Mardi de la Chimie-2.pptx

4 downloads 251868 Views 32MB Size Report
Institut Parisien de Chimie Moléculaire, UMR 7201. Institut de Chimie ... Si. Si. 40 - 50%. 5-exo-dig. Si. O. Si. X. 5-exo-trig and 5-exo-dig. X = SPh, SO2Ph, SOPh ...
Institut Parisien de Chimie Moléculaire, UMR 7201 Institut de Chimie Moléculaire, FR 2769

MÉTAUX & RADICAUX, DE PRÉCIEUX OUTILS EN SYNTHÈSE ORGANIQUE

LOUIS FENSTERBANK

Mardis de la Chimie 15 mai 2012

Our Approach in Organic Synthesis! PRECURSORS

TARGETS MULTI-EVENTS REACTIONS

- polycyclic derivatives

- preorganized systems

- natural products or analogs

- polyunsaturated substrates

- physically or biologically relevant molecules

- modular and accessible - efficiency - selectivity (chemo-, regio-, stereo-) - eco-compatible processes

radical processes:

.

.

S,P,B

organometallic catalysis:

.

- use of hydrogen transfers, !-elimination, homolytic substitution - forbidden processes - new partners (heteroatoms)

M

Pt

Au

One-Pot Synthesis of a Linear Triquinane

CN Bu3SnH, AIBN

O Si

SO2Ph Br

CN

10 elementary radical steps

Si Formation of :

O Si

Si

- 5 C-C bonds - 3 contiguous quaternary centers

50%

- 4 stereogenic centers

!-CN : "-CN, 90 : 10

J. Org. Chem. 1998, 63, 6764.

Mechanism CN O Si

Si

Bu3SnH, AIBN

X

O

Br

10 equiv.

Si

Si

CN

X = SPh, SO2Ph, SOPh

40- 50%

!-elimination

5-exo-dig

-X

O Si Si

CN

5-exo-trig

O

Si

Si

CN

CN

X

X

.

[3 + 2] and 5-exo-dig

Si O

Si

X 1,5-H transfer

Si

O

X H Si

Cyanamides as New Partners for Radical Cascades 


N

R

R

N N

N

O N

O

Bu3SnH, AIBN

N N

N

O N

O

O

71%

S

N

N N

amide-iminyl radical

N 99%

CN

N 57%

Total Synthesis of Luotonin A 
 O

O

4 steps N

Cl 56 %

N3 N

I

2 steps 46 %

N H

N

I

NaH, BrCN O N

Isolated from Peganum nigellastrum, a Chinese medicinal plant

N

I

N

air, pyr. PhH, h!

O N

Inhibitor of topoisomerase I

N N

luotonin A 54%

Chem. Eur J. 2008,14, 1238-52.

Alkyl Radicals - Cyclizations

R1 R2 PhSe

Bu3SnH

O n

N

O

(slow addition) AIBN (1.5 equiv.)

Ph

PhH, !, 3 h

N O

N n

R1 R 2

O

O

N

N

N N

N

N

Deoxyvasicinone, 65%

N

!-Methyldeoxyvasicinone, 76%

!,!-Dimethyldeoxyvasicinone, 87%

O N

Adhatoda vasica

N

Mackinazolinone, 51%

Mackinlaya subulata

Vinyl Radicals O

Bu3SnH AIBN (1.5 equiv.)

O

I N

N

PhH, !

N

N

66%

reduction of the olefin ! O

Bu3SnD AIBN (1.5 equiv.)

O

I N

N

PhH, !

N

55%

O

I

D D

N N

N

D

D

D D

O

Bu3SnH AIBN (1.5 equiv.)

D D

N

PhH, !

N D

48%

D D

Possible Mechanism O

O

O

I

?

N

N

N

H

N

H• +

O N

N N

H

N

N N

N H SnBu3

H

O

O

O

Path B bimolecular transfer

N

O

O

N

H

H

N

Path A β-elimination

N

N

H N N O

N

+

H

N H SnBu3

Double Tagging

O

O

I

N

N N

OMe

H

+ O

I

Bu3SnH AIBN

N D

N H

N D

O D

13%

the reduction is an intermolecular process

D D

N N

D D

OMe 12%

D

N

D D

OMe 11%

O

D D

N

t-BuOH, !

D

N N

O

H

D D

14%

Can We Transfer Other Groups ?

O

I N N

O N

?

N R

O

R

N N R

Can We Transfer Other Groups ?

O

I N

N Me

O

Me

Bu3SnH (2 equiv.) AIBN (1.5 equiv.)

