Lipschitz estimates for multilinear commutator of Litllewood-Paley ...

2 downloads 0 Views 164KB Size Report
Q |f(y)−fQ|dy. Mark Hardy spaces by Hp(Rn). It is well known that Hp(Rn)(0 < p ≤ 1) has the atomic decomposition. [11, 16, 17]. For β > 0 and p > 1, let ˙Fβ,∞ p.
31 Kragujevac J. Math. 27 (2005) 31–46.

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF LITLLEWOOD-PALEY OPERATOR Zhang Mingjun and Liu Lanzhe Department of Mathematics Hunan University Changsha, 410082, P.R.of China (e-mails: [email protected], [email protected] )

(Received March 11, 2005)

Abstract. In this paper, we will study the continuity of multilinear commutator generated by Littlewood-Paley operator and the of function b, wich belongs to Lipschiz space, in the Triebel-Lizorkin, Hardy and Herz-Hardy space.

1. INTRODUCTION Let T be a Calder´on-Zygmund operator. Coifman, Rochberg and Weiss proved [4] that the commutator [b, T ](f )(x) = b(x)T (f )(x) − T (bf )(x) is bounded on Lp (Rn ) for 1 < p < ∞ and b ∈ BM O. Chanillo proved a similiar result [2] when T is replaced by the fractional operators. Janson and Paluszynski study these result [7, 15] for the Triebel-Lizorkin spaces and when b ∈ Lipβ , where Lipβ is the homogeneous Lipschitz space. The main purpose of this paper is to discuss the boundedness of multilinear commutator generated by Littlewood-Paley operator and continuity of b ∈ Lipβ in the Triebel-Lizorkin, Hardy and Herz-Hardy space.

32 2. PRELIMINARIES AND DEFINITIONS M (f ) denotes the Hardy-Littlewood maximal function of f and Mp (f ) = (M (f p ))1/p for 0 < p < ∞. Q denotes a cube of Rn with side parallel to the axes. Let fQ = |Q|−1

R Q

f (x)dx and f # (x) = supx∈Q |Q|−1

R Q

|f (y) − fQ |dy. Mark Hardy spaces

by H p (Rn ). It is well known that H p (Rn )(0 < p ≤ 1) has the atomic decomposition [11, 16, 17]. For β > 0 and p > 1, let F˙ β,∞ be the homogeneous Tribel-Lizorkin space. p

n

The Lipschitz space Lipβ (R ) is the space of functions f such that ||f ||Lipβ = sup

x,y∈Rn x6=y

|f (x) − f (y)| < ∞. |x − y|β

Lemma 1. [15] For 0 < β < 1 and 1 < p < ∞, ||f ||F˙pβ,∞ ≈ ≈

¯¯ ¯¯ ¯¯ ¯¯ Z ¯¯ ¯¯ 1 ¯¯sup |f (x) − fQ |dx¯¯¯¯ β ¯¯ ¯¯ Q |Q|1+ n Q ¯¯ p L ¯¯ ¯¯ ¯¯ ¯¯ Z ¯¯ ¯¯ 1 ¯¯ ¯¯sup inf |f (x) − c|dx β ¯¯ ¯¯ ¯¯ ¯¯ ·∈Q c |Q|1+ n Q

.

Lp

Lemma 2. [15] For 0 < β < 1 and 1 ≤ p ≤ ∞, ||f ||Lipβ ≈ sup Q

≈ sup Q

Z

1 β

|Q|1+ n

Ã

1 β

|Q| n

Q

|f (x) − fQ |dx

1 Z |f (x) − fQ |p dx |Q| Q

!1/p

.

Lemma 3. [2] For 1 ≤ r < ∞ and β > 0, let 

Mβ,r (f )(x) = sup  x∈Q

1/r

Z

1

r

βr

|Q|1− n

Q

|f (y)| dy 

if we suppose that r < p < β/n, and 1/q = 1/p − β/n, then ||Mβ,r (f )||Lq ≤ C||f ||Lp .

