone. The influence of the variation of the groundwater slope along the study reach is small compared 49

Journal of Environmental Studies [JES] 2012. 9: 43- 51

with other parameters. The best results are occured when the water velocity in sinkhole points is 80 m/hr, the porosity is 10% in the fractured system and 80% in the conduit system and the depth of saturated zone is 25 m. Finally, it was observed that the comparison between measured and calculated temperatures in wells is very good. References Albéric, P. and Lepiller, M. (1998). Oxydation de la matière organique dans un système hydrologique karstique alimenté les pertes fluviales (Loiret, France). Water Resources 32, 2051– 2064 Albéric, P. (2008). Les trios pertesémergences (ou inversacs) du domaine de la source (Loiret). Colloque national d’Hydrogéologie. May 16 and 17, Orléans –France Andre, B.J., Rajaram, H. (2005). Dissolution of limestone fractures by cooling waters: Early development of hypogene karst systems. Water Resources Research 41 (1), 1–16. Andrieux, C. (1978). The experiences form the temperature in the karst (in French). Colloque de Tarbes, Le karst: son originalité physique, son importance économique. Association des Géologues du SudOuest (AGSO), Orleans, France, 48–63 Aravinth, S. (2000). Prediction of heat and mass transfer for full developed turbulent fluid flow through tubes. International Journal of Heat and Mass Transfer 43, 1399–1408. Beek, W.J., Muttzall, M.K., van Heuven, J.W. (1999). Transport Phenomena, second edition. John Wiley & Sons Ltd., West Sussex, England. 329 p. Benderitter, Y., Roy, B., Tabbagh, A. (1993). Flow characterization through heat transfer evidence in a carbonate fractured medium: first approach. Water Resources Research 29 (11), 3741–3747. Benim, A.C., Cagan, M., Gunes, D. (2004). Computation analysis of transient heat transfer in turbulent pipe flow.

International Journal of Thermal Sciences 43, 725–732. Birk, S. (2002). Characterization of Karst Systems by Simulating Aquifer Genesis and Spring Responses: Model Development and Application to Gypsum Karst. Tübinger Geowissenschaftliche Arbeiten, vol. 60. Reihe C. Institut und Museum für Geologie und Paläontologie der Universität Tübingen, Tübingen, Germany. . Birk, S., Liedl, R., Sauter, M. )2004(. Identification of localized recharge and conduit flow by combined analysis of hydraulic and physico– chemical spring responses (Urenbrunnen, SW-Germany). Journal of Hydrology 286: 179–193 Chery, J.L. (1983). Etude hydro chimique d’un aquifère karstique alimenté par perte de cours d’eau (la Loire). Thèse 3e cycle, Orléans Crowther, J., Pitty, A.F. (1982). Water temperature variability as an indicator of shallow-depth groundwater behaviour in limestone areas in west Malaysia. Ournal of Hydrology 57, 137–146 Dogwiler, T., Wicks, C.M., Jenzen, E. (2007). An assessment of the applicability of the heat pulse method toward the determination of infiltration rates in karst losing stream reaches. Journal of Cave and Karst Studies 69 (2), 237– 242. Genthon, P., Bataille, A., Fromant, A., D’Hulst, D., Bourges, F. (2005). Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at la Peyrere cave (Ariege, France). Journal of Hydrology 311 (1–4), 157–171. Gnielinski, V. (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering 16 (2), 359– 368.

50

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friedenberg, R., Garcia, J., Gaulier, J., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O., Grandjean, G. (2000). Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints Geodin. Acta 133(4), 189– 246 Lastennet, R. (1994). Role of unsaturated zone in the functioning of karst aquifers: approach for the physico–chemical and isotopic study of input and output (springs) of Ventoux massif (Vaucluse) (in French). PhD Thesis, Univ. Avignon and Pays de Vaucluse, France, 239 pp Lepiller, M. (2001). Traçages appliqués à la dynamique des aquifères karstiques. Géologue (129), 79–84 Lepiller, M. and Mondain, P.H. (1986). Les traçages artificiels en hydrogéologie karstique. Hydrogéol 1, 33–52 Liedl, R., Sauter, M. (2000). Characterization of karst groundwater processes, using models of aquifer genesis and heat transport. Grundwasser 5 (1), 9–16. Martin, J.B., Dean, R.W. (1999). Temperature as a natural tracer of short residence

times for groundwater in karst aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst Modeling. Spec. Publ. 5, Karst Waters Institute, Leesburg, VA, 236–242 Martin, J.C. and Noyer, M.L. (2003). Caractérisation du risque d’inondation par remontée de nappe sur le Val d’Orléans. Etude hydrogéologie, BRGM O’Driscoll, M.A., DeWalle, D.R (2006). Stream–air temperature relations to classify stream–ground water interactions in a karst setting, central Pennsylvania, USA. Journal of Hydrology 329 (1–2), 140–153. Roy, B., Benderitter, Y. (1986). Natural thermal transfer in a superficial fissured carbonate system (in French). Bull Soc Géol France 2 (4), 661–666 Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, G.C. (1992). Developments of Turbulence Models for Shear Flows by a Double Expansion Technique, Physics of Fluids A, 4 (7), 1510–1520 Zunino, (1979). Contribution à l’étude hydrogéologique du Val d’Orléans. Ph.D. thesis, Orleans University

‫الملخص العزبى‬

)‫نمذجت نقل الحزارة في طبقت المياه الجوفيت الكارستيت لمدينت اورليانز (فزنسا‬ :‫الخالصت‬ ‫ ْذف ْزا انؼًم‬.‫ دسخخ انحشاسح رهؼت دٔس يٓى خصٕصب نًؼشفخ يؼهٕيبد حٕل رشكيت ْزِ األٔسبط‬،‫في األٔسبط انكبسسزيخ‬ ‫ اسزخذيذ نحسبة انسشع في‬Navier Stokes ‫ يؼبدنخ‬.‫ْٕ رطٕيش ًَٕرج سيبضي ثُبئي األثؼبد االَزشبس انحشاسح في انكبسسذ‬ .‫ ٔرى اخز قيًخ يؼيُخ ٔسطيخ نهسشػخ في انٕسط انًزشقق‬،)conduit( ‫انٕسط انكبسسزي انزي ركٌٕ فيّ انُفبريخ رًيم نقيًخ ٔاحذ‬ ‫ نحسبة انزغيش في قيى‬k- ‫ ٔرى اسزخذاو يٕديم‬،‫يؼبدنخ اَزقبل انحشاسح اسزخذيذ إليدبد رٕصيغ دسخبد انحشاسح في انكبسسذ‬ ‫ حيث رى قيبط دسخبد انحشاسح‬،)‫ انًُٕرج انشيبضي رى رطجيقخ في انُظبو انكبسسزي في يذيُخ ٔسنيٌٕ (فشَسب‬.‫انهضٔخخ انذايًُيكيخ‬ ‫ انُزبئح ثيُذ أٌ انًُٕرج ال يزأثش ثأي رغيش في انكثبفخ ٔنكُّ حسبط ألي رغيش في‬.29 Jun 2011 ‫في ثالثيٍ ثئش يبئي ثزبسيخ‬ ‫ كزنك أٌ انًُٕرج حسبط خذا ألي رغيش في قيًخ انسشع انذاخهخ نهُظبو‬.‫كثبفخ انصخٕس انكبسسزيخ خصٕصب في انٕسط انًزشقق‬ ‫ إٌ انًقبسَخ ثيٍ قيى دسخبد انحشاسح انًقبسخ ٔانًحسٕثخ ثيُذ أٌ انًُٕرج‬.‫انكبسسزي ٔ أي رغيش في قيًخ ػًق انًُطقخ انًشجؼخ‬ .‫خيذ خذا‬

51

Journal of Environmental Studies [JES] 2012. 9: 53-63

Original Paper

Characteristics of the Hydraulic Jump in Trapezoidal Channel Section Sadiq Salman Muhsun Environmental Engineering Dept., College of Eng. Al-Mustansiriya University, Baghdad, Iraq. Rec. 17 Nov, 2011 Accpt. 12 Dec, 2011

Abstract In this study, characteristics of the hydraulic jump in trapezoidal channel sections were analyzed and a general equation represents the solution of the hydraulic jump in the channels of arbitrary cross-sections (rectangular, triangular & trapezoidal) was driven depending on the momentum principle. The solution of the models was provided using Newton Raphson method. Consequently, Tables and charts of family curves of the conjugate depths ratio (r=y2/y1) have been prepared, for a very wide range values of Froude numbers and section ratios (k=b/zy). For each type of cross sections, the efficiency of the energy dissipation of the hydraulic jump was also analyzed and compared with each others. The relationship between the initial and sequent Froude numbers (FD1 and FD2) has been indicated for various values of k1=b/zy1. Depending on the results of conjugate depths ratio r = y2 / y1, the length of the hydraulic jump were estimated for a very wide range of k1=b/zy1, using two suggested models. It was found that the channel shape has insignificant effect on the efficiency of the energy dissipation of the hydraulic jump, although the triangular section tends to be more efficient than the others by about 10 percent in higher FD1. When (FD1 > 6), the velocity head after the jump could be neglected. When the section ratio k1 is approximately 3, the length ratio of the hydraulic jump (Lj / y2) reaches to a maximum value independent on the value of FD1. In all cases, it was shown that the comparison of the theoretical results with other experimental data indicate a very good agreement Key words: hydraulic jump - sequent depth ratio - jump in trapezoidal and triangular channels - Conjugate Depth, Energy Dissipaters Introduction The hydraulic jump is a natural phenomenon which may be defined as a sudden and turbulent passage of water from supercritical flow to subcritical state, (Modi, 2004). The abrupt change in flow condition is accompanied by considerable turbulence and energy losses. The hydraulic jump commonly occurs with natural flow conditions and with proper design can be an effective means of dissipating energy at hydraulic structures. Expressions for computing the before and after jump depth ratio (conjugate depths) and the length of jump are needed to design energy dissipaters that induce a hydraulic jump. For this reason, the hydraulic jump is often employed to dissipate energy and control erosion at storm water management structures.

Hydraulic jumps are commonly experienced in rivers, canals, industrial applications and manufacturing processes. (Montes, 1979; Chow, 1994; Treske, 1994; Reinaur and Hager, 1995; Chanson and Montes, 1995; Chanson, 2007 and Murzyn, 2007; studied the undular hydraulic jump, described its characteristics where the values of the Froude number in which the jump is no longer undular was calculated neglecting the effect of the channel width. The jump height, however, may be predicted quite accurately using momentum theory alone Hotchkiss et al., (2003). Typically, the discharge and upstream depth are already known, and what remains to be determined is the downstream “sequent depth”, Chadwick et al., (2004). The purpose of this study, is to develop a general solution of the sequent depth problem in trapezoidal channel section * Corresponding author: Dr. Sadiq Salman [email protected]

53

Journal of Environmental Studies [JES] 2012. 9: 53-63

(rectangular, triangular & trapezoidal), based on the momentum principle law. Such a solution will be useful to analyze the characteristics flow of a turbulent hydraulic jump and to determine the length of the hydraulic jump as well as the efficiency dissipation. Momentum Principle Because of energy losses, the size and location of the hydraulic jump cannot be predicted using the energy equation. However, because momentum is conserved across hydraulic jumps under the assumptions of this study, momentum theory

could be applied to determine the jump size and location Hotchkiss et al., (2003). Figure 1 indicates the control volume used and the forces involved. Distribution of pressure in the upstream and downstream sections is assumed to be hydrostatic. So, applying the momentum equation in a frictionless channel considering the above assumptions, leads the momentum equation in the term of the specific force to be: Q2 Q2 + Z C 1 A1 = + Z C 2 A2 = F gA 1 gA 2

F1 = F

Or

(1) (2)

2

2

V1 /2g

jump

E2

E1

2

V2 /2g y2

y1

Fig.1: Hydraulic jump control volume .

Where: F: Specific force Q: Flow rate g: Gravity acceleration A1 & A2: Cross-sectional area before and after the jump, respectively. ZC1 & ZC2: Distances of the centroids sections from the free surface area before and after the jump, respectively. Consider that:

A = by + zy

T = b + 2 zy F

r

=

V gy

F

D

=

V gD

2

(3) (4) (5) (6)

Where: T: Top width of the sectional area. b: Bottom width of the sectional area. z: side slope V: Mean velocity. Fr: Froude number in term of the depth of flow y. FD: Froude number in term of the hydraulic depth D = A/T.

Now, define a dimensionless factor k to be a section ratio such that:

k=

b

(7)

z y

Consequently, Eqs. (3 & 4) could be rewritten as: (8) A = zy 2 ( k + 1)

T = zy(k + 2)

(9)

Also, it could be seen that: k+2 Fr k +1

FD =

(10)

According to the section ratio k, the shape of the channel section will take the following form: when k = 0, the section is a triangular shape. and, when k = ∞, the section is a rectangular shape. While for 0 < k < ∞, the section is a trapezoidal shape. By taking the moments about the top axis of a trapezoidal channel section, the centroid Position Zc, could be determined as:

Z

C

=

1  1  k  +  2  3  k + 1

y

(11)

54

Journal of Environmental Studies [JES] 2012. 9: 53-63

Substituting the values of various terms of Eq. 2, considering Eqs. (7 to 11) and simplifying, the specific force before the jump F1 will take the following form:  1 4 2  F (k + 3 k + 2 ) +  k + k +  (12) 2

 F1 = Z y  1   

2

2

r

3

2 (k + 2 )

3     1

3

By the same way, it could be seen that:   Fr 3 F2 = Z y  2   

2

(k

2

1 + 3k + 2 +  k 2 (k + 2 )

)

2

4 2  + k +  3 3    2

(13)

Where the subscripts 1 & 2, refer to the corresponding variable of section 1 and 2 respectively. It is necessary now to represent the variables of Eq.13 in term of the same variables of the section 1, considering that:

k2 =

b = r −1 k 1 zy 2

(14)

Where: r: Conjugate depths ratio of the initial and sequent depths, (y2 / y1) . Also, it could be seen that: A1

2

A2

2

Fr

= r

2

= r

2

or F r

2

2

 k1 + 1     k1 + r 

−2

−1

A1

2

A2

2

(15)

2

Fr

 k +1  = r − 3  1  k1 + r 

2

(16 a)

1

2

Fr

2

(16 b)

1

So, Eq.13 will take the following form:  −2 r Fr 3  F2 = Z y 2   

2

 k +1    k+r

2

(r

−2

k

2

1 + 3 r −1 k + 2 +  r −1 k 2 (k + 2 r )

Satisfy the condition of Eq.2, taking in the count Eqs. (10, 12, & 17), the following

)

2

+

4 2  k + r 3 3     1

equation is produced after some tedious mathematical steps:

3  2   5k  3 3k  2 (k +1)  2 (k +1) 2 k   (k +1) r −3FD r + +1 r + +1 (k +1) r + +k −3FD =0 2   (k +2) (k +2) 2  2    4

Equation 18 represents the relationship of the Conjugate depths ratio of a hydraulic jump in a horizontal trapezoidal channel. This equation could be simplified by considering that:  5k  B =  + 1  2 

(19 a)

 3k  C = + 1  (k + 1)  2 

(20 a)

 k2   2 ( k + 1)   (k + 1) D =  +  k − 3FD  2   (k + 2)   

E = −3FD

2

( k + 1) 3 (k + 2)

(21 a)

(22 a)

Where k is k1 and FD is FD1. So, Eq. 18 will reduce to the following form:

r4 + B r3 +C r2 + D r + E = 0

(23 a)

(17)

(18)

Conjugate Depths - Initial and Sequent Depths: For a given values of FD1 and k1, the solution of Eqs. (18 or 23a) represents the conjugate depths ratio r = y2/y1. As it is known, this Equation has four roots. The signs of the second and the third term of Eq.23a (B & C) are always positive, while the fifth term E, is always negative. The forth term D, may have a positive or a negative sign depending on the values of FD1 and k1. According to Decard theory, equation 23 has always a unique positive root whatever the sign of the term D, and that is the required solution, (Hoffman, 2001). The researcher found that Newton–Raphson method is a very good technique to provide the results. Also, fixed-point method may be a useful alternative technique to determine the mathematical solution for the depths upstream and downstream of the hydraulic jump, (Vatankhah, 2008). Fig.2 represents a dimensionless chart for the conjugate depths 55

Journal of Environmental Studies [JES] 2012. 201 9: 53-63

yi  2 = 0 . 5  1 + 8 F rj yj 

 − 1 

(

A = B = 1 + 2. 5 k 2 + 1. 5 k 2

2

2

)

C = 1 + k 2 − 3k 2η 2 − 3k 2 η 2

(

2

D = − 3η

E = − 3η

k=0 k=0.5 k=1 k=2 k=3 k=4 k=6 k=8 k=10 k=15 k=20 k=30 k=40 k=60 k=100 Rect.

25

20

15

10

5

0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

FD 1=V/(gD)0.5

Fig.2: Family curves for the conjugate depths ratio r, corresponding to the upstream Froude number FD1 and k1.

(24)

In many practical and designed cases the problem is to find the initial depth y1 for a given control depth y2 in the downstream of the jump. In this case the following model (Eq.23 b), will be used to provide the conjugate ratio r,, which depends on the relationship between Eqs. (10 , 14 & 16) and Eq.18. The solution of this model was achieved by trail and error method with helpful of the computer. However, all the results were represented in Fig.3 and Table 2.

(

30

r = y2/y1

ratio r for various upstream Froude numbers FD1, corresponding to a very wide range of a section ratio k1, from zero (i.e., triangular shape) to infinity (i.e., rectangular shape). As it is shown, the conjugate depths ratio has a little significant change at high section ratios for the same Froude numbers. ers. Also, for all values of k1, when FD1 < 2, the conjugate depths ratio r is near the corresponding value of the rectangular section. In case of the rectangular section (where k1 = ∞), the curve indicates a completed agreement with the results of the standard ndard form of the hydraulic jump usually used in a rectangular channel section, Eq.24. For more details, notice Table 1.

− 6 k 2η

2

(19 b)

)

(20 b)

)

(21 b)

2

Fig.3: Family curves for the conjugate depths ratio r, corresponding to the Downstream Froude number FD2 and k2.

It could be seen that, when FD2 is more than 0.5 the conjugate depth ratio (r =y2/y 1) has the same value for any section ratio k2 . For this reason the arrangement values of FD2 in Table (2) was concentrated on the low values of FD2. Fig (4) shows the relationship between the upstream Froude number FD1 and the corresponding FD2 for varies values of k1. The Figure indicates that when FD1 is greater than 20, the minimum value of FD2 approaches to 0.1 for the triangular section and 0.15 for the rectangular section. Indicating that the shape of the section has a little effect on the values of FD2 when FD1 is greater than 2 and has insignificant effect when the value of FD1 is less than 2.

(22 b)

1.0 0.9 k1=0

2

 k +1   k +1 η = Fr =  2  r5 2  FD22  rk2 +1  k2 + 2

0.8

2 1

(22 C)

k1=5 k1=10

0.7

k1=100 0.6 FD2

2

Rect. k=∞

0.5 0.4 0.3

Therefore,

Eq.

18

will

be:

0.2 0.1

4

3

2

A r + B r +C r + D r + E = 0

0.0

(23 b)

0

2

4

6

8

10

12

14

16

18

20

FD1

Fig.4: Relationship between FD1 and FD2 for varies values of k1.

56

Journal of Environmental Studies [JES] 2012. 9: 53-63

F

k1=0

k1=.5

k1=1

k1=2

k1=3

k1=4

k1=5

k1=6

k1=7

k1=8

k1=9

k1=10

k1=12

k1=15

k1=20

k1=30

k1=40

k1=60

k1= 100

Rect. k=∞

Rect. Eq.24

1.000 1.702 2.284 2.799 3.271 3.710 4.125 4.519 4.897 5.261 5.952 6.606 7.228 7.825 8.399

1.000 1.842 2.545 3.170 3.741 4.275 4.778 5.257 5.716 6.157 6.998 7.792 8.549 9.274 9.972

1.000 1.935 2.726 3.432 4.079 4.684 5.255 5.800 6.321 6.823 7.780 8.683 9.545 10.370 11.165

1.000 2.051 2.963 3.785 4.543 5.254 5.927 6.569 7.186 7.780 8.912 9.983 11.004 11.984 12.928

1.000 2.120 3.112 4.015 4.853 5.641 6.389 7.104 7.791 8.454 9.719 10.917 12.061 13.158 14.216

1.000 2.165 3.215 4.179 5.078 5.926 6.732 7.505 8.248 8.966 10.338 11.639 12.882 14.076 15.227

1.000 2.197 3.290 4.301 5.249 6.145 7.000 7.820 8.610 9.374 10.835 12.222 13.549 14.824 16.054

1.000 2.220 3.348 4.397 5.384 6.321 7.216 8.076 8.905 9.708 11.246 12.708 14.106 15.452 16.750

1.000 2.238 3.393 4.473 5.494 6.464 7.394 8.288 9.152 9.989 11.593 13.120 14.583 15.990 17.350

1.000 2.253 3.430 4.536 5.585 6.585 7.544 8.468 9.362 10.229 11.892 13.477 14.997 16.460 17.874

1.000 2.264 3.460 4.589 5.662 6.687 7.673 8.623 9.543 10.437 12.153 13.790 15.361 16.874 18.338

1.000 2.274 3.485 4.633 5.727 6.775 7.784 8.758 9.702 10.619 12.383 14.068 15.685 17.244 18.752

1.000 2.289 3.525 4.705 5.834 6.920 7.968 8.982 9.967 10.925 12.772 14.539 16.238 17.878 19.466

1.000 2.304 3.568 4.783 5.952 7.081 8.175 9.237 10.271 11.279 13.227 15.095 16.895 18.636 20.325

1.000 2.320 3.614 4.868 6.084 7.264 8.413 9.533 10.627 11.696 13.770 15.768 17.699 19.571 21.391

1.000 2.337 3.663 4.962 6.231 7.473 8.689 9.881 11.051 12.199 14.439 16.610 18.719 20.772 22.775

1.000 2.346 3.689 5.012 6.312 7.589 8.845 10.081 11.297 12.495 14.839 17.122 19.347 21.522 23.649

1.000 2.354 3.716 5.065 6.398 7.715 9.016 10.301 11.572 12.828 15.299 17.718 20.091 22.419 24.705

1.000 2.362 3.738 5.109 6.471 7.823 9.165 10.496 11.817 13.128 15.721 18.276 20.797 23.283 25.738

1.000 2.372 3.772 5.179 6.589 8.000 9.412 10.825 12.238 13.651 16.478 19.305 22.133 24.961 27.789

1.000 2.372 3.772 5.179 6.589 8.000 9.412 10.825 12.238 13.651 16.478 19.305 22.133 24.961 27.789

D1

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Table. 1. Conjugate depths ratio of a hydraulic jump in trapezoidal channel sections for a given y1 with varies k1.

F D2

k2 = 0

k2 = 0.05

k2 = 0.075

k2 = 0.1

k2 = 0.15

k2 = 0.2

k2 = 0.25

k2 = 0.3

k2 = 0.35

k2 = 0.4

k2 = 0.45

k2 = 0.5

k2 = 0.55

k2 = 0.6

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1

8.219 5.518 4.176 3.375 2.843 2.466 2.183 1.964 1.789 1.646 1.527 1.340 1.199 1.089 1.000

9.786 6.158 4.511 3.575 2.974 2.555 2.247 2.011 1.824 1.672 1.547 1.351 1.205 1.091 1.000

10.619 6.486 4.679 3.675 3.038 2.599 2.278 2.033 1.841 1.685 1.556 1.356 1.207 1.092 1.000

11.472 6.818 4.848 3.774 3.102 2.642 2.308 2.055 1.857 1.697 1.565 1.361 1.210 1.093 1.000

13.207 7.485 5.184 3.970 3.226 2.726 2.368 2.099 1.889 1.721 1.583 1.371 1.215 1.095 1.000

14.932 8.145 5.514 4.161 3.347 2.808 2.425 2.140 1.919 1.744 1.600 1.381 1.220 1.097 1.000

16.608 8.789 5.835 4.346 3.464 2.886 2.480 2.179 1.948 1.765 1.617 1.390 1.225 1.099 1.000

18.212 9.409 6.144 4.524 3.576 2.961 2.532 2.217 1.976 1.786 1.632 1.398 1.229 1.101 1.000

19.732 10.003 6.441 4.695 3.684 3.033 2.583 2.253 2.002 1.805 1.647 1.407 1.233 1.103 1.000

21.164 10.568 6.725 4.858 3.787 3.102 2.630 2.288 2.028 1.824 1.661 1.414 1.237 1.104 1.000

22.507 11.103 6.994 5.014 3.885 3.167 2.676 2.320 2.052 1.842 1.674 1.422 1.241 1.106 1.000

23.766 11.608 7.250 5.162 3.978 3.230 2.719 2.351 2.074 1.859 1.687 1.429 1.245 1.107 1.000

24.943 12.083 7.492 5.302 4.067 3.289 2.761 2.381 2.096 1.875 1.699 1.435 1.248 1.108 1.000

26.045 12.531 7.721 5.435 4.151 3.346 2.800 2.409 2.117 1.890 1.710 1.442 1.251 1.110 1.000

Table. 2. Conjugate depths ratio of a hydraulic jump in trapezoidal channel sections for a given y2 with varies k2.

57

Journal of Environmental Studies [JES] 2012. 9: 53-63

F D2

k2 = 0.7

k2 = 0.8

k2 = 0.9

k2 = 1

k2 = 1.25

k2 = 1.5

k2 = 1.75

k2 = 2

k2 = 2.5

k2 = 3

k2 = 3.5

k2 = 4

K2 = ∞ Rect.

Eq.24

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1

28.041 13.350 8.142 5.681 4.307 3.450 2.873 2.462 2.155 1.919 1.731 1.453 1.257 1.112 1.000

29.793 14.074 8.518 5.902 4.447 3.545 2.939 2.509 2.190 1.945 1.751 1.464 1.263 1.114 1.000

31.336 14.718 8.854 6.100 4.574 3.630 2.999 2.552 2.222 1.968 1.768 1.474 1.268 1.116 1.000

32.702 15.290 9.154 6.278 4.688 3.707 3.053 2.591 2.250 1.989 1.784 1.483 1.273 1.118 1.000

35.499 16.472 9.778 6.651 4.929 3.870 3.168 2.675 2.312 2.035 1.818 1.502 1.282 1.122 1.000

37.637 17.382 10.264 6.943 5.118 4.000 3.260 2.741 2.361 2.072 1.846 1.517 1.290 1.125 1.000

39.311 18.098 10.648 7.176 5.270 4.104 3.334 2.795 2.401 2.102 1.869 1.530 1.297 1.128 1.000

40.649 18.673 10.958 7.364 5.394 4.190 3.395 2.840 2.434 2.127 1.888 1.540 1.303 1.130 1.000

42.638 19.532 11.423 7.649 5.581 4.319 3.488 2.909 2.485 2.166 1.917 1.557 1.311 1.134 1.000

44.031 20.136 11.751 7.851 5.715 4.413 3.556 2.958 2.523 2.194 1.938 1.569 1.318 1.136 1.000

45.053 20.580 11.994 8.001 5.815 4.482 3.606 2.996 2.551 2.215 1.955 1.579 1.323 1.138 1.000

45.830 20.919 12.179 8.115 5.891 4.536 3.645 3.025 2.573 2.232 1.967 1.586 1.327 1.140 1.000

50.984 23.181 13.431 8.899 6.421 4.906 3.922 3.234 2.732 2.355 2.062 1.642 1.357 1.153 1.000

50.981 23.181 13.431 8.899 6.421 4.912 3.922 3.233 2.732 2.355 2.062 1.642 1.357 1.153 1.000

Table. 2. Continued

Jump Characteristics The characteristics of the hydraulic jump in horizontal trapezoidal channel sections represented by some of terminologies will be discussed below. Energy Dissipation Efficiency Hydraulic jumps have been widely used for energy dissipation in hydraulic constructions. Many researchers have paid their attention to them for a long time, (Hashmi, 2003) & (Chaudhry, 2008). The hydraulic jump naturally dissipates energy through turbulence, which can be highly erosive if proper channel protection is not installed, (Hager, 1992). It is therefore preferable, when a hydraulic jump is expected, to control the size and location of the jump in order to localize energy dissipation and erosion, (Stahl and Hager, 1999). The energy loss due to the hydraulic jump is equal to:

∆E = E1 − E2

(25)

With E

=

y +

V 2 2 g

(26)

Where: ∆E: Energy loss due to the jump. E1: Specific energy before the jump. E2: Specific energy after the jump. The ratio of (E2 / E1), represents the efficiency of the jump, (Ef), so: E Ef = 2 E1

Therefore, the relative losses is equal to:

(27)

E ∆E =1− 2 E1 E1

(28)

The difference between the conjugate depths is the height of the jump hj, and the ratio hj/E1, represents the relative height: hj

y2 y (29) − 1 E1 E1 E1 Where: y1/E1: Relative initial depth. y2/E1: Relative sequent depth. It is important to express all the above ratios in term of dimensionless functions of FD1. Depending on Eq.26 and using Eqs.(6 & 10), the relative initial depth could be expressed as: =

y1 2 (k + 2 ) 2 = = E 1 2 (k + 2 ) + (k + 1) F D 1 2 2 + Fr 1

(30)

So, the relative sequent depth will be: y2 y (31) = 1 r E1 E1 Applying Eq.26 at the downstream of the jump, considering Eqs. (14 to 16), results: E2 (k + 1 )3 2 (32) = r + F D1 2 2 y1 2 r (k + 2 )(k + r ) Consequently, from Eqs. (30 & 32), the efficiency will take the following form:   E2 2(k + 2)) (k +1)3 2 = xr + 2 FD1  2 E1 2(k + 2)) + (k +1) FD1  2r (k + 2)(k + r)2  

(33)

It should be remembered that, the value of r in the above equations, represents the solution of Eq.23a corresponding to the values of FD1 and k1. Since the efficiency and the other relative's definitions become 58

Journal of Environmental Studies [JES] 2012. 9: 53-63

functions of FD1, plotting them against Froude number produces set of chrematistic

curves for various values of k1, see Fig.5.

1.0

Rectangular channel

0.9

E2/E1

k= ∞

0.8

y2/E1

∆E/E1

0.7 0.6

Ratios of characteristics of the jump

Ratios of characteristics of the jump

1.0

hj/E1 y1/E1

0.5 0.4 0.3 0.2 0.1

Traingular channel k=0

0.9

y2/E1

∆E/E1

0.7

hj/E1 y1/E1

0.6 0.5 0.4 0.3 0.2 0.1 0.0

0.0 1

2

3

4

5

6

7

8

9

1

10

2

3

4

5

6

7

8

9

10

FD1

FD1

1.0 Trapezoidel channel k = 5

0.9

Ratiosof characteristicsof thejump

1.0 Ratios of characteristics of the jump

E2/E1

0.8

E2/E1

0.8

y2/E1

∆E/E1

0.7

hj/E1 y1/E1

0.6 0.5 0.4 0.3 0.2 0.1 0.0

Trapezoidel channel k = 40

0.9

E2/E1

0.8

y2/E1

∆E/E1

0.7

hj/E1

0.6

y1/E1

0.5 0.4 0.3 0.2 0.1 0.0

1

2

3

4

5

6

7

8

9

10

1

2

3

FD1

4

5

6

7

8

9

10

FD1

Fig.5: Characteristic curves of the jump in trapezoidal channel sections for varies k1.

The figure indicates that the maximum y2 / E1 always occurs at FD1 = 1.73, independent on the shape of the section k1, within a range of 0.874 to 0.8 for (k1 = 0 to ∞) respectively, giving a maximum value in triangular shape. The maximum hj / E1 is always at FD1 = 2.78, independent on the shape of the section k1, within a range of (0.4 for k1 = 0 to 0.5 for k1 = ∞), giving a minimum value in triangular shape, see Fig. (6). Also, since E1 increases when FD1 increases, the relative height hj/E1 tends to decrease when FD1 increases. However, it should be noted that the decreasing of hj/E1 does not mean a decreasing of y1 or y2 which are expected to increase due to the increasing of the discharge at the higher FD1. 0.6 0.5

K1 = 0

k1 = 5

k1 = 10

k1 = 20

k1 = 40

Rect.

hj / E1

0.4 0.3 0.2 0.1

y1 Yc = = E1 E min

Yc (34) Vc 2 Yc + 2g Where Vc is the critical velocity. The criteria of critical flow condition is, (Chaudhry, 2008). Vc 2 D = 2g 2 Or

y1 Yc Yc = = D E1 E min Yc + 2

(35) (36)

From the background of the hydraulic channel, the hydraulic depth D, is equal to (y and y/2) in rectangular and triangular sections respectively. Hence, Eq.36 provides a value of (2/3) and (0.8) in rectangular and triangular sections respectively. Furthermore, consider Eqs. (8 & 9) for the hydraulic depth D in trapezoidal shape, Eq.36 could be expressed as:

0.0 1

2

3

4

5

6

7

8

9

10

FD1

Fig.6: Relative height of the hydraulic jump for various trapezoidal channel shapes, k1.

Fig.5 shows that the value of y1 / E1 at FD1 = 1, is equal to 0.67 for k1= ∞ and 0.8 for k1=0, while it varies from 0.67 to 0.8 for trapezoidal sections. These results could be explained as follows: When FD1=1, the upstream depth y1 is a critical depth (Yc) and consequently E1 reduces to the minimum specific energy Emin. Therefore:

y1 Yc 2k + 4 = = E1 E min 3k + 5

(37)

Which also indicates that in case of a trapezoidal section, the ratio YC /Emin is between 4/5 for a triangular shape (k1=0) and 2/3 for a rectangular shape (k2= ∞), while it depends on the values of k in the other shapes of trapezoidal section. So, Eq.37 could be considered as a general formula to estimate the value of Yc/Emin in trapezoidal section corresponding to the section ratio k1. 59

Journal of Environmental Studies [JES] 2012. 9: 53-63

due to the increasing of the efficiency where the flow losses the most energy through the jump when FD1 > 6, (steady or strong jump). At the same time, the sequent depth is still increasing, note Fig.2. Consequently the remaining specific energy after the jump is essentially due to the sequent depth y2. Therefore, when FD1 > 6, the velocity head after the jump could be neglected and the specific energy will be estimated by the sequent depth only. In other words, E2 = y2 for FD1 > 6. 0.35 k1 = 0

0.30

k1 = 5 0.25

E2/E1 - y2/E1

Fig.7 shows the efficiency of the hydraulic jump in trapezoidal channel sections. The figure indicates that the section ratio k1, has insignificant effect when FD1 is less than 3. Also, when FD1 is grater than 10, the efficiency sustain at a constant value in a range of 73 to 80 percent corresponding to k1-value. However, in spite of that the rectangular section has a minimum efficiency corresponding to the other sections; the other shapes do not increase the efficiency higher than ten percent, which is insignificant value comparing to the difficulties of the constructions of a triangular or trapezoidal channel. Hence, practically speaking, the rectangular section could be considered more suitable section in the design of the energy dissipation structures.

k1 = 10 0.20

k1 = 40

0.15

k1 = ∞

0.10 0.05 0.00 0

1

2

3

4

5

6

7

8

9

10

11

FD1

Fig.8: The effect of FD1 on the specific energy sequent depth relationship.

