Magnetic susceptibility as a versatile investigation tool

0 downloads 0 Views 12MB Size Report
Magnetic susceptibility as a versatile investigation tool in different ... outcrops, quarries, exploration wells. Sediments: lake and marine bottom sediments ...
Magnetic susceptibility as a versatile investigation tool in different geocontexts: from Palaeozoic rocks to Recent sediments. An overview of three case studies Sorin - Corneliu RĂDAN

and

Silviu RĂDAN

National Institute of ResearchNational Institute of ResearchDevelopment for Geology, Geophysics, Development for Marine Geology Geochemistry and Remote Sensing and Geo-ecology (GeoEcoMar), 23-25 D. Onciul St., RO-024053 (Geological Institute of Romania) 1 Caransebeş St., RO-012271 Bucharest, Romania Bucharest, Romania

III II II

II III

I

3 CASE-STUDIES

I

Poiana Rusca Mountains:

Time: between ca 380 Ma and Recent Space: from Southern Carpathians to Danube and Devonian from Dacian Basin to Danube Delta and Black Sea epimetamorphic schists Rocks (epimetamorphic, pyrometamorphic and sedimentary): outcrops, quarries, exploration wells II Sediments: lake and marine bottom sediments Dacian Basin: 23

Pliocene lignite-clay sequences; Pleistocene porcellanites and clinkers III

I III

45

II

45

Danube Delta Razelm-Sinoie Lagoonal Complex Black Sea: Recent (Modern) lake and marine sediments

23

FIRST CASE-STUDY: MAGNETIC SUSCEPTIBILITY OF THE DEVONIAN EPIMETAMORPHIC SCHISTS FROM THE IAZURI – VLADEASA AREA (POIANA RUSCA MOUNTAINS – SOUTHERN CARPATHIANS)

http://ro.wikipedia.org/ wiki/Mun%C8%9Bii_ Poiana_Rusc%C4%83

(Physical map of Romania, adapted from Jipa & Olariu, 2009)

-

1’ IV

F 73 F 74

F 54 F 56

I

F 76

F 60

8

2

6

9

3

7

10 11

0

F 75 F 61

F 58

5

4

III II

1

200 m

F 78 F 77

F 62

F 81

1

F 64

F 80

3

Iazuri v.

2 I’ II’

F 70

F 66

F 65 F 82

F 68

III’ IV’

F 85

F 83 F 84

F 86

F 88 F 89

3’

2’

GEOLOGICAL SKETCH OF THE STUDIED AREA, ALIGNEMENTS OF THE MAGNETIC SUSCEPTIBILITY PROFILES AND SECTIONS, LOCATION OF THE OUTCROPS FOR TAKING ORIENTED SAMPLES

1 – sericite-chlorite-quartz schist complex (Gh2; Upper Devonian); 2 – main horizon (tuffogenous) of the tuffogenous greenschist complex (Gh1; Middle Devonian); 3 - basal horizon (terrigenous) of the tuffogenous greenschist complex (Gh1; Middle Devonian); 1, 2, 3 – Ghelar Series; 4 – Govajdia Series (Lower Devonian); 5 – boundary lines of the metamorphic units; 6 – fault; 7 – syncline axis; 8 – exploration well; 9 – cross section location; 10 – longitudinal section location; 11 – outcrop for taking oriented samples. Note: Geological sketch and location of profiles, after Refec (1976).

 The iron mineralization: disseminated ore (dominantly), stratiform and lenticular ore (subordinately), enclosed within tuffogenous greenschists (basic metatuffs and metatuffites) to a lesser extent, within the terrigenous metamorphic rocks. This points out the volcano-sedimentary origin of metamorphosed Fe-rich deposits.  The prevailing ore minerals are the magnetite, hematite oligiste with subsidiary chalcopyrite, pyrite and ilmenite. -

1’ IV

F 73 F 74

F 54 F 56

I

F 76

F 60

8

6

9

3

7

10 11

0

F 75 F 61

F 58

5

2

4

III II

1

200 m

F 78 F 77

F 62

F 81

1

F 64

F 80

3

Iazuri v.

2 I’ II’

F 70

F 66

F 65 F 82

F 68

III’ IV’

F 85

F 83 F 84

F 86

F 88 F 89

3’

2’

the and, the and

MAGNETIC SUSCEPTIBILITY VERTICAL VARIATION IN THE “CROSS SECTION” 1 – 1’ SW

F75

F 61

F 62

NE

F 76

F 76

n = 1453

4π10-3 [SI] F75

n = 1182

4π10-3 [SI] F 61

n = 1345

4π10-3 [SI] F 62

n = 1463

0

4π10 [SI] -3

0 0

96

84 4π10-4 [SI] 0

72 4π10-4 [SI]

4π10 [SI] -4

1 – soil with elements of altered schists; 2 – altered zone; 3 – sericite-chlorite-quartz schist complex; 4 – basic metatuffites  metatuffs (upper level, lower level); 5 – basic metatuffs  metatuffites (middle level); 6 – schists with terrigenous character; 4, 5, 6 – tuffogenous greenschist complex (Gh1; Middle Devonian); 4, 5 – main horizon (tuffogenous); 6 – basal horizon (terrigenous); 7 – exploration well; 8 – petrographic facies limits; 9 – fault; 10 – magnetic susceptibility diagram; 11 – “Fe” variation diagram; 12 – “magnetic fraction” variation diagram. Note: Geology and the “Fe” and “magnetic fraction” diagrams, according to Refec, 1976.

108  4π10-4 [SI]

1

7

10

2

8

11

3

9

12

4

0

75 m

5 6

A

MAGNETIC SUSCEPTIBILITY VERTICAL VARIATION IN THE “CROSS SECTION” 1 – 1’

f (%)

f (%)

f (%) f (%)

Maximum k value : 560004π10-6 [SI]

F 76

n = 1453

k 4π10-3 [SI] F75

n = 1182

k F 61

F 62

n = 1345

k

4π10-3 [SI]

4π10-3 [SI]

n = 1463

k

4π10-3 [SI]

B

MAGNETIC SUSCEPTIBILITY VERTICAL VARIATION IN THE “CROSS SECTION” 2 – 2’ W

F 68

F 66

F F 82

E

F 83

0

0

0 0

k

844π10-4 [SI]

96

96 k 4π10-4 [SI]

k

4π10-4 [SI] 1

7

10

2

8

11

3

9

12

4 5 6

96 k -4 4π10 [SI] 0

75 m

1 – soil with elements of altered schists; 2 – altered zone; 3 – sericite-chlorite-quartz schist complex; 4 – basic metatuffites  metatuffs (upper level, lower level); 5 – basic metatuffs  metatuffites (middle level); 6 – schists with terrigenous character; 4, 5, 6 – tuffogenous greenschist complex (Gh1; Middle Devonian); 4, 5 – main horizon (tuffogenous); 6 – basal horizon (terrigenous); 7 – exploration well; 8 – petrographic facies limits; 9 – fault; 10 - magnetic susceptibility diagram; 11 – “Fe” variation diagram; 12 – “magnetic fraction” variation diagram. Note: Geology and the “Fe” and “magnetic fraction” diagrams, according to Refec, 1976.