.

33

Lemma 4. [5] If Q1 ⊂ Q2 then |fQ1 − fQ2 | ≤ C||f ||Λ˙ β |Q2 |β/n .

Lemma 5. [10] Let 0 < β ≤ 1, 1 < p < n/β, 1/q = 1/p − β/n and b ∈ Lipβ (Rn ). Then gψb is bounded from Lp (Rn ) to Lq (Rn ). Definition 1. Let 0 < p, q < ∞, α ∈ R, Bk = {x ∈ Rn , |x| ≤ 2k }, Ak = Bk \Bk−1 and χk = χAk for k ∈ Z. 1) The homogeneous Herz space is defined by K˙ qα,p = {f ∈ LqLoc (Rn \{0}), ||f ||K˙ qα,p < ∞}, where



||f ||K˙ qα,p = 

1/p

∞ X

2kαp ||f χk ||pLq 

.

k=−∞

2) The nonhomogeneous Herz space is defined by Kqα,p (Rn ) = {f ∈ LqLoc (Rn ), ||f ||Kqα,q (Rn ) < ∞}, where ||f ||Kqα,p (Rn ) =

"∞ X

#1/p kαp

2

||f χk ||pLq

+

||f χB0 ||pLq

k=1

Definition 2. Let α ∈ R and 0 < p, q < ∞. (1) The homogeneous Herz type Hardy space is defined by H K˙ qα,p (Rn ) = {f ∈ S 0 (Rn ) : G(f ) ∈ K˙ qα,p (Rn )}, and ||f ||H K˙ qα,p = ||G(f )||K˙ qα,p ;

.

34 (2) The nonhomogeneous Herz type Hardy space is defined by HKqα,p (Rn ) = {f ∈ S 0 (Rn ) : G(f ) ∈ Kqα,p (Rn )}, and ||f ||HKqα,p = ||G(f )||Kqα,p where G(f ) is the grand maximal function of f . The Herz type Hardy spaces have the characterization of the atomic decomposition. Let α ∈ R and 1 < q < ∞. A function a(x) on Rn is called a

Definition 3.

central (α, q)-atom (or a central (a, q)-atom of restrict type), if 1) Suppa ⊂ B(0, r) for some r > 0 (or for some r ≥ 1), 2) ||a||Lq ≤ |B(0, r)|−α/n , 3)

R

Rn

a(x)xη dx = 0 for |η| ≤ [α − n(1 − 1/q)].

Lemma 6. [6, 14] Let 0 < p < ∞, 1 < q < ∞ and α ≥ n(1 − 1/q). A temperate distribution f belongs to H K˙ qα,p (Rn )(or HKqα,p (Rn )) if and only if there exist central (α, q)-atoms(or central (α, q)-atoms of restrict type) aj supported on Bj = B(0, 2j ) and constants λj ,

P j

|λj |p < ∞ such that f =

P∞

j=−∞

λj aj (or f =

P∞

j=0

λj aj )in the

S 0 (Rn ) sense, and 

||f ||H K˙ qα,p (or ||f ||HKqα,p ) ∼ 

X

1/p

|λj |p 

.

j

Definition 4. Let ε > 0 and ψ be a fixed function which satisfies the following properties: 1)

R Rn

ψ(x)dx = 0,

2) |ψ(x)| ≤ C(1 + |x|)−(n+1) , 3) |ψ(x + y) − ψ(x)| ≤ C|y|ε (1 + |x|)−(n+1+ε) when 2|y| < |x|. Let m be a positive integer and bj (1 ≤ j ≤ m) be locally integrable functions and ~b = (b1 , · · · , bm ). The multilinear commutator of Littlewood-Paley operator is defined

35 by ~ gψb (f )(x)

where ~ Ftb (f )(x)

Z

=

ÃZ

=

m Y



0

dt ~ |Ftb (x)|2

!1/2

t

,

(bj (x) − bj (y))ψt (x − y)f (y)dy,

Rn j=1

and ψt (x) = t−n ψ(x/t) for t > 0. Let Ft (f ) = ψt ∗ f . Define Littlewood-Paley g function by [17]