100% k1=0

90%

k1=5 80%

k1=10 k1=20

(∆E) / E1

70%

k1=40

60%

Rect.

50% 40% 30% 20% 10% 0% 1

2

3

4

5

6

7

8

9

10

F D1

Fig.7: Relative losses of the hydraulic jump for various trapezoidal channel shapes, k1.

Hydraulic jump length The length of the hydraulic jump is generally measured to the downstream section at which the mean water surface attains the maximum depth and becomes reasonably level, (Philip, 2006). The length of the hydraulic jump is typically obtained from empirical functions of the jump height, based solely upon experimentation (Sturm, 2001). and the location depends on both the length and height of the jump, as well as, the upstream and downstream water surface profiles Chow (1994). Mohd (2008), drove the following differential equation to determine the jump ordinate H at known values of n, H2 and Fr1.

The analysis indicates that in case of FD1 > 6, the efficiency curve (E2/E1) tends to be asymptote to the sequent relative curve (y2 / E1), independent on the section factor k1, see Fig.8. Also, the figure shows that when k1 is grater than 10, the curves join together to a constant value for all values of FD1. This fact could be explained as follows: Based on the results of the Fig.7, the velocity after the jump is always decreased 2  1  (1 + n)(1 + nH2 + n)(1 + 2nH ) ∂H (1+ n) H −1+ (1+ n) H  + 1  H (3 + 2nH ) − (3 + 2n)  = 1 −  2 2 ∂ξ (1 + nH )  (1+ nH )  3Fr12  2(1+ nH) 2H (1+ nH)  H (1 + nH2 )(1 + nH )  H2  Also, AFZAL (2002). developed the x With n = 1 and ζ = (38) following model to express the length of the 2k ε y 2 hydraulic jump (Lj) in trapezoidal channel where sections. ε : universal constant for eddy kinematic Lj viscosity, independent of channel geometry. (39) = ε (1 − α ) ∆ y2 ζ : non-dimensional constant (= x /ε y2). 2 H: ordinate of jump profile (= y /y1) 4K1 K 2 ∆ = H2: sequent depth ratio (r = y2 /y1) f (ω m ) + B (39 a) (7 +32α + 41α2 +32α3 + 7α4 )M3 +12α(1+α)3 M2  (39 b) In this study, the solution of Eq.38 was f (ωm) + B =  2 / 4 2 3 provided using Runge-Kutta method to +α (41+ 74α + 41α )M +18α (1+α)  determine the length of the jump at known (39 c) K 1 = M (1 + α ) + α values of k1, r and Fr1, see Fig.9. 60

Journal of Environmental Studies [JES] 2012. 9: 53-63

With M =

zy1 1 , α = 1 and ε ≈ 2 .578 = r b k1

(39 e)

Fig.9 explains a comparison between the results of Eqs. (38 & 39) and the experimental work of USBR for rectangular section and (Argyropoulous, 1961). for triangular section. The comparison shows that the results due to the model of Eqs. (39) are more precise and applicable than the results of Eq.38. Hence, the model of Eqs.39 was considered here to estimate the length of the hydraulic jump in trapezoidal channel. 9

> 4), the relation will be decreased asymptotic to a constant value, see Fig.12. That means, the maximum ratio (Lj /y2), is always near a section ratio of k1 ≈ 3 to 4, independent on the Froude number FD1. Therefore, for purposes design it is recommended to avoid this ratio in order to minimize the jump length. 13 12 11 10 9 8 Lj / y2

K 2 = 2 M (1 + α + α 2 ) + 3α (1 + α ) (39 d)

7

k1=3

6

k1=1

5

k1=0.5

4

k1=0

3 2 1 0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FD1

Fig. 10: Hydraulic jump length-Froude number relationship for k1= 0 to 3.

7 12

Eq.38, Rect. Eq.39, Rect. USBR, Rect. K=0, Eq.39 k=0, Argy.

3 1

-1

11 10 9 8 Lj / y2

Lj l y2

13

5

7 6

k1=3

5

k1=5 k1=10

4

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 FD1

Based on the model of Eqs.39 and depending on the solutions of Eq.18 in Table 1, the length of the jump in trapezoidal channel sections were estimated and the results prepared in the dimensionless charts of Figs. (10 & 11). The charts show that for a large value of FD1 the jump length Lj /y2 is independent on the upstream Froude number neither less the value of k1. For the rectangular shape, the results indicate that when FD1 reaches to a very high values, the jump length Lj/y2, is practically constant at approximated value of 6.9. This is because in case of a rectangular shape where M = 0, Eq.39a reduces to ∆=2.667. Consequently the term (ξ x ∆) in Eq.39 becomes 6.9. At the same time when FD1 approaches to infinity, r approaches to infinity too and α = 0 , which makes Eq.39 to give 6.9. It should be said that (Subramanya, 1998). and (Elevatorski, 1959). proposed the constant 6.9 but for FD1 > 5. In this study, when FD1 = 5, the jump length Lj /y2 is about 5.83 which indicates a difference of 17 percent. Also, the results indicate that for a constant Froude number FD1, the jump length ratio is proportional with the section factor k1 until a value of k1 between 3 to 4. After that (for k1

k1=40

2

k1= 60 k1= 100

1

Rect.

0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FD1

Fig. 11: Hydraulic jump length-Froude number relationship for k1= 3 to ∞. 13 FD1=20 FD1=15 FD1=10 FD1=5 FD1=2.77

12 11 10 Lj/y2

Fig. 9: Results of Eqs. (38 & 39), Comparing with other experimental works.

k1=20

3

9 8 7 6 5 4 0

5

10

15

20

25

30

35

40

45

50

55

60

Section Ratio, k1

Fig. 12: The effect of the section ratio k1, on the maximum length of the hydraulic jump.

Conclusions Applying the momentum conservation across a hydraulic jump in trapezoidal channel sections produced a general fourth order polynomial equation which provides a conjugate depths ratio of arbitrary cross sections. The solution was provided using Newton-Raphson method, and the results are represented as a dimensionless charts and Tables. When the values of the upstream Froude number FD1, are less than 2, the differences between the conjugate depths ratios have low significant change for all the shapes. The maximum values of y2 / E1 and hj / E1 always occur at FD1 = 1.73 and FD1 = 2.78 respectively, independent on the shape of the section (k1). When FD1 is greater than 61

Journal of Environmental Studies [JES] 2012. 9: 53-63

6, the velocity head after the jump could be neglected, (i.e. E2 = y2). The type of cross section has a little effect on the values of FD2 for FD1 > 2 and insignificant effect when FD1 is less than 2. The minimum values of FD2 for all sections range from 0.1 in triangular section to 0.15 in rectangular section, which is insignificant range. Even though, the energy dissipation efficiency of the hydraulic jump indicates that nonrectangular sections are more efficient in high Froude numbers, but these sections produce longer jumps, stability problems, and difficult in constructions. Therefore, from the hydraulic and structural point of view, the rectangular section is the preferable one in the design of hydraulic structures. Moreover, neither less of FD1, the maximum ratio of jump length (Lj / y2), always occurs when the section ratio is about k1 ≈ 3 to 4, which is recommended to avoid that for no longer jump. Nomenclature A1 & A2: Cross-sectional area before and after the jump, respectively. b: Bottom width of the sectional area. k: section ratio E1: Specific energy before the jump. E2: Specific energy after the jump Ef: jump efficiency Emin: Minimum specific energy. F: Specific force Fr: Froude number in term of the depth of flow y. FD: Froude number in term of the hydraulic depth D = A/T. g: Gravity acceleration force. H: ordinate of jump profile (= y /y1). H2: sequent depth ratio (r = y2 /y1). Lj: the length of the hydraulic jump Q: Flow rate r: Conjugate depths ratio of the initial and sequent depths, (y2 / y1) . T: Top width of the sectional area. V: Mean velocity. y1/E1: Relative initial depth. y2/E1: Relative sequent depth Yc: Critical depth. z: side slope ZC1 & ZC2: Distances of the centroids sections from the free surface area before and after the jump, respectively ∆E: Energy loss due to the jump.

ε : universal constant for eddy kinematic viscosity, independent of channel geometry. ζ : non-dimensional constant (= x /ε y2). References Argyropoulous, P.A., "The hydraulic jump and the effects of turbulence on hydraulic structure: contribution to research of the phenomenon". Proc. IX IAHR Congress, Dubrovnik, pp. 173-183., (1961). Noor Afzal & A. Bushra, "Structure of the turbulent hydraulic jump in a trapezoidal channel", Journal of Hydraulic Research, Vol. 40, (2002). No. 2. Chow, V.T., "Open channel hydraulics", McGraw-Hill, New York., (1994) Chadwick, A., Morfett, J. and Borthwick, M. (2004). "Hydraulics in civil and environmental engineering", 4th Ed. Spon Press, London. Chaudhry, Z.A. "Energy dissipation problems downstream of jinnah barrage", Pak. J. Engg. & Appl. Sci. Vol. 3 Jul (2008). (p.19 – 25). M. Hanif Chaudhry, "Open-channel flow", New York, NY 10013, USA, 2nd ed., (2008). Chanson, H. and Montes, J.S., "Characteristics of undular hydraulic jumps: Experimental apparatus and flow patterns", Journal of Hydraulic Engineering 121(2): 129-144., (1995). Chanson, H., "Bubbly flow Structure in hydraulic jump" European Jl of Mechanics B / Fluids, Vol.26,No.3,pp.367-384, DOI:10.1016 / j.euromechflu. 2006.08.001, (2007). b. Elevatorski, E.A., "Hydraulic energy dissipators". McGraw Hill, New York m,kk, (1959). Hager, W.H., "Energy Dissipators and Hydraulic Jump". Kluwer Academic Publishers, Dordrecht, The Netherlands, (1992). Hashmi, M.Z., M.Sc Thesis, "Analysis of Hydraulic Jump and Effectiveness of Energy Dissipation Devices at Jinnah Barrage", Center of Excellence Water Resources

62

Journal of Environmental Studies [JES] 2012. 9: 53-63

Engineering (CEWRE), UET, Lahore, (2003). Hotchkiss, R.H., Flanagan, P.J. and Donahoo, K., "Hydraulic jumps in broken-back culverts." Transportation Research Record, 1851 35-44, (2003). Joe, D. Hoffman, "Numerical methods for engineers and scientists", 2nd ed., New York, Marcel Dekker, (2001). Modi, P.N., "Irrigation water resources and power engineering", 6th, (2004). Mohd Jamil & S A Khan, "Theoretical study of hydraulic jump in trapezoidal channel section", IE (I) Journal-CV, Volume 89, May (2008). Montes, J.S., "Disscusion of undular hydraulic jump, by V.M. Andersen", Journal Hidraulics, Division ASCE 105 (HY9): 1208-1211, (1979). Murzyn, F., and Chanson, H., "Free surface, bubbly flow and turbulence measurements in hydraulic jumps" Report No. CH63/07, Div. of Civil Engineering, The University of Queensland, Brisbane, Australia, July, 113 pages, (2007). Philip, L. Thompson and Roger T. Kilgore "Hydraulic design of energy dissipators for culverts and channels", National Highway

Institute, Technical Report, Third Edition, july, (2006). Roger Reinaur and Willi H. Hager, "Nonbreaking undular hydraulic jump", Journal of Hydraulic Research, vol.33, No.5,p.p. 683-698, (1995). Subramanya, K., "Flow in open channel". Tata McGraw Hill, New Delhi, (1998). Stahl, H. and Hager, W.H., "Hydraulic jump in circular pipes." Canadian Journal of Civil Engineering, 26 368-373, (1999). Sturm, T.W., "Open channel hydraulics", McGraw-Hill, New York, (2001). Treske, A., "Undular bores (Favre-Waves) in open channels. Experimental studies", J. Hydr. Res., 32 (3), 355370, (1994). U.S.B.R., "Hydraulic design of stilling basins and energy dissipators. Engineering Monograph" No. 35, U.S. Bureau of Reclaimation, Dept. of Interior, Washington D.C., (1958). Vatankhah, A.R. and Kouchakzadeh, S., "Discussion of solution of specific energy and specific force equations" by Amlan Das. Journal of Irrigation and Drainage Engineering, ASCE 133(4): 407–410, (2008).

‫ا ا‬

‫"ة ا رو  ا  ا ف‬#‫ ا‬$%&  ‫ دق ن‬.‫د‬ &$'‫ * ) ه" ا‬/ "#‫ ا‬$‫ آ‬/  ‫ا  ا‬

: ‫ا‬ $=‫@ذ> ر‬A ‫ق‬3B‫) ا‬:‫ ف و‬D'7‫ ا‬EF3‫ ا‬-. $;$‫"رو‬$#‫ة ا‬123‫ ا‬456 7*‫ و‬9$: ): ،+'‫ا ا‬,‫ ه‬-. ‫د‬MKN (‫ ف‬D'7‫ وا‬+L ,9$F ) ‫ ف‬D'7‫ ا‬EF3‫ت ا‬KI E$  $;$‫"رو‬$#‫ة ا‬123‫ ا‬95  ‫  ب‬HB :@$A 3Q F‫@ا‬N‫ ا"دي و‬9‫ ا‬OM ‫د‬MKN -=‫ @ذج ا‬T5‫) ال ا@ل وا‬: "3 .)61‫ '"أ ا‬OM (r = y2 / y1) $;$‫"رو‬$#‫ة ا‬123‫ ا‬-3M ' A $N *H‫ ا‬$': ‫ ت‬:‫ >"اول و‬-. T5‫ض ا‬M ): .‫ س‬.‫را‬ (FD1 and FD2) ‫ة‬123‫" ا‬N‫ و‬9'* ‫ود‬. )*‫) ر‬$* $N *H‫ وا‬،*F‫ ا‬X$7: -. ‫ة‬123‫ءة ا‬2‫ آ‬Z,‫ود وآ‬. )*‫) ر‬$*‫و‬ OM ‫د‬MKN $;$‫"رو‬$#‫ة ا‬123‫@ل ا‬Q $\: ): -=‫ ا@ذج ا‬F‫@ا‬N .(k=b/zy) EF3‫ ا‬9  E‫"ى وا‬ _$ EF3‫ ا‬9;B ‫ إن‬T5‫ ا‬X$N "3 .]‫( أ‬k=b/zy) EF3‫ ا‬9  E‫( و"ى وا‬r = y2 / y1) ‫ة‬123‫ ا‬-3M ' A ‫;@ن‬: +L‫ ا‬9;7‫ ا‬-. 7‫* ا‬F‫)  إن ا‬b‫ ا‬OM *F‫ ا‬X$7: -. $;$‫"رو‬$#‫ة ا‬123‫ءة ا‬2‫ آ‬OM @ $`a: D ‫"م‬3 -. ‫ود‬. )*‫" ;@ن ر‬M ‫ة‬123‫ة ا‬6h -. M ‫;ن إهل ا‬fN .$‫ ا‬FD1 )$* I -. %١٠ ‫"ود‬N L‫أآ‬ (Lj / y2) ‫ة‬123‫" ا‬N k‫ ا‬O‫ة إ‬123‫@ل ا‬Q ' A ‫ن‬. ٣ ‫"ود‬N EF3‫ ا‬9 ‫" ;@ن‬M .٦  -M‫ أ‬FD1 ‫ة‬123‫ا‬   ‫ ا‬T5‫ ا‬A‫ر‬3 "M . FD1 ‫ة‬123‫"م ا‬3 -. ‫ود‬. )*‫ ر‬$* OM " $b D:@  OM‫ أ‬O‫ إ‬9 .‫ت‬H‫ ا‬E$> -. ‫"ا >"ا‬$> 3.‫@ا‬: l]:‫ى ا‬6‫ أ‬$M ‫ درات‬T5A E -=‫ ا‬9‫ا@د‬ 63

Journal of Environmental Studies [JES] 2012. 9: 65-72 Original Paper

Morpho-Anatomical Characteristics of Olive (Olea europaea L.) Trees Leaf as Bio-indicator of Cement Dust Air Pollution in Libya A. A. El-Khatib1, D. E. M. Radwan1, A. A. Alramah-Said2 1 2

Department of Botany, Faculty of Science, Sohag University, Egypt. Department of Botany, Faculty of Science, Al-Jabal Al-Gharbi University, Libya.

Rec. 4 Nov, 2012 Accept. 23 Dec, 2012

Abstract Comparisons were made between the anatomical and morphological changes in olive tree leaves from a site with relatively clean air (Al-Khadra area), and two sites (al-Khums and Zelatin) near to cement factories in the area east to Tripoli, Libya. Olive tree leaves exhibited marked variations in their morphological and anatomical characteristics, in relations to variations in the site cement dust air pollution load. Under high pollution load, leaf visible injuries were recorded. In addition, stomata appeared in higher density and smaller size than those of control. The anatomical characteristics of olive leaf including cuticle, epidermis, palisade tissue, mesophyll tissue, and elements of vascular cylinder (xylem and phloem) reflected the deteriorate effects of cement dust air pollutants, the subject which recommend their using as bio indicators. Keywords: Olea europaea, epidermis, stomata, xylem, morphology, cement dust. Introduction Cement dust results from the grinding of a clinker, which is produced by burning a mixture of limestone, clay, and gypsum at high temperatures (1450–16001C) in specially designed kilns (Suess et al., 1985). A cement industry offers an excellent opportunity for studying the impact of dust, during the process of cement manufacture considerable amounts of dust are emitted from handling, spillage and leakages. Dust is produced from quarrying of the major raw material limestone and ending with the packing and dispatch of cement from the industry (Abdul-Wahab, 2006). Cement dust is a gray powder with an aerodynamic diameter ranging from 0.05 to 5.0 mm (Kalacic, 1973). Cement dust can cause illness by skin or eye contact as well as inhalation. Risk of injury depends on duration and level of exposure and individual sensitivity. Moreover, different cements have different ingredients. Many of them contain substances that can be hazardous, like crystalline silica (quartz), lime, gypsum, nickel, cobalt, and chromium compounds (Green N8 Residents Group, 2004). Inhalation of silica dust can cause silicosis or other potentially fatal lung diseases. In addition, inhalation of chromium compounds

found in some cement dusts can cause cancer. Hence, cement dust can be an important pathway for potential human exposure. High concentrations of particles emitted from cement plant may affect the health and property of homeowners living adjacent to the plant. There are numerous complaints about cement plant from nearby residents. They include specific problems about odors, blasting, noise, respiratory problems and corrosive dust on cars. Plant physiological parameters have been used as bio-indicators of urban habitat quality. For example, highly alkaline dustlike cement visibly injures plant leaves; even chemically inert dust physically affects photosynthesis and transpiration when it accumulates on leaf surfaces. Covering and plugging of stomata (Ricks & Williams, 1974). shading (Peirce, 1910; Thompson et al., 1984). increasing leaf temperature (Eller, 1977; Borka, 1984). and removal of cuticular wax (Eveling & Bataille, 1984; Eveling, 1984). had been used to characterize local air pollution (Moraes et al., 2002). Less attention has been given to morphological and anatomical parameters of plants as indicators of long-term responses to changing (urban) habitat quality, although parameters as specific leaf area, stomatal density and pore surface were recognized to * Corresponding author: Dr. A.A. El-Khatib [email protected]

65

Journal of Environmental Studies [JES] 2012. 9: 65-72

vary depending on microclimatic conditions (Barber et al., 2004). Moreover, sampling and analysis of these parameters are relatively easy and inexpensive. Trees act as a sink for air pollutants and thus reduce their concentration in the air especially in urban environments (Woo and Je, 2006; Tewari, 1994; Rawat and Banerjee, 1996). Dust interception capacity of plants depends on their surface geometry, phyllotaxy, and leaf external characteristics such as hairs, cuticle, leaf shape and size, texture, length of petioles, and canopy of trees etc., weather conditions and direction and speed of wind and anthropogenic activities (El-Khatib, 2007; 2011; Santosh and Tripathi, 2008). The olive tree (Olea europaea L.) is one of the major crops in the Mediterranean region. Whilst its cultivation has spread to other regions around the world, olive production is of vital importance to the economy of Mediterranean countries, including Libya. The marked reduction in the growth and yield of olive trees in the polluted area may be explained in terms of the shading effect of the foliar cement crust as well as through the changes in soil characteristics that had been brought about by the cement factory effluents. Thus the uncontrolled emissions of a cement kiln can affect the growth of the adjacent vegetation through both the air and the soil (Khalid et al., 2009). This paper was to investigate the feasibility of using the changes in anatomical of olive tree leaves in the studied areas as bio-indicators for cement dust air pollution. Materials & Methods The study area: Three sites located in Libya were chosen for the purpose of this study. They were coastal cities located east of Tripoli, their names are Alkhums (Site I) (latitude 32º 38" N and longitude 14º 13" E), Zliten (site II) (latitude 32º 25" N and longitude 14º 29" E) and Al-khadra (Site III) (latitude 32º 26" N and longitude 13º 42" E). The two first sites are located at distance of 0.5 km from the cement factories, while the third one is located far from any pollution sources (distance of 40 km) and considered to be as control. These sites covered by olive trees as main crop, besides fragment vegetation of vegetables and wild species. As reported by

Libyan National Meteorological Center Climatologically Department, (2009), the temperature of this area is ranging between 14.66°C and 25.36°C. The annual mean of wind speed is 6.88 knots/hour, the annual mean of relative humidity is 73.17 %, and the annual mean of rain fall is 24.81 mm. Sampling At each site, leaf samples were collected from olive trees growing around the cement factories at site I and Site II, in four directions to cover the different directions of the plant load emissions as: location (1): west of the factory; location (2) north-west of the factory, location (3) south of the factory, and location (4) south-east. Sampling collection was during summer of 2010 and winter of 2011. At each location, three samples of olive tree leaves were collected, resulting in 12 leaf samples for each study site. Sampling conducted according to Lau & Luk, (2001) method. At each site, by wearing polyethylene gloves, 36 leaves were detached from each tree at 1.5-2 m above the ground by pruning shears from the outer part and inner part of the canopies and from the four directions for the tree (E, W, N, S; nine leaves per each space direction) kept in plastic bags, placed in icebox, and transported to the laboratory for the next preparation. Anatomical investigation To study the leaf anatomical structure of the studied trees, leaf samples were fixed in FAA (formaldehyde: acetic acid: alcohol, 5: 5: 90, respectively) then preserved in 70% ethyl alcohol. Transversal sections (7 µm) were obtained using microtome. The sections were stained with safranin. (0.5gm/500 ml ethyl alcohol) for 30 minutes and washed by different concentrations of ethyl alcohol (50%, 70% and 95%) then the sections stained with light green (0.5 gm/1000 ml ethyl alcohol) for 30 seconds followed by washing with 95% ethyl alcohol .The sections were mounted in canada balsam, dried at 55-60°C for 3 days and examined under light microscope (Olympus-BX51) for description of anatomical structures .The sections photographed by digital camera (Olympus –DP12) and measured by ImagePro Plus 6.1 (Ruzin, 2000).

66

Journal of Environmental Studies [JES] 2012. 9: 65-72

Polluted sites Control

Plate.1. visible injuries show that chlorosis, yellowish, necrosis and drying on the upper surface of leaves, collected from polluted sites (I and II) and control site (III) during summer and winter seasons.

Statistical Analysis: Data were subjected to statistical analysis using Minitab®14. Comparisons of means were carried out using the analysis of variance (MANOVA, Two-way). Differences were considered to be significant at level P?M‬ا&‪L‬‬

‫‪ ƒh" :١ K+T‬ا'‪1‬ت ا';)* ‪J 1\F,‬رة ا‪h‬‬

‫ا‪ U‬وا‪>O‬‬ ‫) ‪ *R10G‬ا‪;T‬ا و‪ *d *R10G‬ا‪ X.‬وا'ء ‪ -‬ا‪-‬‬ ‫ا‪ % @G !,‬ا‪ 1,l‬ت ا';)* " ا ل ا‪F‬اري‪%,G ،‬‬ ‫ '‪ *1‬ا‪  ƒh‬و ء " ج ز   ‪„, [)C 1‬آ[ و‪%,‬‬ ‫ا‪ ƒh‬وً‪ `O; .‬ا‪ ٥١٠٠ *1'?) X.‬ام ‪\G %V‬ف إ‪o1‬‬ ‫آ'‪ " *1‬ا'ء )'‪T‬ار ‪ ٢٠٠٠‬ام "` ا‪',/a‬ار  '‪*1‬‬ ‫ا‪ ƒh‬ا‪1‬وي أ‪V‬ء '‪ *1‬إ‪ *O‬ا'ء '` وث ‪@,?G‬ت‬ ‫* " ا‪ X.‬وا‪ ' ،‚J.," ƒ1d ! [+F‬إن ‪,‬ة‬ ‫‪*Oy) a‬‬ ‫ا‪;?G ƒh‬ن )‪ ٣-١ 1‬د‪ .*T1C‬أن '‪ *1‬ا‪ %,G ƒh‬أو ً‬ ‫ا'ء إ! ا‪;+F X.‬ل ! ا‪;T‬ام ا‪*h /1T‬‬ ‫ا' ‪ ،*1‬أ"  * ا‪h,/‬ام ا'\ت ا‪ *11‬آ‪,‬‬ ‫‪ " %,1‬ج ا‪ `" ,‬ا‪;+) X.‬رة ‪1‬ة )ون إ‪ *O‬ا'ء‬ ‫'‪ *-J.‬ا‪ %V ƒ1h‬اء )‪ *Oy‬ا'ء ‪G‬ر‪ 1.‬وا‪ ƒh‬وً‪،‬‬ ‫‪ %,G W1‬إ‪ *O‬ا'\ت ا‪) *11‬ا‪;C ،,‬ر از‪،‬‬ ‫‪J‬رة ا‪ ،h‬ا?ؤو‪ Y ! *1 [? (1‬و)‪-‬‬ ‫‪24‬‬

‫‪ X *d .٤K+T‬و"ء "` إ‪J *O‬رة ا‪[?L ! h‬‬ ‫";‪;L‬ر‬

‫‪ X *d .٥ K+T‬و"ء "` إ‪;C *O‬ر از ! ‪;L;" [?L‬ر‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫ا‪ 4, 3‬ا  وا‪ (#‬ت ا ‪:‬‬ ‫ ‪ #‬ا‪ 2#30‬ء‪:‬‬ ‫‪'J XF %G‬ذج ا‪ X.‬ا‪1T *Qh‬س "‪T‬و"* ا‪FJa‬ء ‬ ‫‪ 1,TJ  load [' ƒ1-G E‬و‪;?G‬ن ا'‪ *-‬ا‪*1+‬‬ ‫)‪ 1‬ا'‪ %/ ٤٠ -‬و‪ %,‬ا‪ %/ ٢٠ *-" ! [1'F,‬‬ ‫ا'‪ -‬ا‪N‬ي   * ا‪;',‬ج ‪ .%/ ٥‬وه‪ YN‬ا‪19,G %1T‬‬ ‫‪ -‬ا‪ XF‬ا‪N‬ي ‪.1/‬ي )‪ %G T J-' *-‬إ‪h,/‬ام‬ ‫إ‪;/‬ا‪J‬ت ‪Q‬ة  ا'ن و);ل "‪-‬وي ض ا‪T‬‬ ‫\'ن ‪+G‬ف ه‪ YN‬ا‪;T‬ا آ'‪'\ *1-) J-‬ن ‪;G‬ز`‬ ‫ا‪ ! ['F‬ض ا‪;+) T‬رة "‪-,‬و*‪.‬‬ ‫ ‪ #‬ا‪ J 3Z‬ط‪:‬‬ ‫‪?" XF %G‬ت ا‪ X.‬ا‪1T) *Qh‬س "‪T‬و"* ا‪9\Ja‬ط‬ ‫  ‪;C ƒ1-G E‬ى "‪;F‬ر* "‪L‬ة ! ‪ P/‬ا';ذج‬ ‫)‪;? W1F‬ن و ‪0‬ن "‪@)T,‬ن ا! ‪;C‬ى ا‪9\Jl‬ط و ‪ %,‬إ اء‬ ‫‪ XF‬ا‪9\Jl‬ط )‪h,/‬ام ‪0‬ز "‪T‬و"* ا‪9\Jl‬ط‪.‬‬

‫‪;'J .٨ K+T‬ذج ا‪XF‬‬

‫‪ .٩ K+T‬ا‪  *1‬و‪ 0O‬دا‪ [d‬ا‪0.‬ز‬

‫‪;'J .٦ K+T‬ذج '‪ XF [H‬ا‪FJa‬ء‬

‫ ‪ #‬ال ا‪#‬اري‪:‬‬ ‫‪ %G‬إ اء ‪ XF‬ا ل ا‪F‬اري 'ذج ‪ -‬ا';ا‪*Q‬‬ ‫ا‪F‬اري‬ ‫ا ل‬ ‫)‪0.‬ز‬ ‫اا‪*1C‬‬ ‫ا‪*1/1T‬‬ ‫‪ Thermoinsulating‬وا‪N‬ي ‪Q " be,‬وق ‪d‬‬ ‫"‪ [1,-‬أ)د‪ o) `O;G %/ (١٠×١٠×٥٠) Y‬ا‪;?G *1‬ن‬ ‫ ! ‪ `)" [?L‬و)‪ %/ ٢.٥ z'-‬و"‪-‬ة " ا‪1J.‬‬ ‫)‪ 1G19Q 1,1d 1,T‬و ‪0‬ز )‪ " o‬دوج اري‬ ‫)‪;,-"V‬ن( د ‪ ٢‬ا_ول  اف ‪ [C‬ا‪) *1‬إد‪d‬ل(‬ ‫وا‪  JH‬اف ) ا‪) *1‬إ‪d‬اج( ‪1T‬س ا‪) 19,‬ر *‬ ‫ا‪F‬ارة )آ' ";‪  *FO‬ا_‪?L‬ل ‪ ٧‬و ‪ ٨‬و ‪ ٩‬أد‪ ،(YJ‬و‪C‬‬ ‫‪ Nde) 'C‬ة ‪C‬اءات ‪ *1‬ا;اة '@&* اق ‬ ‫در * ا‪F‬ارة‪ W1 ،‬أ‪Nd‬ت أول ‪C‬اءة  )ء ا;‪ UC‬و" ‪%V‬‬ ‫‪;?G‬ن ا‪,‬ة )‪ 1‬آ[ ‪C‬اءة ‪ ١٥‬د‪.*T1C‬‬

‫‪0 .٧K+T‬ز ‪ XF‬ا ل ا‪F‬اري‬

‫‪25‬‬

‫ا‪ 4 2‬وا ‪:? 2‬‬ ‫‪ Ve,‬ا ل ا‪F‬اري )?[ آ‪ *-) 1‬ا'ء إ! ا‪X.‬‬ ‫)ا‪;T‬ام ا‪ (/1T‬و‪ *1 ;J‬ا'دة ا'\* و‪ 0,-J‬و)‪*T‬‬ ‫ا‪ *R10G  ƒh‬ا'ذج‪ ،‬إذ إن ا دة  ‪ *-J‬ا'ء إ!‬ ‫ا‪qG X.‬دي إ! ‪  G‬ا‪R .‬ت  )\‪ 0‬ا‪ m‬و‪G‬ك‬ ‫ات )‪ hG  01‬ا'ء "' ‪q‬دي إ! إ‪hJ‬ض ‬ ‫ا ل ا‪F‬اري‪N ،‬ا ‪ .‬ا‪ *-) %?F,‬ا'دة ا'\* ‪@,‬‬ ‫ه‪N‬ا ا‪hJl‬ض‪ .‬إن إ‪ *O‬ا'ء إ! ا‪ X.‬ا‪ " b+‬‬ ‫)‪;F, (CaSo4. ½ H2O‬ل إ! ‪R‬ت ‪(CaSo4.2 ) *1 V‬‬ ‫‪ P+, H2O‬آ‪ *,‬ا';ذج ‪',/l *.1,J *Q‬ار* ‪;?G‬ن‬ ‫ا;رات ا‪ *)l‬و‪  W1 0?)G‬داد ز" ا‪; ;) z/',‬د‬ ‫ا'دة ا'\*‪ ) ،‬دة ‪ *-J‬ا'دة ا'\*  داد ز"‬ ‫ا‪ *-) z/',‬أآ _‪ [CG 0J‬و‪;Q‬ل ا'ء إ! ا;رات‬ ‫و‪ ;?G dqG‬ا?* ا;ر* ا‪  ًQ;+d *)l‬إ‪*O‬‬ ‫ا?ؤو‪ 1‬ا‪h‬م ‪ [+1‬ز" ا‪ X. z/',‬إ! ‪ ٢٨‬د‪.*T1C‬‬ ‫ إ اء  اام ا   ا  و‬ ‫ا ت ‪ #‬ادة ا  و ا‪ .‬آ)* )('&‬ ‫اام ا   ا  ‪  %٦٨.٥٥‬ا‪،1‬‬ ‫و‪ => :8‬ز;دة )‪ 2‬اء إ‪ 3‬ا  ا ‬ ‫ا ‪ .‬أ‪ :? #‬إ‪9 4‬داد ‪ 78‬إ‪6(#‬ص ا‬ ‫'ء )‪ -‬ا‪ *1)T‬ا‪h *1‬م ا?ؤو‪+,"l 1‬ص ا'ء‪.‬‬ ‫‪ XF %G‬ا ل ا‪F‬اري  إ‪ *O‬ا?ؤو‪ ،1‬ا‪،,‬‬ ‫‪;C‬ر از و ‪J‬رة ا‪ h‬و)‪ -‬ا;ز‪،١٠، ٥ ،٣) *1J‬‬ ‫‪ *h *-J % (١٥‬ا_‪/‬س " ا‪ X.‬وا'ء‪ ،‬آ' "‪*1‬‬ ‫ ا_‪(١٧ ،١٦ ،١٥ ،١٤ ،١٣ ،١٢ ،١١ ، ١٠) [?L‬‬ ‫وا‪ PO;G ,‬أن ) دة ‪ *-J‬ا'دة ا‪ *11‬ا'\* أ ‪U‬‬ ‫زدة  ا ل ا‪F‬اري ‪ *-J‬إ! ا‪ *h‬ا_‪/‬س ا‪*1/1T‬‬ ‫و ‪ 0w‬ه‪N‬ا وا‪  ًFO‬ا‪h,/‬ام ‪J‬رة ا‪ h‬وا‪ ,‬و‬ ‫‪;C‬ر از‪ ،‬أ"  إ‪ *O‬ا?ؤو‪y 1‬ن )‪ -‬ا‪*1T‬‬ ‫أ ‪ U‬زدة  ا ل ا‪F‬اري أآ‪ " H‬ا'\ت ا_‪d‬ى‬ ‫)ا‪;C ،,‬ر از و ‪J‬رة ا‪,' oJ_ (h‬ز )‪T‬ان "ء‬ ‫ا‪;,‬ر وا‪N‬ي ?[ ‪G " %15 ًTG‬آ‪o"G  o1‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 21-28‬‬