N

O

N

+

N

PhH, reflux

I

O

Me

Me

45% O

i-Pr

N N

O

O N

N N

52%

i-Pr

H

N

t-BuOH H

69%

N N

34%

N

I

+

N

i-Pr

N i-Pr

O

Me

Me

Can We Transfer Other Groups ? O

I

O

CF3

N

N t-BuOH N F3C

O

I N N

F

F

CF3

N

CF3

55%

O

Bu3SnH (2 equiv.) AIBN (1.5 equiv.) PhH, reflux

F

N N

30%

J. Am. Chem. Soc. 2010, 132, 4381

Enantiomers ?

Addition of Radicals onto Vinylsulfoxides

sulfoxide:

R

S

O

Michael addition

O

S*

R'

R'

R1

OS+ R2

anti Michael addition

R

Zahouily, M.; Journet, M.; Malacria, M. Synlett 1994, 366. Lacôte, E.; Malacria, M. C. R. Acad. Sci. Fr., Ser. IIc 1998, 191. recent work: Lee, E. et al. J. Am. Chem. Soc. 2005, 127, 10396.

O S R

!-elimination

R'

R

Addition of Radicals onto Vinylsulfoxides

Bu3SnH, Et3B/O2 toluene, 0ºC

E

R +

E Tol-

S

O

93%

H

E E

S, > 98% ee

OMe

PhSe E E MeO OS* with MAD S*O = E = CO2Me

S O

H E Tol

t-Bu

MAD = MeAl

E S+

52%

E

OMe R, 92%ee

OLA

O t-Bu

R

E

2

J. Am. Chem. Soc. 1999, 121, 11395.

New Partners for Radical Asymmetric Synthesis

O p-Tol S

O S

p-Tol

R bis-p-tolylsulfinyl alkylidenes

O p-Tol S

O S

(S, S) pKa 20.9

p-Tol

1. BuLi, -78°C 2. RCHO

O p-Tol S R

O S

N p-Tol

OH

yield: 70-90%

O

NCN TsO

CuCl2 (cat.), MeCN

O p-Tol S R

O S

p-Tol

(S, S)

yield: 82-98%

review: Eur. J. Org. Chem. 2002, 3507. For cyclic bis-sulfoxides, see: Aggarwal, V. K. J. Org. Chem. 2003, 68, 4087 and references therein.

Bissulfoxides as Michael Acceptors Nu s-cis

O S O S !- stacking

R eclipsed lone pair

O S

O S

R

H Nu

Highly Diastereoselective Michael Additions

O p-Tol S

O S

O p-Tol N H

p-Tol

THF, -60°C

Ph

O S Ph

O S

O p-Tol

N

TFAA, pyridine

Ph

CH2Cl2

p-Tol O S

O S

O

MeO p-Tol

OMe Br

NaH, THF

MeOH

Ph

OMe N

(S)

O 30%

quant., 1 dias.

O

Hg(OAc)2

N O

O

O

S-pTol

p-Tol O S

O S

p-Tol CO2Me CO2Me

96%, 1 dias.

Synthesis of Succinate Natural Products O p-Tol

O

O

S

S

p-Tol

O p-Tol

O S

LDA, THF, -78°C

O S

p-Tol

11

2. LiOH, H2O2 n-Bu4NBr

11

11

79 %

O

COOH

1. TFAA, pyridine CH2Cl2

OAr

COOH 85 %

(+)-erythro-roccellic acid

Angew. Chem. Int. Ed. 2003, 42, 5342-45.

- first asymmetric synthesis, - active against tuberculosis

p-Tol

O S ( )7

O

O S

p-Tol

O

O

S

S

O

p-Tol

LDA, HMPA THF, -78°C

p-Tol p-Tol

( )7

O S

O S

1. TFAA, pyridine CH2Cl2

p-Tol

( )7 O

Ot-Bu 81% 1:1

O

Ot-Bu

2. LiOH, H2O2 n-Bu4NBr

COOH ( )7 28%

COOH

(+)-sphaeric acid

Synlett 2006, 713-716.

- unknown absolute configuration, - active against Staphylococcus aurus

Toward a Greener Radical Chemistry Two options:

New single electron transfer processes

New hydrogen donors

N N t-Bu

N Ph

RN

BH2 H

R

NR BH2 H

B–H = 85 kcal.mol-1

In collaboration with Prof. Dennis Curran, U. Pittsburgh

J. Am. Chem. Soc. 2008, 130, 10082. Rough estimate of the kinetics of redution: 4. to 8.104 M-1s-1 J. Am. Chem. Soc. 2009, 131, 11256 Org. Lett. 2010, 12, 3002

Ti Sm

+e R

Cu R E D O X

-e

Fe R

Visible Light-Induced Generation of Radicals Q

Principle:

Q - 0.86 V

RuIII(bpy)33+

Q

+ 0.84 V

Reductive quenching cycle

Oxidative quenching cycle

+1.29 V

- PMB esters - styrenes - phenols - sulfides

Q

Ru(bpy)32+*

RuI(bpy)3+

- 1.33 V

D

A RuII(bpy)32+

D

- activated halides - enones - azides - !-keto cyclopropanes - !-keto sulfoniums

A

What you need: Ru(bipy)3Cl2.(H2O)6 Seminal: Kellog, R. M. et al. Tetrahedron Lett. 1978, 1255; Pac, C. et al. J. Am. Chem. Soc. 1981, 103, 6495. Deronzier, A. et al. Tetrahedron Lett. 1984, 5517; Perkin Trans 2, 1984, 1093. MacMillan, D. W. C. et al. Science 2008, 322, 77; Yoon, T. P. et al. J. Am. Chem. Soc. 2008, 130, 12886; Stephenson, C. R. J. et al. J. Am. Chem. Soc. 2009, 131, 8756. Reviews: Narayanam, J. M. R.; Stephenson, C. J. R. Chem. Soc. Rev. 2011, 40, 102 Teply, F. Collect. Czech. Chem. Commun. 2011, 76, 859.

Objective: the Photoreduction of Epoxides E°(Rubpy32+/  Rubpy3+  )  =  -­‐‑1.33  V  (vs  SCE)

Objective:

Ru(bpy)3Cl2

O

E°<  -­‐‑  2.0  V

R

R'

R

R'

Mismatching redox potentials

OH R'

R

via

O-

O

O

Ru(bpy)3Cl2

O

OH

Ph

Ph

Ph

Ph

via

O

-O

O Ph

O-

Ph

Ph

Ph

Can we use the radical generated  ?

Precedent:

O O

Ph

+

N

1 mol% Ru(bpy)3Cl2 ! > 390 nm

N OH

E. Hasegawa et al. Tetrahedron 2006, 62, 658.

O

OH Ph

DMF, 3h

45% conversion, 70% NMR yield

Rearrangement also described with TiCp2Cl, see: E. Doris et al. J. Org. Chem. 2001, 66, 1046;

Scope of the Photoreductive Ring-Opening EtO2C

X R1

CO2Et

N H Hantzsch ester (1.1 equiv.) conditions A or B

O R2

XH

R2

R1

DMSO, lamp 14 W

R3

R3

OH O

OH O

R R = H, CO2Me, OMe, CF3, C4H4 Yield = 42 – 91% (cond. A)

Ts

94% (cond. A)

NH O

A = Ru(bpy)3Cl2.(H2O)6

O

B = Ir(dtbbpy)(ppy)2PF6 iPr2NEt (1.1 equiv.)

OH O

R' R = CO2Me, OMe, CF3 Yield = 54 – 89% (cond. A)

Ts

52% (cond. A)

NH O

OH

78% (cond. A)

87% (dr = 76:24) (cond. B)

Angew. Chem. Int. Ed. 2011, 50, 4463.

O

Mechanism Proposal OH O

HE HE

[ML3

Ph [ML3](n-1)+

]n+*

HE =

O

Ph

[ML3 EtO2C

O

]n+

H H CO2Et

Ph

Ph O

Ph HE

Path a: Reduction

O

EtO2C O

Ph

O

Ph

N Ph

Path b: C-C bond formation ?

N H

OH O Ph

Ph R

H

CO2Et

Allylations Me EtO2C

X R1

N H

R

O R2

+

SO2Tol

Ts

Ph EtO2C

NH O

Ph EtO2C 49%, dr > 95:5

DMSO, lamp 14 W

OH O

OH O

67%, dr = 96:4

XH O

Ir(dtbbpy)(ppy)2PF6 (5 mol%)

(3 equiv.)

Ph EtO2C

CO2Et

R2

OH O OMe

73%, dr = 93:7

Ts

R1 R

Ph EtO2C

EtO2C

51%, dr >95:5

NH O

Ph EtO2C

OH O OMe

46%, dr > 95:5

OH O

Ph Me 60%, dr = 90:10

70%, dr > 95:5

Ts

NH O

Ph Me 43%, dr = 87:13

Relativistic Effects for Platinum and Gold

- 

High velocity of electrons , contraction of the 6s orbital and expansion of 5d orbitals

 - 

High electronegativity, difficult oxidation [Au]

- 

Low lying LUMO resulting in higher Lewis acidity [Au]

-

[Au]

Little back donation to π* orbitals but stabilization of carbocations

Leyva-Perez, A.; Corma, A. Angew. Chem. Int. Ed. 2012, 51, 614-635. Gorin, D. J.; Toste, D. F. Nature 2007, 446, 395-403.

[Au]

Cycloisomerization of Enynes Catalyzed by PtCl2 E

PtCl2 (5 mol %)

E

E

toluene, 80°C

E 86%

E = CO2Me Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049-6050.