-

1’ IV

F 73 F 74

F 54 F 56

I

F 76

F 60

8

2

6

9

3

7

10 11

0

F 75 F 61

F 58

5

4

III II

1

200 m

F 78 F 77

F 62

F 81

1

F 64

F 80

3

Iazuri v.

2 I’ II’

F 70

F 66

F 65 F 82

F 68

III’ IV’

F 85

F 83 F 84

F 86

F 88 F 89

3’

2’

VERTICAL SECTION RELATED TO THE MAGNETIC SUSCEPTIBILITY VARIATION ALONG TWO “LONGITUDINAL GEOLOGICAL SECTIONS” W 0

Intersection

100m

Intersection

SE/N

F 78

F 75

Maximum k value contour:

F 81

SE/N

ESE/NW Intersection

I – I’

100m

F 64 F 60

F 66

F 62

2 3 4

5

1

5

2 3 4

6

S/E

F 56

1

F 89

8

7

W

Intersection

F 58 F 54

tS3-3’

F 86

tS2-2’ & tS3-3’

tS1-1’

0

Intersection

Minimum k value 25004π10E-06 [SI] contour:

125004π10E-06 [SI] 100004π10E-06 [SI]

WSW

F 84

F 83

SW

S/NE

tS2-2’

tS1-1’

F 74

F 73

IV – IV’

ESE/NW

E/WNW

8

6 7

(Geological sections, according to Gheorghiu & Lefter, 1975)

F 68 F 70

VERTICAL SECTION RELATED TO THE MAGNETIC SUSCEPTIBILITY VARIATION ALONG A “LONGITUDINAL GEOLOGICAL SECTION” III –III’ SE/N Intersection

Intersection

S/NE

Intersection

tS 2-2’

tS 1-1’

F 80

F 77

tS 3-3’

F 85

F F 82

F 88

F 75

Maximum k value contour:

175004π10E-06 [SI]

1

5

2

6

3 4

7

8

0

100m

Minimum k value contour: 25004π10E-06 [SI]

(Geological sections, according to Gheorghiu & Lefter, 1975)

SW

Magnetic susceptibility map (hachure version) I ezuţi V.

Magnetic susceptibility map (hachure version)

a b 0

200 m

I ezuţi V.

a b c 0

d e f 200 m

Iazuri V. I azuri V.

Aredei V.

at the level of the sericite-chlorite-quartz schists (Upper Devonian) a – k values lower than 5004π10E-06 [SI]; b – (500 – 1000) 4π10E-06 [SI] average k values, based on all cores measured for each exploration well

Aredei V.

Magnetic susceptibility map (k contour version)

at the level of the tuffogenous greenschists b (Middle Devonian) 200 m a

I ezuţi V.

0

I azuri V.

Aredei V.

a – (500 – 1000) b – (1000 – 1500) c – (1500 – 2500) d – (2500 – 3500) e – (3500 – 4500) f – (4500 – 5500) 4π10E-06 [SI]

Magnetic susceptibility map at the LOWER level of the main tuffogenous horizon of the Gh1 complex (Middle Devonian)

0

200 m

Legend: a – exploration well;

b–k

contour; the values must be multiplied by 4π10E-3 [SI]

Magnetic susceptibility map at the MIDDLE level of the main tuffogenous horizon of the Gh1 complex (Middle Devonian)

0

200 m

Legend: a – exploration well;

b–k

contour; the values must be multiplied by 4π10E-3 [SI]

Magnetic susceptibility map at the UPPER level of the main tuffogenous horizon of the Gh1 complex (Middle Devonian)

0

200 m

Legend: a – exploration well;

b – k contour (the values must be multiplied by 4π10E-3 SI)

Magnetic susceptibility map for the WHOLE main tuffogenous horizon of the Gh1 complex (Middle Devonian)

0

200

Legend:

a – exploration well;

b – k contour; the values must be multiplied by 4π10E-3 [SI]

SUPPLY PALAEODIRECTIONS OF THE VOLCANOGENIC MATERIAL AND ASSOCIATED IRON MINERALS INFERRED FROM MAGNETIC SUSCEPTIBILITY DATA A - lower level CB

A D

D CA C

I ezuţi V.

A

0

D D

Iazuri V.

C

B

A

C D B

C

B B

Aredei V.

D

D A

200 m

of the main tuffogenous horizon of the Gh1 Complex (Middle Devonian); B - middle level ; C - upper level ; D - whole main

tuffogenous horizon Legend: a – exploration well; b – well-marked palaeodirections; c – weakmarked palaeodirections

( Z ) MAGNETIC MAP OF THE EASTERN ZONE OF THE IAZURI – POIANA RUSCA SYNCLINE

1600

 Z (nT)

I 0

Iazuri v.

- 1000

3 2

1

1 – basal horizon (terrigenous) of the tuffogenous greenschist complex (TGSC) (Gh1- Middle Devonian) 2 – main horizon (tuffogenous) of the TGSC with magnetite (Gh1 Middle Devonian); 3 – sericite-chlorite-quartz schist complex (Gh2 - Upper Devonian);

Vladeasa Hill

0

I’

1

2

200 m

3

(Compilation after Cristescu, 1952, in Botezatu et al., 1976)

Legend: 1 – boundary line of the basic tuffogenous schist horizon with magnetite; 2 – syncline axis; 3 – profile location

MIDDLE level

UPPER level ( Z) MAGNETIC MAP I 0

Iazuri v.

0

200 m

Vladeasa Hill

0

P = 1.1553 F = 1.0932

I’

CB

LOWER level

A D

1

2

3

L = 1.0559 E = 1.0354

D CA C

I ezuţi V.

A

0

D D 0

200 m

WHOLE MAIN HORIZON 0

200 m

Iazuri V.

C

B

A

C D B

C

B B

D A

D

Aredei V.

SUPPLY PALAEODIRECTION MAP

 The areal distribution patterns of the magnetic susceptibility allow the identification of several supply palaeodirections of the volcanogenic material and of the genetically associated iron minerals.  The vectors are plotted on the maps from the high value to the lower value areas in the way of the lowermost gradients (corresponding to a gradual decrease of the volcanogenic supplies).  The areal distribution patterns show a marked and constant tendency of diminuation of susceptibility values from the external to the inner part of the Iazuri-Vladeasa perisyncline area, controlled, of course, by the magnetic minerals contents.

 The vectors obtained in this way are more or less superposed for all the magnetic susceptibility maps and form four main groups.  The magnetic susceptibility maps show a continuous decrease of the magnetic susceptibility values from North to South and from East to West.  These evidences suggest a continuity in time and space of the tuffogenous supplies, from submarine volcanoes located to the East and North-East of the iron-bearing area.

 This suggests a simultaneous impoverishment of the mineralization, which is controlled by the scarcity of the tuffogenous material;  This tendency is constant for the three productive horizons and for the whole main tuffogenous horizon;  The augmented Fe contents seem to be determined by the proximity of some important submarine volcanoes (Mureşan, 1973);  The existence of a submarine volcanic activity in the vicinity of the the Iazuri - Vlădeasa area, pointed out by petrographical methods (Mureşan, 1973), acquires a geophysical support, yielded by the magnetic susceptibility data.