‫ار‪ ،‬إ‪ a‬إ‪ oJ‬آ' زادة ‪ o,-J‬إ! ا‪ *h‬ا_‪/‬س ‪ [C‬ا ل‬ ‫ا‪F‬اري وذ‪;?G *C -) z‬ن ا?* ا‪ ً' ،*)a‬إن‬ ‫ز" ا‪ *h z/',‬ا_‪/‬س ‪ X.‬ه; ‪ ٥‬د‪ E C‬و ‬ ‫إ‪ *O‬ا?ؤو‪ ٣ *-) 1‬و‪ ! % ٥‬ا‪;,‬ا زاد ز"‬ ‫ا‪ z/',‬إ! ‪ ١٥‬د‪ ،*T1C‬وإن ا'&‪ 0‬ا‪h‬ر  ‪1‬ت ا‪X.‬‬ ‫) إ‪ *O‬ا?ؤو‪ 1‬آ‪;) UJ‬ن ا)‪ .m1‬و" ا‪*1‬‬ ‫ا‪+,Ca‬د* ن آ* ا‪ X.‬ا'‪ *Oy) -F‬ا?ؤو‪o1 1‬‬ ‫زدة ‪ *1C‬و‪T" *1 ,G‬ر‪ `" *J‬ا‪ -F,‬ا'‪;F‬ظ ‬ ‫‪ *1 ;J‬ا‪ `1'  X.‬ا‪;h‬اص‪.‬‬ ‫  درا‪ */‬و‪ [1FG‬ا‪Q;F x ,‬ت ا‪;d 1G ,‬اص‬ ‫ا ل ا‪F‬اري  إ‪J *O‬رة ا‪ h‬إ! ‪ *d‬ا‪X.‬‬ ‫;Œ إن إ‪J *O‬رة ا‪ h‬إ! ا‪*1)C "   X.‬‬ ‫ ‪ o‬ا‪F‬اري‪ ،‬إ‪ a‬إن زدة ‪J‬رة ا‪*1 -) h‬‬ ‫‪q‬دي إ! ‪ *1)C [1TG‬ا‪ X. [19,‬ا‪F‬وي ! ‪J‬رة‬ ‫ا‪ *1)C -) *1 -) h‬ا"‪+,‬ص 'ء‪ ) .‬دة‬ ‫"‪;,F‬ى ‪J‬رة ا‪  h‬ا‪qG X.‬دي إ! زدة ز"‬ ‫ا‪ +,‬ا‪_  0‬ن ه‪ YN‬ارة ‪;,FG‬ي ! ا‬ ‫وا‪?-‬ت وا‪;1-‬ز وا?‪ 1‬وا‪ 1,‬وا‪! VqG ,‬‬ ‫ '‪ *1‬ا_"ه‪ o‬و ‪ " Xh,‬ه‪N‬ا ا‪ 1Ve,‬ا\ر ‪ e.J‬إ!‬ ‫ا'‪ *.‬ا'‪ *T-‬رة‪ ،‬أ" ز" ا‪ +,‬ا‪,)a‬ا  ‪[T oJy‬‬ ‫); ;د ارة _‪ X,'G 0J‬ءًا " "ء ا‪ .ƒh‬إن زدة‬ ‫‪ *-J‬ارة  ا‪qG X.‬دي إ! إ‪hJ‬ض  ‪ *1)C‬ا‪[19,‬‬ ‫"' ‪q‬دي إ! زدة ‪ *-J‬ا'ء إ! ا‪;+F X.‬ل !‬ ‫‪ *1)C‬ا‪ [19,‬ا';ب و? ذ‪;? z‬ن ! ‪-‬ب‬ ‫ا'‪T‬و"*‪ .‬إن "‪T‬و"* ا‪9\Ja‬ط ‪ X.‬ا‪F‬وي ! ‪J‬رة‬ ‫ا‪;?G h‬ن "‪ *,‬إ! "‪ *\h‬ا ‪',‬دا ! ‪J *-J‬رة‬ ‫ا‪T" [TG W1 h‬و"* ا‪9\Ja‬ط ) دة ‪J *-J‬رة‬ ‫ا‪ .h‬إن ا‪ X.‬ا‪F‬وي ! ‪J‬رة ا‪;?G h‬ن ‪*1d‬‬ ‫ا;زن ‪N0‬ا '? ا‪h,/‬ا"‪_ 0‬اض ا ل ا‪.G;+‬‬

‫‪ XF .١٤ K+T‬ا ل ا‪F‬اري '\ت ا‪%٣ *-) *11‬‬

‫‪ XF .١٠ K+T‬ا ل ا‪F‬اري  إ‪J *O‬رة ا‪.h‬‬

‫‪ XF .١٥ K+T‬ا ل ا‪F‬اري '\ت ا‪%٥ *-) *11‬‬

‫‪ XF .١١ K+T‬ا ل ا‪F‬اري  إ‪ *O‬ا‪.,‬‬

‫‪ XF .١٦ K+T‬ا ل ا‪F‬اري '\ت ا‪.%١٠ *-) *11‬‬

‫‪26‬‬

‫‪ XF .١٢ K+T‬ا ل ا‪F‬اري  إ‪ *O‬ا?ؤو‪.1‬‬

‫‪ XF .١٣ K+T‬ا ل ا‪F‬اري  إ‪;C *O‬ر از‬

Journal of Environmental Studies [JES] 2012. 9: 21-28

:*11‫ت ا'رة ا‬1TG‫ [ و‬/‫ "و‬،1‫ ا‬b/; ‹‫  ا‬ ‫ام "دة‬h,/) *1?/ ‫*  )ء دار‬1T1G *).G ،[Q;'‫ "* ا‬،*1/0‫* اا ا‬." ."1‫ا‬ .٢٠٠٥ ،٢‫ اد‬،١٣ ." ‫  ا‬b,‫* ا‬-J ‫ب زدة‬/‫* أ‬/‫ "درا‬، [/) ‫ه‬ */0‫* ا‬." ."‫ر‬h‫ ه );ق ا‬,‫هة ا‬w‫ف و‬.‫ا‬ ،٤٣٧-٤٢٣ *FQ ،١٢‫ اد‬،٢٧ ." ،1 ;;?,‫وا‬ .٢٠٠٩ 19,‫ ا‬1VeG */‫ "درا‬،%/ 1- ‫  و هى‬1- ‫@م‬/ ! C‫ ا اا‬%F ‫ اء ا;ري‬ ،1 ;;?,‫* وا‬/0‫* ا‬." ."*1 )0?‫ ا‬X +h‫ا‬ .٢٠٠٩ ,٦٠٥-٥٩٥ *FQ ١٦‫ اد‬،٢٧ ." ،"U1‫ وا;ر";آ‬U11‫ * ا‬+ *+'‫ "ا‬،'F" '‫ا‬ :U1J,Ja‫?* ا‬L ! [1Q,‫ ا‬.٢٠١٠ http://www.perlite.com ."‫  ااق‬1‫ * ا);ق ا‬Q" ،‫;ري‬.‫  " ا‬V *".‫ ا‬،‫ءات‬Jl‫* اء وا‬/‫د);م   ه‬ .٢٠٠٠ ،*1 ;;?,‫ا‬ ‫ _اض‬X.‫ "ا‬،٢٨ %C‫* ر‬1C‫* اا‬1/1T‫* ا‬Q‫ا';ا‬ ،*1 ;‫ة ا‬1-‫‚ وا‬11T, ‫ز ا'آ ي‬0.‫ ا‬."‫اء‬ .١٩٨٨ *1  1‫;ص ا‬F‫ "ا‬،٢٧ %C‫* ر‬1C‫* اا‬1/1T‫* ا‬Q‫ا';ا‬ ‚11T, ‫ز ا'آ ي‬0.‫ ا‬."‫ _اض اء‬X. .١٩٨٨ ،*1 ;‫ة ا‬1-‫وا‬ Taneja, A. and Killo, F.,, "Development Of Hydrolic Binder Based On Gypsum Plaster”. Building Research Center, Baghdad, Vol. 6, No.2, ppp.50-63, (1987). Doxiad- QBE-5, 5, “Survey of the problems of Juss and Juss production in Iraq”. Building research Center, Baghdad, pp.1 pp.185, (1969). Khairia Al-Ramadani Ramadani and Taneja, G., "Development of Gypsum plaster products for use in buildings”. Building Research, search, R.P. 77/88, pp.37-40, pp.37 (1983). Mohan, R. Manjit, S. “Gypsum as a building material”, Central 32 Building Research, India, No. 14, pp. 1-6, (1983 1983). Malhorta H.L, ”Properties of materials at high temperature”. Journal of materials and structure, Vol. 15, pp. 170, (1982). ISO 3048-74, 74, “Gypsum PlastersPlasters General Test conditions” 1st edition, (1974). (

%١٥ *-) *11‫اري '\ت ا‬F‫ ا ل ا‬XF :١٧ K+T

:‫ در‬O ‫ا‬ ‫ اض‬oG"‫ا‬h,/‫ ا‬%‫ واه‬h‫ "ا‬،%w‫ آ‬Q %/ ،*1 ;;?,‫"* ا‬.‫ ا‬، ‫ د);م‬WF) ."*1 Jl‫ا‬ .٢٠٠٠ ،‫;ر‬-.‫* اق وا‬/‫ه‬ ،‫  ا;هب‬/ ‫در و‬T‫  ا‬,J\"‫*  ا‹ ا‬1d *1LT‫* ا‬TF‫ ا‬."‫ وا;رة  اء‬X.‫ام ا‬h,/‫"إ‬ .٢٠٠٢ ،٢‫ ص‬،*1C‫ اا‬1',‫?ن وا‬/l‫;زارة ا‬ ،‫  ا;هب‬/ ‫در و‬T‫  ا‬,J\"‫*  ا‹ ا‬1d ."(X.‫* )اŠ  وا‬V_‫* و ا‬1 ‫ ا';اد ا‬X +d" ‫ت‬/‫ را‬T,‫د ا' وا‬/p !‫* ا_و‬1;‫اوة ا‬ ،٢٤‫ ص‬،*1C‫ر* اا‬N‫* ا‬C‫ "&'* ا‬،*V_‫ا‬ .٢٠٠٠ ‫\ري‬F‫اري  اء ا‬F‫ "ا ل ا‬،’1‫` ا‬/  %‫أده‬ * Q‫'ط اء  ا; ا) و‬J‫* أ‬J‫ر‬T"‫و‬ ،*1)‫ ا' ا‬WF‫‚ ا‬." ‫د‬FG‫ إ‬."1‫ا);ق ا‬ .١٩٨٤ ،٢٩٧ -٢٩٢ ‫ ص‬،‫اد‬9) ‫;اص‬h‫ ا‬1-FG" ,J‫'ا‬F‫[ ا‬+1 ‫ري واس‬.‫ ا‬FQ ."*\'‫'ل ا';اد ا‬,/) ‫ ا‬X. *1  1‫ا‬ ،١‫ ء‬،٤." ،‚"h‫' ا' ا‬Gq'‫;ث ا‬F) ` C‫و‬ .١٩٨٩ ،١١٨-١٠٢ ‫ص‬ ‫;ر وا'دن‬h+‫ء ا‬1'1‫; آ‬1 " ،;T‫ ا‬%?‫هة  ا‬J ،١٠٢‫ ص‬."‫‚  ااق‬.‫` ا‬C‫ ";ا‬-*1 +‫ا‬ .١٩٧٩ 1-FG" ،J‫'ا‬F‫[ ا‬+1 ‫ر ا  و اس‬1 'F" ‚.‫ " ا‬x,'‫ص ا‬h‫ع ا‬T‫ ا‬X ‫;اص‬d ‫ ص‬،١‫ د‬،٧ ." ،‫;ث اء‬F) *." ،"‫;ي‬JH‫ا‬ .١٩٨٨ ،١٠٩-٨٥ , ‫"ا‬-‫  ا;هب ا‬/ ‫ و‬J\"‫*  ا‹ ا‬1d ."ً ‫ آ';اد ز* ار‬X.‫ وا‬1‫");ق اء ا‬ ،(‫* ا';اد‬/‫ )ه‬JH‫ ا‬J‫* ا_رد‬1J'‫* ا‬/0‫' ا‬Gq" .١٩٩٩ ،٢٥٦-٢٤٥ ‫ ص‬،‫ا_ردن‬ ‫;اص‬d m) 1-FG" ،‫;ي‬/;'‫ ا‬%w‫! آ‬/;" [1T *‫ا‬d ‫ت‬h" ‫ف‬1‫* أ‬Oy) *1J/h‫ا@ت ا‬ ‫* اء‬/‫  ه‬1,- " *‫ أو‬."‫ا'دن‬ .٢٠٠٠ ،*1 ;;?,‫"* ا‬.‫ ا‬،‫ءات‬Jl‫وا‬

27

Journal of Environmental Studies [JES] 2012. 9: 21-28

Improve Thermal Insulation And Physical Properties Of The Iraqi Plaster Using Natural Additives Abstract Fires are considered to be one of the most common disasters in the buildings at the present time; therefore it becomes necessary to design the buildings with fire-resistant materials. Many types of stucco panels’ fire-resistant material have been created to prevent heat transfer to other parts of the institution, and to protect it from damage, so intensify increased to study how to improve the properties of the Iraqi plaster. Iraqi plaster differs from other types of plasters with its high quality mechanical and physical characteristics and this is because of the purity of its raw materials (rock stucco) and the advanced technology used in the production. However, there are some negative aspects that led to the lack of demand for it and, make it unsuitable for use as a binding agent, such as the lack of resistance to stresses tensile, lack of resistance to moisture and freezing speed leading to a significant loss of plaster during working with it, and thus lead to increased construction costs. In order to improve the properties of the Iraqi plaster many types of natural additives have been used in this research which are; Hay, Rice husks, sawdust and Alcaúlan, with a suitable ratios. The research also include studying the effect of this additives on physical and mechanical characteristic of Iraqi plaster, and studying the effect of the ratios of these additives on thermal insulation of the Iraqi plaster to choose the best additives type and to keep the high quality as possible of the material while maintaining the quality of the material and to make it remains within the standard specifications of plaster for construction purposes. Thermal insulation have been investigated after adding caúlan, Hay, Rice husks and sawdust with addition ratios of;3, 5, 10, 15% by weight of plasters. Results showed that the thermal insulation highly related to the ratio of water to plaster and with the type of the additives material. Increasing the ratio of natural additives led to an increase in the thermal insulation and this appears clearly with sawdust, Hay and Rice husks. While adding only small ratios of caúlan gives the highest thermal insulation bigger than other types of additives, this is because of its characteristic of losing the crystallization water, which constitutes approximately about 15% of its formulation when dealing thermally with it, but whenever caulan ratio increases the thermal insulation decreases due to the obstruction of the needle network formation.

28

Journal of Environmental Studies [JES] 2012. 9: 29-35

Original Paper

Germination of jojoba (Simmondsia chinensis L) seeds under the influence of several conditions Hassanein A. M.1, Galal E.2, Soltan D.1, Abed-Elsaboor K.2, Saad G. K.1, Gaboor G. M.1, El Mogy N. S.3 1

Central Laboratory of Genetic Engineering, Faculty of Science, Sohag University, 82524 Sohag, Egypt. 2 Genetics Department, faculty of Agriculture, Sohag University, Sohag, Egypt. 3 Al Obour Buildings 4, Salah Salem Road, Nasr City – Cairo, Egypt. Rec. 20 Mar, 2012 Accpt. 2 May, 2012

Abstract Our study indicates that jojoba is suitable plant for cultivation of the Egyptian marginal soils, in the desert area, where the seeds were germinated and grown in sandy soil of marginal fertility. To study the effect of NaCl and mannitol on seeds germination, jojoba seeds were placed on cotton layer flooded with solution containing different concentrations of them. Salinity stimulated seed germination, especially, when the seeds were subjected to relatively low concentration of NaCl (0.5 – 3 gm/l). Increase the concentration of NaCl over 3 gm/l resulted in inhibition of seed germination as well as radicle growth. Application of 2 or 3 gm/l mannitol in germination medium improved the seed germination, vice versa was detected under progressive increase of mannitol in germination medium. Mannitol as same as NaCl delayed seed germination of jojoba plant. On the other hand, jojoba seeds can be germinated in low frequency under high concentration of mannitol, up to 100 gm/l, when seeds were placed on three cotton layers just wetted by distilled water containing mannitol. Temperature may be the most critical factor during jojoba seed germination, therefore summer was the best season for seed germination; also, 30 oC was the best temperature degree for seed germination and emergence of radical in the shortest time. Key words: Desert cultivation, Jojoba, mannitol, sodium chloride, seed germination, stress. Plantations are established by using seeds, Introduction: Jojoba [Simmondsia chinensis (Link) seedlings, rooted cuttings, or plantlets Schneider] is a desert shrub which tolerates produced from tissue culture (Roussos et al., salinity and drought. The chromosome 1999; Roussos et al., 2006; Mohasseb et al., number of jojoba is 2n = 52 (Weiss, 1983). 2009). The male plants outnumber the Its natural life span appears to be between females when raised from seeds (Harsh et 100 and 200 years. Jojoba seeds contain a al., 1987). Jojoba plants obtained from seeds liquid wax of economic importance in showed a high variability in most industry (machine lubricant) as well as in characteristics including yield because it is medicine, where it can be used in cosmetics dioecious, and obligate cross-pollinated and anticancer compounds. Jojoba was used species (Gentry, 1958). Previous reports as a medicine for cancer, stomach ache, indicated that only a small proportion of the kidney disorders, easing childbirth and in plant population (less than 1%) originating tending wounds (Weiss, 1983). Jojoba has from seeds of native plants has the potential attracted interest as a landscape plant; also it to produce economically acceptable yields can be sued for soil conservation. The plant (Purcell and Purcell, 1988; Ramonet-Razon, has a deep root system; therefore it can be 1988). Therefore, comprehensive selection used in highway and roadside plantings and and breeding program was conducted in hedges. It can also be used as a soil stabilizer many countries all over the world to obtain in green belts around desert cities suffering elite cultivars. from particulate air pollution. It is the only Salinity is considered one of the most plant known that synthesizes liquid wax. The important factor restrict the horticultural seeds contain about 50% of simple wax production, especially in soils of the arid and esters of mono-unsaturated fatty acids and semi-arid regions on the earth. Few alcohols. economical plant species can be grown * Corresponding author: Dr. Hassanein A.M. [email protected]

29

Journal of Environmental Studies [JES] 2012. 9: 29-35

successfully in saline soil. It is worth to mention that the total area of arable land is gradually decreasing due to the progressive salinization of the soil (Botti et al., 1998). While jojoba is known as salt tolerant species (Jensen and Salisbury, 1988; Benzioni et al., 1992). salt damage can occur and differences in response among clones had been observed (Rasoolzadegan et al., 1980; Benzioni et al., 1992). indicating the possibility of developing clones with increased levels of salt resistance or tolerance. Elongation and thickening of stems (Bartolini et al., 1991). the total leaf area and leaf size (Bartolini et al., 1991). shoot and leaf expansion, number of leaves and flowers were reduced in response to increased levels of salinity (Rasoolzadegan et al., 1980; Benzioni et al., 1992). Increasing in leaf thickness was also reported when jojba plants were subjected to salt stress (Sa´nchez-Blanco et al., 1991). Benzioni et al., 1999 reported that some clones exhibited excellent vegetative traits related to yield potential such as a high survival rate, rapid growth, extensive branching, high node density, high flower density, high percentage of fruit set, high seed weight, and high wax content in the seed. The clones also differed in their wax composition. Under Egyptian condition, jojoba maximally utilizes 50-70 liters of water weekly in summer and 10-30 liters in winter but when it irrigated by flooding, 1215 irrigation times per year is needed. Mature shrubs characterize by their strong ability to survive without irrigation for long time where they can survive for a whole year without watering. Jojoba can also tolerate up to 3,000 p.p.m. without any impact to the yield. Therefore, Jojoba is considered one of the most practical and scientific solutions for desert plantation in Egypt. In spite of its importance, very few studies aim to understand the effects of abiotic stresses on the development and yield of the jojoba. This article covers the research on jojoba ecophysiology, with emphasis on the effects of water and salt stress on seed germination. Material and Methods: Plant material: For the experiments, seeds were obtained from the Egyptian Natural Oil Co. S.A.E., Ismailia Farm, Salam Zone, Manayef, Ismailia, Cairo, Egypt. The farm is

planted in Ismailia in 1991 and it is about 88,200sq.m of jojoba plants, it was used for research and production. Effect of soil type on seed germination: Thirty jojoba seeds were sown in plastic pots containing two Kg of soils composed from sand, soil or both according to the following table: Soil structure Sandy soil Clay soil 100% 0% 75% 25% 50% 50% 25% 75% 0% 100%

After 40 days percentage of seed germination and germination period were estimated. An emerged radicle was the criterion for germination (Côme, 1982). and the growth of the seedlings was laboratory or greenhouse conditions. Effect of season on seed germination: Thirty jojoba seeds were sown in plastic pots containing two kg of soil containing 1 and 1, sand and clay soil, respectively. After 40 days percentage of seed germination and germination period were estimated. Effect of temperature on seed germination: Jojoba seeds were grown on cotton in glass jars contained 50 ml Hogland solution and incubated at 30°C, 40°C, and room temperature (maximum 18°C). Germination frequency, length of roots, length of shoots and number of leaves per shoot were determined after four, nine, and 21 days of seedling. Effect of NaCl on seed germination: Under sterilized condition, Jojoba seeds were grown on cotton in glass jars contained 50 ml of Hogland solution supplemented with several concentrations of NaCl (0, 0.5, 1, 2, 3, 4 g/l). Jars were incubated at 30°C. Germination frequency, length of roots, length of shoots and number of leaves per shoot were determined after four, nine, and twenty one days of seedling. Effect of mannitol on seed germination: Jojoba seeds were flooded on cotton layer in sterilized glass jars contained 50 ml Hogland solution supplemented with several concentrations of mannitol (0, 0.5, 1, 2, 3, 4 g/l). Jars were incubated at 30°C. Germination frequency, length of roots, 30

Journal of Environmental Studies [JES] 2012. 9: 29-35

length of shoots and number of leaves per shoot were determined after four, nine, and twenty one days of seedling. In addition, jojoba seeds were placed on three cotton layers wetted with 50 ml and containing different concentration of mannitol. The percentage of seed germination was determined in 40 days. Results and discussion: The used jojoba seeds were usually smooth, brown to black in colour, their dimensions are 8 – 17 mm in length and 511 mm in cross-section. One hundred seed weight can vary from 61 - 157.8 gm/100 seed. Positive correlation was detected between seed size and oil content but the quality of the oil was exhibited very little variation regardless of the geographic origin of the seed (Yermanos, 1979). As was reported previously, the seeds contain little or no endosperm and consist mainly of the undifferentiated tissue of the cotyledons (Weiss, 1983). In this work, seeds were obtained after two months of harvesting date and they showed germination when they were subjected for suitable condition for seed germination. They were readily germinated in sandy or clay soil or in mixture from them under wide range of temperature from 18- 40 oC, it was in accordance with others studies (Gentry, 1958; Yermanos, 1982). Data in this work (Table 1) indicated that sandy soil is the most suitable soil for seed germination of jojoba plant, where it is expressed the highest percentage of germinated seeds in short time. Therefore, our study indicates that jojoba is suitable Age of seedling 3 days 5 days 7 days 15 days

plant for cultivation of the Egyptian marginal soils, in the desert area, where the plant can grow in sandy soil of marginal fertility and needs little water. It withstands salinity and it does not seem to need fertilizers or other polluting chemical treatments. Consequently, jojoba can be generally cultivated in well-drained, coarse, desert soils, where the soil is composed of sandy alluviums and mixtures of gravels and clays derived from such igneous materials as granitics and volcanics. For all of the previous reasons, jojoba is recommended for cultivation in Egyptian desert. Soil structure Sand Clay y soil soil

Percentage Germinat of seed ion germination period (%) (day) 100% 0% 75.0 13 75% 25% 65.0 15* 50% 50% 62.5 17* 25% 75% 55.0 21* 0% 100% 45.0 23* Table 1. Effect of soil type on percentage of seed germination and germination period.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution at 30°C at P < 0.05. Temperature may be the most critical factor in growing jojoba. Jojoba is living in the bright desert sun and tolerates the extreme daily fluctuations of temperature which commonly range through -1 oC during the morning to daily extremes of 46 oC (shade readings). In our work, increase of temperature stimulated seed germination, shortened the time needed for emergence of radical (Table 2).

Temperature of Seed germination Length of Shoot incubation freq. root freq. (℅) 30°C 61 0.26 --Room temperature 55* 0.2 --30°C 72 0.4 --Room temperature 55 0.53 --Room temperature 55 2 33 30°C 72 7 66 Table 2. Effect of temperatures on seed germination frequency.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution at 30°C at P < 0.05. Seed germination was influenced by temperature of the seasons. Seed germination in summer was higher than

Length of shoot --------1.5 0.8

winter (Table 3). Summer was the best season for seed germination it may be due to the highest temperature degree. Also, the shortest time of seed germination was detected when the seeds were subjected for the highest temperature in summer. Seedlings are more sensitive than mature 31

Journal of Environmental Studies [JES] 2012. 9: 29-35

tree (Weiss, 1983). While seeding is sensitive to light frosts of -1 or -2oC below freezing, mature shrubs are known to tolerate temperatures as low as -9 oC. When temperatures reach 50C flowers and terminal portions of young branches of most jojoba

plants are damaged. Wild jojoba plants can withstand very high temperature, cultivated cultivars showed maximum growth between 27 - 36 oC, but. Above 50 oC , the vegetative growth is suppressed, although not lethal (Weiss, 1983).

Parameter

Season Summer Autumn Winter Spring 77 ±3.81 63 ±2.00 58 ±3.81 73 ±2.50 Percentage of seed germination 13 ±1.00 17 ±1.00 26 ±2.00 17 ±1.52 Germination period / day Table 3. Effect of seasons on percentage of seed germination and germination period.

Under germination condition, the number of germinated jojoba seeds increased with time (Table 4, 5 and 6). In four days, salinity delayed seed germination of jojoba seed. While, 61% of seeds showed seed germination on NaCl free medium, 57% of seeds showed seed germination under the influence of 0.5 gm/l NaCl (Table 4). With time on germination medium, salinity stimulated seed germination (Table 5 and 6) especially, when the seeds were subjected for germination in the presence of relatively low concentration of NaCl (0.5 – 3 gm/l). In this work, the negative effect of NaCl on seed germination was detected when the seeds were subjected for 4 gm/l NaCl. While jojoba is known as salt tolerant species (Jensen and Salisbury, 1988; Benzioni et al., 1992), salt damage can occur and differences in response among clones had been observed (Rasoolzadegan et al., 1980; Benzioni et al., 1992). indicating the possibility of developing clones with increased levels of salt resistance or tolerance. Relatively low concentration of NaCl (0.53 gm/l) stimulated seedling growth and resulted in the formation of higher fresh mass than control. On the other hand, germination of seeds on medium containing 4 gm/l NaCl retarded seedling growth with complete avoidance of shoots (Table 5 and 6). Elongation and thickening of stems (Bartolini et al., 1991). the total leaf area and

leaf size (Bartolini et al., 1991). shoot and leaf expansion, number of leaves and flowers were reduced in response to increased levels of salinity (Rasoolzadegan et al., 1980; Benzioni et al., 1992). Increasing in leaf thickness was also reported when jojba plants were subjected to salt stress (Sa´nchez-Blanco et al., 1991). Conc. of Germination DRS NaCl (g/l) freq. (℅) Control 61 0.27 0.5 56.6* 0.17 1 38* 0.13 2 55.4* 0.6 3 44* 0.1 4 34.3* 0.1 Table 4. Effect of NaCl on seed germination after four days under germination condition.

* Means significantly different (t-test) from jojoba seeds cultured on hogland solution without salt at P < 0.05. Increase the concentration of NaCl over 3 gm/l resulted in inhibition of seed germination as well as radicle growth (Table 5). Plumules were completely suppressed when 4 gm/l NaCl were used. These results were in agreement with previous report (Berrichi et al., 2010). They were found that 5g/l of NaCl inhibited completely the emergence of plumules and, 3 g/l of NaCl marked the start of negative effect on the growth jojoba seedlings.

Conc. of Germination Length of root Shoot freq. Length of shoot NaCl (g/l) freq. (℅) (cm) (℅) (cm) Control 66 1.7 16 0.5 0.5 61* 5.3 16 0.3 1 66* 3 16 0.4 2 83 11 33* 0.4 3 75 7.25 33* 0.5 4 41* 0.23* ----Table 5. Effect of NaCl on seed germination after nine days under germination condition.

32

Journal of Environmental Studies [JES] 2012. 9: 29-35

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without salt at P < 0.05. Relatively low concentration of NaCl resulted in enhancement of seedling growth up to 3 gm/l NaCl (Table 6). The data also indicated that 4 gm/l of NaCl resulted in decreasing the radical length and inhibition of plumule formation. Botti et al., (1998) reported that jojoba plants grown under high Conc. of NaCl (g/l)

Germination freq. (℅)

salt levels did not show much difference from those grown under non-saline conditions for most of the morphological and anatomical parameters such as number and size of stomata, density of trichomes, leaf size, branching characteristics and stem diameter. On the other side they found that leaf and cuticle thickness showed a high tendency to increase under saline conditions.

Length of root (cm)

Plumule Length of No. of No. of formation shoot (cm) leaves per shoots freq. (℅) shoot per seed Control 69 2 33.3 0.8 2 1 0.5 66.6* 6.66 50 1 2 1 1 66.6* 3* 50 1 3 1 2 83* 15.3 42.2 4 6 1 3 83.3 14.3 33* 2.3 4 1 4 50* 0.73* --------Table 6. Effect of NaCl on seed germination after fifteen days under germination condition.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without salt at P < 0.05. Mannitol as same as NaCl delayed seed germination of jojoba plant (Table 7). Application of 2 or 3 gm/l mannitol in germination medium improved the seed germination. Comparison between the effect of NaCl and mannitol indicated that incorporation of these both factors in relatively low concentration improved seed germination. Conc. of Germination Length of mannitol (g/l) freq. (℅) roots (cm) Control 61 0.27 0.5 46* 0.1* 1 55* 1.8 2 46* 0.46* 3 33* 0.16* 4 27* 0.1* Table 7. Effect of mannitol on seed germination after four days under germination condition.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without mannitol at P < 0.05. The data in this work indicated that the emergence of plumules were commenced after four days of subjecting the seeds for germination conditions (Table 8 and 9). The commencement of plumules was depend on the concentration of mannitol in the germination medium. While relatively low concentrations of mannitol (1 – 3 gm/l) stimulate plumule formation, 4 gm/l mannitol inhibit completely the emergence of seed plumule. The same results were obtained when 4 gm/l NaCl were used (Table 6).

Conc. of Germination Length of Plumule Length of mannitol freq. (℅) roots (cm) freq. (℅) shoots (cm) (g/l) Control 66 1.7 16 0.5 0.5 55.5* 1.15* 16 0.5 1 55* 8.5 50 0.3 2 66* 7 33 0.2 3 83 3.3 25 1 4 50* 0.5* ----Table 8. Effect of mannitol on seed germination after nine days under germination condition.

33

Journal of Environmental Studies [JES] 2012. 9: 29-35

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without mannitol at P < 0.05. Plumule formation were delayed under the influence of 4 gm/l mannitol where it was only commenced in two weeks (Table 9). On

the other hand, in two weeks, 4 gm/l mannitol stimulated the radical length in comparison to that of control. These data indicated that mannitol in concentration between 1 and 3 m/l stimulated both shoot length and the number of shoots per seed.

Conc. of Germination Length of Plumule Length of No. of No. of mannitol freq. (℅) roots (cm) freq. (℅) shoots (cm) leaves per shoots (g/l) shoot per seed Control 66 2 33 0.8 2 1 0.5 55.5* 2 33 0.8 2 1 1 58* 14.6 50 3.16 2 2 2 83 9 33 1.1 2 1 3 83 7.66 83 1.81.8 2 3 4 50* 5.7 30* 0.66 --1 Table 9. Effect of mannitol on seed germination of seeds placed on one layer of cotton flooded with Hogland solution for fifteen days.

* Means significantly different (t-test) from jojoba seeds cultured on Hogland solution without mannitol at P < 0.05. Placing jojoba seeds on three cotton layers just wetted by germination medium created suitable condition for seed germination although the presence of high concentration of mannitol. Under these conditions, jojoba seeds were able to germinate and form plumule up to 100 gm/ mannitol. Comparision between data in tables 9 and 10 indicated that seed germination was strongly Treatment 0 86

10 96

20 86

30 80

affected by the presence of high water content in germination medium. It was expected since the plant strongly tolerates drought condition but it is sensitive for frost and water flooding. Consequently, jojoba has recently established as a crop in many arid and semi-arid regions of the world (Brown et al., 1996), especially around the Mediterranean basin (Benzioni and Dunstone, 1986; Mills et al., 1997) because it is drought and salt tolerant plant species.

Mannitol concentration (gm/l) 40 50 60 70 80 76* 63* 60* 56* 46*

90 43*

100 36*

110 20*

Percentage of seeds cultured (%) 8 7 9 11 11 13 15 16 17 19 21 25 Germination period (day) 18 27* 12* 10* 8* 7* 6* 5* 3* 2* 1* 0 N .of shoot formation Table 10. Effect of mannitol on seed germination of seeds placed on three layers of cotton and witted with distilled water solution for fifteen days.

* Means significantly different (t-test) from jojoba seeds cultured on distilled water without mannitol at P < 0.05. The data of his work indicated that jojoba is the most suitable plant for the Egyptian conditions especially in desert area. Under Egyptian condition, jojoba maximally utilizes 50-70 liters of water weekly in summer and 10-30 liters in winter but when it irrigated by flooding, 12-15 irrigation times per year is needed. Mature shrubs characterize by their strong ability to survive without irrigation for long time where they can survive for a whole year without

watering. Jojoba can also tolerate up to 3,000 p.p.m. without any impact to the yield. Therefore, Jojoba is considered one of the most practical and scientific solutions for desert plantation in Egypt. References: Bartolini, G., Mazuelos, C., Troncoso, A., (1991). Influence of Na2SO4 and NaCl salts on survival, growth and mineral composition of young olive plants in inert sand culture. Adv. Hortic. Sci. 5, 73–76. Benzioni, A., Nerd, A., Rosengartner, Y., Mills, D. (1992). Effect of NaCl salinity on growth and development of jojoba clones I.

