Lecture (21).pdf - MIT OpenCourseWare

48 downloads 444 Views 229KB Size Report
Fiber Communications Around the Globe. • Fiber optics dominates long-distance telecommunications. • In-line Erbium-Doped Fiber Amplifiers (EDFA's) make ...
OPTICAL COMMUNICATIONS Free-Space Propagation:

Mars

• Similar to radiowaves (but more absorption by clouds, haze) • Same expressions: antenna gain, effective area, power received • Examples: TV controllers, inter-building and interplanetary links Earth

Guided Wave Propagation:

Evanescence outside θi > θc glass fiber

• Optical fibers guide waves • Rays inside fiber impact wall beyond critical angle ⇒ total reflection and wave trapping • Little attenuation 0.5 < λ < 2 microns (can go >100 km)

Devices: • • • •

Detectors: Sources: Modulators: Other:

phototubes, photodiodes, avalanche photodiodes LED’s, laser diodes, fiber amplifiers, gas lasers amplitude and frequency, mixers, switches filters, spectral multiplexers and combiners L21-1

UNDERSEA OPTICAL FIBER CABLES Fiber Communications Around the Globe

2.5 Gbp/s WDM 560 Mbp/s

Non-repeated Other regenerative 5.0 Gbp/s 2.5 Gbp/s 280 Mbp/s

Terrestrial systems – too numerous to depict

Tyco Submarine systems, 2000

2008: undersea about ×1.5, some are dark Figure by MIT OpenCourseWare.

• Fiber optics dominates long-distance telecommunications • In-line Erbium-Doped Fiber Amplifiers (EDFA’s) make extremely wideband transoceanic transmission possible without repeaters • Without fiber communications there would be no World Wide Web L21-2

WDM MULTIPLEXED LINK WAVELENGTH DIVISION MULTIPLEXING (WDM): • Multiple wavelengths combined onto one fiber • All wavelengths amplified simultaneously and independently in each Optical Amplifier (OAMP)

λ1

λ1

λ3

MUX

λ2 OAMP

λn

OAMP

OAMP

passive multiplexing – e.g. prism

DEMUX

~80 km of fiber

λ2 λ3 λn L21-3

WAVES IN FIBERS Optical Fiber – Simple Picture: glass cladding ε1

6 μm

evanescence E(r)

glass core ε2 = ε1 + Δε Δε / ε ≅ 0.02

125 μm

• Total internal reflection in the higher ε glass core traps light • Small Δε ⇒ very shallow reflection angles. • Only certain angles are allowed: waves must interfere constructively ⇒ modes (characterized by Bessel functions) • Mode velocity = f(ε’s, core size, mode) L21-4

OPTICAL WAVEGUIDES Dielectric slab waveguide example: x

Waves reflect if θi > θc Glass/air θc = sin-1(ng-1) ng ≅ 1.5 ⇒ θc ≅ 41.8°

Slab ε > εo

z

θ > θc TE or TM 2d

Ey

Cladding/core θc = ~sin-1(0.98) ⇒ θc ≅ 78.5°

x

TE1

TE2

TE3

+d

Slab waveguide fields: ⎧ sink x x ⎫ − jk z z ˆ o⎨ E = yE x ≤d ⎬e TEodd ⎩cosk x x ⎭ ˆ 1e−αx − jk z z for x > d, E = yE

0 -d

ˆ 1e+αx − jk z z for x < −d E = ± yE

slab

Boundary conditions for TEn: E // and ∂E y ∂x continuous

∇ × E = zˆ ∂E y ∂x − xˆ ∂E y ∂z = −∂H ∂t L21-5

ELECTROMAGNETIC FIELD DISTRIBUTION Magnetic Field: H = − ( ∇ × E ) jωμo

Propagation

2d

x

Inside the slab, |x| < d:

H E

⎛ ⎧sink x x ⎫ ⎧− cosk x x ⎫ ⎞ − jk z z ˆ z⎨ ˆ x⎨ H = (Eo ωμo ) ⎜ − xk ⎬ − zjk ⎬⎟ e cosk x sink x ⎩ ⎩ x ⎭ x ⎭⎠ ⎝

Outside, x > d:

z

TEodd

ˆ z − zj ˆ α ) e−αx − jk z z H = (E1 ωμo ) ( − xk

Matching Boundary Conditions at x = d: Dispersion relations:

kx2 + kz2 = ω2μoε inside the slab, |x| < d -α2 + kz2 = ω2μoεo outside, |x| > d [let μ = μo]

Continuity of E : Eo cosk x d e− jk z z = E1e-αd- jk z z for TE1,3,5...

Continuity of H: ( − jk xEo ωμo ) sink x d e− jk z z = − ( jαE1 ωμo ) e−αd− jk z z Therefore:

kx tan kxd = α kx2 + α2 = ω2μo(ε - εo)

(ratio of continuity equations) (from dispersion equations) L21-6

DIELECTRIC SLAB WAVEGUIDES TEodd n Field continuity equations: kx tan kxd = α kx2 + α2 = ω2μo(ε - εo)

(ratio of continuity equations) (from dispersion equations)

Transcendental equation, graphical solution: tank x d =

ω2μo (ε − εo ) k 2x

−1

x

Increasing ω

half-TE2 mode

0

σ=∞

π/2

3π/2

5π/2

TE1 mode

TE3 mode

TE5 mode

kxd

E(x)

L21-7

FIBER WAVEGUIDE DESIGN Loss mechanisms: Rayleigh scattering from random density fluctuations Loss ∝ f4 (scattering makes sky blue) Infrared absorption dominates for λ > ~1.6 microns Minimum total attenuation ≅ 0.2 dB km-1

Fiber structure: Typical: 10-μm core in 125-μm diameter glass, with 100-μm-thick plastic protective cladding (bundled in cables) Manufacturing: solid or hollow preform grown by vapor deposition of SiO2 and GeO2 (using e.g. Si(Ge)Cl4 + O2 = Si(Ge)O2 + 2Cl2) Architecture: various – single or multimode, polarization-selective Attenuation (dB km-1) 10 H2 O

Multimode core Clad

1

~1.5 THz Infrared Rayleigh

0.1

1

1.8

λ

Single-mode core Single polarization cladding L21-8

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.