II II

II III

I

THE SECOND CASE-STUDY: MAGNETIC PROPERTIES OF THE PLIOCENE COAL BEARING FORMATIONS FROM THE WESTERN DACIAN BASIN (WDB), SOUTHWESTERN ROMANIA STUDY AREA LOCATION Western Carpathians

Alps

R O M A N I A

Apuseni Mountains

R O M A N I A Southern Carpathians

Western Dacian Basin

Western Dacian Basin

DACIAN BASIN

STUDY AREA (Compilation after Jipa, 2006)

MAGNETIC ANOMALY PRODUCED BY A LAYER OF PORCELANITES, ACCOMPANYING A PLIOCENE COAL SEAM, FIRSTLY DETECTED IN THE WESTERN DACIAN BASIN (Rădan, S.C. 1969, in Roşca, Vl., Rădan, S.C., Rădan, S., 1973) ΔZa map (regional measuremnts)

Map of the maximum thickness of the coal bed “X” (Ticleanu & Andreescu, 1988) Matasari

Matasari

Matasari – Runcurel zone Motru – Jilt area ΔZ profiles (detailed measurements)

Matasari

Comparative ΔZ profiles: measured vs. theoretical

regional magnetic measurements detailed measurements

UPPER PLIOCENE LIGNITE– CLAY SEQUENCES: a fragment spanning over 2 Ma of geomagnetic field history retrieved and fixed in the magnetochronological coordinates of the geological time PORCELANITE-LIKE CLAYS

(occurred at the level of the coal seam XIII) PORCELANITES, CLNKERS

PORCELANITES Radan & Radan, 1998

(Van Vugt, 2000)

Porcelanite-like clays, porcelanites and clinkers occurred at the level of the coal seam X

(after Snel et al., 2006)

certain coals with availability for spontaneous ignition/autocombustion, present inside of the lignite-clay doublets  post–depositional thermal perturbations

 “new rocks” formed:

 “baked clays”, sometimes “melted”/”fused” clays, hardened red clays and sands with brick-like appearance (PORCELANITES);  slaggy or vitreous texture with marked vesicularity and dark colour (CLINKERS) (see the “Dictionary of geological terms”, Anchor Press, 1976);

PORCELANITES and CLINKERS immediate consequences: essential changes of the magnetic recording medium (m.r.m.) (a paleogeomagnetic framework modified in comparison with the initial context, i.e. prior to the intervention of the thermal perturbations).





Microsequences and oriented monolith-blocks (cut at 2 - 5 levels), taken out from the Pliocene lignite – clay sequences; The transition from the “old” /”initial state” of the m.r.m. (“fresh” clays – the main constituent elements) to a “subsequent”/ ”new state” (“thermally-affected” clays: porcelanite-like clays, porcelanites and clinkers)

A ROCK MAGNETIC ANOMALY PRODUCED BY A PORCELANITE-LIKE CLAY DETECTED IN THE SOUTH JILT LIGNITE QUARRY (WESTERN DACIC BASIN) JILT QUARRY XIII

JL 66

JL 66A,B

k

NRM

A B C

Q

237.3

 NRM intensities and k,

JL 66A

B A

BA

67.6

PORCELANITE - LIKE CLAYS

H

232.5 1223.

H

L, F, P, E values higher than for the “original”/”fresh” clays)

H

 baking temperature:

JL 66B

higher than 250-400°C, but lower than 800-850°C H (mA/m)

L XIII

JL 66 A B C

PORCELANITE - LIKE CLAYS

(x4π x10E-06) [SI]

F

P

E

q

V

F = 1.19 – 1.32 P = 1.20 – 1.33 q and V: undisturbed sediments JL 66C

CLAYS

F = 1.002 – 1.01 P = 1.002 – 1.01

JILT QUARRY XIII

JL66 JL65

JL 41 – JL 66

AMS

distribution of the k1,k2,k3 directions: typical for a primary depositional magnetic fabric (with a few slight deviations)

NRM

strongly dominant reversed polarities

JL 62 – JL 65

AMS

typical distribution of the k1,k2,k3 directions

NRM

JL 65

negative polarities only

JL 66A,B,C

AMS

some slight deviations of the k1,k2,k3 directions

NRM

positive and negative polarities

XII

JL66: pink clay (porcelanitelike clay)

the all clay samples collected between the coal beds XII-XIII (the pink clay included)

4 samples (clays) collected just below the monolith-block JL66

3 sub-samples A,B,C cut from the monolithblock JL66 (a pink clay)

LUPOAIA QUARRY AMS

T

f(%)

T

f(%)

T F P

T

L L

P

F

L F

f(%)

P

P' f(%) F

F

T

L F

f(%)

T

f(%)

L L F

P'

P

P

L F

f(%)

P

L F

f(%)

T

f(%)

F

P

P

T

P

P

L L

P' f(%) F P

F

f(%)

T L L

f(%)

T P

P P

f(%)

P' f(%) F P f(%)

T T

P' f(%)

L L F

“FRESH”/ORIGINAL CLAYS

AMS

L F

L L F

P'

f(%)

F

P

P f(%)

P

L F

LUPOAIA BOREHOLE 11 AMS

minimum susceptibility

JILT QUARRY L L L

F F

L

T

f(%) f(%)

P

P' f(%)

L F L

L L

P

f(%)

P

FF P P

P

f(%)

T

F F

T

AMS

L F T

P

P

(QUARRIES)

P

P'

f(%)

L

ROVINARI AREA

AMS F F P P

P'

L F

f(%) f(%)

P'

P L F

(Western Dacic Basin)

 (Primary) depositional/sedimentary fabric: the minimum axes placed in a vertical or near vertical direction and the maximum and intermediate axes randomly oriented in a (quasi)horizontal plane;

maximum susceptibility intermediate susceptibility

AMS

MAGNETIC FABRIC OF THE COAL BEARING FORMATIONS

 A strongly foliated (oblate) fabric;  The deposition has taken place on a horizontal surface, in a quiet sedimentary environment (similar results: e.g. Krijgsman, 1996)

JILT QUARRY JL 27 – JL 31

JL 27 – JL 31 JL 67 – JL 69

JL 70 – JL 73

AMS

AMS

NRM

X

NRM

for a depositional/primary magnetic fabric  NRM: reversed polarities JL67, JL68: clays JL 67 – JL 69 from coal interbeds JL69 – PORCELANITE-LYKE CLAY

NRM

AMS: some deviations of the k1, k2, k3 directions, provided by JL 69; a very low anisotropy degree (P=1.005-1.008); some isotropic specimens were measured

JL 69

IX

JL 31/1

JL 31/2

 NRM: JL 69 - reversed polarities,

JL 69

Gy

Cl 700°C

H H Gy

Gy

(original/”fresh”; thermally unaffected)

 AMS: typical characteristics

AMS

XI

JL69 JL68 JL67

CLAYS

Gy

Gy

P

with the declination deviated by 90°; JL67, JL68 – negative and positive polarities JL 70 – JL 73