34

Journal of Environmental Studies [JES] 2012. 9: 29-35

Young plants. J. Plant Physiol. 139, 731– 736. Benzioni, A, Shiloh, E., Ventura, M. (1999). Yield parameters in young jojoba plants and their relation to actual yield in later years Industrial Crops and Products 10: 85–95. Berrichi, A., Tazi, R., Bellirou, A., Kouddane, N., Bouali A. (2010). Role of salt stress on seed germination and growth of jojoba plant Simmondsia chinensis (Link) Schneider. IUFS J Biol 69:33-39 Botti, C., Palzkill, D., Munoz, D., Prat, L. (1998). a. Morphological and anatomical characterization of six jojoba clones at saline and non-saline sites. Ind. Crops Prod. 9, 53–62. Brown, J.H., Palzkill, D., Whittaker, C., (1996). The jojoba industry 1994, a status and update. In: Princen, L.H., Rossi, C. (Eds.), Proc. of the Ninth International Conf. on Jojoba and Its Uses, and of the Third International Conf. on New Industrial Crops and Products, 25–30 September 1994, Catamarca, Argentina, pp. 150–154. Côme, D. (1982). Germination. In: Mazliak P., ed. Croissance et développement. Physiologie végétale. II. Paris: Hermann, 129–225. El Mogy, N.S. (1999). Egyptian Experience in Planting Jojoba Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt 431. Jensen, W.A., Salisbury, F.B. (1988). Bota´nica, 2nd ed. Libros McGraw-Hill de Me´xico, Me´xico, 722 pp. Harsh, L.H., Tewari, J.C., Patwal, D.S. and Meena, G.L. (1987). Package of Practices for Cultivation of Jojoba (Simmondsia chinensis) in AridZone, Pp: 1–19. CAZRI, Jodhpur (India). Mohasseb, A.H., Mohamed, K., El-Bahr, M.K., Adam, Z.M., Moursy, H.A. and Solliman,

M. (2009). In Vitro Clonal Propagation of Jojoba (Simmondsia Chinensis (Link) Schn.). Aus tralian Journal of Bas ic and Applied Sciences , 3: 3128-3136. Rasoolzadegan, Y., Hogan, L., Palzkill, D.A. (1980). Response of jojoba to five levels of salinity. In: Puebla, M. (Ed.), Proc. of the IV International Conf. on Jojoba, 5–6 November 1980, Hermosillo, Sonora, Mexico, pp. 113– 120. Roussos, P.A., Tolia-Marioli, A., Pontikis, C.A. and Kotsias, D. (1999). Rapid multiplication of Jojoba seedlings by in vitro culture. Plant Cell, Tissue and Organ Culture 57: 133–137. Roussos, P.A., Tsantili, E., Pontikis, C.A. (2006). Responses of jojoba explants to different salinity levels during the proliferation stage in vitro Industrial Crops and Products 23: 65–72. Sa´nchez-Blanco, M.J., Boları´n, M.C., Alarco´n, J.J., Torrecillas, A. (1991). Salinity effects on water relations in Lycopersicon esculentum and its wild salt-tolerant relative species L. pennelli. Physiol. Plant. 83, 269– 274. Weiss, E.A. (1983). Crambe, niger and jojoba. In: Oilseed Crops. Longman, London, UK, pp.507 - 527. Yermanos, D.M. 1979. Jojoba - a crop whose time has come. California Agriculture (Jul Aug.), pp. 4 - 11. Yermanos, D.M. (1982). Jojoba - A potentially valuable species in the control of desertification. Proceedings of the Conference on Alternative Strategies for Desert Development and Management, 31 May - 10 June 1977, United Nations Institute for Training and Research, Sacramento, California, USA. Agriculture Vol. 2, pp. 374 - 381.

‫ا ا‬

‫إ ت "ور ت ا   ا  اوف‬ ‫ري ا!  رة ا ت  ا ت‬#! ‫ ة‬$%‫ر ا*)(' &را ا  ا‬$+,‫د ا أن ت ا ه ا‬ ‫ي‬# ‫ل‬#)   ‫ور‬7 ‫ ا‬89‫ و‬:2 ‫ف  ا ت‬%‫ ا; وا‬$342  أه‬#‫وآ  در ا‬ .‫و زادة )> ا ت و  ا درات‬X) ‫ در‬٣٠ ‫ور  در ; ارة‬7 ‫> ا‬$C#2 ‫ أن‬1‫ إ ذ‬T9‫ أ‬،T$!‫ا‬

35

‫‪Journal of Environmental Studies [JES] 2012.‬‬ ‫‪201 9: 37- 42‬‬

‫‪Original Paper‬‬

‫‪$‬ر "!  اة ا ذي ان ا وان ا إزا اات‬ ‫وا')('ت  !& او‪%‬ت ا*!‬ ‫و‪ 7-= %0 -‬ا)‪ .‬ر‪ 8 ،١Y‬ف ‪8R‬ن ‪)V0 ،٢-.8‬د ‪ ,V%0‬ه‪:‬اع‪ -;0 ،٣‬أن‪  ،٤‬‬

‫‪٥‬‬

‫‪١‬‬

‫أذ ‪ 2V< / 8V0‬ه ا‪ / 7* )0R / c-.‬ا)اق‬ ‫‪0‬رس ‪ 2V< / 8V0‬ه ا‪ / 7* )0R / c-.‬ا)اق‬ ‫‪٣,٤,٥‬‬ ‫‪ 0‬س ‪ 2V< /‬ه ا‪ / 7* )0R / c-.‬ا)اق‬

‫‪٢‬‬

‫إ‪3‬م‪ ١٩ :‬أ( ‪.< ،٢٠١٢‬ل‪٢٠١٢ 0 ٢٨ :‬‬

‫ا‪:567‬‬ ‫*‪  2‬ه‪6‬ا ا‪ M%.‬ا‪j‬ر; ‪ 0'; ,-‬ا‪$%‬ة ا" ذي ان ا‪ V‬وان ا  إزا اات وا  ت‬ ‫‪ 5-0 ,0‬او‪+‬ت ا‪ (-1"* 2* M-+ ،-:‬و‪ ,-./0 ,-*+‬وا‪+‬ة *)( 'م ا‪$%‬ة ا" ذات ا  ا‬ ‫و‪8‬د أب ان ا‪ V‬وا‪$ ()* -;k‬ب ان ‪ 8‬و*‪34 5-  61* 7‬ت ‪9$0 -:0‬ذة ‪,0‬‬ ‫إ‪+‬ى ‪%0‬ت ا  ‪ ) 7* 0‬أن ‪ 2‬إ‪0‬اره ‪.4< .= >8‬ن ‪ :% (D."0) -;)0‬ااد ا‪ -‬و‪ )0‬‬ ‫‪ ,0‬د‪9‬ل ا‪+‬ة ‪ 2* M-+‬ا"‪ (-1‬ر‪+ R‬ارة ا‪ 7- ../‬ا‪ lI‬أن ا‪8‬د أب ان ‪.0 8‬ع )‪-‬‬ ‫‪:0‬ج ون *  * ق  ‪ 2-< n 9‬ااد ا‪ .P‬ا‪6‬ا‪ .I‬ا‪ TDS -‬وا ‪ --‬ا ‪ -I‬وا‪ ,+‬آ *‪ ,-.‬إن‬ ‫أ‪ (4‬إزا ات و‪ COD‬ا وا‪6‬اب ‪8‬د أب ان ‪ 71 M-+ 71 M-+ 8‬آ ءة ا‪N‬زا‬ ‫‪ %٦٣.٥‬و‪ ٩١.٨٥‬ات واـ ‪ >8 COD‬اا و‪ 7P+‬أ‪ (4‬إزا   ت ا‪6‬اب ‪8‬د أب ان‬ ‫‪.V0 8‬ق ‪:‬ج و ءة إزا ‪ ،%٩٦ 71‬أ‪ 0‬أ‪$% -.-* QIP9 (4‬ة *‪ 2‬ا‪P%‬ل ‪ 8  -8‬ا‪8‬د‬ ‫أب ان ‪ 8‬وأب ان ‪.0 8‬ع ‪:‬ج‪ 2-< U$* 2 .‬ا‪T‬س ا ‪-‬رو‪ 5-0  -R‬او‪+‬ت‬ ‫‪$‬ب ان‪.‬‬ ‫ا ت ا‪8‬ا‪ :‬إزا اات‪ ،‬إزا ا  ت‪'; ،‬م ا‪$%‬ة ا"‪ ،‬او‪+‬ت ا‪ ،-:‬ان ا‪ ،V‬ان ا‪.‬‬ ‫ا‪:8$‬‬ ‫*)ف ‪ 5-0‬ا ‪34‬ت ‪  ;$‬أي ‪ 5-0‬أو ا‪%* (I‬ي‬ ‫‪= >8‬ا‪ ZI‬أو ‪U0‬ت "( ‪ ،Z‬ا‪ ،(I‬أو ‪r‬زات أو‬ ‫‪0‬آ‪  *.‬اآ‪* :-‬ن ]رة إذا ‪P c-. 7+s‬رة‬ ‫ر‪) -V-I‬د و‪R‬د ا"ا‪ 5-0  ZI‬ا ‪34‬ت إ> و‪R‬د‬ ‫ااد ا‪  .P‬اء وااد ا‪ .P‬ر *ن ‪48‬‬ ‫أو ‪  )-.s  48 -r‬ور *‪ t8 (" R‬و‬ ‫‪r‬وي وذا‪ ZI‬أو ‪=$‬ل ‪%0  /0‬ة‪Karia& ) .‬‬ ‫‪.(Christian, 2006‬‬ ‫‪ ,0‬أز ااد ا ‪  +s 2‬إ> ا‪%V‬ت ا‪-I‬‬ ‫ه اات و ا  ت وأن زد*   ا‪%V‬ت ا‪-I‬‬ ‫‪u  8 l‬هة ا‪UN‬اء ا‪61‬ا‪ >8 ZR D6 I‬ا‪V;N‬ن‬ ‫إزا  أو ا‪-U$* ,0 (-j‬ه ) ‪Marthie and Cloete‬‬ ‫‪.(1998‬‬ ‫) ;'م ا‪$%‬ة ا" ذات ا  ا ‪,0‬‬ ‫ا‪ ';T‬ا‪ -%‬ا )  إزا اات وا  ت‬ ‫‪:-‬ه ل ز‪ ,0‬اث ا ‪-‬رو‪%* M-+،-‬ج‬ ‫‪ -8‬ا‪ R‬إ> ا‪T‬وآ‪ (% ,-V‬او‪ ,-R‬إ>‬ ‫;ات ‪* -‬ن ا)‪ -‬ا ) ‪N‬زا اات ه ‪-8‬‬ ‫‪ w8‬ا‪ R‬وا *‪-1 2‬ب ا‪T‬وآ‪ ,-V‬وا ‪ /z0 ٠.٣‬آ ‪ 7-‬اـ‪ lI‬إن‬ ‫إزاـ اـ ‪ V‬ر *‪ ,V%‬آ ا;‪ n /‬ز‪ ,0‬اـث‬ ‫اـ ‪-‬رو‪ n /* - -‬اـ‪ .V‬اـ‪ V  c‬ر ‬ ‫اـ‪$%‬ة ‪:‬دة ‪ 8‬اـ‪$%‬ة‪.‬‬ ‫أ‪R‬ى ا‪k+.‬ن )‪ (Sotirakou et al., 1999‬درا‬ ‫‪ >8 -j+‬إ‪+‬ى ا‪%‬ت ا)‪$ 0‬ب ا‪$%‬ة ا"‬ ‫ذات ا  ا وا *)‪0 5-0 l‬و‪+‬ت ‬ ‫‪j0 |P‬ار‪ ١٢٠٠٠ 5‬م‪/٣‬م و*‪39 ,-.‬ل ارا أن‬ ‫ه‪ 56‬ا‪ (:* %‬ا‪ (" -;0T‬آ‪ 5-0 ,0 (0‬او‪+‬ت‬ ‫و*‪ ,0 %٢٨ (:‬اـ ‪ V‬ر اـ)‪4‬ي و ‪ ,0 %١٥‬اـ ‪ V‬ر‬ ‫اـ وآ;‪ .V; 7‬اـ ‪ V‬ر اـ‪:‬اـ‪/‬اـ‪ Z‬اـ‪I--‬‬ ‫‪x‬وآ‪ ,-V‬اـ‪:‬اـ ه ‪r/z0 ٨‬ام‪.‬‬ ‫8‬ا‪T‬رض‬ ‫‪ lI; 7- M-+‬ارا أن إزا او‪* ,-R‬او‪,- 7+‬‬ ‫)‪* 08 % (٥٤ – ٣٢‬ن ا‪T‬رض ‪:0 -r‬رو‪8‬‬ ‫‪=T‬ر ‪ -‬زادت ;‪ .V‬ا‪N‬زا ‪ (P‬إ> )‪(٨٧ – ٤٧‬‬ ‫‪* 08 %‬ن ا‪T‬رض ا‪  0/V‬ا) ‪:0‬رو‪8‬‬ ‫‪=T‬ر‪.‬و إزاـ اـ  ت *او‪% (٥٤ – ٣٢) ,- 7+‬‬ ‫‪* 08‬ن اـ‪$‬رض ‪:0 -r‬رو‪ 8‬ـ‪=$‬ر ‪ -‬زادت‬ ‫;‪ .V‬اـزاـ ‪ (P‬إ> )‪* 08 % (٨٧ – ٤٧‬ن‬ ‫ا‪T‬رض اـ‪  0/V‬اـ)ـ ‪:0‬رو‪ 8‬ـ‪=$‬ر‪.‬‬ ‫ا)اد و‪A‬ا@? ا>‪:.‬‬ ‫*‪  2‬ه‪ 56‬ارا *"‪ (-1‬و‪ ,-./0 ,-*+‬وا‪+‬ة‬ ‫*)( 'م ا‪$%‬ة ا" ذات ا  ا و‪8‬د‬ ‫‪38‬‬

‫أب ان ا‪ V‬وا‪$ ()* -;k‬ب ان‬ ‫‪ 8‬و*‪34 5-  61* 7‬ت ‪9$0 -:0‬ذة ‪,0‬‬ ‫إ‪+‬ى ‪%0‬ت ا  ‪ ) 7* 0‬أن ‪ 2‬إ‪0‬اره‬ ‫‪.4< .= >8‬ن ‪ :% (D."0) -;)0‬ااد ا‪-‬‬ ‫و‪ ,0  )0‬د‪9‬ل ا‪+‬ة ‪ 2* M-+‬ا"‪ (-1‬ر‪+ R‬ارة‬ ‫ا‪ ./‬و]^ ا"( ر8 -V0 9‬ى ‪ 5-0‬ا ‪34‬ت ‪ Y-‬ا‬ ‫‪s‬اف ‪4‬ن =‪ U %‬آ ‚‪ U$‬ا‪  |P‬ق‬ ‫ا"‪ 7.U M-+ %‬ان اا‪ tj% M-% (9‬ز‪0 ,0‬ث‬ ‫ه‪-‬رو‪j0 -‬ار‪.8 ٢٤ 5‬‬ ‫‪Inlet‬‬ ‫‪Outlet‬‬ ‫‪Sed.‬‬ ‫‪Aeration‬‬ ‫‪Tank‬‬ ‫‪tank‬‬ ‫‪28 cm‬‬ ‫‪8 cm‬‬ ‫‪Diffuser‬‬

‫‪20 cm‬‬

‫‪18 cm‬‬

‫‪٥ cm‬‬

‫‪ (-  * .(١) ./‬و‪+‬ة ان ا‪ V‬ا‪/V‬م  * ‪6-‬‬ ‫ارا )ا)‪.‬ر‪(٢٠٠٠ ،Y‬‬

‫‪)%‬ض ان "‪:4‬‬ ‫=( )‪+ (k (٢‬ض ان ‪-8 2* M-+ 8‬‬ ‫ا) ا ‪ ,-]+‬أا;‪ -‬ا"( ‪ ,0‬ا‪D3.‬‬ ‫ا" ف ‪ (2٢٦) j‬وار* ع )‪ (2٢٥‬و‪ 61* 2‬آ(‬ ‫وا‪ +‬ـ ‪   ١٠‬آ( دورة ‪ () M-+‬ا‪T‬ول ‪(8 * ,0:‬‬ ‫)‪j0 (React‬ار‪ 8 ٢٤ 5‬وا‪8 ٢٤ (8 * ,0: ;k‬‬ ‫‪  Yj.V‬ا‪ +‬ا‪T‬و> ‪:0 -8‬ج ‪ ƒj‬ة ‪,-8‬‬ ‫و)‪  Y.j‬ا‪ +‬ا‪:0 -8 -;k‬ج ة ‪.,-8‬‬ ‫‪26 cm‬‬

‫‪ ^] (٢) ./‬أ)د ‪+‬ض ان ‪ 8‬ا‪/V‬م ‬ ‫* ‪ 6-‬ارا‪.‬‬

‫أ‪ 0‬ا"( )‪ (k (٣‬و‪+‬ات ا'‪ 0‬اد أ‪U‬ء ا)(‬ ‫أ‪./‬ي‬

‫‪ (٣) ./‬و‪+‬ات ا'‪ 0‬اد‬

‫*‪39 2‬ل ة ارا إ‪R‬اء ا ‪ %‬ت ا‪-‬و‬ ‫ا)‪-j j‬س )‪ (COD‬وا‚س ا ‪-‬رو‪pH -R‬‬ ‫و‪,EC‬و ‪TDS‬و‪Salinity‬و‪ PO4‬و‪ NO3‬و*آ‪ :-‬ا8 8‬‬ ‫اـن اـ‪.V‬‬ ‫ ‪ ,-+‬ا;‪ 74 /‬آ ءة اـزاـ إ> ‪8 %٧٧.٨٨‬‬ ‫و‪R‬د ‪:0 -8‬ج ة ‪ -8 (.< ,-8‬اـ  ‬ ‫‪+‬ض اـن ـ‪ 8‬و)‪:‬ى ‪ Z.‬ذ‪ D‬إ> أن ‪ -8‬اـ‪:‬ج *‪V‬‬ ‫‪)V0‬ات اـ‪-+$‬ء اـ  ‪>j.  0 2V< ()R 0‬‬ ‫‪8‬ـ‪ j‬و*‪8 ,0 :‬ر‪ 5‬اـ‪ 5-‬اـ)ـ ‪ 0‬زاد ‪,0‬‬ ‫*آ‪ :-‬اـ ‪ COD‬اـ ‪(Technical Learning‬‬ ‫)‪.College, 2003‬‬

‫‪90‬‬ ‫‪80‬‬ ‫‪70‬‬ ‫‪60‬‬ ‫‪50‬‬ ‫‪40‬‬ ‫‪30‬‬ ‫‪20‬‬ ‫‪10‬‬ ‫‪0‬‬

‫‪0‬‬

‫‪* 8‬ا‪+T‬اض ‪ 0‬ا;)‪* >8 w‬آ‪ :-‬ا آ ءة أ‬8 -I‫ها‬3‫ ا‬-Ij;‚‫اض ا‬+T‫ا‬ ‫ة ان" ر‬V‫ة ا" ا‬$%‫ا‬ ( ‫) ا‬0R ، ‫ ا‬-‫ آ‬,-VR0 ‫ات‬+‫ام و‬/‫ "ا‬.(١٩٩٩) 7-= %0 -‫ و‬،Y‫ ر‬.)‫ا‬ )0  0T‫ ا‬s  ‫ة ا" ذات ا‬$%‫ا‬ ، ‫ ا‬-‫ آ‬،-VR0 +‫و‬s‫ أ‬،"‫ت‬+‫ او‬5-0 .( ‫) ا‬0R ‫;ن‬8 ، ‫د و‬+ %0 ،‫د‬+‫ ى و‬،‫ر‬+ -‫ ا‬5-‫ ا‬,0 ‫ "إزا اات‬.(٢٠٠٩) ‫ص‬j0 R-.‫( ا‬8 ‫)ل ا‬ -‫آ‬,- ‫ )م ا‬7* 0 ،",-V‫وآ‬T‫ا‬ ٣ ‫ ا)د‬،١٦ ‫ ا‬،7* )0R ، ‫ا‬ 41

Journal of Environmental Studies [JES] 2012. 9: 37- 42

Vaboliene, G., Matuzevicius, A.B. and Dauknys, R. (2007). "Impact of temperature on biological phosphorus removal from wastewater in Lithuania" EKOLOGIJA. 2007. Vol. 53. No. 4. 95–101 WPCF, APHA and AWWA (1999) "Standard Methods for the Examination of Water and Wastewater " 20th ed, Washington D.C. USA Zou, H., Du, G.C., Ruan, W.Q. and Chen, J. (2006). "Role of nitrate in biological phosphorus removal in a sequencing batch reactor". World Journal of Microbiology & Biotechnology, 22: 701–706.

Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt. Sotirakou, E., Kladitis, G., Diamantis, N. and Grigoropoulou, H. (1999). "Ammonia and Phosphoures removal in municipal waste water treatment plant with extended aeration" Global Nest:the Int J ,Vol.1,No.1 , 47-53. Su, J.L. and Ouyang, C.F. (1996). Nutrient removal using acombined process with activated sludge and fixed biofilm. Wat.Sci. Tech, Vol.34, No.1-2, 477-486. USEnvironmental Protection Agency (2003). (ACTIVATED SLUDGE)State Acceptance List USA, Office of water, Washington.

Comparison Between Continuous and Batch Flow Activated Sludge Reactor to Remove Nitrate and Phosphate From Domestic Wastewater Waleed M. Sh. Alabdraba, Afaf J. Obed, Masuod M. Hazaa, Safa Badeaa and Manolea Aiden

Abstract In this paper a comparison between continuous and batch flow activated sludge reactor to remove nitrate and phosphate from domestic wastewater, tow bench scale units was operated one work as continuous reactor and the second as batch reactor, the raw wastewater brought up from one of the lifting pump stations in Tikrit city and pass it throw metal screen to prevent floating materials from entering the units. The results shows the batch flow reactor followed by mixing without aeration is the best in bring down total dissolved solids , electrical conductivity and salinity while the best removal of nitrate 63.5% and chemical oxygen demand 91.85% achieved in batch flow reactor. The best removal of phosphate is 96% achieved in batch flow reactor with mixing only before the aeration. the batch flow reactor and the batch flow reactor followed by mixing give the best settling characteristic of sludge, while the pH don’t affected by the flow regime. Key Words:-Nitrate Removal, Phosphate Removal, Batch Flow, Continuous Flow

42

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Original Paper

Modeling of the heating transfer in the karst aquifers for Val d'Orléans city (France) Ali Salim Joodi Department of Environmental Eng., Collage of Engineering, Al-Mustansiriya Univ, Baghdad (Iraq) Rec. 17 Nov, 2011 Accpt. 12 Dec, 2011

Abstract: In karst aquifers, temperature distribution play an additional important role since they carry information about internal aquifer structures. The aim of the present work is to develop a two dimensional heat transfer model in a karst aquifer. Navier Stokes equation is used to simulate the groundwater velocity in the conduit system where the porosity tends to one, and means water velocity was taken into account in the fractured rock. Heat transport equation was applied to simulate the temperature distribution in a karst aquifer, and k- turbulent model is used to simulate the turbulent viscosity. The model was applied to the karst system of Val d'Orléans. Temperatures are measured in thirteen wells with different depth in 29 Jun 2011. Results have shown that the model was not sensitive to the variation of water density, but it is sensitive to the variation of specific heat and density of the rock especially in the fractured system. Also, the model was varied sharply with the velocity of water in sinkhole points, and any variation in the depth of saturated zone. The comparison between measured and calculated temperatures in wells is very good. Key word: Karst aquifers, Heat transport, Conduit and diffuse flow systems, Numerical model and Val d'Orléans highly vulnerable compared to other Introduction: Karst forms when groundwater dissolves groundwater systems, since potential pockets of limestone, dolomite, or gypsum in contaminants can easily reach the groundwater bedrock. This dissolution process increases the (Genthon et al., 2005; O’Driscoll and bulk permeability of the massif, developing a DeWalle, 2006; Dogwiler et al., 2007). conduit network of high hydraulic The use of heat as a groundwater tracer, in conductivity, with short water residence time, contrast to the use of chemical tracers, is and preserving micro fractured blocks with attractive because of the ease of measuring long water-residence time (Dogwiler et al., temperature with high precision (errors as low 2007). Thus, karstification provokes flow as ±0.03 _C). Groundwater temperatures are heterogeneity, increasing the permeability influenced by the temperature of recharge, contrast between conduit flow and diffuse mixing of different waters resulting from flow systems. Karst system is mainly groundwater flow. (Andrieux, 1978; Crowther characterized by four elements. The first is and Pitty, 1982; Roy and Benderitter, 1986; sinkholes which recharge the karst system. Lastennet, 1994; Martin and Dean, 1999; Birk The second is the underground drainages or et al., 2004). have used water temperature conduits which are largely influenced by jointly with other natural hydro dynamical and sinkholes and consequently the water flow in hydro chemical responses, as additional these regions is high. The third is fractured information to characterize the different flow system (diffused system) which is weakly types and the structural influenced by sinkhole and consequently the organization of drainage patterns in karst water flow in these regions is slow. The last is aquifers. Groundwater applications have been spring point in which the water is emerged at developed to model quick-flow in karst the surface. In this context, karst systems are conduits, diffuse flow in fractured and, and the * Corresponding author: Dr. Ali Salim Joodi [email protected]

43

Journal of Environmental Studies [JES] 2012. 9: 43- 51

interaction of these two flow regimes. Fluid flow and solute/ heat-transfer numerical models that include both of these flow regimes include (Benderitter et al., 1993; Liedl and Sauter, 2000; Birk, 2000; Andre and Rajaram, 2005; Birk et al., 2004). With these distributed-parameter models, velocities are estimated from the flow simulation and then are used in the transport simulation. Additional insight into general heat-transfer theory for pipe and channel flow is described by (Gnielinski, 1976; Aravinth, 2000; Beek et al., 1999; Benim et al., 2004). As the conduits are highly influenced by the contamination of rivers (as the water of sinkholes), any information on conduit locations usually is unavailable. For cases where wells or springs have a temperature response that is influenced by conduit flow, the conduit network is globally defined. This paper presents a twodimensional numerical water flow /heat transport model that is explored as an alternative that might be useful to locate the conduit networks in the karst system of the Val d'Orléans. This model simulates the temperature response to recharge in wells and assumes that wells receive at least some of its water from a nearby conduit. The water flow will be simulated in conduit system by Navier Stokes equation, but the model does not simulate the water flow in the fractured system (in which the permeability is less than that in the conduit system). The water velocity in the fractured system will be carried out as mean velocity. The results of the model will be verified with temperatures observed in the wells. The viscosity gradient will be calculated by using K epsilon turbulent model. Characteristics of the experimental field area: The karst aquifer of the Val d’Orléans is the largest in France in terms of flow rate (10 m3/s) and provides the mean water resource of the Orléans city (Albéric and Lepiller, 1998). The Val d’Orléans is considered as a vast depression of the major bed of the Loire river, 37 km long and from 4 to 7 km wide (Fig. 1). The karst aquifer is hosted within an Oligocene carbonate lacustrine deposit occurring in the center of the Paris basin and

called the limestone of Beauce (Guillocheau et al., 2000). This latter formation display variable repartition with a significant primary porosity except for micritic facies, this porosity is increased by karstification leading to a relative high permeability (5E-10 to 2E-9 m2) at hectometric scale (Martin and Noyer, 2003). The latter is overlapped by the quaternary alluvia of the Loire river. The Loire river feeds more than 85% of the water hosted in the carbonated karstic aquifer. The estimated inflow of the Loire river in the sinkhole infiltration area of Jargeau varies from 15 to 20 m3/s and it can reach 100 m3/s during floods (Zunino, 1979; Chéry, 1983; Lepiller and Mondain, 1986). Karst networks are well known in the left bank of the Loire river. The water runs from Jargeau through the karst conduits networks towards the direction of the springs of the Loiret river, (Zunino, 1979; Chéry, 1983; Lepiller and Mondain, 1986), as shown in figure (1). The springs of Loiret river are called the Bouillon and the Abîme, they are considered as the main emergences of the water lost close to Jargeau in the Loire river (from 0.3 to 5 m3/s). The mean aquifer outflow is an underground emergence in the Loire river located around the confluence of Loire - Loiret. Previous studies showed the relation between these springs and the sinkholes points at Jargeau within the Loire river using dye tracer tests (Zunino, 1979; Chéry, 1983; Albéric and Lepiller, 1998; Lepiller, 2001; Albéric, 2008). The main karstic conduits were located according to the depressions of the piezometric surface and to the different connections identified by the tracer tests presented in figure (1).

Figure (1): Underground waters karstic circulations of the Val d’Orléans city (Albéric and Lepiller, 1998).

44

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Governing equations: Numerical simulations of fluid flow and heat transport in a karst aquifer were used to investigate the temperature distribution in the karst and by consequence to determine the karstification degree of the karst aquifer. In the present work, Navier Stokes equation is applied to simulate the water velocity in conduit system, as a result to the grand porosity in this system. A uniform velocity is taken in the fractured rock system where the porosity is highly less than that in conduit system. To determine the temperature distribution in the karst, heat transport equation is used. Due o the variation of the temperature in the karst system, the viscosity will be changed, and to calculate this variation K epsilon turbulent model is used. Navier Stokes equation for two dimension is: w

q w  q w w q w  p   2q w    w g t

(1) Heat transport equation in the karst for two dimension is:  (1  )r Cr T   w Cw T q ww CwT  2T t (2)

K epsilon turbulent model for two dimension is: w

w

   k  q w w k   2  k   G  w E t  k 

(3)

   q w  w    2  t  

(4)

  2    C1 G  C2 w k k 

To calculate the turbulent viscosity, the following equation is used:  t  C  w

k2 

…………(5)

Where:

w

is the water density, qw is water velocity vector, t is the time, p is the water pressure, g

is the acceleration gravity,  is the porosity of the karst system,  r is the rock density, C r is the specific heat of the rock, C w is the specific heat of the water, T is the water temperature,  is the heat conductivity, k is the turbulence kinetic energy,  is the dissipation rate of

turbulent kinetic energy, G is the production

 of turbulence kinetic energy,  k ,  , C1 , C 2 , C

are constants. Les valeurs des constantes sont (Leschziner et Rodi, 1983).

C  0.09 , C1=1.44, C2=1.92,   =1.3,  k =1 In the present work, the variation in the density of water and rock can be calculated from equations (6) and (7), respectively. The variation in the specific heat of water and rock can be calculated from equation (8) and (9), respectively (Somerton, 1992; Douglas and Jacob, 2004).  w (T )  1043.196 - 42.966623exp (0.006895T) (6)  r (T ) 

2650 1  (T  20)  0.5  10  4

1 C w (T )  0.0002374  8.06817  108 T  8.03671 1010 T 2

Cr (T )  1234.257 - 454.546exp (-0.0039733T)

(7) ..(8) (9)

Heat transport in the karst system of the Val d'Orléans: Karst system of the Val d'Orléans has many sinkhole points which are located on the Loire river at the city of Jargeau, and it has many spring points as shown in figure (1). In this work, the temperature is monitored at thirteen wells and one spring point located in the karst system of the Val d'Orléans. In general, water in the conduit includes sinking river water and diffuse flow (from fractured system) entering the conduit along its length. In addition to water from the conduit, a well or spring also might receive local diffuse flow that has not interacted with the conduit. For example, a well that is south of the conduit may induce flow from the conduit and also from diffuse flow within the well’s zone of influence on the north, south, and east sides of the well (Fig. 2) and consequently it can be observed a variation in the water temperature of the well. But in the most cases, it can be observed many wells in which the temperature is constant. This can be attributed to the location of the well, the variation of the water temperature in the well decrease when the well far away from the conduit and vice ve

45

Journal of Environmental Studies [JES] 2012. 9: 43- 51

21000 m Sinkhole point Spring source Fractured system

4000 m

Conduit system Well

Figure (2): Schematic diagram of a karst system

Figure (4): Water temperatures measurements in wells of Ligne, Piezometre, Moret 2, and Moret Well of Boires 1 Well of Boires 1

Well of Ligerienne Well of Ligerienne 21

23

20

22 21 20

18

Temperature (C)

Temperature (C)

19

17 16 15 14 13 12 13

18

S

14 13 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Depth (m) Well of 2 2 Well ofBoires Boires

Well of Ormeaux 21

22

20

21

19

19

18

Temperature (C)

20 18 17 16 15 14 13 12 7

8

9

10

11

12

13

14

15

16

17

18

19

17 16 15 14 13 12 8

20

10

12

14

Depth (m)

16

18

20

22

24

26

28

Depth (m)

Figure (5): Water temperatures measurements in wells of Ligerienne, Boires 1, Ormeaux, and Boires 2. Well of of Berruet 1 Well Berruet 1

Berruet 3 WellWell of ofBerruet 3 22 20

Le Berruet 4

Temperature (C)

Temperature (C)

16 14

Le Berruet 3 Le Berruet 1 Le Berruet 6

Well location

8

10

12

14

16

18

20

22

24

26

28

17 16 15 14 13 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

30

Depth (m)

Well of 4 Well ofBerruet Berruet 4

Well of Berruet 6

Well of Berruet 6

22

22

21

21

20

20

19 18 17 16 15 14

19 18 17 16 15 14 13 12

12 7

9

11

13

15

17

Depth (m)

19

21

23

25

6

27

8

10

12

14

16

18

20

22

24

Depth (m)

Figure (3): Wells location in the karst system of the Val d'Orléans

Berruet 7 7 WellWell ofofBerruet

o

22 21

Temperature (C)

In these wells, the variation reaches to 12 C, this means that these wells are close to the conduit system. But the temperature is stable in wells of Ligerienne and Ormeaux. Figure (6) shows the wells of Berruet 1 and Berruet 3 are affected by the conduit system but less than that in wells of Boires 1 and Boires 2.

18

Depth (m)

13

Le Berruet 7

19

12

6

Temperature (C)

Le Moret

18

12

Temperature (C)

la Piézométrie

Width (m)

Les Boires 2 Les Ormeaux Les Boires 1 La Ligérienne

La Ligne

E

15

21

Le Moret 2

W

16

Well of Ormeaux

20

Bouillon spring

17

23

22

Loire river

N

18

Depth (m)

Length (m)

Loiret river

19

12 8

Temperature (C)

Depending on the previous description, the temperature is monitored at thirteen wells and one spring point located in the karst system of the Val d'Orléans. Position of wells in the calculational region is illustrated in Fig. (3). The temperature measurements in wells are shown in figures (4,5 and 6). These measurements are provided in 29/06/2011 when the temperature of Loire river and the Bouillon spring were 26.5 oC and 15.6 oC, respectively. figure (4) shows that the water temperature in wells of Ligne, Piezometre, and Moret is nearly stable but in the well of Moret 2, the temperature deceases 3 oC starting from the depth of 12 m. This variation in the temperature can be attributed to the water coming from the conduit system. The variation of groundwater temperature in wells of Boires 1 and Boires 2 is greater than that in the well of Moret 2, as shown in figure (5).

20 19 18 17 16 15 14 13 12 7

9

11

13

15

17

19

21

23

Depth (m)

Figure (6): Water temperatures measurements in wells of Berruet 1, Berruet 3, Berruet 4, Berruet 6, and Berruet 7

46

Journal of Environmental Studies [JES] 2012. 9: 43- 51

and 9). The initial values of water viscosity, kinetic energy and dissipation rate of turbulent kinetic energy are obtained by the following equations: … (10)   0.077U* h … (11)   Sgq w

21000 m

470 m

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

Sinkhole points

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.8

Bouillon spring

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.10.10.10.80.10.80.80.1

Sinkhole points

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.10.10.10.80.10.80.10.10.1

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.80.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.80.10.10.10.80.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.80.10.10.10.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.80.10.10.10.10.10.10.10.10.80.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

4000 m

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.10.10.10.10.10.10.10.10.80.80.80.80.80.80.10.10.10.1

Where: h is the mean water depth (depth of saturated zone in the karst aquifer), S is the piezometric of the water slope, U* is the friction velocity which is equal to ghS . The piezometric of the water slope is calculated in each region in the study area according to the piezometric map provided by (Zunino, 1979). Equation (5) is used to calculate the initial value of turbulent kinetic energy. Boundary conditions of the study area are illustrated in fig (8). The finite differences technique is used to solve partial differential equations in the present numerical model. The length and width increments are 5 m. Also, the final time of the model is three months and the time step is 5 min, and the thermal conductivity is 1.3 J/sec.m. oC.  u ,v,T ,K ,E   0 y

0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.80.80.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1 0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1

Figure (7): Porosity field and conduit system pathway suggested in the karst system of the Val d'Orléans (Lepiller, 2001; Albéric, 2008).