ÃZ

gψ (f )(x) =

0



|Ft (f )(x)|

Let H be the space, H = {h : ||h|| = (

R∞ 0

2 dt

!1/2

t

.

|h(t)|2 dt/t)1/2 < ∞}. For each fixed

x ∈ Rn , Ft (f )(x) may be viewed as a mapping from [0, +∞) to H, and it is clear that ~

~

gψ (f )(x) = ||Ft (f )(x)|| and gψb (f )(x) = ||Ftb (f )(x)||. ˜

Note that when b1 = · · · = bm , gψb is just the m order commutator. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors ([1]-[4][7]-[10][12][15]). Our main purpose is to establish the boundedness of the multilinear commutator on Triebel-Lizorkin, Hardy and HerzHardy space. Q m Let m be a positive integer, 1 ≤ j ≤ m, ||~b||Lipβ = m j=1 ||bj ||Lipβ and Cj

be the family of all finite subsets σ = {σ(1), . . . , σ(j)} of {1, . . . , m} of j different elements. For σ ∈ C m , let σ c = {1, . . . , m} \ σ. For ~b = (b1 , . . . , bm ) and j

σ = {σ(1), . . . , σ(j)} ∈ Cjm , let ~bσ = (bσ(1) , . . . , bσ(j) ), bσ = bσ(1) · · · bσ(j) and ||~bσ ||Lipβ = ||bσ(1) ||Lipβ · · · ||bσ(j) ||Lipβ .

3. THEOREMS AND PROOFS Theorem 1. Let 0 < β < min(1, ε/m), 1 < p < ∞, ~b = (b1 , . . . , bm ) where ~

bj ∈ Lipβ (Rn ) for 1 ≤ j ≤ m and gψb be the multilinear commutator of LittlewoodPaley operator. Then

36 ~ (a) gψb is bounded from Lp (Rn ) to F˙ pmβ,∞ (Rn ). ~

(b) gψb is bounded from Lp (Rn ) to Lq (Rn ) for 1/p − 1/q = mβ/n and 1/p > mβ/n.

Proof. (a) Fix a cube Q = (x0 , l) and x ∈ Q, when m = 1 [10]. Now consider the R case when m ≥ 2. Let ~bQ = ((b1 )Q , . . . , (bm )Q ), where (bj )Q = |Q|−1 Q bj (y)dy and 1 ≤ j ≤ m. If f = f1 + f2 where f1 = f χ2Q and f2 = f χRn \2Q , then Z

~

Ftb (f )(x) =

Rn

(b1 (x) − b1 (y)) · · · (bm (x) − bm (y))ψt (x − y)f (y)dy

= (b1 (x) − (b1 )Q ) · · · (bm (x) − (bm )Q )Ft (f )(x) + (−1)m Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f )(x) +

m−1 X

X

(−1)m−j (b(x) − ~bQ )σ

j=1 σ∈Cjm

Z Rn

(b(y) − ~bQ )σc ψt (x − y)f (y)dy

= (b1 (x) − (b1 )Q ) · · · (bm (x) − (bm )Q )Ft (f )(x) + (−1)m Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f1 )(x) + (−1)m Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f2 )(x) +

m−1 X

X

j=1

σ∈Cjm

(−1)m−j (b(x) − ~bQ )σ Ft ((b − ~bQ )σc f )(x).

Therefore ~

|gψb (f )(x) − gψ (((b1 )Q − b1 ) · · · ((bm )Q − bm )f2 )(x0 )| ~

≤ ||Ftb (f )(x) − Ft (((b1 )Q − b1 ) · · · ((bm )Q − bm )f2 )(x0 )|| ≤ ||(b1 (x) − (b1 )Q ) · · · (bm (x) − (bm )Q )Ft (f )(x)|| +

m−1 X

X

j=1

σ∈Cjm

||(b(x) − ~bQ )σ Ft ((b − ~bQ )σc f )(x)||

+ ||Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f1 )(x)|| + ||Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f2 )(x) − Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f2 )(x0 )|| = I1 (x) + I2 (x) + I3 (x) + I4 (x).