PORCELANITES 500°C  AMS: a slight deviation of the JL 31/3 JL 70 foliation plane related to the horizontal H H one and of the k3 axes related to the Cl P original stratification pole; 300°C  NRM: normal polarities  baking temperature: higher for JL 70 than for JL 69; lower than 750°C

Cl

PARALLEL ANALYSIS OF THE NRM AND AMS BEHAVIOUR DURING THE THERMAL DEMAGNETISATION PROCESS AMS

JL 62/5

NRM

AMS

JL 73/1

JL 70, JL 71, JL 72, JL 73

PORCELANITES

Laboratory-induced thermochemical reaction concerning a naturally thermally affected clay possible magnetite - produced on the expense of the hematite (identified by XRD in the porcelanite JL 70 ) - and subsequent (partial) oxidation, with k decreasing

JL 70/6

JL 27/4

JL 27, JL 31, JL 62

“FRESH”/ORIGINAL CLAYS

NRM

JL 72/5

JL 31/5

JILT QUARRY

(cf. Dekkers, 1988, Dekkers & Linssen, 1989, Tarling & Hrouda, 1993)

NRM

JL 70/3

JL 71/4

k

JL 73/1

AMS

JL 72/5 E

JL 70/6 JL 27/4 P V

JL 31/5 F

JL 62/5 q

L

Normal polarity of the Characteristic Remanent Magnetisation (ChRM)

JL 72/1

LUPOAIA LIGNITE QUARRY (Eastern area; porcelanite quarry) LP 210, LP211, LP213

NRM:  normal polarity  maximum intensity: 7050 mA/m MAGNETIC SUSCEPTIBILITY:  maximum k value: 24554π10-6 [SI]

NRM

lower NRM intensity and k values (than for LP 211 and LP 213), but neoformation minerals are present H

PORCELANITES

Sample

NRM (mA/m)

k 4πx10-6 [SI]

LP 210

333.3

22.8

LP 211

4669.9

754.6

LP 210

H

H Cr

H Cr

LP 213 4659.7 1627.2 Baking temperature:  higher than for the porcelanites collected in the southern Lupoaia quarry (LP 202-208), but lower than for the clinkers and porcelanites LP 200, LP 220, LP 240

CLAYS f(%)

f(%)

NRM

Q1 100%

PORCELANITE-LIKE CLAYS AND PORCELANITES f(%)

NRM

NRM

f(%)

(mA/m)

(mA/m)

LP 209

LP 67-69

(mA/m)

NRM 209

LP 210, LP211, LP213

X-XI

LP 202 - LP205

NRM

Reversed polarity

All the NRM intensity (In) values higher than the maximum In measured for clays, reaching 7209.8 mA/m NRM

X-XI

Normal polarity

69

68

67

f(%) f(%)

k

k x 4πx10E-06 [SI]

f(%)

k

f(%)

k k

x 4πx10E-06 [SI]

x 4πx10E-06 [SI] x 4πx10E-06 [SI]

Most k values between 10x4πx10E-06 – 20x4πx10E-06 [SI]

Frequent k values between 2004 10E-06 – 15004 10E-06 [SI], reaching 12812x4πx10E-06 [SI]

MAGNETIC PROFILES

LUPOAIA AREA (ROMANIA)

BH 7

NEW ZEALAND

ΔT

VII 490nT

500-800nT

BH 6 BH 6 VIII

600nT

V

BH 7

V

BH 7

I 500–1000nT

VI VI

1880nT

730nT

BH 6

IX

LP 200 LP 220 LP 240

BH 11

ΔT

800-1300nT

IX 1485nT

700nT

ΔT

1400nT

900nT

BH 6

III

1700nT 920nT

(Lindqvist et al., 1985)

USA II 500nT 500nT 150nT

IV 370nT “magnetic IV

1125nT

noise” drilling equipment

I

LP 201-LP 205

LP 210 – LP 213

(Hasbrouck & Hadsell, 1976)

 THERMALLY NOT-DISTURBED M.R.M. (“original” m.r.m./“initial” state):

“original”/”fresh” clays (non-affected by heating)  mineralogical support: clay minerals (illite, smectite, kaolinite, chlorite); non-clay minerals (angular quartz and quartzite grains, feldspars/ plagioclases, calcite, dolomite).  rock magnetic signal: low amplitude  initial magnetic susceptibility (kin): values between 10410E-06 - 20410E-06 [SI], rarely exceeding 75410E-06 [SI];  magnetic foliation (F) and anisotropy degree (P): most frequent values are between 1.03 – 1.05;  magnetic fabric: (primary) depositional / sedimentary fabric; a strongly foliated (oblate) fabric;  natural remanent magnetisation (NRM) intensity (In): low and very low intensity values, mostly lower than 1mA/m, rarely exceeding 30 mA/m; NRM directions for the samples taken at a similar level with that of the porcelanites (e.g. coal bed X): usually associated with a reversed polarity; 

 palaeomagnetic signal: DRM; geomagnetic field polarity record within Pliocene/Romanian, assigned to the Gilbert Chron, namely to the lower part of the C2Ar Subchron (ATNTS 2004; 4.187 – 3.596 Ma).

 THERMALLY DISTURBED M.R.M. (“subsequent” state):

“baked clays”, sometimes “melted”/”fused” clays (porcelanites and clinkers, generated by natural spontaneous burning of lignite seams):  mineralogical support: thermo-mineralogically affected rocks; modified mineral assemblages or even newly formed [hematite, cristobalite, trydimite, mullite, spinel, cordierite, magnetite (?)], correlated with the increasing temperature, in successive stages, from slight baking to more or less total fusion;  rock magnetic signal: changed, considerably increased intensity initial magnetic susceptibility (kin): values between 200410E-06 - 1500410E-06 [SI], sometimes reaching 12800410E-06 [SI];

enhancement of several magnetic anisotropy parameters: e.g. F and P record values between 1.10 – 1.20, sometimes in the range 1.30 – 1.40;  magnetic fabric: similar characteristics to the “original”/”fresh” clays; the features of the spatial distribution of the principal susceptibilities: generally preserved;  remark consistent with Perarnau & Tarling (1985), concerning the thermal enhancement of magnetic fabric: “irrespective of the mineralogical models, it is clear that the observed fabric can only be a result of mimicking of fabrics that must already exist within the rocks” 

 natural remanent magnetisation (NRM):

 intensity (In): high and very high In values, between 1–7 A/m, occasionally reaching 7.982 A/m;  NRM direction: modified, usually, a normal polarity;  palaeomagnetic signal: changed, mainly a TRM (normal polarity);

porcelanites situated in the vicinity of the “original”/”fresh” clays: the palaeofield polarity assigned to the Brunhes Chron (ATNTS2004; 0.781 – 0.00 Ma):  the autocombustion process of the lignite seams that produced the porcelanites has taken place at a time within the Middle-Upper Pleistocene (supported also by some geological arguments).  Some remarks:  the ability of porcelanite deposits to produce significant magnetic anomalies, easily to be mapped with portable magnetometers; in Lupoaia quarry, amplitudes up to 1880 nT;  the mapped magnetic anomalies show the changes that appeared within the magnetic recording medium represented by the “coal bearing formations”.  the magnetic anomalies resulting from the baked clays associated with the burnt coal: of use in coal exploration and exploitation 