Loiret river

 u, v, T, K, E   0 x W

P

P

h2

N

Initial conditions constitute values of velocity, temperatures, density and specific heat of the water and rock, water viscosity, turbulent kinetic energy and dissipation rate of turbulent kinetic energy. Concerning the velocity, it is carried out the velocity value measured during the summer season. Then the water velocity inlet to the conduit system is 75 m/hr, this velocity is varied in the conduit system according to Navier Stokes equation, but it is constant in the fractured rock matrix. The velocity inlet to the fractured rock system is a half of previous velocity. Initially the temperature in the study area is that measured in the Bouillon spring on 29 Jun 2011, it was 15.6 oC, expect on the sinkhole points on the Loire river in which the initial water temperature is that measured on Loire river, it was 26.5 oC on 292011. The initial values for the density and specific heat of the water and rock are calculated from equations (6, 7, 8,

Loire river

E

h1 h2 s L

L

S

h1

P: Sinkhole points on Loire river S: Water slope h: Water level

P

Initial values

Mathematical modeling: The study area in the karst aquifer of the Val d'Orléans starts from Jargeau (where the sinkholes on the Loire river are existed) to the last spring point on the Loiret river. The study area is considered as a rectangular area with the length 21000 m and the width 4000m. Two dimension numerical model is carried out to simulate the water temperature distribution in the karst system of the Val d'Orléans. The porosity in conduit system and in the fracture rock system is 90% and 10% respectively. The pathway of the conduit system suggested in the present research is shown in figure (7). This pathway is suggested according to (Lepiller, 2001; Albéric, 2008).

 u ,v,T ,K ,E   0 y

Figure (8): Boundary conditions of the two dimension numerical model

Results and discussions: Many parameters influence on the water temperature distribution in a karst aquifer, as the depth of saturated zone, water velocity, viscosity and density effects, porosity, density and specific heat of the rock. Therefore, it was important to study the effect of the variations of these parameters separately to describe the rate and pattern of heat transport and prioritize their influences. Neglecting the density difference between the temperature of Loire river and groundwater temperature is carried out to study the effect of density on the temperature distribution, and keeping a constant density 47

Journal of Environmental Studies [JES] 2012. 9: 43- 51

during a time period of study equal to initial groundwater density. A comparison between isotherms with and without density effect is shown in fig (9). It can be clearly observed, all isotherms are not influenced by the change of water density. This due to the small temperature difference between Loire river temperature (26.5 oC) and groundwater temperature (15.6 oC). To investigate the effect of the variation of water slope along the study reach which is coming from the piezometric map, a constant water slope along the study reach is taken into account. From fig (10), it can be observed that the water slope parameter influences on the behavior of temperature distribution. When the water slope is varied, the distribution of temperature levels advances more in transverse direction as that when the water slope is constant. Length (m)

a

18000

20000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

2000 2500 3000

°C Width (m)

1500

3500 4000

Length (m)

b

18000

20000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

Width (m)

1500 2000 2500 3000 3500 4000

a) When the water density is varied as a function of temperature b) When the water density is constant along the study reach

Figure (9): Effect of water density on the behavior of groundwater temperature distribution.

The water velocity in sinkhole points on Loire river has a great effect on the behavior of temperature distribution along the study reach. As shown in fig (11), all isotherms are advanced longitudinally and transversely with any increase in the water velocity values. This phenomenon can be attributed to the effect of advective term in the heat transport equation, which is responsible for the advance of isotherm along the study reach. Fig (12) shows the effect of water depth in the saturated zone. According to Albéric and Lepiller (1998). the mean depth of saturated zone for the karst system of the Val d'Orléans is 25 m. Any decrease in the depth of saturated zone causes a retardation of the temperature isotherms along the study reach, as shown in fig (12). This can be attributed to the effect of the depth of saturated zone on the friction velocity and water viscosity and by consequence on the temperature distribution. In order to show the effect of the variation of the specific heat and the density of the rock on the behavior of the temperature distribution, equations (7) and (9) are neglected. This means that the specific heat and the density of the rock are constant in the calculations. In the case of the specific heat and the density of the rock are constant, all isotherms are retarded in the transverse direction, but they are advanced in the longitudinal direction, as shown in fig (13). This may be due to the effect of the specific heat and the density of the rock on the domain of fractured system in the karst aquifers only.

Length (m)

a

20000

18000

16000

14000

12000

10000

Length (m) 8000

6000

4000

2000

a

0

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500

500

1000

2500 3000

b

1500 2000 2500 3000

3500

3500

4000

4000

Length (m) 20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

1000

b

0

°C Width (m)

2000

°C Width (m)

1500

Length (m) 20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500

500

1000

1500

2000

2000

2500

2500

3000

Width (m)

1500

Width (m)

1000

3500

3000

4000

3500 4000

a) When the water slope is varied along the study reach b) When the water slope is constant along the study reach

Figure (10): Effect of water slope on the behavior of groundwater temperature distribution.

a) When the water velocity is 75 m/hr b) When the water velocity is 144 m/hr

Figure (11): Effect of water velocity on the behavior of groundwater temperature distribution.

48

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Length (m)

a

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

°C Width (m)

1500 2000 2500 3000 3500 4000

Length (m)

b

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 500 1000 1000

Width (m)

1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000

a) When the depth of saturated zone is 25 m b) When the depth of saturated zone is 5 m

Figure (12): Effect of the depth of saturated zone on the behavior of groundwater temperature distribution. Length (m)

a

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

500 1000

2000 2500 3000

°C Width (m)

1500

3500 4000

Length (m)

b

20000

18000

16000

14000

12000

10000

8000

6000

4000

Measured Calculated % temperatur temperatur Erro e e r 15.1 15.7 3.9 Berruet 1 16.2 16 1.2 Berruet 3 13.3 15.1 13.5 Berruet 4 17.3 16 7.5 Berruet 6 17.6 17.8 1.1 Moret 22.1 20.1 9 Boires 1 14.4 15.1 4.8 Ligne 12.9 15.2 17.8 Piezometri 17.3 17.1 1.1 Moret 2 eBoires 2 18.8 18.5 1.5 20.5 20.5 0 Ligerienne Bouillon 15.6 15.1 3.2 spring (1): Comparison between measured and Table calculated temperatures in wells. Well

2000

0

500 1000

2000 2500

Width (m)

1500

3000 3500 4000

a) When the density and specific heat of the rock is varied b) When the density and specific heat of the rock is constant (density= 2649.13 kg/m3, specific heat= 825.1 J/kg.k)

Figure (13): Effect of the density and specific heat of the rock on the behavior of groundwater temperature distribution

In order to verify the accuracy of the present numerical model, a comparison between measured and calculated temperatures in wells is occurred. The best results are obtained when the water velocity in sinkhole points is 80 m/hr, the porosity is 10% in the fractured system and 80% in the conduit system and the depth of saturated zone is 25 m. Table (1) displays this comparison with the percentage error for each well. It can be clearly observed that the results of the model are very good compared with the measured temperature. The percentage error of the model ranges from zero to 17.8 percent.

Conclusions In karst aquifers, temperature signals play an additional important role since they carry information about internal aquifer structures. A two dimension heat transport numerical model was developed to simulate the temperature distribution in a karst aquifers composed conduits and fractured systems. The model was based on the Navier Stokes equation to simulate the groundwater velocity in the conduit system where the porosity tends to one, heat transport equation to simulate the temperature distribution in a karst aquifer, and finally k- turbulent model to simulate the turbulent viscosity. The model was applied to the karst system of the Val d'Orléans. This system is very developed in which there are many sinkhole points on the Loire river and many spring point along the Loiret river. Temperatures are measured in thirteen wells with different depth in 29 Jun2011 when the temperature of Loire river and the Bouillon spring were 26.5 oC and 15.6 oC. Calculated results have shown that the model is not sensitive to the variation of water density, but it is sensitive to the variation of specific heat and density of the rock especially in the fractured system. Also, the model is very sensitive to any variation on the water velocity in sinkhole points, and any variation in the depth of saturated zone. The influence of the variation of the groundwater slope along the study reach is small compared 49

Journal of Environmental Studies [JES] 2012. 9: 43- 51

with other parameters. The best results are occured when the water velocity in sinkhole points is 80 m/hr, the porosity is 10% in the fractured system and 80% in the conduit system and the depth of saturated zone is 25 m. Finally, it was observed that the comparison between measured and calculated temperatures in wells is very good. References Albéric, P. and Lepiller, M. (1998). Oxydation de la matière organique dans un système hydrologique karstique alimenté les pertes fluviales (Loiret, France). Water Resources 32, 2051– 2064 Albéric, P. (2008). Les trios pertesémergences (ou inversacs) du domaine de la source (Loiret). Colloque national d’Hydrogéologie. May 16 and 17, Orléans –France Andre, B.J., Rajaram, H. (2005). Dissolution of limestone fractures by cooling waters: Early development of hypogene karst systems. Water Resources Research 41 (1), 1–16. Andrieux, C. (1978). The experiences form the temperature in the karst (in French). Colloque de Tarbes, Le karst: son originalité physique, son importance économique. Association des Géologues du SudOuest (AGSO), Orleans, France, 48–63 Aravinth, S. (2000). Prediction of heat and mass transfer for full developed turbulent fluid flow through tubes. International Journal of Heat and Mass Transfer 43, 1399–1408. Beek, W.J., Muttzall, M.K., van Heuven, J.W. (1999). Transport Phenomena, second edition. John Wiley & Sons Ltd., West Sussex, England. 329 p. Benderitter, Y., Roy, B., Tabbagh, A. (1993). Flow characterization through heat transfer evidence in a carbonate fractured medium: first approach. Water Resources Research 29 (11), 3741–3747. Benim, A.C., Cagan, M., Gunes, D. (2004). Computation analysis of transient heat transfer in turbulent pipe flow.

International Journal of Thermal Sciences 43, 725–732. Birk, S. (2002). Characterization of Karst Systems by Simulating Aquifer Genesis and Spring Responses: Model Development and Application to Gypsum Karst. Tübinger Geowissenschaftliche Arbeiten, vol. 60. Reihe C. Institut und Museum für Geologie und Paläontologie der Universität Tübingen, Tübingen, Germany. . Birk, S., Liedl, R., Sauter, M. )2004(. Identification of localized recharge and conduit flow by combined analysis of hydraulic and physico– chemical spring responses (Urenbrunnen, SW-Germany). Journal of Hydrology 286: 179–193 Chery, J.L. (1983). Etude hydro chimique d’un aquifère karstique alimenté par perte de cours d’eau (la Loire). Thèse 3e cycle, Orléans Crowther, J., Pitty, A.F. (1982). Water temperature variability as an indicator of shallow-depth groundwater behaviour in limestone areas in west Malaysia. Ournal of Hydrology 57, 137–146 Dogwiler, T., Wicks, C.M., Jenzen, E. (2007). An assessment of the applicability of the heat pulse method toward the determination of infiltration rates in karst losing stream reaches. Journal of Cave and Karst Studies 69 (2), 237– 242. Genthon, P., Bataille, A., Fromant, A., D’Hulst, D., Bourges, F. (2005). Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at la Peyrere cave (Ariege, France). Journal of Hydrology 311 (1–4), 157–171. Gnielinski, V. (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering 16 (2), 359– 368.

50

Journal of Environmental Studies [JES] 2012. 9: 43- 51

Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friedenberg, R., Garcia, J., Gaulier, J., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O., Grandjean, G. (2000). Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints Geodin. Acta 133(4), 189– 246 Lastennet, R. (1994). Role of unsaturated zone in the functioning of karst aquifers: approach for the physico–chemical and isotopic study of input and output (springs) of Ventoux massif (Vaucluse) (in French). PhD Thesis, Univ. Avignon and Pays de Vaucluse, France, 239 pp Lepiller, M. (2001). Traçages appliqués à la dynamique des aquifères karstiques. Géologue (129), 79–84 Lepiller, M. and Mondain, P.H. (1986). Les traçages artificiels en hydrogéologie karstique. Hydrogéol 1, 33–52 Liedl, R., Sauter, M. (2000). Characterization of karst groundwater processes, using models of aquifer genesis and heat transport. Grundwasser 5 (1), 9–16. Martin, J.B., Dean, R.W. (1999). Temperature as a natural tracer of short residence

times for groundwater in karst aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst Modeling. Spec. Publ. 5, Karst Waters Institute, Leesburg, VA, 236–242 Martin, J.C. and Noyer, M.L. (2003). Caractérisation du risque d’inondation par remontée de nappe sur le Val d’Orléans. Etude hydrogéologie, BRGM O’Driscoll, M.A., DeWalle, D.R (2006). Stream–air temperature relations to classify stream–ground water interactions in a karst setting, central Pennsylvania, USA. Journal of Hydrology 329 (1–2), 140–153. Roy, B., Benderitter, Y. (1986). Natural thermal transfer in a superficial fissured carbonate system (in French). Bull Soc Géol France 2 (4), 661–666 Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, G.C. (1992). Developments of Turbulence Models for Shear Flows by a Double Expansion Technique, Physics of Fluids A, 4 (7), 1510–1520 Zunino, (1979). Contribution à l’étude hydrogéologique du Val d’Orléans. Ph.D. thesis, Orleans University

‫الملخص العزبى‬

)‫نمذجت نقل الحزارة في طبقت المياه الجوفيت الكارستيت لمدينت اورليانز (فزنسا‬ :‫الخالصت‬ ‫ ْذف ْزا انؼًم‬.‫ دسخخ انحشاسح رهؼت دٔس يٓى خصٕصب نًؼشفخ يؼهٕيبد حٕل رشكيت ْزِ األٔسبط‬،‫في األٔسبط انكبسسزيخ‬ ‫ اسزخذيذ نحسبة انسشع في‬Navier Stokes ‫ يؼبدنخ‬.‫ْٕ رطٕيش ًَٕرج سيبضي ثُبئي األثؼبد االَزشبس انحشاسح في انكبسسذ‬ .‫ ٔرى اخز قيًخ يؼيُخ ٔسطيخ نهسشػخ في انٕسط انًزشقق‬،)conduit( ‫انٕسط انكبسسزي انزي ركٌٕ فيّ انُفبريخ رًيم نقيًخ ٔاحذ‬ ‫ نحسبة انزغيش في قيى‬k- ‫ ٔرى اسزخذاو يٕديم‬،‫يؼبدنخ اَزقبل انحشاسح اسزخذيذ إليدبد رٕصيغ دسخبد انحشاسح في انكبسسذ‬ ‫ حيث رى قيبط دسخبد انحشاسح‬،)‫ انًُٕرج انشيبضي رى رطجيقخ في انُظبو انكبسسزي في يذيُخ ٔسنيٌٕ (فشَسب‬.‫انهضٔخخ انذايًُيكيخ‬ ‫ انُزبئح ثيُذ أٌ انًُٕرج ال يزأثش ثأي رغيش في انكثبفخ ٔنكُّ حسبط ألي رغيش في‬.29 Jun 2011 ‫في ثالثيٍ ثئش يبئي ثزبسيخ‬ ‫ كزنك أٌ انًُٕرج حسبط خذا ألي رغيش في قيًخ انسشع انذاخهخ نهُظبو‬.‫كثبفخ انصخٕس انكبسسزيخ خصٕصب في انٕسط انًزشقق‬ ‫ إٌ انًقبسَخ ثيٍ قيى دسخبد انحشاسح انًقبسخ ٔانًحسٕثخ ثيُذ أٌ انًُٕرج‬.‫انكبسسزي ٔ أي رغيش في قيًخ ػًق انًُطقخ انًشجؼخ‬ .‫خيذ خذا‬

51

Journal of Environmental Studies [JES] 2012. 9: 53-63

Original Paper

Characteristics of the Hydraulic Jump in Trapezoidal Channel Section Sadiq Salman Muhsun Environmental Engineering Dept., College of Eng. Al-Mustansiriya University, Baghdad, Iraq. Rec. 17 Nov, 2011 Accpt. 12 Dec, 2011

Abstract In this study, characteristics of the hydraulic jump in trapezoidal channel sections were analyzed and a general equation represents the solution of the hydraulic jump in the channels of arbitrary cross-sections (rectangular, triangular & trapezoidal) was driven depending on the momentum principle. The solution of the models was provided using Newton Raphson method. Consequently, Tables and charts of family curves of the conjugate depths ratio (r=y2/y1) have been prepared, for a very wide range values of Froude numbers and section ratios (k=b/zy). For each type of cross sections, the efficiency of the energy dissipation of the hydraulic jump was also analyzed and compared with each others. The relationship between the initial and sequent Froude numbers (FD1 and FD2) has been indicated for various values of k1=b/zy1. Depending on the results of conjugate depths ratio r = y2 / y1, the length of the hydraulic jump were estimated for a very wide range of k1=b/zy1, using two suggested models. It was found that the channel shape has insignificant effect on the efficiency of the energy dissipation of the hydraulic jump, although the triangular section tends to be more efficient than the others by about 10 percent in higher FD1. When (FD1 > 6), the velocity head after the jump could be neglected. When the section ratio k1 is approximately 3, the length ratio of the hydraulic jump (Lj / y2) reaches to a maximum value independent on the value of FD1. In all cases, it was shown that the comparison of the theoretical results with other experimental data indicate a very good agreement Key words: hydraulic jump - sequent depth ratio - jump in trapezoidal and triangular channels - Conjugate Depth, Energy Dissipaters Introduction The hydraulic jump is a natural phenomenon which may be defined as a sudden and turbulent passage of water from supercritical flow to subcritical state, (Modi, 2004). The abrupt change in flow condition is accompanied by considerable turbulence and energy losses. The hydraulic jump commonly occurs with natural flow conditions and with proper design can be an effective means of dissipating energy at hydraulic structures. Expressions for computing the before and after jump depth ratio (conjugate depths) and the length of jump are needed to design energy dissipaters that induce a hydraulic jump. For this reason, the hydraulic jump is often employed to dissipate energy and control erosion at storm water management structures.

Hydraulic jumps are commonly experienced in rivers, canals, industrial applications and manufacturing processes. (Montes, 1979; Chow, 1994; Treske, 1994; Reinaur and Hager, 1995; Chanson and Montes, 1995; Chanson, 2007 and Murzyn, 2007; studied the undular hydraulic jump, described its characteristics where the values of the Froude number in which the jump is no longer undular was calculated neglecting the effect of the channel width. The jump height, however, may be predicted quite accurately using momentum theory alone Hotchkiss et al., (2003). Typically, the discharge and upstream depth are already known, and what remains to be determined is the downstream “sequent depth”, Chadwick et al., (2004). The purpose of this study, is to develop a general solution of the sequent depth problem in trapezoidal channel section * Corresponding author: Dr. Sadiq Salman [email protected]

53

Journal of Environmental Studies [JES] 2012. 9: 53-63

(rectangular, triangular & trapezoidal), based on the momentum principle law. Such a solution will be useful to analyze the characteristics flow of a turbulent hydraulic jump and to determine the length of the hydraulic jump as well as the efficiency dissipation. Momentum Principle Because of energy losses, the size and location of the hydraulic jump cannot be predicted using the energy equation. However, because momentum is conserved across hydraulic jumps under the assumptions of this study, momentum theory

could be applied to determine the jump size and location Hotchkiss et al., (2003). Figure 1 indicates the control volume used and the forces involved. Distribution of pressure in the upstream and downstream sections is assumed to be hydrostatic. So, applying the momentum equation in a frictionless channel considering the above assumptions, leads the momentum equation in the term of the specific force to be: Q2 Q2 + Z C 1 A1 = + Z C 2 A2 = F gA 1 gA 2

F1 = F

Or

(1) (2)

2

2

V1 /2g

jump

E2

E1

2

V2 /2g y2

y1

Fig.1: Hydraulic jump control volume .

Where: F: Specific force Q: Flow rate g: Gravity acceleration A1 & A2: Cross-sectional area before and after the jump, respectively. ZC1 & ZC2: Distances of the centroids sections from the free surface area before and after the jump, respectively. Consider that:

A = by + zy

T = b + 2 zy F

r

=

V gy

F

D

=

V gD

2

(3) (4) (5) (6)

Where: T: Top width of the sectional area. b: Bottom width of the sectional area. z: side slope V: Mean velocity. Fr: Froude number in term of the depth of flow y. FD: Froude number in term of the hydraulic depth D = A/T.

Now, define a dimensionless factor k to be a section ratio such that:

k=

b

(7)

z y

Consequently, Eqs. (3 & 4) could be rewritten as: (8) A = zy 2 ( k + 1)

T = zy(k + 2)

(9)

Also, it could be seen that: k+2 Fr k +1

FD =

(10)

According to the section ratio k, the shape of the channel section will take the following form: when k = 0, the section is a triangular shape. and, when k = ∞, the section is a rectangular shape. While for 0 < k < ∞, the section is a trapezoidal shape. By taking the moments about the top axis of a trapezoidal channel section, the centroid Position Zc, could be determined as:

Z

C

=

1  1  k  +  2  3  k + 1

y

(11)

54

Journal of Environmental Studies [JES] 2012. 9: 53-63

Substituting the values of various terms of Eq. 2, considering Eqs. (7 to 11) and simplifying, the specific force before the jump F1 will take the following form:  1 4 2  F (k + 3 k + 2 ) +  k + k +  (12) 2

 F1 = Z y  1   

2

2

r

3

2 (k + 2 )

3     1

3

By the same way, it could be seen that:   Fr 3 F2 = Z y  2   

2

(k

2

1 + 3k + 2 +  k 2 (k + 2 )

)

2

4 2  + k +  3 3    2

(13)

Where the subscripts 1 & 2, refer to the corresponding variable of section 1 and 2 respectively. It is necessary now to represent the variables of Eq.13 in term of the same variables of the section 1, considering that:

k2 =

b = r −1 k 1 zy 2

(14)

Where: r: Conjugate depths ratio of the initial and sequent depths, (y2 / y1) . Also, it could be seen that: A1

2

A2

2

Fr

= r

2

= r

2

or F r

2

2

 k1 + 1     k1 + r 

−2

−1

A1

2

A2

2

(15)

2

Fr

 k +1  = r − 3  1  k1 + r 

2

(16 a)

1

2

Fr

2

(16 b)

1

So, Eq.13 will take the following form:  −2 r Fr 3  F2 = Z y 2   

2

 k +1    k+r

2

(r

−2

k

2

1 + 3 r −1 k + 2 +  r −1 k 2 (k + 2 r )

Satisfy the condition of Eq.2, taking in the count Eqs. (10, 12, & 17), the following

)

2

+

4 2  k + r 3 3     1

equation is produced after some tedious mathematical steps:

3  2   5k  3 3k  2 (k +1)  2 (k +1) 2 k   (k +1) r −3FD r + +1 r + +1 (k +1) r + +k −3FD =0 2   (k +2) (k +2) 2  2    4

Equation 18 represents the relationship of the Conjugate depths ratio of a hydraulic jump in a horizontal trapezoidal channel. This equation could be simplified by considering that:  5k  B =  + 1  2 

(19 a)

 3k  C = + 1  (k + 1)  2 

(20 a)

 k2   2 ( k + 1)   (k + 1) D =  +  k − 3FD  2   (k + 2)   

E = −3FD

2

( k + 1) 3 (k + 2)

(21 a)

(22 a)

Where k is k1 and FD is FD1. So, Eq. 18 will reduce to the following form:

r4 + B r3 +C r2 + D r + E = 0

(23 a)

(17)

(18)

Conjugate Depths - Initial and Sequent Depths: For a given values of FD1 and k1, the solution of Eqs. (18 or 23a) represents the conjugate depths ratio r = y2/y1. As it is known, this Equation has four roots. The signs of the second and the third term of Eq.23a (B & C) are always positive, while the fifth term E, is always negative. The forth term D, may have a positive or a negative sign depending on the values of FD1 and k1. According to Decard theory, equation 23 has always a unique positive root whatever the sign of the term D, and that is the required solution, (Hoffman, 2001). The researcher found that Newton–Raphson method is a very good technique to provide the results. Also, fixed-point method may be a useful alternative technique to determine the mathematical solution for the depths upstream and downstream of the hydraulic jump, (Vatankhah, 2008). Fig.2 represents a dimensionless chart for the conjugate depths 55

Journal of Environmental Studies [JES] 2012. 201 9: 53-63

yi  2 = 0 . 5  1 + 8 F rj yj 

 − 1 

(

A = B = 1 + 2. 5 k 2 + 1. 5 k 2

2

2

)

C = 1 + k 2 − 3k 2η 2 − 3k 2 η 2

(

2

D = − 3η

E = − 3η

k=0 k=0.5 k=1 k=2 k=3 k=4 k=6 k=8 k=10 k=15 k=20 k=30 k=40 k=60 k=100 Rect.

25

20

15

10

5

0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

FD 1=V/(gD)0.5

Fig.2: Family curves for the conjugate depths ratio r, corresponding to the upstream Froude number FD1 and k1.

(24)

In many practical and designed cases the problem is to find the initial depth y1 for a given control depth y2 in the downstream of the jump. In this case the following model (Eq.23 b), will be used to provide the conjugate ratio r,, which depends on the relationship between Eqs. (10 , 14 & 16) and Eq.18. The solution of this model was achieved by trail and error method with helpful of the computer. However, all the results were represented in Fig.3 and Table 2.

(

30

r = y2/y1

ratio r for various upstream Froude numbers FD1, corresponding to a very wide range of a section ratio k1, from zero (i.e., triangular shape) to infinity (i.e., rectangular shape). As it is shown, the conjugate depths ratio has a little significant change at high section ratios for the same Froude numbers. ers. Also, for all values of k1, when FD1 < 2, the conjugate depths ratio r is near the corresponding value of the rectangular section. In case of the rectangular section (where k1 = ∞), the curve indicates a completed agreement with the results of the standard ndard form of the hydraulic jump usually used in a rectangular channel section, Eq.24. For more details, notice Table 1.

− 6 k 2η

2

(19 b)

)

(20 b)

)

(21 b)

2

Fig.3: Family curves for the conjugate depths ratio r, corresponding to the Downstream Froude number FD2 and k2.

It could be seen that, when FD2 is more than 0.5 the conjugate depth ratio (r =y2/y 1) has the same value for any section ratio k2 . For this reason the arrangement values of FD2 in Table (2) was concentrated on the low values of FD2. Fig (4) shows the relationship between the upstream Froude number FD1 and the corresponding FD2 for varies values of k1. The Figure indicates that when FD1 is greater than 20, the minimum value of FD2 approaches to 0.1 for the triangular section and 0.15 for the rectangular section. Indicating that the shape of the section has a little effect on the values of FD2 when FD1 is greater than 2 and has insignificant effect when the value of FD1 is less than 2.

(22 b)

1.0 0.9 k1=0

2

 k +1   k +1 η = Fr =  2  r5 2  FD22  rk2 +1  k2 + 2

0.8

2 1

(22 C)

k1=5 k1=10

0.7

k1=100 0.6 FD2

2

Rect. k=∞

0.5 0.4 0.3

Therefore,

Eq.

18

will

be:

0.2 0.1

4

3

2

A r + B r +C r + D r + E = 0

0.0

(23 b)

0

2

4

6

8

10

12

14

16

18

20

FD1

Fig.4: Relationship between FD1 and FD2 for varies values of k1.

56

Journal of Environmental Studies [JES] 2012. 9: 53-63

F

k1=0

k1=.5

k1=1

k1=2

k1=3

k1=4

k1=5

k1=6

k1=7

k1=8

k1=9

k1=10

k1=12

k1=15

k1=20

k1=30

k1=40

k1=60

k1= 100

Rect. k=∞

Rect. Eq.24

1.000 1.702 2.284 2.799 3.271 3.710 4.125 4.519 4.897 5.261 5.952 6.606 7.228 7.825 8.399

1.000 1.842 2.545 3.170 3.741 4.275 4.778 5.257 5.716 6.157 6.998 7.792 8.549 9.274 9.972

1.000 1.935 2.726 3.432 4.079 4.684 5.255 5.800 6.321 6.823 7.780 8.683 9.545 10.370 11.165

1.000 2.051 2.963 3.785 4.543 5.254 5.927 6.569 7.186 7.780 8.912 9.983 11.004 11.984 12.928

1.000 2.120 3.112 4.015 4.853 5.641 6.389 7.104 7.791 8.454 9.719 10.917 12.061 13.158 14.216

1.000 2.165 3.215 4.179 5.078 5.926 6.732 7.505 8.248 8.966 10.338 11.639 12.882 14.076 15.227

1.000 2.197 3.290 4.301 5.249 6.145 7.000 7.820 8.610 9.374 10.835 12.222 13.549 14.824 16.054

1.000 2.220 3.348 4.397 5.384 6.321 7.216 8.076 8.905 9.708 11.246 12.708 14.106 15.452 16.750

1.000 2.238 3.393 4.473 5.494 6.464 7.394 8.288 9.152 9.989 11.593 13.120 14.583 15.990 17.350

1.000 2.253 3.430 4.536 5.585 6.585 7.544 8.468 9.362 10.229 11.892 13.477 14.997 16.460 17.874

1.000 2.264 3.460 4.589 5.662 6.687 7.673 8.623 9.543 10.437 12.153 13.790 15.361 16.874 18.338

1.000 2.274 3.485 4.633 5.727 6.775 7.784 8.758 9.702 10.619 12.383 14.068 15.685 17.244 18.752

1.000 2.289 3.525 4.705 5.834 6.920 7.968 8.982 9.967 10.925 12.772 14.539 16.238 17.878 19.466

1.000 2.304 3.568 4.783 5.952 7.081 8.175 9.237 10.271 11.279 13.227 15.095 16.895 18.636 20.325

1.000 2.320 3.614 4.868 6.084 7.264 8.413 9.533 10.627 11.696 13.770 15.768 17.699 19.571 21.391

1.000 2.337 3.663 4.962 6.231 7.473 8.689 9.881 11.051 12.199 14.439 16.610 18.719 20.772 22.775

1.000 2.346 3.689 5.012 6.312 7.589 8.845 10.081 11.297 12.495 14.839 17.122 19.347 21.522 23.649

1.000 2.354 3.716 5.065 6.398 7.715 9.016 10.301 11.572 12.828 15.299 17.718 20.091 22.419 24.705

1.000 2.362 3.738 5.109 6.471 7.823 9.165 10.496 11.817 13.128 15.721 18.276 20.797 23.283 25.738

1.000 2.372 3.772 5.179 6.589 8.000 9.412 10.825 12.238 13.651 16.478 19.305 22.133 24.961 27.789

1.000 2.372 3.772 5.179 6.589 8.000 9.412 10.825 12.238 13.651 16.478 19.305 22.133 24.961 27.789

D1

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Table. 1. Conjugate depths ratio of a hydraulic jump in trapezoidal channel sections for a given y1 with varies k1.

F D2

k2 = 0

k2 = 0.05

k2 = 0.075

k2 = 0.1

k2 = 0.15

k2 = 0.2

k2 = 0.25

k2 = 0.3

k2 = 0.35

k2 = 0.4

k2 = 0.45

k2 = 0.5

k2 = 0.55

k2 = 0.6

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1

8.219 5.518 4.176 3.375 2.843 2.466 2.183 1.964 1.789 1.646 1.527 1.340 1.199 1.089 1.000

9.786 6.158 4.511 3.575 2.974 2.555 2.247 2.011 1.824 1.672 1.547 1.351 1.205 1.091 1.000

10.619 6.486 4.679 3.675 3.038 2.599 2.278 2.033 1.841 1.685 1.556 1.356 1.207 1.092 1.000

11.472 6.818 4.848 3.774 3.102 2.642 2.308 2.055 1.857 1.697 1.565 1.361 1.210 1.093 1.000

13.207 7.485 5.184 3.970 3.226 2.726 2.368 2.099 1.889 1.721 1.583 1.371 1.215 1.095 1.000

14.932 8.145 5.514 4.161 3.347 2.808 2.425 2.140 1.919 1.744 1.600 1.381 1.220 1.097 1.000

16.608 8.789 5.835 4.346 3.464 2.886 2.480 2.179 1.948 1.765 1.617 1.390 1.225 1.099 1.000

18.212 9.409 6.144 4.524 3.576 2.961 2.532 2.217 1.976 1.786 1.632 1.398 1.229 1.101 1.000

19.732 10.003 6.441 4.695 3.684 3.033 2.583 2.253 2.002 1.805 1.647 1.407 1.233 1.103 1.000

21.164 10.568 6.725 4.858 3.787 3.102 2.630 2.288 2.028 1.824 1.661 1.414 1.237 1.104 1.000

22.507 11.103 6.994 5.014 3.885 3.167 2.676 2.320 2.052 1.842 1.674 1.422 1.241 1.106 1.000

23.766 11.608 7.250 5.162 3.978 3.230 2.719 2.351 2.074 1.859 1.687 1.429 1.245 1.107 1.000

24.943 12.083 7.492 5.302 4.067 3.289 2.761 2.381 2.096 1.875 1.699 1.435 1.248 1.108 1.000

26.045 12.531 7.721 5.435 4.151 3.346 2.800 2.409 2.117 1.890 1.710 1.442 1.251 1.110 1.000

Table. 2. Conjugate depths ratio of a hydraulic jump in trapezoidal channel sections for a given y2 with varies k2.

57

Journal of Environmental Studies [JES] 2012. 9: 53-63

F D2

k2 = 0.7

k2 = 0.8

k2 = 0.9

k2 = 1

k2 = 1.25

k2 = 1.5

k2 = 1.75

k2 = 2

k2 = 2.5

k2 = 3

k2 = 3.5

k2 = 4

K2 = ∞ Rect.