37 Thus Z

1 |Q|

1+ mβ n



~

Q

|gψb (f )(x) − gψ ((b1 )Q − b1 ) · · · ((bm )Q − bm )f2 )(x0 )|dx Z

1 |Q|1+

mβ n

Z

1

+

I1 (x)dx +

Q

Z

1 |Q|1+

mβ n

Q

I2 (x)dx +

Z

1 |Q|1+

mβ n

Q

I3 (x)dx

I4 (x)dx mβ |Q|1+ n Q = I + II + III + IV. By using Lemma 2, we have for I, Z

1

I ≤

|Q|1+

sup |b1 (x) − (b1 )Q | · · · |bm (x) − (bm )Q |

mβ n

x∈Q

≤ C||~b||Lipβ

1 |Q|1+

|Q|

mβ n

mβ n

Q

|gψ (f )(x)|dx

Z Q

|gψ (f )(x)|dx

≤ C||~b||Lipβ M (gψ (f ))(x). Fix r, such that 1 < r < p. Let µ, µ0 be the integers such that µ + µ0 = m, 0 ≤ µ < m and 0 < µ0 ≤ m. By using H¨older’s inequality, the boundedness of gψ on Lr and Lemma 2, we get II ≤

m−1 X

X

j=1 σ∈Cjm

≤ C

m−1 X

|Q|1+

X

j=1 σ∈Cjm

≤ C

m−1 X

X

j=1 σ∈Cjm

≤ C

m−1 X

Z

1

X

j=1 σ∈Cjm

mβ n

Q

|(~b(x) − ~bQ )σ ||gψ ((~b − ~bQ )σc f )(x)|dx

µZ

1 |Q|1+

mβ n

Q

µZ

1 |Q|1+ 1 |Q|1+

mβ n

Q

0 |(~b(x) − ~bQ )σ |r dx

0 |(~b(x) − ~bQ )σ |r dx

¶1/r0 µZ Q

¶1/r0 µZ Q

|gψ ((~b − ~bQ )σc f )(x)|r dx |(~b(x) − ~bQ )σc f (x)|r dx 0

µβ µ β ||~bσ ||Lipβ |Q| n ||~bσc ||Lipβ |Q| n mβ |Q| 1 r0

n

µZ r

Q

|f (x)| dx

≤ C||~b||Lipβ Mr (f )(x); By H¨older’s inequality, we have for III III =

Z

1 |Q|1+

mβ n

Q

|gψ ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f1 )(x)|dx

¶1/r

¶1/r

¶1/r

38 

≤ C

≤ C

1 |Q|

1+ mβ n

1 |Q|

1+ mβ n

 Rn

|gψ (

m Y

1/r

(bj − (bj )Q )f1 )(x)|dx

|Q|1−1/r

j=1

 Z |Q|1−1/r 

1

≤ C

Z

1−1/r

|

m Y

1/r

(bj (x) − (bj )Q )f (x)|r dx

2Q j=1

mβ ||~b||Lipβ |Q| n

µZ r

mβ |Q| |Q|1+ n ≤ C||~b||Lipβ Mr (f )(x);

2Q

¶1/r

|f (x)| dx

Since |x0 − y| ≈ |x − y| for y ∈ (2Q)c , using by Lemma 4 and the condition of ψ, we have for IV , ||Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f2 )(x) − Ft ((b1 − (b1 )Q ) · · · (bm − (bm )Q )f2 )(x0 )||  Z ∞ Z  ≤ (