III

III

THIRD CASE-STUDY: THE USE OF THE MAGNETIC SUSCEPTIBILITY AS AN INVESTIGATION TOOL IN AQUATIC SEDIMENTARY ENVIRONMENTS

Romania Black Sea Danu b e Delta

Romania

Danube River

STUDY AREAS

Danube Delta: Surface: 3510 km2 (in Romania)

Channels/canals: ~ 3500 km

Danube Delta Branches: Chilia (Kilia) Br. 120 km

Lakes: > 450

Razim - Sinoie Lagoonal Complex:

Sulina Br. 63.7 (92) km

Surface: 1015 km2 Main lakes: Razim (Razelm), Golovita, Zmeica, Sinoe Marginal lakes: Agighiol, Babadag, Ceamurlia, Istria, Nuntasi

Black Sea Littoral Zone: Main lakes: Tasaul, Techirghiol, Siutghiol, Mangalia

Northwestern Black Sea:

Sf. Gheorghe Br. 70 (109) km

Northwestern Black Sea

Area under the influence of Ukrainian rivers sediment discharge; Area under the influence of the Danube River sediment discharge; Western Black Sea shelf areas; Shelfbreak and uppermost continental slope zone; Deep sea fan area; Deep sea floor area (Panin et al., 1999)

Black Sea

Fluvial research vessel “Istros”

LOGISTICS, GEOMATERIALS AND METHODS

Grab sampler

Research vessels and sampling equipments Bottom sediment

Radar / GPS / Echosounder equipment

Fluvial vessel “Stuful” Box corer

Grab sampler

Bottom sediment

Gravitational corer

Gravitational corer

Magnetic susceptibility scale (k, MS) used for calibration of bottom sediments (Radan & Radan, Geo-Eco-Marina, 13, p. 61-74, 2007)

Danube Delta Depositional units Fluvial Delta Plain

2 4 1

3 5

1. Mesteru – Fortuna Depression 2. Matita – Merhei Depression 3. Gorgova – Uzlina Depression

Marine Delta Plain 4. Raducu – Raduculet Depression 5. Lumina – Rosu Depression

Meşteru Lake

Meşteru Lake

125

Lungu Lake 125

100 75

Lungu Lake

50 50 75

100

Tataru Lake

75

75

1980

100 125 150

1987

100

a)

Meşteru – Fortuna Depression Depresiunea Mesteru - Fortuna

1980 1980

b)

1987 1987

700 650 600 550 500 450 400 350 300 250 200 150 100 50 0

L. Me ste L. Me ru-V steruV L. Me steruV L. Me steruE

k map (1987 cruise)

L. Lu ngu-S L. Lu ngu-S L. Lu ngu-S

L. Lu ngu-N L. Lu ngu-N L. Lu ngu-N L. Lu ngu-N

k map (1980 cruise)

k (x10E-06) u.SI

(zona vestica)

1987 1980

k values for sediments sampled in the Lungu Lake (northern and c)southern zones) and Mesteru Lake (western and eastern zones) before (i.e., 1980) and after (i.e., 1987) the human intervention in the area (hydrotechnical works)

ce lu

L. Pu r

he Ve c C

No ua

C

C .Visina

ar as u

Ve ch e

.P ap ad ia C

filc ro

a

nng LLuu

Tu lc ea

Mit ch ina

os cin da Ra L.

No ua C Pa C .Dunarea Veche pa d ia

L. Lidinet

L

u cel Pur L .

Martin

L. Rotund

C.C rin jala

a as ire

L. C

C.Razboinita

ce lu

C

S C.

C.

T

Sulina Br.

L.T

C. Olgu ta

Br .

L.T

filc ro

a

u cel Pur L .

Martin C.

C. Olgu ta

L. Lidinet

Magnetic susceptibility of the sediments sampled in Sulina the Br.Lungu, Mesteru and Tataruc)lakes, in the 1980 – 2012 period. b)

Tu lc ea

a)

L. Ma na hu

. .LL.Resvertina . uuL Ma re a Chn g g e n l n i u h . LLu rag D L. Fortuna L. L uru r a t a Taat T

L. Vacaru

Mit ch ina

os cin da Ra L.

Br .

C .Visina

Durnoi L.

L. Vacarel

Sulina Br.

B

L. Lideanca

C. Olgu ta

L. Nisipos

L. Rotund

aN ou a

tea Girla Son

n rti La. n MMartiL. No ua

L. Lideanca L.

B L.

L. i nesti Ba cla ari M

Ve ch e

a as ire

.P ap ad ia

S C.

C .S onte

C. Stipoc

C.Razboinita

i L. etch inti Cut ab

C

L. Vacarel

C. Iacob

L. Pintilie Pintilie L.

oua

ar as u

L. Vacaru

C .Iacob

L. Hontu

aN

C .Visina

a Girla Sonte

L. Rotund

M3 i6la” C 36a n”a Cl a n

.P ap ad ia

ce lu

ara su

Lu ng u L. Pu r

he Ve c

M3 i6la” C 36a n”a Cl a na l

.P ap ad ia C

“M i“la

L. Nisipos

L. Lideanca L.

L. Vacarel

iL etch Cut . Babinti

oua

a)

C. S onte

C. Stipoc

L. Nisipos

C.C rin jala

L. Vacaru

aN

L. Lidinet

C. Mit ch ina

C.

Tu lce aB r.

hin inos c aa ad L.R

a Girla Sonte

C. C .Dunarea Veche Pa pa dia

L. Nisipos

hin inos ca

C.C rin jala

C. Mit c

L. i nesti Bacla a ri M

L.L. ruru tee est M Mes hn. C L. Beliii ilea h g Dra L.L. L. Fortuna aaruru t t a Ta

a ad L.R

No ua

L. Martin

C. S onte

C. Stipoc

C .Iac

29 00' 29 10'

Ve ch e

36 “M ila a filc ro L.T

a filc ro L.T

1980

L. Pintilie

L.L. ruru tee est M Mes hn. C L. Beliii lea i h g Dra L.L. c 4 ) rL.uuFortuna aar t t a TTa II

C.S

a as ire

b)

L. Hontu

L. i nesti Bacla a ri M

Cut

C Pa C .Dunarea Veche pa d ia

Sulina Br.

he

L.C

ce lu

T

L. Beliii

C

1980

L. Pintilie

i L. etch

L. Martin

2929 10'00'

hin ino c aa ad L.R

ta L. v a io rc are Co M

Tu lce aB r.

os cin

g Dra L4.L b ). aaru u t r a T at

C 23%

2929 10'00' C .Iacob

Tu lce aB r.

Br.

a filc ro L.T

Tu lce aB r.

s L. cino da Ra

a ad L.R

hn.