Eq.24

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1

28.041 13.350 8.142 5.681 4.307 3.450 2.873 2.462 2.155 1.919 1.731 1.453 1.257 1.112 1.000

29.793 14.074 8.518 5.902 4.447 3.545 2.939 2.509 2.190 1.945 1.751 1.464 1.263 1.114 1.000

31.336 14.718 8.854 6.100 4.574 3.630 2.999 2.552 2.222 1.968 1.768 1.474 1.268 1.116 1.000

32.702 15.290 9.154 6.278 4.688 3.707 3.053 2.591 2.250 1.989 1.784 1.483 1.273 1.118 1.000

35.499 16.472 9.778 6.651 4.929 3.870 3.168 2.675 2.312 2.035 1.818 1.502 1.282 1.122 1.000

37.637 17.382 10.264 6.943 5.118 4.000 3.260 2.741 2.361 2.072 1.846 1.517 1.290 1.125 1.000

39.311 18.098 10.648 7.176 5.270 4.104 3.334 2.795 2.401 2.102 1.869 1.530 1.297 1.128 1.000

40.649 18.673 10.958 7.364 5.394 4.190 3.395 2.840 2.434 2.127 1.888 1.540 1.303 1.130 1.000

42.638 19.532 11.423 7.649 5.581 4.319 3.488 2.909 2.485 2.166 1.917 1.557 1.311 1.134 1.000

44.031 20.136 11.751 7.851 5.715 4.413 3.556 2.958 2.523 2.194 1.938 1.569 1.318 1.136 1.000

45.053 20.580 11.994 8.001 5.815 4.482 3.606 2.996 2.551 2.215 1.955 1.579 1.323 1.138 1.000

45.830 20.919 12.179 8.115 5.891 4.536 3.645 3.025 2.573 2.232 1.967 1.586 1.327 1.140 1.000

50.984 23.181 13.431 8.899 6.421 4.906 3.922 3.234 2.732 2.355 2.062 1.642 1.357 1.153 1.000

50.981 23.181 13.431 8.899 6.421 4.912 3.922 3.233 2.732 2.355 2.062 1.642 1.357 1.153 1.000

Table. 2. Continued

Jump Characteristics The characteristics of the hydraulic jump in horizontal trapezoidal channel sections represented by some of terminologies will be discussed below. Energy Dissipation Efficiency Hydraulic jumps have been widely used for energy dissipation in hydraulic constructions. Many researchers have paid their attention to them for a long time, (Hashmi, 2003) & (Chaudhry, 2008). The hydraulic jump naturally dissipates energy through turbulence, which can be highly erosive if proper channel protection is not installed, (Hager, 1992). It is therefore preferable, when a hydraulic jump is expected, to control the size and location of the jump in order to localize energy dissipation and erosion, (Stahl and Hager, 1999). The energy loss due to the hydraulic jump is equal to:

∆E = E1 − E2

(25)

With E

=

y +

V 2 2 g

(26)

Where: ∆E: Energy loss due to the jump. E1: Specific energy before the jump. E2: Specific energy after the jump. The ratio of (E2 / E1), represents the efficiency of the jump, (Ef), so: E Ef = 2 E1

Therefore, the relative losses is equal to:

(27)

E ∆E =1− 2 E1 E1

(28)

The difference between the conjugate depths is the height of the jump hj, and the ratio hj/E1, represents the relative height: hj

y2 y (29) − 1 E1 E1 E1 Where: y1/E1: Relative initial depth. y2/E1: Relative sequent depth. It is important to express all the above ratios in term of dimensionless functions of FD1. Depending on Eq.26 and using Eqs.(6 & 10), the relative initial depth could be expressed as: =

y1 2 (k + 2 ) 2 = = E 1 2 (k + 2 ) + (k + 1) F D 1 2 2 + Fr 1

(30)

So, the relative sequent depth will be: y2 y (31) = 1 r E1 E1 Applying Eq.26 at the downstream of the jump, considering Eqs. (14 to 16), results: E2 (k + 1 )3 2 (32) = r + F D1 2 2 y1 2 r (k + 2 )(k + r ) Consequently, from Eqs. (30 & 32), the efficiency will take the following form:   E2 2(k + 2)) (k +1)3 2 = xr + 2 FD1  2 E1 2(k + 2)) + (k +1) FD1  2r (k + 2)(k + r)2  

(33)

It should be remembered that, the value of r in the above equations, represents the solution of Eq.23a corresponding to the values of FD1 and k1. Since the efficiency and the other relative's definitions become 58

Journal of Environmental Studies [JES] 2012. 9: 53-63

functions of FD1, plotting them against Froude number produces set of chrematistic

curves for various values of k1, see Fig.5.

1.0

Rectangular channel

0.9

E2/E1

k= ∞

0.8

y2/E1

∆E/E1

0.7 0.6

Ratios of characteristics of the jump

Ratios of characteristics of the jump

1.0

hj/E1 y1/E1

0.5 0.4 0.3 0.2 0.1

Traingular channel k=0

0.9

y2/E1

∆E/E1

0.7

hj/E1 y1/E1

0.6 0.5 0.4 0.3 0.2 0.1 0.0

0.0 1

2

3

4

5

6

7

8

9

1

10

2

3

4

5

6

7

8

9

10

FD1

FD1

1.0 Trapezoidel channel k = 5

0.9

Ratiosof characteristicsof thejump

1.0 Ratios of characteristics of the jump

E2/E1

0.8

E2/E1

0.8

y2/E1

∆E/E1

0.7

hj/E1 y1/E1

0.6 0.5 0.4 0.3 0.2 0.1 0.0

Trapezoidel channel k = 40

0.9

E2/E1

0.8

y2/E1

∆E/E1

0.7

hj/E1

0.6

y1/E1

0.5 0.4 0.3 0.2 0.1 0.0

1

2

3

4

5

6

7

8

9

10

1

2

3

FD1

4

5

6

7

8

9

10

FD1

Fig.5: Characteristic curves of the jump in trapezoidal channel sections for varies k1.

The figure indicates that the maximum y2 / E1 always occurs at FD1 = 1.73, independent on the shape of the section k1, within a range of 0.874 to 0.8 for (k1 = 0 to ∞) respectively, giving a maximum value in triangular shape. The maximum hj / E1 is always at FD1 = 2.78, independent on the shape of the section k1, within a range of (0.4 for k1 = 0 to 0.5 for k1 = ∞), giving a minimum value in triangular shape, see Fig. (6). Also, since E1 increases when FD1 increases, the relative height hj/E1 tends to decrease when FD1 increases. However, it should be noted that the decreasing of hj/E1 does not mean a decreasing of y1 or y2 which are expected to increase due to the increasing of the discharge at the higher FD1. 0.6 0.5

K1 = 0

k1 = 5

k1 = 10

k1 = 20

k1 = 40

Rect.

hj / E1

0.4 0.3 0.2 0.1

y1 Yc = = E1 E min

Yc (34) Vc 2 Yc + 2g Where Vc is the critical velocity. The criteria of critical flow condition is, (Chaudhry, 2008). Vc 2 D = 2g 2 Or

y1 Yc Yc = = D E1 E min Yc + 2

(35) (36)

From the background of the hydraulic channel, the hydraulic depth D, is equal to (y and y/2) in rectangular and triangular sections respectively. Hence, Eq.36 provides a value of (2/3) and (0.8) in rectangular and triangular sections respectively. Furthermore, consider Eqs. (8 & 9) for the hydraulic depth D in trapezoidal shape, Eq.36 could be expressed as:

0.0 1

2

3

4

5

6

7

8

9

10

FD1

Fig.6: Relative height of the hydraulic jump for various trapezoidal channel shapes, k1.

Fig.5 shows that the value of y1 / E1 at FD1 = 1, is equal to 0.67 for k1= ∞ and 0.8 for k1=0, while it varies from 0.67 to 0.8 for trapezoidal sections. These results could be explained as follows: When FD1=1, the upstream depth y1 is a critical depth (Yc) and consequently E1 reduces to the minimum specific energy Emin. Therefore:

y1 Yc 2k + 4 = = E1 E min 3k + 5

(37)

Which also indicates that in case of a trapezoidal section, the ratio YC /Emin is between 4/5 for a triangular shape (k1=0) and 2/3 for a rectangular shape (k2= ∞), while it depends on the values of k in the other shapes of trapezoidal section. So, Eq.37 could be considered as a general formula to estimate the value of Yc/Emin in trapezoidal section corresponding to the section ratio k1. 59

Journal of Environmental Studies [JES] 2012. 9: 53-63

due to the increasing of the efficiency where the flow losses the most energy through the jump when FD1 > 6, (steady or strong jump). At the same time, the sequent depth is still increasing, note Fig.2. Consequently the remaining specific energy after the jump is essentially due to the sequent depth y2. Therefore, when FD1 > 6, the velocity head after the jump could be neglected and the specific energy will be estimated by the sequent depth only. In other words, E2 = y2 for FD1 > 6. 0.35 k1 = 0

0.30

k1 = 5 0.25

E2/E1 - y2/E1

Fig.7 shows the efficiency of the hydraulic jump in trapezoidal channel sections. The figure indicates that the section ratio k1, has insignificant effect when FD1 is less than 3. Also, when FD1 is grater than 10, the efficiency sustain at a constant value in a range of 73 to 80 percent corresponding to k1-value. However, in spite of that the rectangular section has a minimum efficiency corresponding to the other sections; the other shapes do not increase the efficiency higher than ten percent, which is insignificant value comparing to the difficulties of the constructions of a triangular or trapezoidal channel. Hence, practically speaking, the rectangular section could be considered more suitable section in the design of the energy dissipation structures.

k1 = 10 0.20

k1 = 40

0.15

k1 = ∞

0.10 0.05 0.00 0

1

2

3

4

5

6

7

8

9

10

11

FD1

Fig.8: The effect of FD1 on the specific energy sequent depth relationship.

100% k1=0

90%

k1=5 80%

k1=10 k1=20

(∆E) / E1

70%

k1=40

60%

Rect.

50% 40% 30% 20% 10% 0% 1

2

3

4

5

6

7

8

9

10

F D1

Fig.7: Relative losses of the hydraulic jump for various trapezoidal channel shapes, k1.

Hydraulic jump length The length of the hydraulic jump is generally measured to the downstream section at which the mean water surface attains the maximum depth and becomes reasonably level, (Philip, 2006). The length of the hydraulic jump is typically obtained from empirical functions of the jump height, based solely upon experimentation (Sturm, 2001). and the location depends on both the length and height of the jump, as well as, the upstream and downstream water surface profiles Chow (1994). Mohd (2008), drove the following differential equation to determine the jump ordinate H at known values of n, H2 and Fr1.

The analysis indicates that in case of FD1 > 6, the efficiency curve (E2/E1) tends to be asymptote to the sequent relative curve (y2 / E1), independent on the section factor k1, see Fig.8. Also, the figure shows that when k1 is grater than 10, the curves join together to a constant value for all values of FD1. This fact could be explained as follows: Based on the results of the Fig.7, the velocity after the jump is always decreased 2  1  (1 + n)(1 + nH2 + n)(1 + 2nH ) ∂H (1+ n) H −1+ (1+ n) H  + 1  H (3 + 2nH ) − (3 + 2n)  = 1 −  2 2 ∂ξ (1 + nH )  (1+ nH )  3Fr12  2(1+ nH) 2H (1+ nH)  H (1 + nH2 )(1 + nH )  H2  Also, AFZAL (2002). developed the x With n = 1 and ζ = (38) following model to express the length of the 2k ε y 2 hydraulic jump (Lj) in trapezoidal channel where sections. ε : universal constant for eddy kinematic Lj viscosity, independent of channel geometry. (39) = ε (1 − α ) ∆ y2 ζ : non-dimensional constant (= x /ε y2). 2 H: ordinate of jump profile (= y /y1) 4K1 K 2 ∆ = H2: sequent depth ratio (r = y2 /y1) f (ω m ) + B (39 a) (7 +32α + 41α2 +32α3 + 7α4 )M3 +12α(1+α)3 M2  (39 b) In this study, the solution of Eq.38 was f (ωm) + B =  2 / 4 2 3 provided using Runge-Kutta method to +α (41+ 74α + 41α )M +18α (1+α)  determine the length of the jump at known (39 c) K 1 = M (1 + α ) + α values of k1, r and Fr1, see Fig.9. 60

Journal of Environmental Studies [JES] 2012. 9: 53-63

With M =

zy1 1 , α = 1 and ε ≈ 2 .578 = r b k1

(39 e)

Fig.9 explains a comparison between the results of Eqs. (38 & 39) and the experimental work of USBR for rectangular section and (Argyropoulous, 1961). for triangular section. The comparison shows that the results due to the model of Eqs. (39) are more precise and applicable than the results of Eq.38. Hence, the model of Eqs.39 was considered here to estimate the length of the hydraulic jump in trapezoidal channel. 9

> 4), the relation will be decreased asymptotic to a constant value, see Fig.12. That means, the maximum ratio (Lj /y2), is always near a section ratio of k1 ≈ 3 to 4, independent on the Froude number FD1. Therefore, for purposes design it is recommended to avoid this ratio in order to minimize the jump length. 13 12 11 10 9 8 Lj / y2

K 2 = 2 M (1 + α + α 2 ) + 3α (1 + α ) (39 d)

7

k1=3

6

k1=1

5

k1=0.5

4

k1=0

3 2 1 0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FD1

Fig. 10: Hydraulic jump length-Froude number relationship for k1= 0 to 3.

7 12

Eq.38, Rect. Eq.39, Rect. USBR, Rect. K=0, Eq.39 k=0, Argy.

3 1

-1

11 10 9 8 Lj / y2

Lj l y2

13

5

7 6

k1=3

5

k1=5 k1=10

4

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 FD1

Based on the model of Eqs.39 and depending on the solutions of Eq.18 in Table 1, the length of the jump in trapezoidal channel sections were estimated and the results prepared in the dimensionless charts of Figs. (10 & 11). The charts show that for a large value of FD1 the jump length Lj /y2 is independent on the upstream Froude number neither less the value of k1. For the rectangular shape, the results indicate that when FD1 reaches to a very high values, the jump length Lj/y2, is practically constant at approximated value of 6.9. This is because in case of a rectangular shape where M = 0, Eq.39a reduces to ∆=2.667. Consequently the term (ξ x ∆) in Eq.39 becomes 6.9. At the same time when FD1 approaches to infinity, r approaches to infinity too and α = 0 , which makes Eq.39 to give 6.9. It should be said that (Subramanya, 1998). and (Elevatorski, 1959). proposed the constant 6.9 but for FD1 > 5. In this study, when FD1 = 5, the jump length Lj /y2 is about 5.83 which indicates a difference of 17 percent. Also, the results indicate that for a constant Froude number FD1, the jump length ratio is proportional with the section factor k1 until a value of k1 between 3 to 4. After that (for k1

k1=40

2

k1= 60 k1= 100

1

Rect.

0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FD1

Fig. 11: Hydraulic jump length-Froude number relationship for k1= 3 to ∞. 13 FD1=20 FD1=15 FD1=10 FD1=5 FD1=2.77

12 11 10 Lj/y2

Fig. 9: Results of Eqs. (38 & 39), Comparing with other experimental works.

k1=20

3

9 8 7 6 5 4 0

5

10

15

20

25

30

35

40

45

50

55

60

Section Ratio, k1

Fig. 12: The effect of the section ratio k1, on the maximum length of the hydraulic jump.

Conclusions Applying the momentum conservation across a hydraulic jump in trapezoidal channel sections produced a general fourth order polynomial equation which provides a conjugate depths ratio of arbitrary cross sections. The solution was provided using Newton-Raphson method, and the results are represented as a dimensionless charts and Tables. When the values of the upstream Froude number FD1, are less than 2, the differences between the conjugate depths ratios have low significant change for all the shapes. The maximum values of y2 / E1 and hj / E1 always occur at FD1 = 1.73 and FD1 = 2.78 respectively, independent on the shape of the section (k1). When FD1 is greater than 61

Journal of Environmental Studies [JES] 2012. 9: 53-63

6, the velocity head after the jump could be neglected, (i.e. E2 = y2). The type of cross section has a little effect on the values of FD2 for FD1 > 2 and insignificant effect when FD1 is less than 2. The minimum values of FD2 for all sections range from 0.1 in triangular section to 0.15 in rectangular section, which is insignificant range. Even though, the energy dissipation efficiency of the hydraulic jump indicates that nonrectangular sections are more efficient in high Froude numbers, but these sections produce longer jumps, stability problems, and difficult in constructions. Therefore, from the hydraulic and structural point of view, the rectangular section is the preferable one in the design of hydraulic structures. Moreover, neither less of FD1, the maximum ratio of jump length (Lj / y2), always occurs when the section ratio is about k1 ≈ 3 to 4, which is recommended to avoid that for no longer jump. Nomenclature A1 & A2: Cross-sectional area before and after the jump, respectively. b: Bottom width of the sectional area. k: section ratio E1: Specific energy before the jump. E2: Specific energy after the jump Ef: jump efficiency Emin: Minimum specific energy. F: Specific force Fr: Froude number in term of the depth of flow y. FD: Froude number in term of the hydraulic depth D = A/T. g: Gravity acceleration force. H: ordinate of jump profile (= y /y1). H2: sequent depth ratio (r = y2 /y1). Lj: the length of the hydraulic jump Q: Flow rate r: Conjugate depths ratio of the initial and sequent depths, (y2 / y1) . T: Top width of the sectional area. V: Mean velocity. y1/E1: Relative initial depth. y2/E1: Relative sequent depth Yc: Critical depth. z: side slope ZC1 & ZC2: Distances of the centroids sections from the free surface area before and after the jump, respectively ∆E: Energy loss due to the jump.

ε : universal constant for eddy kinematic viscosity, independent of channel geometry. ζ : non-dimensional constant (= x /ε y2). References Argyropoulous, P.A., "The hydraulic jump and the effects of turbulence on hydraulic structure: contribution to research of the phenomenon". Proc. IX IAHR Congress, Dubrovnik, pp. 173-183., (1961). Noor Afzal & A. Bushra, "Structure of the turbulent hydraulic jump in a trapezoidal channel", Journal of Hydraulic Research, Vol. 40, (2002). No. 2. Chow, V.T., "Open channel hydraulics", McGraw-Hill, New York., (1994) Chadwick, A., Morfett, J. and Borthwick, M. (2004). "Hydraulics in civil and environmental engineering", 4th Ed. Spon Press, London. Chaudhry, Z.A. "Energy dissipation problems downstream of jinnah barrage", Pak. J. Engg. & Appl. Sci. Vol. 3 Jul (2008). (p.19 – 25). M. Hanif Chaudhry, "Open-channel flow", New York, NY 10013, USA, 2nd ed., (2008). Chanson, H. and Montes, J.S., "Characteristics of undular hydraulic jumps: Experimental apparatus and flow patterns", Journal of Hydraulic Engineering 121(2): 129-144., (1995). Chanson, H., "Bubbly flow Structure in hydraulic jump" European Jl of Mechanics B / Fluids, Vol.26,No.3,pp.367-384, DOI:10.1016 / j.euromechflu. 2006.08.001, (2007). b. Elevatorski, E.A., "Hydraulic energy dissipators". McGraw Hill, New York m,kk, (1959). Hager, W.H., "Energy Dissipators and Hydraulic Jump". Kluwer Academic Publishers, Dordrecht, The Netherlands, (1992). Hashmi, M.Z., M.Sc Thesis, "Analysis of Hydraulic Jump and Effectiveness of Energy Dissipation Devices at Jinnah Barrage", Center of Excellence Water Resources

62

Journal of Environmental Studies [JES] 2012. 9: 53-63

Engineering (CEWRE), UET, Lahore, (2003). Hotchkiss, R.H., Flanagan, P.J. and Donahoo, K., "Hydraulic jumps in broken-back culverts." Transportation Research Record, 1851 35-44, (2003). Joe, D. Hoffman, "Numerical methods for engineers and scientists", 2nd ed., New York, Marcel Dekker, (2001). Modi, P.N., "Irrigation water resources and power engineering", 6th, (2004). Mohd Jamil & S A Khan, "Theoretical study of hydraulic jump in trapezoidal channel section", IE (I) Journal-CV, Volume 89, May (2008). Montes, J.S., "Disscusion of undular hydraulic jump, by V.M. Andersen", Journal Hidraulics, Division ASCE 105 (HY9): 1208-1211, (1979). Murzyn, F., and Chanson, H., "Free surface, bubbly flow and turbulence measurements in hydraulic jumps" Report No. CH63/07, Div. of Civil Engineering, The University of Queensland, Brisbane, Australia, July, 113 pages, (2007). Philip, L. Thompson and Roger T. Kilgore "Hydraulic design of energy dissipators for culverts and channels", National Highway

Institute, Technical Report, Third Edition, july, (2006). Roger Reinaur and Willi H. Hager, "Nonbreaking undular hydraulic jump", Journal of Hydraulic Research, vol.33, No.5,p.p. 683-698, (1995). Subramanya, K., "Flow in open channel". Tata McGraw Hill, New Delhi, (1998). Stahl, H. and Hager, W.H., "Hydraulic jump in circular pipes." Canadian Journal of Civil Engineering, 26 368-373, (1999). Sturm, T.W., "Open channel hydraulics", McGraw-Hill, New York, (2001). Treske, A., "Undular bores (Favre-Waves) in open channels. Experimental studies", J. Hydr. Res., 32 (3), 355370, (1994). U.S.B.R., "Hydraulic design of stilling basins and energy dissipators. Engineering Monograph" No. 35, U.S. Bureau of Reclaimation, Dept. of Interior, Washington D.C., (1958). Vatankhah, A.R. and Kouchakzadeh, S., "Discussion of solution of specific energy and specific force equations" by Amlan Das. Journal of Irrigation and Drainage Engineering, ASCE 133(4): 407–410, (2008).

‫ا ا‬

‫"ة ا رو  ا  ا ف‬#‫ ا‬$%&  ‫ دق ن‬.‫د‬ &$'‫ * ) ه" ا‬/ "#‫ ا‬$‫ آ‬/  ‫ا  ا‬

: ‫ا‬ $=‫@ذ> ر‬A ‫ق‬3B‫) ا‬:‫ ف و‬D'7‫ ا‬EF3‫ ا‬-. $;$‫"رو‬$#‫ة ا‬123‫ ا‬456 7*‫ و‬9$: ): ،+'‫ا ا‬,‫ ه‬-. ‫د‬MKN (‫ ف‬D'7‫ وا‬+L ,9$F ) ‫ ف‬D'7‫ ا‬EF3‫ت ا‬KI E$  $;$‫"رو‬$#‫ة ا‬123‫ ا‬95  ‫  ب‬HB :@$A 3Q F‫@ا‬N‫ ا"دي و‬9‫ ا‬OM ‫د‬MKN -=‫ @ذج ا‬T5‫) ال ا@ل وا‬: "3 .)61‫ '"أ ا‬OM (r = y2 / y1) $;$‫"رو‬$#‫ة ا‬123‫ ا‬-3M ' A $N *H‫ ا‬$': ‫ ت‬:‫ >"اول و‬-. T5‫ض ا‬M ): .‫ س‬.‫را‬ (FD1 and FD2) ‫ة‬123‫" ا‬N‫ و‬9'* ‫ود‬. )*‫) ر‬$* $N *H‫ وا‬،*F‫ ا‬X$7: -. ‫ة‬123‫ءة ا‬2‫ آ‬Z,‫ود وآ‬. )*‫) ر‬$*‫و‬ OM ‫د‬MKN $;$‫"رو‬$#‫ة ا‬123‫@ل ا‬Q $\: ): -=‫ ا@ذج ا‬F‫@ا‬N .(k=b/zy) EF3‫ ا‬9  E‫"ى وا‬ _$ EF3‫ ا‬9;B ‫ إن‬T5‫ ا‬X$N "3 .]‫( أ‬k=b/zy) EF3‫ ا‬9  E‫( و"ى وا‬r = y2 / y1) ‫ة‬123‫ ا‬-3M ' A ‫;@ن‬: +L‫ ا‬9;7‫ ا‬-. 7‫* ا‬F‫)  إن ا‬b‫ ا‬OM *F‫ ا‬X$7: -. $;$‫"رو‬$#‫ة ا‬123‫ءة ا‬2‫ آ‬OM @ $`a: D ‫"م‬3 -. ‫ود‬. )*‫" ;@ن ر‬M ‫ة‬123‫ة ا‬6h -. M ‫;ن إهل ا‬fN .$‫ ا‬FD1 )$* I -. %١٠ ‫"ود‬N L‫أآ‬ (Lj / y2) ‫ة‬123‫" ا‬N k‫ ا‬O‫ة إ‬123‫@ل ا‬Q ' A ‫ن‬. ٣ ‫"ود‬N EF3‫ ا‬9 ‫" ;@ن‬M .٦  -M‫ أ‬FD1 ‫ة‬123‫ا‬   ‫ ا‬T5‫ ا‬A‫ر‬3 "M . FD1 ‫ة‬123‫"م ا‬3 -. ‫ود‬. )*‫ ر‬$* OM " $b D:@  OM‫ أ‬O‫ إ‬9 .‫ت‬H‫ ا‬E$> -. ‫"ا >"ا‬$> 3.‫@ا‬: l]:‫ى ا‬6‫ أ‬$M ‫ درات‬T5A E -=‫ ا‬9‫ا@د‬ 63

Journal of Environmental Studies [JES] 2012. 9: 65-72 Original Paper

Morpho-Anatomical Characteristics of Olive (Olea europaea L.) Trees Leaf as Bio-indicator of Cement Dust Air Pollution in Libya A. A. El-Khatib1, D. E. M. Radwan1, A. A. Alramah-Said2 1 2

Department of Botany, Faculty of Science, Sohag University, Egypt. Department of Botany, Faculty of Science, Al-Jabal Al-Gharbi University, Libya.

Rec. 4 Nov, 2012 Accept. 23 Dec, 2012

Abstract Comparisons were made between the anatomical and morphological changes in olive tree leaves from a site with relatively clean air (Al-Khadra area), and two sites (al-Khums and Zelatin) near to cement factories in the area east to Tripoli, Libya. Olive tree leaves exhibited marked variations in their morphological and anatomical characteristics, in relations to variations in the site cement dust air pollution load. Under high pollution load, leaf visible injuries were recorded. In addition, stomata appeared in higher density and smaller size than those of control. The anatomical characteristics of olive leaf including cuticle, epidermis, palisade tissue, mesophyll tissue, and elements of vascular cylinder (xylem and phloem) reflected the deteriorate effects of cement dust air pollutants, the subject which recommend their using as bio indicators. Keywords: Olea europaea, epidermis, stomata, xylem, morphology, cement dust. Introduction Cement dust results from the grinding of a clinker, which is produced by burning a mixture of limestone, clay, and gypsum at high temperatures (1450–16001C) in specially designed kilns (Suess et al., 1985). A cement industry offers an excellent opportunity for studying the impact of dust, during the process of cement manufacture considerable amounts of dust are emitted from handling, spillage and leakages. Dust is produced from quarrying of the major raw material limestone and ending with the packing and dispatch of cement from the industry (Abdul-Wahab, 2006). Cement dust is a gray powder with an aerodynamic diameter ranging from 0.05 to 5.0 mm (Kalacic, 1973). Cement dust can cause illness by skin or eye contact as well as inhalation. Risk of injury depends on duration and level of exposure and individual sensitivity. Moreover, different cements have different ingredients. Many of them contain substances that can be hazardous, like crystalline silica (quartz), lime, gypsum, nickel, cobalt, and chromium compounds (Green N8 Residents Group, 2004). Inhalation of silica dust can cause silicosis or other potentially fatal lung diseases. In addition, inhalation of chromium compounds

found in some cement dusts can cause cancer. Hence, cement dust can be an important pathway for potential human exposure. High concentrations of particles emitted from cement plant may affect the health and property of homeowners living adjacent to the plant. There are numerous complaints about cement plant from nearby residents. They include specific problems about odors, blasting, noise, respiratory problems and corrosive dust on cars. Plant physiological parameters have been used as bio-indicators of urban habitat quality. For example, highly alkaline dustlike cement visibly injures plant leaves; even chemically inert dust physically affects photosynthesis and transpiration when it accumulates on leaf surfaces. Covering and plugging of stomata (Ricks & Williams, 1974). shading (Peirce, 1910; Thompson et al., 1984). increasing leaf temperature (Eller, 1977; Borka, 1984). and removal of cuticular wax (Eveling & Bataille, 1984; Eveling, 1984). had been used to characterize local air pollution (Moraes et al., 2002). Less attention has been given to morphological and anatomical parameters of plants as indicators of long-term responses to changing (urban) habitat quality, although parameters as specific leaf area, stomatal density and pore surface were recognized to * Corresponding author: Dr. A.A. El-Khatib [email protected]

65

Journal of Environmental Studies [JES] 2012. 9: 65-72

vary depending on microclimatic conditions (Barber et al., 2004). Moreover, sampling and analysis of these parameters are relatively easy and inexpensive. Trees act as a sink for air pollutants and thus reduce their concentration in the air especially in urban environments (Woo and Je, 2006; Tewari, 1994; Rawat and Banerjee, 1996). Dust interception capacity of plants depends on their surface geometry, phyllotaxy, and leaf external characteristics such as hairs, cuticle, leaf shape and size, texture, length of petioles, and canopy of trees etc., weather conditions and direction and speed of wind and anthropogenic activities (El-Khatib, 2007; 2011; Santosh and Tripathi, 2008). The olive tree (Olea europaea L.) is one of the major crops in the Mediterranean region. Whilst its cultivation has spread to other regions around the world, olive production is of vital importance to the economy of Mediterranean countries, including Libya. The marked reduction in the growth and yield of olive trees in the polluted area may be explained in terms of the shading effect of the foliar cement crust as well as through the changes in soil characteristics that had been brought about by the cement factory effluents. Thus the uncontrolled emissions of a cement kiln can affect the growth of the adjacent vegetation through both the air and the soil (Khalid et al., 2009). This paper was to investigate the feasibility of using the changes in anatomical of olive tree leaves in the studied areas as bio-indicators for cement dust air pollution. Materials & Methods The study area: Three sites located in Libya were chosen for the purpose of this study. They were coastal cities located east of Tripoli, their names are Alkhums (Site I) (latitude 32º 38" N and longitude 14º 13" E), Zliten (site II) (latitude 32º 25" N and longitude 14º 29" E) and Al-khadra (Site III) (latitude 32º 26" N and longitude 13º 42" E). The two first sites are located at distance of 0.5 km from the cement factories, while the third one is located far from any pollution sources (distance of 40 km) and considered to be as control. These sites covered by olive trees as main crop, besides fragment vegetation of vegetables and wild species. As reported by

Libyan National Meteorological Center Climatologically Department, (2009), the temperature of this area is ranging between 14.66°C and 25.36°C. The annual mean of wind speed is 6.88 knots/hour, the annual mean of relative humidity is 73.17 %, and the annual mean of rain fall is 24.81 mm. Sampling At each site, leaf samples were collected from olive trees growing around the cement factories at site I and Site II, in four directions to cover the different directions of the plant load emissions as: location (1): west of the factory; location (2) north-west of the factory, location (3) south of the factory, and location (4) south-east. Sampling collection was during summer of 2010 and winter of 2011. At each location, three samples of olive tree leaves were collected, resulting in 12 leaf samples for each study site. Sampling conducted according to Lau & Luk, (2001) method. At each site, by wearing polyethylene gloves, 36 leaves were detached from each tree at 1.5-2 m above the ground by pruning shears from the outer part and inner part of the canopies and from the four directions for the tree (E, W, N, S; nine leaves per each space direction) kept in plastic bags, placed in icebox, and transported to the laboratory for the next preparation. Anatomical investigation To study the leaf anatomical structure of the studied trees, leaf samples were fixed in FAA (formaldehyde: acetic acid: alcohol, 5: 5: 90, respectively) then preserved in 70% ethyl alcohol. Transversal sections (7 µm) were obtained using microtome. The sections were stained with safranin. (0.5gm/500 ml ethyl alcohol) for 30 minutes and washed by different concentrations of ethyl alcohol (50%, 70% and 95%) then the sections stained with light green (0.5 gm/1000 ml ethyl alcohol) for 30 seconds followed by washing with 95% ethyl alcohol .The sections were mounted in canada balsam, dried at 55-60°C for 3 days and examined under light microscope (Olympus-BX51) for description of anatomical structures .The sections photographed by digital camera (Olympus –DP12) and measured by ImagePro Plus 6.1 (Ruzin, 2000).

66

Journal of Environmental Studies [JES] 2012. 9: 65-72

Polluted sites Control

Plate.1. visible injuries show that chlorosis, yellowish, necrosis and drying on the upper surface of leaves, collected from polluted sites (I and II) and control site (III) during summer and winter seasons.