(2Q)c

0

|ψt (x − y) − ψt (x0 − y)||f (y)|

(2Q)c

≤ C ≤ C ≤ C

(2Q)c

|x0 − x|ε |x0 − y|−(n+ε) |f (y)|

1/2

m Y

|bj (y) − (bj )Q |dy

j=1

k+1 Q\2k Q k=1 2 ∞ X −kε k+1

k=1 ∞ X

2

t

t|x − x0 | dt  |f (y)| |bj (y) − (bj )Q |dy   n+1+ε (t + |x0 − y|) t j=1

∞ Z X

2

|bj (y) − (bj )Q |dy)

m Y

ε

Z

≤ C

1/2

2 dt 

j=1

  Z ∞ Z  ≤ C  0

m Y

|2

|x0 − x|ε |x0 − y|−(n+ε) |f (y)|

Q|

2−kε |2k+1 Q|

|bj (y) − (bj )Q |dy

j=1

Z −1 2k+1 Q mβ n

m Y

|f (y)|

m Y

(|bj (y) − (bj )2k+1 Q | + |(bj )2k+1 − (bj )Q |)dy

j=1

||~b||Lipβ M (f )

k=1 mβ ≤ C||~b||Lipβ |Q| n M (f )

∞ X

2(mβ−ε)k

k=1

≤ C||~b||Lipβ |Q|

mβ n

M (f ).

The following holds IV ≤ C||~b||Lipβ M (f ). Putting these estimates together, taking the supremum over all Q such that x ∈ Q

39 and by using Lemma 1, we obtain ~ ||gψb (f )(x)||F˙pmβ,∞ ≤ C||~b||Lipβ ||f ||Lp .

This complete the proof of (a). (b) Like in the proof of (a), we have 1 Z ~b |g (f )(x) − gψ (((b1 )Q − b1 ) · · · ((bm )Q − bm )f2 )(x0 )|dx |Q| Q ψ 1 Z 1 Z 1 Z 1 Z ≤ I1 (x)dx + I2 (x)dx + I3 (x)dx + I4 (x)dx |Q| Q |Q| Q |Q| Q |Q| Q ≤ C||~b||Lipβ (Mmβ,1 (gψ (f )) + Mmβ,r (f ) + Mmβ,r (f ) + Mmβ,1 (f )). Thus ~ (gψb (f ))# ≤ C||~b||Lipβ (Mmβ,1 (gψ (f )) + Mmβ,r (f ) + Mmβ,1 (f )).

By using Lemma 3 and the boundedness of gψ , we have ~

~

||gψb (f )||Lq ≤ C||(gψb (f ))# ||Lq ≤ C||~b||Lipβ (||Mmβ,1 (gψ (f ))||Lq + ||Mmβ,r (f )||Lq + ||Mmβ,1 (f )||Lq ) ≤ C||f ||Lp . This completes the proof of (b). Theorem 2. Let 0 < β ≤ 1, max(n/(n + mβ), n/(n + mε)) < p ≤ 1, 1/q = ~ 1/p − mβ/n and ~b = (b1 , . . . , bm ) where bj ∈ Lipβ (Rn ) for 1 ≤ j ≤ m. Then gψb is bounded from H p (Rn ) to Lq (Rn ). Proof. It is enough to show that there exists a constant C > 0 such that for every H p -atom a, ~

||gψb (a)||Lq ≤ C. Let a be a H p -atom supported on a cube Q = Q(x0 , r), ||a||L∞ ≤ |Q|−1/p and

R

Rn

a(x)xγ dx = 0 for |γ| ≤ [n(1/p − 1)]. When m = 1 see [10]. Now consider the case m ≥ 2. ~ ||gψb (a)(x)||Lq

ÃZ



|x−x0 |≤2r

= I + II.

~ |gψb (a)(x)|q dx

!1/q

ÃZ

+

|x−x0 |>2r

~ |gψb (a)(x)dx|q

!1/q

40 ~

Choose 1 < p1 < 1/β and q1 such that 1/q1 = 1/p1 − β/n. By the boundednss of gψb from Lp1 (Rn ) to Lq1 (Rn )(see Lemma 5), we get for I ~

I ≤ C||gψb (a)||Lq1 r

n( 1q − q1 ) 1

≤ C||a||Lq1 r

n( 1q − q1 ) 1

≤ C.