II hilea C

sa ea .Sir

L. Nisipos

s L. cino da Ra

69%

L. Pu r

lca rofi L.T

an

ara su

al

ru L. 23% M IIIeste 77%

a Girla Sonte

Ve c

8%

IV

aN ou a

M3 i6la” C 36a n”a Cl a na l

tchi Cute

Son te

aN ou a

C. Mit c

os cin

Tataru L. (1980) utetchi L.III C.

L. Beliii

C

L. Hontu

C

C

sa ea .Sir L.

II

a4)

b3)

Mesteru L. (1980)

III

L. Pintilie

.P ap ad ia

2006

L.

20%

lea ghi Dra . c 2 ) aruuL L. t r a T a ta

. Chn

.P ap ad ia

”C II

a ad L.R

No ua

III

II

M

> 1000 T Tu 675-1000 lce Sulina 575- 675 aB 275 - 575 r. 175- 275 c)75- 175 10 - 75 < 10 C .Iacob 1987-1997 c3) x 10-6 [ SI u.]

“M i“la

60%

Lu ng u

Lungu L. 15% (1980)

10%

III

Vd Vc Vb Va IV III II 29 I 00' k classes

Pa pa d ia

IV

57%

C

10%

20% a3)

50%

85%

Va

Va

”C

20%

Vb

Mesteru L. (1987)

36

10%

b2)

“M ila

Lungu L. (1987)

a2 )

13%

Son te

a Girla Sonte

L. esteru

hi

s L. cino da Ra

20%

37%

C.

C.Razboinita

lca rofi L.T

ce lu

II

II

a as ire

C. Mit c

L. Nisipos

s L. cino da Ra

33%

II

tchi Cute

etc Cut

L. Martin

L. Hontu

L. Hontu

al

a as ire L. C.S

III

27%

L. Beliii

aN ou a

C.S

b)

III

L.

43%

III

IV

. Chn

Tat Sulina Br.

1987-1997

L. Pintilie

ara su

13%

IV

29 00'

c1)

2006

Tataru L. (1993; 1995 - 1997)

Va

31%

19%

45%

L.C

Va

Mesteru L. (1987; 1992-1996)

L. esteru

lea ghi Dra L.L. aaru u t r a T

Son te

a Girla Sonte

c)

L. Pu r

a1)

Lungu L. (1987; 1993; 1995-1997) Vb 7%

a Br. Sul in b1)

an

k (x 10E-06) SI u.

B r.

II

Lu ng u

300

ea

ce lu

36 i la

C.

Tu lc

M

os cin

Tu lce aB r.

III

55%

Fortuna L.

L. Pu r

200

Durnoi

L.C ara su

100

III

Tataru L. (2006)

L.

.

Samples 0

L. Cutetchi

a ad L.R

“M ila

Mesteru - Fortuna Depression (western zone)

IV

226.34 122.8 78.22 107.06 113.90141.74 80.08

36

May 2012 Cruise Lungu L. (2006)

L.C

lca rofi L.T

L. Pu r

C)

an

7%

B)

al

C

tchi Cute

sa ea .Sir L.

L.

II

C.

L.C ar a su

L. Hontu

Pa pa d ia

I

“M i“la

93%

”C

A)

II III

1987-1997

L. Pintilie

L.C ara su

75%

56%

II 44% III IV

2006

No ua

19%

29 00'

Lacul Tataru (mai 2012) 2012) Tataru L. (May

L. C

6%

Mesteru L. (May Lacul Mesteru (mai 2012) 2012)

Pa pa d ia

Lacul Lungu (mai2012) 2012) Lungu L. (May

Dynamic environments :

Confined environments :

lakes located close of the main fluvial influx, with active change of water and sediment supply 29 00'

29 10'

1987 L. . Durnoi

L. stii lane Bac ari M

L. Lideanca L. Babi

na

L. Martin C.Olgut a

L.. Fortuna

taru Ta L..

C. .

Mil a3 6

29 30'

29 20'

1992 - 1999

L. Vacaru

pa dia .P a

L. Beliii

C

Pu rc L.

Lu L ng . u

C.Stipoc

Ve ch e

teru L. . Mes ilea ragh C. D

Son tea Noua

tea Girl a Son

29 30'

29 20'

1978 C .Vi sin a

hi utetc L. C elu

sa

29 30'

29 20'

C.Iacob

C.

ir ea C.S

lakes protected or located far from the main fluvial influx points (more or less stagnant sedimentation environments)

L. Lidinet

Br. Sulina

A)

Matita – Merhei Depression

1992 - 2006

29 30'

29 20'

29 30'

29 20'

2006 C.S u lim an

ca

L. Gorgova

L. ro ste ap Bogd

C)

Mesteru – Fortuna Depression 1979

Tre L. i Oz ere

L. Rotund

C.Sulim anca

Br .T ul ce a

L. Arginti u

MS fingerprints (in lake sediments): intermediate and high intensities (k classes III, IV, V)

C.Pardina Sf isL. tof ca

D)

L. Polu dion ca Sfi L. st of ca

L. Miazaz i

Du na rea

D

un

are

a

ch Ve

e

a)

Tre L. iO ze re

L. ro st e dap Bo g

L. Radacinos

L.La Amia za

L. Raducu

L.Cazanel

ch e

L.Lung

gu un L.L

L.cu Ciulini

L. Serbata

C.E r ac le

ra cl e

L. Radacinos

Ve

L. Matita

L. Babin a

ludio nc a L. Po Lu L.

D un area

Gorgova – Uzlina Depression

L.Lung

L. Radacinoasele

ngu

L. Miazaz i

iaza

B)

L.Merhei

L.cu Ciulini

C.E

Dyn. env.

L. Merhei u Mi c

dac inoas ele

L.Merhei

L. Radacinoasele

L. Matita

L. Babina

L. Merhei u Mi c

L. Uzlina

L.Rosca

C. Ra

L. Serbata

L. Raducu

L. ro ste gdap Bo

L.Cazanel

Ve ch e

C. Lop atn a

Conf. env.

Tre L. iO zere L.La Am

b)

L.Rosca

C. R a da cinoa sele

C. Lo pa tn a

a)

L. Uzlina

L. Isacova

C. Pardina

L. Arginti u

L. Isacova

un D

e ar

he ec aV

b)

MS fingerprints (in lake sediments): low and very low intensities (k classes I, II)

Magnetic susceptibility characterisation of the lake sediments sampled in dynamic (dyn. env.) and confined (conf. env.) deltaic environments. Note: The MS fingerprint intensities are shown by the average k values (based on all the samples which were measured for each lake), and the assigned colours are according to k scale (Radan & Radan, 2007).

O

a)

Lungu Lake Tătaru Lake

10

90 80

O

b)

Uzlina Lake Isacova Lake

10

90

20 80

20

30

70

30

70

40

60 50 40

50

60

30

70

60

70

30

40

50

20

70 80

20

90

10

80

60

30

80

90

50

40

20

M

40

60

50

C

10

90

10

M

90

80

60

70

Fig. 5.1. Litologia sedimentelor recente din Depresiunea Mesteru - Fortuna (Lacurile Lungu si Tataru - iulie 2006) .

c)

O

Puiu Lake Rosu Lake Rosulet Lake

M=Fractiune minerala detritica (cuart, silicati); C=Carbonati (autigeni); O=Material organic. 90 10 Lacul Lungu

80

20

40

50

30

20

O d)

Matita Lake 90

10

80

Lacul Tataru

Poludionca Lake 20

Merhei Lake 30

70 30

70

60 60

40

40

50 50

40

60

30

10

60

50

40

30

20

10

80

10

90

70

70

20

80

80

60

30

70

20

90

50

50

40

M

C

10

C

M

90

90

80

70

60

50

40

30

20

10

C

The lithology of the recent sediments sampled in 10 lakes from four main aquatic depressions in the Danube Delta. Legend (ternary diagrams): M – Detrital mineral fraction (quartz, silicates); C – Carbonates (authigenic); O – Organic matter.