Statistical Analysis: Data were subjected to statistical analysis using Minitab®14. Comparisons of means were carried out using the analysis of variance (MANOVA, Two-way). Differences were considered to be significant at level P ‪ 2‬ا"را إ"‪ 5‬ود * ذات د‪ B"D‬إ‪ K 8F‬ا"‪HIJ‬ت ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  ‬ ‫و‪ O>19‬و;ن دة ا"‪ ،  +‬آ > ‪ 2‬ا"را إ"‪ 5‬ود ا‪ 1" 6‬و>‪ P&J‬ا"‪ 1+A‬و>‪ 3‬ا"‪ Q‬ا"‪ "JA+‬‬ ‫ا"&‪; 5  R‬ن دة ا"‪ .  +‬و  ‪ 2‬ا"را ‪ K BM‬ا"‪ +‬ت ‪ &=> OJ‬ا"‪  A‬ا" " ‪HIJ‬ت ا"  ‬ ‫" ‪ NO‬ا"‪+‬ر&  ‪ ،‬و>‪ K‬أ‪3‬اد أ ب ‪19‬ات "‪ 1F L&L> ،B‬و>‪ P&J‬ا"‪ ، 1+A‬و>‪ 3‬ا"‪ Q‬ا"‪ "JA+‬ا"*ز ‬ ‫" ‪  +‬و>‪VC 3‬ا"[ه ا"=& ا"‪G+‬‬ ‫ا‪ " G3 2!+‬ا"[‪ A‬وا"[

[ إ‪ D‬أن د‪DD‬ت ه‪m‬ا‬ ‫ا"[‪O‬م >‪W‬رت وا> ‪ QI+" 2‬ا‪ tC‬أ‪9‬ى >ا‪P 2 9‬‬ ‫ا)"‪ t‬ادار& ا"&‪ ، R‬وأ ‪8J 21‬ا أ ‪K‬‬ ‫‪73‬‬

‫ا‪+‬ا>‪M‬ت ‪VJ‬ت ا)ل‪ ،‬وا‪ K  *WC‬ا)ه ‬ ‫ا"‪L+‬ا&ة دارة ا"‪ 3‬و> رع >‪ G3 O=1W‬ا"‪ A‬ت‬ ‫ا)رد‪ C‬ا"! ‪ ،‬و" >ا‪ B‬ه‪ dm‬ا"‪ A‬ت ‪&> K‬ت‬ ‫و‪F‬ة ‪ B 3J‬و" ‪  " O‬ل إ"‪ 5‬ا"‪L‬ة ا"‪K ،  3J+‬‬ ‫‪*9‬ل >=< ‪ ،tA‬وز&دة ‪ G3‬ر; ا"*ء و> ‪K‬‬ ‫دة ‪ O>9‬ا"‪  +‬ور‪+  P3‬ى أداء أ‪Y‬ء ه‪O+N‬‬ ‫ا"‪+‬ر&  وا" ‪ 3; ،O3 K‬إ"‪ 5‬ر‪ P3‬آ‪K Q‬‬ ‫ا"!ت ا"‪ R1‬ا"‪=> G+‬م ‪ O‬و‪ 9‬ا"‪+M‬ت ا"‪ W‬‬ ‫‪ t W+& ،O‬ا) >‪ hOJ GJ1‬إدارة ا"‪ K B" " 3‬أه‪B‬‬ ‫‪ G3‬ا"‪ A‬ت ‪ B 3J> dL‬و ‪. B" B‬و ‪KA& ،B‬‬ ‫‪ AI l‬ا"را )‪ N‬ا"‪-: "+‬‬ ‫‪ -١‬ه‪ 7‬ه‪5‬ك ‪ =; 89‬ا‪ ,‬ا < ;‪ :‬ا‪>:‬‬ ‫ا'ر@? )أ!اد ا! ( ون  دة ا‬ ‫! ا‪$‬ت ا*رد& ا‪ +,‬؟ و@‪ = HI5‬ه‪G‬ا ا?‪F‬ال‬ ‫ا? ا*ول ا*)> ا‪ /‬ا‪- : K‬‬ ‫)‪ (١-١‬ه‪HIJ " Q‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  ‬ ‫)أ‪3‬اد ا"‪; G3 * ( 3‬ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا)رد‪ C‬ا"! ؟‬ ‫)‪ (١-٢‬ه‪1!" Q‬ة ‪ Y‬ه‪ N‬ا"‪+‬ر& * ‪; G3‬ن‬ ‫دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ؟‬ ‫)‪(١-٣‬ه‪VC +& Q‬م إدارة ;‪ X1‬ا"‪M‬دة ‪ G3‬ا"‪ A‬ت‬ ‫ا"! ا)رد‪ C‬؟‬ ‫)‪ (١-٤‬ه‪; & +& Q‬ن ا"‪M‬دة؟‬ ‫‪ -٢‬ه‪ 7‬ه‪5‬ك ا ‪ %5I‬ا ‪ 5$‬ا(ت‬ ‫ون دة ا ! ا‪$‬ت ا*رد& ا‪ +,‬؟ و@‪HI5‬‬ ‫= ه‪G‬ا ا?‪F‬ال ا? ا‪ &H‬ا*)> ا‪ /‬ا ‪:‬‬ ‫)‪ (٢-١‬ه‪ 1" Q‬و>‪ P&J‬ا"‪ 1+A‬ا‪; 5  6‬ن دة‬ ‫ا"‪ A "  +‬ت ا)رد‪ C‬ا"! ؟‬ ‫)‪ (٢-٢‬ه‪ Q " Q‬ا"‪ "JA+‬ا"&‪ R‬ا‪; G3 6‬ن‬ ‫دة ا"‪ A "  +‬ت ا)رد‪ C‬ا"! ؟‬ ‫أه'اف ا'را) وأه‪::‬‬ ‫>]>‪ G‬أه ه‪ dm‬ا"را إ"‪ 5‬أن ‪ 6‬ا>‪M‬هت ‪L+‬ا&ة ‪G3‬‬ ‫ا"‪I‬آت ‪ G3 9‬ا"[‪+‬ة ا"" ‪Q&> G3 QR+> ،‬‬ ‫أ"‪ O‬إ"‪ 5‬أل ‪ 5  B‬ا"‪ 3‬و>&‪ Q‬ا"‪I‬آت‬ ‫إ"‪b 5‬آت ‪ 5  B‬ا"‪ 3‬أو ‪b‬آت ‪ 3 " B *9‬‬ ‫آ"‪ x‬ت ا"‪ cF ،  +‬أ‪ y 2+16‬ه‪ dm‬ا"‪I‬آت‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ FMC‬ها ‪ G3‬إدار>‪ ، 3 " O‬وآ‪ M+C 2C‬ه‪ dm‬ادارة‬ ‫ا"‪M‬ة ا"‪[+‬ق وا"‪=+‬م وا"‪ P 3J‬ا"‪I‬آت ا"‪1A‬ى ‪G3‬‬ ‫‪ .O>DM‬و‪VC‬ا " ‪ y B+==F‬ا"‪ x‬ت ا"‪1A‬ة ‪K‬‬ ‫‪FMC‬ت هة ‪ M+C‬ا"م وا"‪ K 3‬ا" ‪O&" K‬‬ ‫‪ QAI> cF‬ا"‪> W=C 3‬ل ‪ G3‬ا"‪VJ‬ت و‪ 89‬‬ ‫ا"‪R+‬ة ‪ .OJ‬و" " ‪ K 3‬اه‪+‬ت "^‪VJ G3 B‬ت‬ ‫ا)ل وا"‪1+& G+‬ه ا"‪ y1‬ا"‪1!" ‪R‬ي ا"‪VJ‬ت ‪ G3‬ز&دة إ‪ O++C‬وا"‪ K Q =+‬ا)‪W9‬ء‬ ‫و"‪=C M‬ط ا"‪ zY‬إن وت‪.‬‬ ‫أه'اف ا'را) ‪:‬‬ ‫‪':‬ف ه‪ NG‬ا'را) إ  ا*ه'اف ا ‪-:‬‬ ‫‪ - 1‬ن ا‪ 789 6‬ا"‪; G3 3‬ن دة ا"‪G3  +‬‬ ‫ا"‪ A‬ت ا)رد‪ C‬ا"! ‪+D ،‬د  ‪:5‬‬ ‫أ‪ 789 -‬أ‪Y‬ء ا"‪NO‬ت ا"‪+‬ر&  ا" ‬ ‫‪ cF K ،O3‬ا"‪HIJ‬ت ا"  ا"‪LMJ& G+‬و‪OC‬‬ ‫أ‪Y‬ء ا"‪ NO‬ا"‪+‬ر&  و‪19‬ا>‪. O‬‬ ‫ب‪ 789 -‬ا"‪ J1‬ا"‪ "JA+" ++‬ا" ت‬ ‫‪ Z > G3‬ا"‪ A‬ت‪ 1F cF K ،‬و>‪ P&J‬ا"‪ 1+A‬‬ ‫و ا"‪ Q‬ا"‪ "JA+‬ا"&‪. R‬‬ ‫ج‪ -‬ا‪ 789 6‬ا"‪VC G3 3‬م ا"‪M‬دة‬ ‫‪ G3‬ا"‪ A‬ت ا"! ‪.‬‬ ‫د‪ -‬ا‪ 789 6‬ا"‪; & G3 3‬ن‬ ‫ا"‪M‬دة‪.‬‬ ‫‪O> – ٢‬ف ا"را " !وج ‪ K BM‬ا"‪ +‬ت‬ ‫ا"‪O‬د‪ 3‬إ"‪ };> 5‬أه إدارة ا"‪. 3‬‬ ‫‪ }+3 - ٣‬ا"‪M‬ل أم ا"‪ KJ‬وا" ‪ G3 K‬إدارات‬ ‫‪ x‬ت ا"‪  +‬ا""‪ G‬ا)رد‪[ G3 3‬دة ا"‪ x G3  +‬ت ا"‪  +‬ا""‪G‬‬ ‫ا)رد‪. C‬‬ ‫!ت ا'را) ‪:‬‬ ‫‪; G3‬ء ‪ AI‬ا"را وأ‪K+;3 l > O+ N‬‬ ‫ر ‪ K+ K+‬و"‪ B;3 QA‬ر ‪K+3 K+;3 B‬‬ ‫‪ K+‬و ‪ 5‬ا"‪ J‬ا"‪-:G"+‬‬ ‫ا‪ /‬ا? ا*و‪:‬‬ ‫‪ * > D :H-1‬ذات د‪ B"D‬إ‪ K 8F‬ا"!‪78‬‬ ‫ا"‪ O P++& G+‬أ‪Y‬ء ا"‪ NO‬ا"‪+‬ر&  )أ‪3‬اد ا"‪ ( 3‬و‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪J‬‬ ‫ ‪+‬ى د‪(05.0 ≥ α) B"D‬‬ ‫و@‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬ ‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ * > D :HO-1-2‬ذات د‪ B"D‬إ‪K 8F‬‬ ‫ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  و ;ن‬ ‫دة ا"‪  +‬و& ;ن ا"‪M‬دة ‪ G3‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪+  J‬ى د‪.(05.0 ≥ α) B"D‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ * > :H-1.3‬ذات د‪ B"D‬إ‪19 K 8F‬ة ‪Y‬‬ ‫ه‪ N‬ا"‪+‬ر& و ;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪+  J‬ى د‪(.05.0 ≥ α ) B"D‬‬ ‫ا‪ /‬ا? ا‪: &H‬‬ ‫‪ & D :HO-1.4‬ا‪ 78!" 6‬ا"‪ J1‬ا"‪"JA+" ++‬‬ ‫ا" ت  ‪; 5‬ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪،‬‬ ‫و‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬

‫‪74‬‬

‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ & D :HO-1-2‬ا‪ 1" 6‬و>‪ P&J‬ا"‪5  1+A‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ Q " 6€ & D :HO-2-2‬ا"‪ "JA+‬ا"&‪5  R‬‬ ‫;ن دة ا"‪  +‬وا‪+‬د & ;ن ا"‪M‬دة و>‪‪I‬‬ ‫"[‪ O‬ا"‪.(Stromquist, 2000:3) X‬‬ ‫‪ - ٢‬إدارة ا"‪ : 3‬ه‪ G‬رة ا"[د  ‪ 5‬ا)‪b‬ء و>‪L‬ه‬ ‫‪B^8 B = G3‬‬ ‫أو ا"=رة ا"‪ OA +& G+‬ا"[د و&!‪OCL+‬‬ ‫‪9‬ا‪.(Wit Meyer 1998:76) B3 X‬‬ ‫‪ -٣‬إدارة ا"‪ : 3‬ه‪ GC M G‬و[ه و‪=+‬ات‬ ‫ا"[د ‪B1I‬‬ ‫و>‪8‬رات ذه‪ > K " BJ‬ؤ‪D‬ت‬ ‫‪ B>FH‬و==‪ B‬إا>‪ && " B‬أن &‪M) B3‬ب‪،‬‬ ‫‪.(٢٠:٢٠٠٢‬‬ ‫‪-٤‬إدارة ا"‪ : 3‬ه‪ G‬ا"=‪VJ" d‬ت أل ا"م وا"[‪+‬ح‬ ‫"‪*AI Q‬ت ا)ل ا"^‪) Y‬ا"‪(٤٦:٢٠٠٢ ،G1 A‬‬ ‫‪-٥‬إدارة ا"‪ : 3‬ه‪  G‬ت ‪ K‬ا"‪ KL‬و ة " ‪C1‬ت‬ ‫ا"‪ JO‬و‪C‬ذج " ‪* +‬ت وا" ل ا"‪P Q+ " J‬‬ ‫ا"‪*AI‬ت إ"‪ tC 5‬ا"‪ 3‬ا"‪ VJ " 88!+‬‬ ‫)ا"‪LJ‬ي‪(١٢٨:٢٠٠١،‬‬ ‫"= ‪F‬د ا"‪RF1‬ن ‪ 789 9‬دارة ا"‪ 3‬وه‪-:G‬‬ ‫‪8> -١‬غ ‪= G3‬ل ا)‪3‬اد "‪ ، M+‬و>‪ M+C Q8‬‬ ‫> ‪+ O‬ار‪.‬‬ ‫‪ -٢‬إدارة ا"‪+I 3‬آ‪ K B‬آ‪ 3‬ا"[‪N‬ت وا"‪+M‬ت‬ ‫ا‪ W‬ا"!‪1‬ات ا"‪+I‬آ ‪.‬‬ ‫‪ J; Q=J>-٣‬أو ‪ }& QAI‬أو ‪BM Z +& P+M‬‬ ‫‪ K‬ا"‪ 3‬ا" وا"‪ B3‬ا"!‪.  8‬‬ ‫‪ -٤‬أ‪+D &F OC‬ار& إدارة و>‪ &W‬ا"‪VJ‬ت‬ ‫وو‪ O>F‬و>‪ t W+‬آ [‪ B‬آ‪*" d1‬آ‪ +‬ب و>‪ }18‬أ‪J K6‬‬ ‫>‪ t +A‬و‪ K‬ا"‪ OO3 t8‬و>و&‪ OY‬و>=‪ O‬و ‪O+C‬‬ ‫وا ‪.O +‬‬ ‫‪J" ]O+>  -٥‬ع ‪ K K‬ا)ل و‪ 9) 3+> D‬و&‪G^1J‬‬ ‫ا"‪ PJ" O  V3‬ا‪ = K O9 J+‬ا"‪VJ‬ت وا‪[+F‬ظ‬ ‫ا"‪ BVJ‬رف أ‪ " OY‬ع إ"‪> J O‬آ‪Q " O‬‬ ‫إدارة ا! ‪:‬‬ ‫>‪ GJ‬دور ا"‪MC G3 3‬ح ‪VJ‬ت ا)ل ‪P‬‬ ‫ ه‪ Z > Q&> G3 O+‬ا"‪VJ‬ت إ"‪ 5‬ا‪8+ D‬د ا""‪G‬‬ ‫ا"‪ &M‬ا"‪m‬ي ت &ف  ‪8+‬د ا"‪ ، 3‬وا"‪m‬ي &‪x‬آ  ‪5‬‬ ‫رأس ا"ل ا"[‪A‬ي وا"‪ 5  3‬ا"‪*9 K 3J+‬ل‬ ‫ا"=رات ا"‪ K *Y3 ، &I1‬دوره ا" ‪> G3‬ل‬ ‫ا"‪VJ‬ت إ"‪+M 5‬ت ‪ B3‬ا"‪> G+‬ث ا"‪^+‬‬ ‫ا"‪mM‬ري ‪ G3‬ا"‪ P zA++" VJ‬ا"‪ ^+‬ا" &‪O+N G3 P‬؛‬ ‫و‪ K‬ه‪ J‬اآ‪O[ &> t +‬م ا"‪ 3‬أه‪cF ، 9 B‬‬ ‫أن [‪O‬م ا"‪ G3 3‬ا" م ا‪ 5  Q+I& +D‬ا‪F‬‬ ‫ا"‪ K 9‬ا" ‪ K‬أو آ*ه‪ ،‬ا)ول‪ I& ،‬إ"‪ 5‬ا"‪M+‬رب‬ ‫ا"‪ VJ‬وا‪1+9‬ر ا"[;ت ا"‪ I> G+‬إ"‪C 5‬ذج‬ ‫;‪ B‬و>[ &‪ O[" B‬ا"‪ ،X‬وآ‪ 2C‬أآ‪ R‬ا‪M>D‬هت‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ G3 b‬ا" م ا‪ +D‬وا‪8+ D‬د& >‪ Q‬إ"‪ 5‬ا"‪ M+‬‬ ‫وا"‪1‬هن‪ &W+" ،‬ا"* ا" ‪ K 11‬ا"‪^+‬ات وا"[‪Q8‬‬ ‫‪ &+" OJ‬ا‪ ،O+"*=+‬أ ا"‪ Q9‬ا"‪Q9 O3 ،GCR‬‬ ‫ا‪RCD‬و"‪ GM‬وا"‪+‬ر&ˆ ا"‪m‬ي از ا"‪+‬ا‪ K Q9‬ا"=ى‬ ‫أ‪ O B+D‬وا"‪m‬ي &[‪ QY‬ا"‪F‬ة  ‪ 5‬ا"[‪،Q8‬‬ ‫و&آ‪  L‬ادارة  ‪ 5‬ا"‪ Q9‬ا)ول‪.‬‬ ‫و;‪ K‬ا"‪O+‬ت ادار& ‪3‬ن ه‪J‬ك >‪ G3 K&1‬و‪O‬ت‬ ‫‪ VC‬ا"‪ K88!+‬وا"‪+A‬ب ‪ &> G3‬ا"[‪O‬م ا"  " OC] (1998, 34‬ا"‪ B3‬ا"‪ JY‬و‬ ‫>‪19 K BJY+‬ات وأ‪A3‬ر و‪O‬رات &‪ O1 +A‬ا"[د و‪K‬‬ ‫ا"‪ B3‬ا"‪V‬ه‪ d‬ا"‪ K M>J‬ا"‪ P Q[+‬ا"‪ N1‬ا"!ر " ‪.‬‬ ‫)‪ ,٢٠٠٨, MC‬ص‪.(٥٩- ٥٨‬‬ ‫أه ا! ! ا‪?)F‬ت‪-:‬‬ ‫‪I‬ز أه ا! ! ا‪?)F‬ت (= ‪9‬ل ( @‪:‬‬ ‫‪ -١‬ار إ‪IC‬ء ا"‪ F G3 VJ‬ذا>‪5  b1 QAI +& B‬‬ ‫‪ MF‬ا"‪ 3‬ا"‪3) F+‬ص ا‪R+D‬ر‪_ ،‬وف ا" ق‪،‬‬ ‫ا"ض وا"‪ 5  t W‬ا"‪M+J‬ت وا"!ت‪ 1H ،‬‬ ‫ا"‪ K 3J‬و را>‪ ، O‬ا"*ء ا"‪ +‬ن و‪.( O>&l‬‬ ‫‪ 3> -٢‬ا"‪& 3‬د ا"=ار ا)‪M" QR‬ل ا"‪IJ‬ط ا" ‪G‬‬ ‫" ‪ ، x‬ا"‪ O3 z_> G+‬أا"‪ O‬وارده ا"‪، F+‬‬ ‫وذ"‪*9 K Z‬ل ا"‪ 3‬ا"‪) +‬ا"‪V‬وف ا‪8+ D‬د& ‬ ‫ا" ‪ ،‬ا"‪D+‬ت ا"‪M‬ر& وا"‪ ، +‬ا"‪J=+‬ت ا" ة‬ ‫وا"‪.(  +‬‬ ‫‪> -٣‬د ‪ C‬ا"‪ 3‬ا"‪ VJ+‬وادار& ا"‪ F+‬‬ ‫" ‪ ، VJ‬و‪ "3‬وآ[ءة  >=م ‪ B‬ادارة ‪ 8> K‬‬ ‫هآ ‪ O‬ا"‪ BVJ+‬وا"_[ و‪ VC‬ا"‪ Q‬وا‪+9‬ر >=‪J‬ت‬ ‫ا)داء‪.‬‬ ‫‪ -٤‬ا"‪ 3‬ا"‪19 K 1 +A‬ات و>‪M‬رب اŒ‪ ،K&9‬وا"‪G+‬‬ ‫>‪ G3 6x‬ارات إدة ا"‪ AO‬وإدة ا"‪ JO‬و‪l‬ه ‪K‬‬ ‫و‪D‬ت ا"‪ &W+‬وا"‪ G3 K +‬أداء ا"‪VJ‬ت‪.‬‬ ‫‪ t > -٥‬ا"‪ 3‬ا"‪ J=+‬وادار& ا"‪" F+‬ى ا"&&‪K‬‬ ‫دورا رزا ‪ G3‬إ‪MC‬ح ا"‪ XW!+‬وا" ت ا‪ +C‬‬ ‫وا"‪ =& +‬وا"" وا"‪ QR> G+‬ا"=ل ا"‪ G3 O‬ا"‪Q‬‬ ‫اداري‪.‬‬ ‫‪+> -٦‬ج ا"‪ VJ‬إ"‪ 5‬ا"‪ 3‬ا"‪M+‬دة ‪b1 G3‬ة‬ ‫ ت ا‪+9‬ر و>‪ 8‬وإ‪+C‬ج ا" ‪ P‬وا"!ت و>‪&W‬‬ ‫ا"د ‪.OJ‬‬ ‫ا‪R‬دة ! (‪?)F‬ت ا ا‪:‬‬ ‫إن ‪ } W8‬ا"‪M‬دة ه )س [‪O‬م ا ‪8+‬دي _‪O‬‬ ‫‪J‬ء  ‪ 5‬ا"‪ 3J+‬ا"‪ GJ8‬وا"‪ K G"JA+‬ا"ول‬ ‫ا"‪ J8‬ا"‪O ، =+‬ف ا ‪ 1‬دة ا‪+C‬ج وآ ‪ =6 t‬‬ ‫ا" ق وا"‪+I‬ي‪ ،‬و"‪+> G"+‬آ‪ L‬ا"‪M‬دة  ‪ 5‬ا"‪[+‬ق‬ ‫وا‪+D‬ز "‪ J‬ا"‪ G3 h+J‬أي ‪M‬ل‪ ،‬و"= >‪J‬ول ا"‪RF1‬ن‬ ‫‪ G3‬درا>‪; O‬ع ا"‪M‬دة و‪ dI C‬و"‪ BM‬ا"‪RA‬ون‪،‬‬ ‫وه‪m‬ا أدى إ"‪J> 5‬ع و>د ا"‪[&+‬ت ا"! ‪mO‬ا ا"[‪O‬م‪،‬‬ ‫و‪ K‬أ‪[&> Ob‬ت ا"‪M‬دة ه >&‪ z‬ا"‪ M‬ا)&‪ A‬‬ ‫" د‪ ،d‬و  ‪" 23‬ا"" ا"‪+‬آ €و ا‪1 W+ O‬ت‬ ‫‪ (1999:507 Bonser,) .B +‬وف )‪J.M.‬‬ ‫‪ (Juran,‬وز ‪ ،B‬ا"‪M‬دة إ‪ OC‬ى * ا"‪h+J‬‬ ‫"*‪+‬ل‪ .‬و‪ 23‬ا"‪M‬دة  ‪ 5‬إ‪ OC‬ى ا"‪P =W‬‬ ‫ا"‪1 W+‬ت‪ .‬أ ا"ا [ ا"و" ‪=3 ISO 9000:2000‬‬ ‫‪ 23‬ا"‪M‬دة‪ OC] :‬در > ‪ M 1‬ا"!‪78‬‬ ‫‪75‬‬

‫ا"رو‪ G3 6‬ا"‪1 W+" h+J‬ت ا"‪ ،Q‬وف )‪-17‬‬ ‫‪ (Feignbaum, A.V. 1991‬ا"‪M‬دة ]‪Q[> h>C :OC‬‬ ‫‪HIC 789‬ت ا"‪ K KA& d‬ت ا"‪ Q‬ور‪.B>1l‬‬ ‫‪:/( +5‬م ا‪R‬دة‪:‬‬ ‫‪> O‬د [‪O‬م ا"‪M‬دة إ‪ D‬أ‪ G3 G=+ > OC‬أر ‪ J‬‬ ‫ر ‪ ،B‬وه‪:G‬‬ ‫‪ .١‬ا‪R‬د‪ :N‬در ا‪:7T/‬‬ ‫‪M"3‬دة >‪ V" GJ‬ا"‪J‬س ا"‪ ،QY[+‬إي >[‪5  B  QY‬‬ ‫  أ‪9‬ى‪.‬‬ ‫‪ .٢‬ا‪R‬دة‪ :‬ا‪)9 ;U‬ل‪:‬‬ ‫>ف ا"‪M‬دة ]‪) OC‬ا"ا "*‪+‬ل( وذ"‪) Z‬ه ‬ ‫ا"‪M‬دة ‪ G3‬ا"‪ 8+‬وا‪ cF K B+CD‬ا" ‪L +‬ت‬ ‫ا"‪Y‬ور& " ‪ G3‬ت ا"‪Q‬‬ ‫ا"‪V‬ه& وا"‪) . JY‬ا"‪ GW‬و اد‪.(٢٧٥ ٢٠٠٣ ،d‬‬ ‫(‪IU‬ت ‪ IU‬ا‪R‬دة ! ا‪Z5‬ت ا ‪:‬‬ ‫إن أه ‪1 W+‬ت >‪ و‪.O=1W> G3 OC‬‬ ‫‪ -٣‬ود أهاف د‪ K B=+I ،d‬ا‪+F‬ت ا"[‪N‬ت‬ ‫ا" ‪ 3O+‬و‪ G‬ادارة وا" ‪.O==+"  K‬‬ ‫‪ }J -٤‬ا" ‪ K‬ا"‪ =R‬و>‪ 5  OMI‬أداء ا"‪ Q‬و>=&‬ ‫ا"‪ OJ L+‬دون ا"‪ G3 Q9+‬ا‪MC‬زا>‪ OJ> 5+F O‬ا"‪ =R‬‬ ‫‪ G3‬ر أ"‪ O‬دون ار>‪A‬ب ا)‪W9‬ء‪.‬‬ ‫‪ -٥‬ا‪+D‬د آ  ‪  K‬ا"‪ z&!+‬وا"‪+‬ه‪،5[W8) t‬‬ ‫ا)‪8C‬ري‪(٢٠ :٢٠٠٢ ،‬‬ ‫!ا' ‪ IU‬ا‪R‬دة ! ا ا‪:‬‬ ‫أن ‪3‬ا >‪ G‬‬ ‫‪ &W> -١‬ا"‪VJ‬م اداري ‪ G3‬ا"‪ M+C M‬و;ح‬ ‫ا)دوار و>& ا" ‪x‬و"ت‪.‬‬ ‫‪ -٢‬ا‪D‬ر>=ء  ‪+‬ى ا"!ت ا"‪  +‬ا"= " ‪*W‬ب‬ ‫ا"‪ 5  AJ> G+‬ا‪. O>8!b tC‬‬ ‫‪ -٣‬ز&دة ا"‪[A‬ءة ا"‪  +‬ور‪+  P3‬ى ا)داء "‪PM‬‬ ‫ا)آد&‪ K‬وادار&‪.K‬‬ ‫‪ -٤‬ا"‪3‬ء ‪1 W+‬ت ا"‪*W‬ب وا"‪ P+M‬وا"‪ 21‬ا" ‪G‬‬ ‫وا" ل إ"‪ 5‬ر;ه ‪.‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ K  3> -٥‬ا"‪[+‬ه وا"‪+‬ون وا"* ت ا‪ C C‬‬ ‫ا"  ‪ K‬ا" ‪.K‬‬ ‫‪ KA> - ٦‬إدارة ا"‪ QF K M‬ا"‪*AI‬ت "‪W‬ق ا"  ‬ ‫ا"‪ 8‬وا"‪*9 K O Q+‬ل‪.‬‬ ‫ااءات ا"‪ 8+‬وا"  "‪F PJ‬و‪.*1=+  O6‬‬ ‫‪ -٧‬ر‪+  P3‬ى ا"‪" G‬ى ا" ‪9 K K&[+‬ت ا"‪ M‬‬ ‫‪*9 K‬ل إاز ا‪L+"D‬ام ‪VJ‬م ا"‪M‬دة‪.‬‬ ‫‪ -٨‬ا"‪+‬ا‪ X‬وا"‪ P K QA+‬ا)آد&‪ K‬وادار&‪G3 K‬‬ ‫ا"‪ M‬وا"‪ Q‬وح ا"[&< ا"ا‪.F‬‬ ‫‪VC -٩‬م إدارة ا"‪M‬دة ا"‪ }J& I‬ا"‪ M‬ا‪+F‬ا‬ ‫و>=&ا و ر‪ d‬ده‪ BJ‬ا&‪.BM‬‬ ‫) ‪٨٤- ٢٠٠٢:٨٣ ،Y9‬؛ م‪.(٦٧٧ :٢٠٠٥ ،‬‬ ‫(ا‪ 7.‬دة ا‪:‬‬ ‫إن دة ا"‪ =J>  +‬إ"‪ 5‬ة ا‪ QF‬وه‪:G‬‬ ‫ا‪ .‬ا*و‪ F) :‬ا"‪ :( =+‬و&‪ O1 +‬ا"‪+‬ف‬ ‫ ‪ 5‬ا";‪ P‬ا"= "‪-:cF K  A‬‬ ‫ا‪CA‬ت ا"د& وا"‪ &I1‬وا"‪ =&W‬ا"‪ O = ‪  J‬ا"  ا"‪.  +‬‬ ‫ا‪ .‬ا‪ &W> F) : &H‬و>‪VC ‪B&&W> BW9 m[J‬‬ ‫‪[+D B b‬ء ‪1 W+‬ت ا"‪M‬دة ‪*9 K‬ل إ‪IC‬ء د"‪Q‬‬ ‫ا"‪M‬دة وإاءا>‪ .O‬و> ت ا"‪ Q‬و‪ K BWW9‬ا‪Q‬‬ ‫;ن ا"‪8‬ل  ‪VC 5‬م ا"‪M‬دة ا"‪ W‬ب وذ"‪+" Z‬ون‬ ‫‪ G[_ P‬ا"‪  A‬و‪ 6 K‬ا‪+‬د‪ K d‬ادارة ا" ‬ ‫ا‪ .‬ا‪VC F) : HH‬م ا"‪M‬دة(‪ :‬و&‪ +‬‬ ‫‪VC‬م ا"‪M‬دة ‪ G3‬ا"‪ A‬ت وأ ‪ O‬ا"  و‪ 5+F‬و‪F‬ا>‪O‬‬ ‫ادار& وا"[‪ ، J‬و>=م ا"‪I‬آ ا"‪x‬ه و‪ K‬و>‪  ت ‪VC‬م ا"‪M‬دة‪.‬‬ ‫ا‪ .‬اا; ‪ F) :‬إاد ا‪ h‬واد ا"‪+‬ر&‪:(t‬‬ ‫‪ G3 +& cF‬ه‪ dm‬ا"‪ F‬إاد اد ا"‪+‬ر&‪ t‬وا"‪  +‬‬ ‫"!‪ z +‬ا" ‪&+‬ت ادار& ‪*9‬ل ‪+3‬ة >‪ ر&‪ G1 +J K BM t‬ا"‪VC 5   A‬م ا"‪M‬دة‬ ‫)ا)&‪L‬و‪ (٩٠٠٢ :‬و>‪ B>=1W‬و&=م ه‪Dx‬ء ‪ m[J+‬ا"‪+‬ر&‪t‬‬ ‫‪ =1" =FD‬ا" ‪ K‬و&آ‪ L‬ا"‪+‬ر&‪ 5  t‬ا"‪ =&W‬ا"‪5 R‬‬ ‫اء ا"ا ا"ا‪.  9‬‬ ‫ا‪ .‬ا?د) ‪ F) :‬ا"ا ا"!ر (‪ 2F :‬أن‬ ‫ا"‪ OM‬ا"‪OI " C‬دة >=م "ا ‪ K‬ا‪ + Q‬‬ ‫ا‪[+‬ء ‪VC‬م ا"‪M‬دة "‪1 W+‬ت ا"ا [ واآ‪I+‬ف ‪DF‬ت‬ ‫م ا"‪ =W‬وا>!ذ ااءات ا"‪ 8+‬وا"  ‬ ‫""‪.O+M‬‬ ‫ا‪ %.‬ا?;‪ F) :%‬ا"‪ :(79+‬وا"‪  +> G+‬إ>م‬ ‫ا"ا ا"!ر ‪ K‬ا"‪ OM‬ا"‪OI " C‬دة &‪ +‬ا>!ذ‬ ‫ا"=ار ‪I‬ن ‪Ob }J‬دة ا"‪M‬دة ا"" )ا)&‪L‬و ‪G3 (٩٠٠٢‬‬ ‫ا"" ا"‪ " +‬ا [ ‪ 1) .‬ا"‪(٦٥ ،٢٠٠٤ ،KF‬‬ ‫ا'را)ت ا?; ‪:‬‬ ‫ا'را)ت ا; ‪:‬‬ ‫‪ -١‬درا )أ ‪ ،B1‬ه ‪J .(٢٨,٢٠٠٤ ،1‬ان‬ ‫ى >‪ ‪ Z > ا‪ 3‬و_‪ z‬إدارة ا"‪ 3‬وأ‪6‬ه ‪G3‬‬ ‫‪  3‬ا"&&‪ G3 K‬ا"زارات ا)رد‪ ، C‬و ‬ ‫ه‪ 23‬ا"را إ"‪ &W> 5‬إ‪H‬را [ه‪" G‬أس‬ ‫ا"ل ا"[‪A‬ي و‪ G3 B>CA‬ا"‪M‬ت‪ ،‬وآ‪Z"m‬‬ ‫>‪ &W‬أدا‪ K B=+" d‬ا‪ B Q‬و>‪   b‬‬ ‫إدار>‪ ،B‬و> ‪ 2‬ا"را إ"‪ 5‬ا"& ‪ K‬ا"‪، h+J‬‬ ‫أزه أن ه‪J‬ك * ‪H‬د&‪ K B‬ا"‪QAI  +‬‬ ‫م وا)داء ا‪8+ D‬دي أو ا‪. +C‬‬ ‫‪ -٣‬م )ا" ‪ (٢٠٥، ١٩٩٧ ،G‬را ‪J‬ان‬ ‫ادارة "‪J> ، 3‬و"‪L 2‬ات ‪ 8‬ا"‪ 3‬‬ ‫وا" ت‪1+ ،‬ر‪ d‬ا"آ‪L‬ة ا) ‪J G3‬ء‬ ‫ا‪8+ D‬د ا"‪،GJH‬آ‪> Z"m‬ث ‪ K‬ا‪=+CD‬ل إ"‪5‬‬ ‫‪ 8‬ا"‪. 3‬‬ ‫‪ -٤‬درا )ا" ا‪" (٧٨,٢٠٠١ ،GC‬إدارة ا"‪" 3‬‬ ‫وا"‪ G+‬ه‪ 23‬إ"‪ 5‬ا"‪+‬ف  ‪ 1H 5‬ا"‪ 3‬‬ ‫ا"‪ ، VJ+‬وأ‪ ،O"Ab‬وا‪ ،O 9‬و‪28 9‬‬ ‫‪Y‬ورة >‪  PMI‬ت ا"‪ +‬وا"‪1+‬دل ا"‪G3‬‬ ‫‪ K‬أ‪Y‬ء ا"‪ ، VJ‬وأآت  ‪ 5‬أه ا"‪8J‬‬ ‫ا"‪I1‬ي ‪ m[J> G3‬ا‪+‬ا>‪M‬ت إدارة ا"‪، 3‬‬ ‫و> ‪ 2‬إ"‪ 5‬أه ا"‪8‬ب وا"=‪1‬ت ‪F‬ل إدارة‬ ‫ا"‪. 3‬‬ ‫‪ -٥‬أى )ا"!‪ (٤٦,١٩٩٦ ،GM3‬درا ‬ ‫‪J‬ان"ا"‪ Q9‬ا"‪ Q > G3 G3‬ا‪+9D‬ر‬ ‫ا‪+D‬ا>‪ :GM‬درا ا‪+9‬ر&‪ J G3 B‬ا"‪K+‬‬ ‫ا"ا  " ه‪ 23‬إ"‪ 5‬أن ه‪J‬ك ‪*Y‬ت ‪B&A3‬‬ ‫‪ B&VC‬و>‪ K B=1W‬أه‪_ Q > O‬ه>‪G‬‬ ‫ا"‪ 3‬ا"‪ VJ+‬وا‪+9D‬ر ا‪+D‬ا>‪GM‬‬ ‫و>[ ه‪.‬‬ ‫‪ -٦‬درا أاه ا"‪LJ‬ي‪ G   ،‬و "}‬ ‫)‪J (٢٠٠٨,٢٦٨‬ان" إدارة رأس ا"ل ا"[‪A‬ي‬ ‫‪VJ G3‬ت ا)ل" ‪ cF‬أآ أن " ‪ 3‬‬ ‫‪ GO3 .789‬وا"‪m‬آء &ان ا"دان ‪+‬ز‬ ‫‪ G3‬أ& ‪ VJ‬أل‪ ،‬و&‪6x‬ان ‪ G3‬ا)داء ا""‪G‬‬ ‫وا"‪ VJ " G A‬وه ا"اد ا"!م " ‪BM+JC‬‬ ‫و‪ ،B1C‬وا"= ا"== " ‪Q=C G3 KA> VJ‬‬ ‫ا"‪ 3‬إ"‪ 5‬وا ‪ ،P‬و>=< أداء ‪[+‬ق و ر‪d‬‬ ‫>‪.B 3J‬‬ ‫ا'را)ت ا*‪I5‬‬ ‫‪ -١‬درا )‪ ،(Laszlo, 2002,66‬و  ه‪23‬‬ ‫ا"را إ"‪ 6*6 };> 5‬أل ت ‪ O‬إدارة‬ ‫ا"‪ ، 3‬وه‪ G‬ا"‪ QM‬ا)ول‪ cF :‬رآ‪5  L‬‬ ‫ه ا"‪ 3‬وإدار>‪*9 K O‬ل اآ‪ +‬ب ا"‪m‬آء‬ ‫ا"‪ "JA> G3 QR+‬رأس ا"ل ا"[‪A‬ي‪ ،‬أ‬ ‫ا"‪ QM‬ا"‪ :GCR‬رآ‪ 5  L‬ا"د ‪ K‬إدارة‬ ‫ا"‪+ D 3‬اح  ‪A+‬ن  ‪*9 K B‬ل‬ ‫ ت ا"‪ +‬وا‪A+D‬ر و د ه‪m‬ا ا"‪ QM‬ا"‪VJ‬ت‬ ‫ا"‪  +‬و‪ KA‬ا" ‪ K‬وا"‪M‬ت ‪ K‬ااع‬ ‫وا"‪ C B+‬ا"‪ QM‬ا"‪ c"R‬ا"‪m‬ي رآ‪5  L‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫ا‪IA+‬ف ا" ‪+" Q1=+‬آ‪ G^1J&  5  L‬أن‬ ‫>‪A‬ن  ‪ B‬إدارة ا"‪. 3‬‬ ‫‪ -٢‬درا )‪ ،(Mathotra. 2003,91‬و  ه‪23‬‬ ‫ا"را إ"‪ 5‬و;‪ P‬م و>& & ‪ 1J‬‬ ‫"=س ا) ل ا"‪ ، 3‬و‪J‬ء ‪C‬ذج  ‪B‬‬ ‫‪ 1J‬وآ‪ Z"m‬آ[ >‪ &W‬رات وإ‪CA‬ت‬ ‫ا"=‪W‬ع ا"م ‪ G3‬ه‪m‬ا ا"‪M‬ل‪ 2=1H cF ،‬ه‪dm‬‬ ‫ا"را ‪ G3‬ا"‪&D‬ت ا"‪+‬ة آ‪LM‬ء ‪IC K‬ط‬ ‫ا) ا"‪+‬ة ‪ G3‬ا"‪HIJ‬ت ا‪ +D‬وا"  ‪.‬‬ ‫‪ -٣‬م )‪(1998, 134 Brain&Newman,‬‬ ‫را ‪F‬ل "‪C‬ذج إدارة ا"‪ ،" 3‬و‪ G3‬ه‪dm‬‬ ‫ا"را ا‪+‬ض ا"‪ cF1‬ا" ا" "‪QR‬‬ ‫ه‪m‬ا ا"‪J‬ذج ‪+‬د ا"ا ‪ z‬وا)د‪ ،‬و‪b‬د‬ ‫ا"‪ 5  cF1‬أه دور ‪F‬ة ا"‪ ، 3‬وا"‪ J‬‬ ‫ا"‪6x‬ة وا‪+‬ده آ‪ O 8J‬ودا ‪G3‬‬ ‫‪C‬ذ‪.B‬‬ ‫‪ G3 -٤‬درا ) ‪Mentzer & Mastunol, 2000,‬‬ ‫‪ > (26‬إاء ه‪ dm‬ا"را  ‪& K BJ 5‬ي‬ ‫ا"‪b G3 ‪ zJ8‬ا"‪ 3‬إ"‪BJ; 5‬‬ ‫&‪ O P++‬ا)‪3‬اد أو ‪3‬ق ا"‪ ،Q‬و>‪1‬ز ‪G3‬‬ ‫ا"‪[A‬ءة ا"‪ l QAI ، 8!I‬ر‪ ،G‬و ‪5‬‬ ‫ا"‪ VJ‬أن >‪.O  3‬‬ ‫‪ -٦‬درا )‪ zJ (Taylor, 2000:2‬ا"‪ 3‬أ‪OC‬‬ ‫_ه‪ d‬و;‪ BJ‬و&‪ KA‬أن >‪A‬ن = >‪ Y‬‬ ‫>[  ‪ Q +" G11‬ا"=م ث ‪ ،K‬و‪BW‬‬ ‫>=م  ‪ 5‬ا"‪ M+‬دون >[  ا"ث‬ ‫ا\[ر ا 'را) ‪:‬‬ ‫>‪J+‬ول ا"را ا"‪ MOJ z&+‬ا"را وإاءا>‪،O‬‬ ‫‪ hOJ  J& cF‬و‪ P+M‬و‪ J‬وأداة ا"را ‪ ،‬وض‬ ‫ا"‪ h+J‬و‪ 6 K‬ا"‪ +‬ت‪.‬‬ ‫(‪ R:5‬ا'را) ‪:‬‬ ‫"= ا‪!+‬م ا"‪ cF1‬ا"‪ hOJ‬ا" [‪ G‬وا"‪MCD G  +‬ز ه‪dm‬‬ ‫ا"را ‪ ،‬و  ا‪+‬ت ا"را ا"‪ hOJ‬ا" [‪*9 K G‬ل‬ ‫ا‪*HD‬ع  ‪ 5‬ا"ا‪ P‬وا"رات ا)‪9‬ى ذات ا"‪ ، 8‬أ‬ ‫‪ cF K‬ا"‪ hOJ‬ا"‪ =3 G  +‬ا>‪ 21‬ا"را ا" } ا"ا‪GC‬‬ ‫وا‪ 2!+‬أداة ا‪ PM" C1+D‬ا" ت ‪ K‬أ‪3‬اد ا"‪ J‬‬ ‫و>  ‪L>  O‬ه‪.‬‬ ‫(‪ K61‬ا‪789 6‬‬ ‫ا"‪ J1‬ا"‪ "JA+" ++‬ا" ت  ‪; 5‬ن‬ ‫دة ا"‪ ،  +‬وآ‪ Z"m‬در ا"‪=+‬رب او ا"‪CM+‬‬ ‫‪ G3‬إت ه‪Dx‬ء ا"‪ ! K61‬ا"[; ‬ ‫ا"  ‪.‬‬ ‫‪ -٤‬ا‪1+9‬ر ‪*" Reliabilty‬ت ا"‪1R‬ت "‪1‬رات‬ ‫ا)داة‪.‬‬ ‫‪'+‬ق أداة ا'را) و‪::I‬‬ ‫"  ف  ‪ 5‬ق =& أداة ا"را م ا"‪cF1‬‬ ‫ض ا"‪1‬رات ا"‪^+ O+JY> G+‬ات ا"را  ‪5‬‬ ‫‪ K BM‬أ‪Y‬ء ه‪ N‬ا"‪+‬ر& "‪M‬ت ا)رد‪، C‬‬ ‫وآ‪ K BM 5  Z"m‬ا"ر‪ K‬ا"‪ ،K88!+‬و  > ‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫إد‪9‬ل ‪ y‬ا"‪*&+‬ت  ‪ 5‬ا)داة ‪; G3‬ء *‪. O>VF‬‬ ‫و‪1 2Y9‬رات ا‪1+9D BC1+‬ر *ت ا"‪1R‬ت‬ ‫‪ K ت ا]‬