Let τ, τ 0 ∈ N such that τ + τ 0 = m, and τ 0 6= 0. We get for II Z

~

|Ftb (a)(x)| ≤ |(b1 (x) − b1 (x0 )) · · · (bm (x) − bm (x0 )) +

m X X

Z

|(b(x) − b(x0 ))σc

j=1 σ∈Cjm

≤ C||~b||Lipβ |x − x0 |mβ · + C||~b||Lipβ

X

B

B

|ψt (x − y) − ψt (x − x0 )||a(y)|dy Z



|x − x0 | t (t + |x − x0 |)n+1+ε

+ C||~b||Lipβ

(b(y) − b(x0 ))σ ψt (x − y)a(y)dy|

|x − x0 |τ β

X

(ψt (x − y) − ψt (x − x0 ))a(y)dy|

Z

τ +τ 0 =m

≤ C||~b||Lipβ

B

|x − x0 |τ β

τ +τ 0 =m

B

0

|y − x0 |τ β |ψt (x − y)||a(y)|dy

Z B

|x0 − y|ε |a(y)|dy

Z t 0 |y − x0 |τ β |a(y)|dy n+1 (t + |x − x0 |) B

t mβ+ε+n(1− p1 ) · r (t + |x − x0 |)n+1+ε 1 t + C||~b||Lipβ · rmβ+n(1− p ) . n+1 (t + |x − x0 |)

≤ C||~b||Lipβ

Thus  ~ |gψb (a)(x)| ≤ C||~b||Lipβ 

Z ∞à 0



+ C||~b||Lipβ 

t (t + |x − x0 |)n+1+ε

Z ∞à 0

!2

t (t + |x − x0 |)n+1

!2

1/2

dt  t

1

· rmβ+ε+n(1− p )

1/2

dt  t

1

· rmβ+n(1− p )

1 ≤ C||~b||Lipβ |x − x0 |−n · rmβ+n(1− p ) ,

so II ≤ C||~b||Lipβ · r

mβ+n(1− p1 )

≤ C||~b||Lipβ . This completes the proof of Theorem 2.

ÃZ

!1/q |x−x0 |>2r

|x − x0 |

−nq

dx

41 Theorem 3. Let 0 < β ≤ 1, 0 < p < ∞, 1 < q1 , q2 < ∞, 1/q1 − 1/q2 = mβ/n, n(1 − 1/q1 ) ≤ α < n(1 − 1/q1 ) + mβ and ~b = (b1 , . . . , bm ) where bj ∈ Lipβ (Rn ) for ~ 1 ≤ j ≤ m. Then gψb is bounded from H K˙ qα,p (Rn ) to K˙ qα,p . 1 2

P j Proof. Let f ∈ H K˙ qα,p (Rn ) and f = ∞ j=−∞ λj aj , suppaj ⊂ Bj = B(0, 2 ), aj be 1

a central (α, q)−atom, and

P∞

j=−∞

|λj |p < ∞ (Lemma 6).

When m = 1, we have ||gψb1 ||pK˙ α,p ≤ C q2

∞ X



2kαp 

|λj | · ||gψb1 (aj )χk ||Lq2 

j=−∞

k=−∞



∞ X

+C

p

k−2 X

2kαp 

k=−∞

∞ X

p

|λj | · ||gψb1 (aj )χk ||Lq2 

j=k−1

= I1 + II2 . By the boundedness of gψb1 on (Lq1 , Lq2 ), we have for II2 II2 ≤ C||b1 ||pLipβ ≤ C||b1 ||pLipβ



∞ X

2kαp 

k=−∞ ∞ X



2kαp 

k=−∞

p

∞ X

|λj | · ||aj ||Lq1 

j=k−1 ∞ X

p

|λj |p · 2−jα 

j=k−1

P P∞ p (k−j)αp  ∞ , 0