Razim (Razelm) – Sinoie Lagoonal Complex 6. Razim Lake; 7. Golovita Lake; 8. Sinoie Lake; 9. Zmeica Lake.

6

Landsat image (1991)

7 9

8

Relative silt contents in the water systems

Magnetic susceptibility maps for two lakes from the lagoonal complex, sampled at both ends of a 30 year period. Note: The scales are not similarly calibrated by coloured intervals.

Lithological components of the sediments sampled in two lakes from the Razim (Razelm) – Sinoie Lagoonal Complex

Razelm – Sinoie Lagoonal Complex (1976 – 2008) lc L. Va

Razelm L. (2003)

ica

Razelm L. (1976)

Va

Va

IV

72%

4% 2%

22%

III

2%

75%

II

12% 11%

IV III II

C. Mustaca

C. Enisa la

a 1)

a 2)

Enisala

Va IV Salcioara

l 17% du in

r is or

Capul Iancina

III

Pe

16%

L. Golovita 1977 1% 20%

II

Gr Periteasca

L. Golovita 2002; 2004 2% 16%

Vb IV III II

Capul Dolosman Jurilovca

63%

Bisericuta

b1)

Ran ec du l Grin

Lunca

b2)

65%

L. Ceam urlia

L. Zmeica 1978 2%

L. Zmeica 2002; 2004 42%

Va III C.2

II

Periboina

Zmeica L. (2008) III

55%

III

II

II

47% Pricop

51%

III

L. Tuzla

43%

53%

c Ch itu

Bl ac k

II

d1 )

0

8

c2)

58% L. Sinoie 2004 4%

du l

IV

Grin d

Va

G rin

L. Sinoe 1977 2% 2%

ul S ace le

c1)

Se a

45% c3)

Sinoie L. (2008) 2% 2%

IV III II

Va IV III II

52% 44%

d2)

53%

43% d3)

16 km

Synoptic model showing the magnetic susceptibility characterization of the recent sediments of the Razim (Razelm) – Sinoie Lagoonal Complex four main lakes, related to three periods: 1976 - 1978 (left; a1, b1, c1, d1); 2002 - 2004 (middle; a2, b2, c2, d2); 2007 - 2008 (right; a3, b3, c3, d3).

k class II: an increasing trend (%) in the direction: Razim

Golovita

Sinoie

Zmeica

1976 – 1978 : R (4 %)

G (16%)

2002 – 2004 : R (2 %)

G (17%)

S (43%) S (44%)

2007 –2008 : R (3 %)

G (14%)

S (53%)

Z (51%) Z (58%) Z (55%)

k classes (IV+V): a decreasing trend (%), in the same direction: Razim

Golovita

Sinoie

Zmeica

1976 – 1978 : R (24 %)

G (21%)

S (4%)

Z (2%)

2002 – 2004 : R (23 %)

G (18%)

S (4%)

Z (0%)

2007 – 2008 : R (34 %)

G (27%)

S (4%)

Z (0%)

Sf. Gheorghe Branch

Model showing the water flowing direction in the Razim – Sinoie Lagoonal Complex (RSLC) :

R

G

S

Z

L. Ra ze

water flow direction in the RSLC: from North southwards

lm

L. Golovita Si n

oi e

a

meic L.

L. Z

Black Sea

water sources (related to the RSLC): from the Danube River (Sf. Gheorghe Branch), mainly through the Dunavat and Dranov Channels

Composite model showing the trends features of the magnetic susceptibility classes which characterize the bottom sediments of the four main lakes from the Razim – Sinoie Lagoonal Complex (based on the synoptic model previously presented). Note: in the lower part of the figure, the water flow direction within the lagoonal complex is indicated, in connection with the main water sources.

Goloviţa

Sinoie Lake (2008) 2% 2%

Va IV III II

b)

Channel 5 Zmeica 172.32 L a k e 29.62 220.47

87.84 105.56 84.40

Channel 2 27.58

43%

53%

32.91 80.79 114.84 46.52

Lupilor sand ridge

61.09

22.19 32.28 37.18

Sinoie 18.53

Lake

Lake

71.72 33.55 78.40 79.70 59.33 50.93 158.03

78.47

68.46 65.43 Săcele 80 44 86.64 Chituc 95 06 sand ridge 106.06 88 50 sand 90 93 94 84 83 55

ridge

a)

k classes

 1000 675 1000 575  675 275  575 175  275 75  175 10  75  10 10E-06 SI

c)

72.43 94.54

89.48 78.50 81.89 77.80 41.72 45.33 60.67 44.98 100.7571.37 51.52 42 42 552.69 78.74 69.90 72.17 27 52

Vd Vc Vb Va IV III II I

Black

Sea

CLRS

Delta Dunarii

Lacul Sinoie Marea Neagra

d)

Magnetic susceptibility characterization and lithological classification of the sediments collected from the Sinoie Lake (August 2008). a) chart with the areal distribution of the k values, indicating also the MS classes to which the lake sediments were calibrated [marked by coloured cubes, according to the k scale reproduced in c)]; b) 3-D pie chart with the MS characterization of the bottom sediments [based on the k classes from c)]; c) MS scale; d) ternary diagram showing the lithological classification of the sampled recent sediments.

O 69.75

Goloviţa

Lake

88.69 125.10

148.72

123.34

24.91

17.58

M

C

d)

55.51

72.32

87.22

60.12

39.25

60.44

Zmeica Lake 34.84

26.64

25.51 86.37

90.03

95.62

Lupilor

105.31

sand ridge 109.75

c) 67.39

Sinoie

a)

Channel 2

Vd Vc Vb Va IV III II I k classes

 1000 675 1000 575  675 275  575 175  275 75  175 10  75  10

10E-06 SI

Lake

b)

Magnetic susceptibility characterization and lithological classification of the sediments c) collected from the Zmeica Lake (August 2008). a) chart with the areal distribution of the k values, indicating, also, the MS classes to which the lake sediments were calibrated [marked by coloured cubes, according to the k scale reproduced in c)]; b) 3-D pie chart with the MS characterisation of the bottom sediments [based on the k classes from c)]; c) MS scale; d) ternary diagram showing the lithological classification of the sampled recent sediments. b)

BLACK SEA LITTORAL ZONE

Tasaul Lake

Siutghiol Lake

Techirghiol Lake

Mangalia Lake

I

490.97

422.72

444.85

II

 10

III

10  75

IV

75  175

Va

Vb

175  275  575

575  675 675  1000

c)