‫ا'د‬

‫ا‪I?5‬‬ ‫ا>@ ‪%‬‬

‫ا‪b5R‬‬

‫أ‪5RC‬‬ ‫ذآ‬

‫‪١٧‬‬ ‫‪٣٥‬‬

‫‪٣٥.٧‬‬ ‫‪٦٧.٣‬‬

‫‪J ٥ – ١‬ات‬ ‫‪J ١٠ – ٦‬ات‬ ‫‪]3 J ١١‬آ‪R‬‬

‫‪٢٦‬‬ ‫‪٢١‬‬ ‫‪٥‬‬

‫‪٥٠‬‬ ‫‪٤٠.٤‬‬ ‫‪٩.٦‬‬

‫ا‪F‬ه‪ 7‬ا‬

‫‪"A‬ر&س‬ ‫د م "‪G‬‬ ‫درات  ‬

‫‪٦‬‬ ‫‪٣٣‬‬ ‫‪١٣‬‬

‫‪١١.٥‬‬ ‫‪٦٣.٥‬‬ ‫‪٢٥‬‬

‫ا‪[05‬ت ا‬

‫‪ IC‬ث‬ ‫>"‪ z‬آ‪+‬ب‬ ‫‪>x‬ات   ‬

‫‪٢٢‬‬ ‫‪١٢‬‬ ‫‪١٨‬‬

‫‪٤٢.٣‬‬ ‫‪٢٣.١‬‬ ‫‪٣٤.٦‬‬

‫ا‪I,‬ة‬

‫ا‪'R‬ول ر‪ 789 .(٢)8‬ا"‪.K61‬‬

‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٢‬أ*‪ ،d‬أن ‪ 1"l‬‬ ‫ا)‪3‬اد ا"‪ K61‬آ‪C‬ا ‪ K‬ا"‪m‬آر إذ  ‪ p‬ده ‪3 ٣٥‬د‬ ‫و&‪ AI‬ن ‪ K %٦٧.٣ B+1J‬إ"‪ G‬ا"‪ ،K61‬وان ه‪m‬ا‬ ‫ا"‪ QR+‬ا">[‪ G3 P‬ا"‪ P M J& J‬وا ‪> P‬ز&‪ P‬ا" ‪K‬‬ ‫‪ G3‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫أ >ز&‪ P‬ا"‪ t F K61‬ا"!‪1‬ة ‪ =3‬آ‪ 2C‬ا"[‪ N‬ا"‪P=> G+‬‬ ‫‪J ٥ – ١ K‬ات ه‪ G‬ا"[‪ N‬ا)آ‪*R> R‬؛ ‪ p  cF‬د‬ ‫أ‪3‬اده ‪3 ٢٦‬د و‪ K %٥٠ 1 J‬ا"‪M‬ع‪ N3 O & ،‬‬ ‫ا)‪3‬اد ا"‪J ١٠ – ٦ K O>19 K&m‬ات؛ ‪ p  cF‬د‬ ‫أ‪3‬اده ‪3 ٢١‬د و‪ N3 O & 6 ،٤٠.٤ 1 J‬ا)‪3‬اد ا"‪K&m‬‬ ‫‪]3 J ١١ O>19‬آ‪ R‬وه‪ G‬ا ‪^+ t F *R> N3 Q‬‬ ‫ا"!‪1‬ة‪ ،‬إذ  ‪ p‬د أ‪3‬اده ‪ ٥‬أ‪3‬اد و‪.%٩.٦ &N B1 J‬‬ ‫أ "‪ 1 J‬إ"‪ 5‬ا"‪+‬ز&‪ t F P‬ا"‪x‬ه‪ Q‬ا" ‪ =3 ،G‬آ‪2C‬‬ ‫‪ N3‬ا)‪3‬اد ا"‪ & K&m‬ن در د م "‪ G‬ه ا)‪ ، 1 l‬إذ‬ ‫ ‪ p‬ده ‪3 ٣٣‬د و‪ K %٦٣.٥ 1 J‬ا"‪M‬ع‪O & ،‬‬ ‫ا"[‪ N‬ا"‪ Q> G+‬در ا"رات ا" ‪ p  cF ،‬د‬ ‫أ‪3‬اده ‪3 ١٣‬د و‪ N3 6 ،%٢٥ &N B1 J‬ا)‪3‬اد ا"‪K&m‬‬ ‫& ن در ا"‪"A1‬ر&س وه‪ G‬ا ‪t F *R> N3 Q‬‬ ‫‪ ^+‬ا"‪x‬ه‪ Q‬ا" ‪G‬؛ إذ  ‪ p‬د أ‪3‬اده ‪ ٦‬أ‪3‬اد و‪B1 J‬‬ ‫‪.%١١.٥ &N‬‬ ‫أ "‪ 1 J‬إ"‪ 5‬ا"‪+‬ز&‪ t F P‬ا"‪HIJ‬ت ا"  ‪=3 ،‬‬ ‫آ‪ N3 2C‬ا)‪3‬اد ا"‪IJ& K&m‬ون ث ه ا)‪ ، 1 l‬إذ  ‪p‬‬ ‫ده ‪3 ٢٢‬د و‪ K %٤٢.٣ B1 J‬ا"‪M‬ع‪ O & ،‬ا"[‪ N‬‬ ‫ا"‪+I> G+‬ك ‪ G3‬ا"‪>x‬ات ا"  ‪ p  cF ،‬د أ‪3‬اده‬ ‫‪3 ١٨‬د و‪ N3 6 ،%٣٤.٦ &N B1 J‬ا)‪3‬اد ا"‪K&m‬‬ ‫&‪["x‬ن ا"‪ t+A‬وه‪ G‬ا ‪ ^+ t F *R> N3 Q‬ا"‪HIJ‬ت‬ ‫ا"  ‪ ،‬إذ  ‪ p‬د أ‪3‬اده ‪3 ١٢‬د و‪%٢٣.١ &N B1 J‬‬ ‫‪78‬‬

‫ض &_ ا'را) ‪:‬‬ ‫&‪ KY+‬ه‪m‬ا ا"[‪ h+J " ; Q8‬ا"‪ 2 > G+‬إ"‪O‬‬ ‫ا"را ‪*9 K‬ل ا ‪ > K‬ؤ‪ ،O>D‬وا‪1+9‬ر‬ ‫‪ O>;3‬و ‪ 5‬ا"‪ J‬ا)>‪-:G‬‬ ‫ا‪ /‬ا? ا*و‪:‬‬ ‫‪ * >D :HO-1‬ذات د‪ B"D‬إ‪ K 8F‬ا"!‪78‬‬ ‫ا"‪ O P++& G+‬أ‪Y‬ء ا"‪ NO‬ا"‪+‬ر&  )أ‪3‬اد ا"‪( 3‬‬ ‫و;ن ا"‪M‬دة ‪ G3‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪+  J‬ى‬ ‫د‪(٠.٠٥ ≥α ) B"D‬‬ ‫و@‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬ ‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ * > D :HO-1-1‬ذات د‪ B"D‬إ‪K 8F‬‬ ‫ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  و ;ن‬ ‫دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪+  J‬ى‬ ‫ ‪+‬ى د‪.(٠.٠٥ ≥α ) B"D‬‬ ‫" ‪ K‬ه‪ dm‬ا"[; > ا‪!+‬ام > ‪ Q‬ا"‪ K&1+‬ا)‪F‬دي‬ ‫) ‪ ،( Anova‬وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪.(١‬‬ ‫‪ :f‬ا?;‬

‫‪ :f‬ا‪'R‬و‪%‬‬

‫(?ى ا'‪e‬‬ ‫ا‪0.05 =( 78‬‬ ‫‪٠.٠٠٠‬‬

‫ا‪/‬‬ ‫ا*و‬ ‫‪٣.٨٩‬‬ ‫‪٩.٧٨٦‬‬ ‫‪H1‬‬ ‫ا‪'R‬ول ر‪ Q > h+C .(١)8‬ا"‪ K&1+‬ا)‪F‬دي )‪(Anova‬‬

‫"‪HIJ " ^+‬ت ا"  ‪.‬‬ ‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (١‬أ*‪ ،d‬أن  ف‬ ‫ا"  )‪ (٩.٧٨٦‬وه‪ G‬اآ‪ B K 1‬ف ا"‪M‬و" ‬ ‫ا"‪ ،(٣.٨٩) ^"1‬و ‪+‬ى د‪ (٠.٠٠٠) B"D‬وه‪ G‬ا ‪K Q‬‬ ‫)‪ t&  ،(٠.٠٥‬ر‪ y3‬ا"[; ا" و ‪1‬ل‬ ‫ا"[; ا"‪ &1‬وا"‪ 5  7J> G+‬ود * ذات د‪B"D‬‬ ‫إ‪ K 8F‬ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬‬ ‫ا"‪+‬ر&  و ;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪.‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ * > D‬ذات د‪ B"D‬إ‪19 K 8F‬ة ا"‪ NO‬‬ ‫ا"‪+‬ر&  و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪+  J‬ى د‪.( ٠.٠٥ ≥α ) B"D‬‬ ‫" ‪ K‬ه‪ dm‬ا"[; > ا‪!+‬ام > ‪ Q‬ا"‪ K&1+‬ا)‪F‬دي‬ ‫) ‪ ،( Anova‬وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪:(٣‬‬ ‫ ‪+‬ى ا"‪ "D‬‬ ‫‪ :f‬ا"‪M‬و"‪B‬‬ ‫‪:f‬‬ ‫ا"[; ‬ ‫ا ‪0.05 K Q‬‬ ‫ا"  ‬ ‫ا)و"‪5‬‬ ‫‪٠.٠٤٩‬‬ ‫‪٣.٨٩‬‬ ‫‪٣.٢١٦‬‬ ‫‪H2‬‬ ‫ا‪'R‬ول ر‪ Q > h+C .(٣) 8‬ا"‪ K&1+‬ا)‪F‬دي )‪^+" (Anova‬‬ ‫" ‪HIJ‬ت ا"  ‪.‬‬

‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٣‬أ*‪ ،d‬أن  ف‬ ‫ا"  )‪ (٣.٢١٦‬وه‪ G‬اآ‪ B K 1‬ف ا"‪M‬و" ا"‪ ^"1‬‬ ‫)‪ ،(٣.٨٩‬و ‪+‬ى د‪ (٠.٠٤٩) B"D‬وه‪ G‬ا ‪،(٠.٠٥) K Q‬‬ ‫ &‪ t‬ر‪ y3‬ا"[; ا" و ‪1‬ل ا"[; ا"‪ &1‬‬ ‫وا"‪ 5  7J> G+‬ود * ذات د‪ B"D‬إ‪K 8F‬‬ ‫‪19‬ة ا"‪ NO‬ا"‪+‬ر&  و;ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪ %/‬ا?‪ %‬ا‪:%&H‬‬ ‫‪ & D :HO -2‬ا‪ 78!" 6‬ا"‪ J1‬ا"‪"JA+" ++‬‬ ‫ا" ت  ‪; 5‬ن دة ا"‪  +‬و>‪VC ،(٤–١‬إ&‪M‬د ا"‪W+‬ت ا"  وا‪CD‬ا‪3‬ت‬ ‫ا"ر& وا">‪ t‬ودرت ا"ر )‪3‬اد ‪ J‬ا"را ‬ ‫‪ G3‬ا"‪ A‬ت وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪.(٤‬‬

‫و‪/‬ع ‪ :5‬ا‪/‬ت ا‪ /‬ا ‪:‬‬ ‫ا‪ /‬ا‪ /‬ا*و‪:‬‬ ‫‪ & D :HO -1-2‬ا‪ 1" 6‬و>‪ P&J‬ا"‪5  1+A‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪8‬‬

‫ا‪I‬رة‬

‫ا)‪ h‬ا?;‬

‫ا‪&e‬اف اري‬

‫‪١‬‬

‫ا‪$‬‬ ‫(‪I$‬ت‬ ‫‪I).‬‬ ‫و‪ =( '@X@ :@5‬ا‪I‬ث‬ ‫ا‬ ‫ا‪I$‬ت‬ ‫?' ‪I).‬‬ ‫و‪ ! :@5‬ا)ب ‪ P&J‬ا"‪ 1+A‬و;ن‬ ‫دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬

‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٤‬أ*‪ ،d‬ن أ‪3‬اد ‪ J‬‬ ‫ا"را &ون ن ه‪J‬ك * ‪ 1F K‬و>‪ P&J‬ا"‪ 1+A‬‬ ‫‪ G3‬ا"‪  A‬و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪ p  cF ،‬ا"‪ X+‬ا" ‪ G‬ا"م "‪ dmO‬ا"[; ‬ ‫)‪ (٤.٠٣٠٤٧٥‬ور ر "‪F cF ،B‬زت ا"[=ة‬ ‫ر )‪ 5  (٢‬ا">‪ 1‬ا)و"‪ 5‬ور ر "‪،B‬‬ ‫وا"‪ 1F  > "5  7J> G+‬ا"‪1+A‬ت ‪ G3‬ا‪+‬ب‬ ‫‪ P‬ا"ا‪ P‬وا"ور&ت "‪F KF G3 ،‬زت ا"[=ة )‪(٤‬‬ ‫ ‪ 5‬ا">‪ 1‬ا)‪9‬ة ور ر "‪ ،B‬وا"‪28C G+‬‬ ‫ ‪ 1F  > "5‬ا"‪1+A‬ت و>‪ G3 O&J‬ا"‪8‬ل  ‪5‬‬ ‫ا"   "‪ ،‬وآ‪=3 P 2C‬ات ا"[; أ‪1‬ب‬ ‫ا" ‬

‫ا"‪1‬رة‬

‫"‪ y3‬ا"[; ا" و ‪1‬ل ا"[; ا"‪ &1‬ا"‪7J> G+‬‬ ‫ ‪ 5‬ود * ‪ 1F K‬و>‪ P&J‬ا"‪ 1+A‬و;ن دة‬ ‫ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا‪ /‬ا‪ /‬ا‪: &H‬‬ ‫‪ & D :HO -2-2‬ا‪ Q " 6‬ا"‪ "JA+‬ا"&‪5  R‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫" ‪ K‬ه‪ dm‬ا"[; وا"‪J> G+‬و"‪=3 2‬ات ا‪ C1+D‬‬ ‫‪ > ،(٤ – ١) K‬إ&‪M‬د ا"‪W+‬ت ا"  وا‪CD‬ا‪3‬ت‬ ‫ا"ر& وا">‪ t‬ودرت ا"ر )‪3‬اد ‪ J‬ا"را ‬ ‫‪ G3‬ا"‪ A‬ت وآ ه ;} ‪ G3‬ا"‪M‬ول ر )‪.(٥‬‬ ‫ا"‪ X‬ا" ‪G‬‬ ‫‪٤.١٧٠٧‬‬ ‫‪٣.٧٨٠٥‬‬

‫ا‪CD‬اف‬ ‫ا"ري‬ ‫‪١.٠٢٢٣١‬‬ ‫‪١.٢٣٥١٦‬‬

‫ا">‪ 1‬‬

‫در ‬ ‫ا"ر ‬ ‫"‪B‬‬

‫>‪ 3‬ا"‪  A‬ا"‪ Q‬ا"‪ "JA+‬ا"&‪ + " R‬‬ ‫‪١‬‬ ‫>‪ 3‬ا"‪  A‬دورات >ر&‪ G3 1‬آ‪ 3‬ا"‪DM‬ت‬ ‫‪٢‬‬ ‫"‪B‬‬ ‫‪٣‬‬ ‫ا"‪ 88!+‬‬ ‫‪١.١١٦٩٤‬‬ ‫‪٤.٠٤٨٨‬‬ ‫>اآ‪ t‬ا"‪  A‬ا"ا‪ G3 6‬أ"‪ t‬ا"‪  +‬‬ ‫‪٣‬‬ ‫"‪B‬‬ ‫‪٢‬‬ ‫ا"‪W+‬رة‬ ‫‪١.٥٣٤٥٦‬‬ ‫‪٣.٥٣٦٦‬‬ ‫>‪ 3‬ا"‪  A‬آ‪ 3‬ا" ‪L +‬ت ا"  ا"&‪ R‬‬ ‫‪٤‬‬ ‫"‪B‬‬ ‫‪٤‬‬ ‫ا"*ز ‬ ‫"‪B‬‬ ‫‬‫‪١.٢٢٧٢٤‬‬ ‫‪٣.٨٨٤١٥‬‬ ‫ا"ر ا"‪  A‬‬ ‫ا‪'R‬ول ر‪ .(٥) 8‬ا"‪W+‬ت ا"  وا‪CD‬ا‪3‬ت ا"ر& ودرت ا"ر "ا ‪ K P‬ا"‪ Q‬ا"‪ "JA+‬ا"&‪ R‬‬ ‫‪١‬‬

‫و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪.‬‬ ‫ا"‪ &1‬ا"‪ 5  7J> G+‬ود * ‪ K‬ا"‪Q‬‬ ‫‪*9 K F*C‬ل ا"‪M‬ول ر )‪ (٥‬أ*‪ ،d‬ن أ‪3‬اد ‪ J‬‬ ‫ا"‪ "JA+‬ا"&‪ R‬و ;ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا"را &ون ن ه‪J‬ك * ‪ K‬ا"‪ Q‬ا"‪ "JA+‬‬ ‫ا)رد‪ C‬ا"! ‪.‬‬ ‫ا"&‪ R‬و;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! ‪،‬‬ ‫‪ p  cF‬ا"‪ X+‬ا" ‪ G‬ا"م "‪ dmO‬ا"[; ‬ ‫ا‪ _5‬وا‪+‬ت‪:‬‬ ‫)‪ (٣.٨٨٤١٥‬ور ر "‪F cF ،B‬زت ا"[=ة‬ ‫أو ً‪ :e‬ا‪_5‬‬ ‫‪ 2 > –١‬ا"را إ"‪ 5‬ود * ذات د‪ "D‬إ‪ 8F‬‬ ‫ر )‪ 5  (١‬ا">‪ 1‬ا)و"‪ 5‬ور ر "‪,B‬‬ ‫‪ K‬ا"‪HIJ‬ت ا"  ا"‪LMJ> G+‬ه ا"‪ NO‬ا"‪+‬ر&  و‬ ‫وا"‪ 3> "5  7J> G+‬ا"‪  A‬ا"‪ Q‬ا"‪ "JA+‬ا"&‪ R‬‬ ‫;ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬ا"! و ‪+‬ى‬ ‫" ‪F G3 ،" +‬زت ا"[=ة )‪ 5  (٤‬ا">‪ 1‬ا)‪9‬ة‬ ‫د‪.(٠.٠٠٠) "D‬‬ ‫ور ر "‪ ,B‬وا"‪ 3> " 5  28C G+‬ا"‪  A‬‬ ‫آ‪ 3‬ا" ‪L +‬ت ا"*ز ا"&‪ ،" R‬وآ‪=3 P 2C‬ات‬ ‫ا"[; أ‪1‬ب "‪ y3‬ا"[; ا" و ‪1‬ل ا"[; ‬ ‫‪79‬‬

‫‪Journal of Environmental Studies [JES] 2012. 9: 73-81‬‬

‫‪ –٢‬آ > ‪ 2‬ا"را ود * ذات د‪ "D‬إ‪ 8F‬‬ ‫‪19 K‬ة ا"‪ NO‬ا"‪+‬ر&  ‪ G3‬و;ن دة ا"‪G3  +‬‬ ‫ا"‪ A‬ت ا)رد‪ C‬ا"! و ‪+‬ى د‪.(٠.٠٠٠) "D‬‬ ‫‪ –٣‬و> ‪ 2‬ا"را إ"‪ 5‬ود ا‪ 1" 6‬و>‪P&J‬‬ ‫ا"‪; 5  1+A‬ن دة ا"‪ G3  +‬ا"‪ A‬ت ا)رد‪ C‬‬ ‫ا"! ‪.‬‬ ‫‪ –٤‬آ > ‪ 2‬ا"را إ"‪ 5‬ود ا‪Q " 6‬‬ ‫ا"‪ "JA+‬ا"&‪; 5  R‬ن دة ا"‪ G3  +‬ا"‪ A‬ت‬ ‫ا)رد‪ C‬ا"! ‬ ‫‪ m+ -٥‬ا'را) إ 'م ‪Z& IU‬م ا‪R‬دة !‬ ‫ا‪$‬ت ا*رد&‬ ‫‪ m+ -٦‬ا'را) إ 'م اد (@ &‪Z‬م ا‪R‬دة‬ ‫ا'ة (= وزارة ا ا‬ ‫&‪ :‬ا‪+‬ت‬ ‫‪ G > –١‬ا"را ‪Y‬ورة أن >=م ا"‪  A‬ا" ا"*زم‬ ‫" ‪HIJ‬ت ا"  " ‪ NO‬ا"‪+‬ر&  وذ"‪IC L[+" Z‬‬ ‫ا"‪1‬ث و>]"‪ z‬ا"‪ t+A‬وا"‪I‬رآ ‪ G3‬ا"‪>x‬ات ا"  ‪.‬‬

‫‪ –٢‬آ > ‪ G‬ا"را ‪Y‬ورة أن >‪ K‬ا"‪  A‬أ‪Y‬ء‬ ‫ا"‪ NO‬ا"‪+‬ر&  أ ب ا"!‪1‬ات ا"" وذ"‪[ " Z‬ظ‬ ‫ ‪ 5‬دة ا"‪.  +‬‬ ‫‪ –٣‬آ > ‪ G‬ا"را ‪Y‬ورة أن >‪L‬ز ا"‪ 1F  A‬‬ ‫ا"‪ 1+A‬و>‪ K O" " O&J‬ا‪ G3 6‬دة ا"‪K  +‬‬ ‫‪*9‬ل ز&دة ا"‪1‬ث ا"  وا‪+‬ب ا"‪) 1+A‬آ‪ 1‬آ‪B‬‬ ‫‪ K‬ا"ا‪ P‬وا"ور&ت و>‪ PMI‬ا"ر‪ K‬وا"‪ 1 W‬‬ ‫"‪&L‬ر>‪ O‬و> ‪ QO‬ا"‪8‬ل  ‪ 5‬ا"   ‪.[+  " B‬‬ ‫‪ -٤‬آ و> ‪ G‬ا"را ‪Y‬ورة أن >‪ 3‬ا"‪  A‬آ‪ 3‬‬ ‫ا"‪ Q‬ا"‪ "JA+‬ا"&‪ K O" " R‬ا‪ G3 6‬دة‬ ‫ا"‪*9 K  +‬ل >‪ 3‬دورات >ر&‪ 88!+ B1‬واآ‪ 1‬‬ ‫ا"ا‪ G3 6‬أ"‪ t‬ا"‪  +‬و>‪ 3‬آ‪ 3‬ا" ‪L +‬ت ا"  ‬ ‫ا"&‪ R‬ا"*ز ‪.‬‬ ‫‪ G > -٥‬ا"را ‪Y‬ورة >‪VC -٦‬ا"را ‪Y‬ورة >‪ & ‪G3 O&J‬‬ ‫ا‪+‬ب ‪ P‬ا"ا‪ P‬وا"ور&ت‬ ‫>‪ 1F PMI‬ا"‪1+A‬ت و>‪O&J‬‬ ‫ا"ر‪ K‬وا"‪ 5  1 W‬ز&ر>‪O‬‬ ‫>  ‪ 1F‬ا"‪1+A‬ت و>‪G3 O&J‬‬ ‫ا"‪8‬ل  ‪ 5‬ا"   ‬ ‫>‪ 3‬ا"‪  A‬ا"‪ Q‬ا"‪ "JA+‬‬ ‫ا"&‪ + " R‬‬ ‫>‪ 3‬ا"‪  A‬دورات >ر&‪ G3 1‬آ‪ 3‬‬ ‫ا"‪DM‬ت ا"‪ 88!+‬‬ ‫>اآ‪ t‬ا"‪  A‬ا"ا‪ G3 6‬أ"‪t‬‬ ‫ا"‪  +‬ا"‪W+‬رة‬ ‫>‪ 3‬ا"‪  A‬آ‪ 3‬ا" ‪L +‬ت ا"  ‬ ‫ا"&‪ R‬‬ ‫>‪ 5J1+‬ا"‪VC  A‬م ;‪ X1‬ا"‪M‬دة‬

‫‪١٠‬‬

‫>‪ :٣٩٤‬ز‪.‬‬ ‫م‪ ،‬زآ&‪ " .(٢٠٠٤) ،‬ى إدراك أه إدارة‬ ‫ا"‪ 3‬ا"‪ G3 1‬ا"‪I‬آت ا"‪ J8‬‬ ‫ا" ه ا" ا)رد‪ ،" C‬ر"  ‪+‬‬ ‫‪IJ l‬رة‪ ،‬ا"‪ M‬ا)رد‪. C‬‬ ‫ا"‪ ،GW‬ر ؛ ادة‪ " .(٢٠٠٣) ،5  ،‬إدارة ا"‪M‬دة‬ ‫ا"‪O[ : I‬م وإ‪H‬ر " ‪ G3  ‪K‬‬ ‫ ‪&+‬ت ا)داء "‪ >x ،‬آ  ا‪8+ D‬د وا" م‬ ‫ادار& ا"‪  ،GCR‬ا"‪L‬ر ء ا)ه  ‪ ،‬ا)ردن‪.‬‬ ‫‪1‬ا"‪" .(٢٠٠٤) ، ،KF‬ا"‪J‬ه‪ h‬ا"‪+‬ر&  ‬ ‫ا"‪ hOJ : A+‬إدارة ا"‪M‬دة ا"‪QI‬ة "‪ ،‬آ‪L‬‬

Journal of Environmental Studies [JES] 2012. 9: 73-81

Wiig, karl M. (2003, 76). "Knowledge Management Founation : Thinking sike, B. & Alan, F. (2000, 87). "The transfer of knowledge & The Retenation of Expertise: the continuing for globel assignments,journal of knowledge mgt V. (4) N (2) Stomquist, n. & Samoff, j. (2000, 3). knowledge of management system journal of comparative education, V. (30) issue (3) Taylor, R. (2000, 2). "KM" The management Process of Ensuring The Organizations Existing Knowlewdge assets Johnson, G. & Scholes, K. (1997, 34). "Exploring Corporate Strategy"4th ed., Prentice-Hall,Europe &‫و‬$e‫< ا‬8‫اا‬ C‫ا)رد‬ G""‫ا‬  +"‫ا‬ ‫وزارة‬ P  www.mohe.gov.jo

1W"‫ ا‬،( PMEC) ‫ "دارة‬JO"‫ات ا‬1!"‫ا‬ . "‫ ا‬8 &‫ر‬O ،‫ ا"=هة‬، CR"‫ا‬ ‫ إدارة‬z_‫ و‬3‫ " ى >ا‬.(٢٠٠٦) ،‫ ز&د‬، C‫ر‬W="‫ا‬ G3 K&&"‫  ا‬3 G3 ‫ه‬6‫ وأ‬3"‫ا‬ l +  "‫ ر‬،" C‫ا"زارات ا)رد‬ .‫ ا)ردن‬، >x  ،‫رة‬IJ hC " .(٢٠٠٢) ، ،‫ري‬8C)‫ ا‬،F‫ ا‬،5[W8 ‫ل‬M"‫ ا‬G3 O>=1W>‫ و‬I"‫دة ا‬M"‫إدارة ا‬ t&‫ر‬+ " G"‫ ا‬L‫ ا"آ‬،W ،" ‫ي‬+"‫ا‬ .h !"‫ي "ول ا‬+"‫ا‬ ‫ ا"[ه‬: 3"‫( "إدارة ا‬٢٠٠٨) ،‫د‬1 MC ، MC IJ " ‫ دار ا"راق‬،" ‫ت وا" ت‬M>‫ا‬+D‫وا‬ .‫ ا)ردن‬،‫ ن‬, CR"‫ ا‬1W"‫ ا‬،P&‫ز‬+"‫وا‬ ‫ إدارة رأس ا"ل‬،٢٠٠٨ }" ‫ و‬G   ،‫ي‬LJ"‫ا‬ ‫ت ا)ل‬VJ G3 ‫ي‬A["‫ا‬ I5*‫ اا< ا‬-‫ب‬ Bonser, C. (1999,36). "Total Quality Education " ،Public administration Review, No. 52. Laszlo, A-Laszlo, K. (2002, 66). " Evolving Knwledge for Development :The Role of Knowledge Management in Changing World". (JKM vol. 6).

Abstract

Following characteristics of knowledge management to achieve quality assurance of higher education Mohammad Abed Abu-qulah

The study aimed to know the effect of following some of the characteristics of knowledge to achieve the quality assurance of education "study applied to private Jordan colleges," The study indicated, there is significant statistical relationship between the activities carried out by faculty staff members and ensure the quality of education. In addition, the study indicated that a trace of computing, diversification of the library contents and provide the means of modern technology are important to ensure the quality of education. The study provided a set of recommendations, including the college offers support for the scientific activities of the faculty, and to appoint members of the owners of high expertise, and enhance and diversify the computerization of the library, and provide the necessary technological means for education.

81