58.59 467.85

467.10

39.39

156.09

Vc

Vd

k classes

 1000

 10-6 [SI]

Tasaul Lake

82.15 72.02 46.89

69.22

89.78 104.01

53.47

48.40 37.04 165.60

151.35

76.85

Taşaul Lake 145.56 57.36 214.47

65.05

40 30 0 0

460 4916000

60

MS map k (x 10E-06) SI

500 480 460 440 420 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0

4915000

80

80

4914000

120 80

Ada Isle

4913000

0 16

40 80 60

Taşaul Lake

4912000

100

4911000

60 80

4910000

k [100  10E-06 SI] 4909000 622000

623000

624000

625000

626000

627000

628000

629000

630000

631000

18.41

106.31

78.33 36.88

172.97

d)

a)

140.16 15.13

52.90 x10E-06 [SI]

Black Sea

a) 50.19

30.16

92.93 39.51

33.67

22.83 17.59 60.25 41.74 96.99 61.61

Black Sea

31.38 57.55 97.79

e) e)

b)

Composite magneto-lithological model for the Tasaul Lake recent sediments (sampled during the 2008 Fig. 13 GeoEcoMar cruise). a) chart showing the areal distribution of the k values, indicating, also, the MS classes to which the sediments were calibrated (marked by coloured cubes, according to the k scale); b) MS map with k contours; c) magnetic susceptibility scale ; d) magnetic susceptibility characterisation of the bottom sediments (based on the k classes); e) lithological composition of the recent sediments; f) ternary diagram showing the lithological classification of the recent sediments.

Black Sea Littoral Zone

Black Sea Littoral Zone

Tasaul Lake (2007)

Tasaul Lake (2007)

III

53

0%

IV

34

Va

2 11

25% 50% 75% 100% Magnetic susceptibility a) (k classes)

TOM

Lake sediment

Lake sediment

II

62,7

0%

25%

50%

CAR

SIL

4 33,3

75%

100%

Lithological components (average contents)

b)

Correlation coefficients (n = 47) k vs TOM

k vs CAR

k vs (TOM+CAR)

k vs SIL

- 0.5020

- 0.1649

- 06059

0.6059

c)

Magnetic susceptibility characterization and the lithological composition of the bottom sediments sampled from the Taşaul Lake (Black Sea Littoral Zone). a) 3D bar-chart showing the calibration of the recent sediments to the MS scale; b) 3D bar-chart indicating the contents of the lithological components (i.e., TOM, CAR and SIL) of the bottom sediments; TOM – Total Organic Matter; CAR – Carbonates; SIL – mineral/siliciclastic fraction; c) correlation between magnetic susceptibility and the lithological components.

Vd

Vc Vb Va IV III

 1000 675 1000 403.44

61.29

275  575 175  275 75  175

I

10  75  10

k classes

10E-06 SI

II

42.37

575  675

31.84

35.81

46.36

17.21

109.81 43.01

27.55

391.57 46.83 83.73

120.63 571.94

c)

71.76

949.19 151.47 127.28

317.25

S i u t g h 61.98 i o l 52.48 L a k62.43 e

230.72 138.94 132.94

200 311.82

175.47 48.65 94.94 46.20

69.12 18.45

48.84

25.16

k [20010E-06] SI 65.10

5.70

b)

Dunarea

e)

Lacul Siutghiol

150.62

32.51

23.67

19.59

39.03

Black Sea

Marea 21.42 14.29

Neagra 18.56

17.58

d)

Siutghiol Lake (2008) -5.78

16.89 32.60

4% 2% 10% 62%

4%

23.11

f)

a)

18%

Vc Va IV III II I

d)

Composite magneto-lithological model for the Siutghiol Lake recent sediments (sampled during the 2008 GeoEcoMar cruise). a) chart showing the areal distribution of the k values, indicating, also, the MS classes to which the sediments were calibrated (marked by coloured cubes, according to the k scale); b) MS map with k contours; c) magnetic susceptibility scale ; d) magnetic susceptibility characterization of the bottom sediments (based on the k classes); e) lithological composition of the recent sediments; f) ternary diagram showing the lithological classification of the recent sediments.

The magneto-lithological models carried out for four main lakes from the Black Sea Littoral Zone (BSLZ) add up the huge data bank carried out for the aquatic ecosystems from the Danube Delta (DD) and Razim (Razelm) - Sinoie Lagoonal Complex (RSLC). By comparing the results presented in the paper with the data obtained for a series of case-/history studies developed for the DD and RSLC sedimentary environments, some new issues have arisen;

They are particularly connected with the different processes of sedimentation taking place in deltaic lakes (confined or dynamic environments), lagoons (e.g., Sinoie and Siutghiol) or limans (e.g., Tasaul, Techirghiol and Mangalia); As regards the latter, the process of filling up with sediments is controlled by the simultaneous and successive activity of several supplies of sedimentary material. The special geological context of the fluvio-marine liman Tasaul is a good example in this respect;

Moreover, mineralogical and geochemical data for the sediment samples collected from the littoral lakes are needed.

1995 Cruise, Leg 2 R/V “Prof. Vodyanitskiy”

1997 Cruise, Leg 2 R/V “Prof. Vodyanitskiy”

Danube Delta

Danube Delta

Black Sea

k  1.2 10E-06 – 448.110E-06 SI

Black Sea

k  - 4.4 10E-06 – 438.310E-06 SI

Magnetic susceptibility maps for recent sediments sampled in the Northwestern Black Sea 1

B l a c k Danube Delta

2

3

4

5

6

S e a

7 8 9

Main sedimentary environments in the northwestern Black Sea area. 1, 2 – Area under the influence of the Ukrainian rivers (Dnieper and Dniester) sediment discharge. 3 – Danube delta front area; 4 – Danube prodelta area; 5 - 6 Western Black Sea shelf area (5 – area under the influence of the Danube originated sediment flux; 6 – sediment starved area); 7 – Shelfbreak and uppermost continental slope zone; 8 – Deep sea fan area; 9 – Deep sea floor area (according to Panin et al., 1999).

The magnetic susceptibility maps carried out for the sediments sampled in the marine area, namely in the Northwestern Black Sea, were correlated with the main sedimentary environments from the fluvial - marine interaction zone. As we have new MS data from the area, based on the cruise carried out in 2010, the comparative analysis of the results obtained in 1995/1997 and 2010 could give some useful information for the evaluation of the environmental status of this very interesting region, particularly related to the area under the influence of the Danube River sediment discharge, but placed in an extended context defined by the Danube River – Danube Delta – Western Black Sea geosystem.

Starting with Palaeozoic epimetamorphic schists, passing then to the Pliocene lignite – clay sequences and Pleistocene porcelanites, and ending with the Recent lake and marine sediments, we hope the overview of 3 case-studies has proved that the magnetic susceptibility is, indeed, a versatile investigation tool, in different geocontexts.

Poiana Rusca Mountains (I) http://ro.wikipedia.org/ wiki/Mun%C8%9Bii_ Poiana_Rusc%C4%83

Thank

Dacic Basin (II)

You ! Danube Delta and … (III)