Ts N

Ts

NH N N

PtCl2 79%

O

O

HN

MeO

For milestones, see:

Streptorubine B

Fürstner, A. et al J. Am. Chem. Soc. 2001, 123, 11863. Echavarren, A. M. et al J. Am. Chem. Soc. 2001, 123, 10511. Asymmetric version: Michelet, V.; Gladiali, S.; Genêt, J.-P. et al. Chem. Commun. 2004, 850. Reviews: Fürstner, A.; Davies, P. W. Angew. Chem. 2007, 46, 3410. Fensterbank, L.; Goddard, J.-P.; Malacria M. Comprehensive Organometallic Chemistry, 2007, Vol. 10, 299-368. Hashmi, A. S. K.. Chem. Rev. 2007, 107, 3180. Gorin, D. J.; Toste, D. F. Nature 2007, 446, 395-403. Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem. Int. Ed. 2008, 47, 4268.

Cycloisomerization of Dienynes Catalyzed by PtCl2 OX

OX

OX

H

PtCl2 (5 mol %)

+

Tol., 80°C, 2-9 h

H

X=H

7%

48 %

X = SiMe2CH2Br

5%

61 %

X = Me

_

73 %

4 new C-C bonds 4 new stereogenic centers

See also: Murai, S. et al. J. Am. Chem. Soc. 1998, 120, 9104. For reviews, see: Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328; Echavarren, A. et al. Chem. Comm. 2007, 333.

Behavior of O-Acyl Precursors OX

PtCl2 (5 mol %)

+

Tol., 80°C, 2-9 h

X = COCH3

X = p-COC6H4NO2

OX

XO

88%

3%

76%

4%

H K2CO3 OAc

MeOH

Angew. Chem. Int. Ed. 2002, 41, 2132.

O

93%

Mechanism Proposal for X = H, Me, SiR3 OX

XO PtCl2 X = H, Me, SiMe2CH2Br

OX

OX

OX

OX

H +

PtCl2

OX

PtCl2

OX

PtCl2

H OX

H H

PtCl2

PtCl2

Echavarren, A. M. et al. J. Am. Chem. Soc. 2001, 123, 10511. Inoue, Y. et al. Organometallics 2001, 20, 3704.

H

OX H

Mechanism with Ac, p-COC6H4NO2 Groups (Ohloff-Rautenstrauch Rearrangement)

O

X

O

X O

O

OCOX PtCl2

Cl2Pt

Cl2Pt

E

X = Me, p-C6H4NO2

X

O Cl2Pt

Z

O

Strickler, H.; Davis, J. B.; Ohloff, G. Helv. Chim. Acta 1976, 59, 1328 Rautenstrauch, V. J. Org. Chem. 1984, 49, 950. Review: Marion, N.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2750.

OCOX

XOCO

Synthesis of Tricyclic Derivatives AcO

OAc PtCl2 (5 mol %)

88%, 1 dias.

H

Tol., 80°C

AcO

OAc

H

98%, 1 dias.

AcO

OAc

78%, 1 dias.

H

AcO

OAc

63%, 1 dias.

neat, rt

H Adv. Synth. & Cat. 2008, 350, 43 ; J. Organomet. Chem. 2009, 694, 561-565..

Other Applications NO2 O

1. 5 mol% PtCl2

O

O

2. 2N NaOH, rt

Sabina ketone, 83% J. Am. Chem. Soc. 2004, 126, 8656. See also Fürstner et al. ibid 8654.

1. PtCl2, toluene, rt

O p-O2N-Ph-COCl Et3N, 4-DMAP CH2Cl2, rt

HO

2. K2CO3, MeOH, rt

O O2N

77 %

48 % (2 steps)

PtCl2, toluene, rt

MeI, NaH, THF

Org. Lett. 2004, 6, 3771.

O

O

O 54 %

via :

[Pt] O

55 %

Allene Activation [M]

[M]

[M]



Nu

R H

Nu

E

Nu

M

• R'

PPh3AuCl (2% mol) AgSbF6 (2% mol) CH2Cl2

[M]

[M]

E

M

M

H R

H

H R R'

Toste D. Angew. Chem. Int. Ed. 2007, 46, 912-914. With PtCl2 Iwasawa, N. Angew. Chem. Int. Ed. 2007, 46, 909.

R R'

R'

Polyquinanes Synthesis

R2



R2

R2 R1

OAc

R1

AuClPPh3 / AgSbF6 (2 mol %) CH2Cl2, rt, 10 min

PPh3AuCl (2 %) AgSbF6 (2 %) CH2Cl2, rt 10 min

• AcO

R2

62-80%

[Au] AcO

[Au]

AcO

97 %

Org. Lett. 2007, 9, 2207-09.

Synthesis of Capnellene OTBS HH O

[Au] (2% mol)

O TBSO

OAc

CH2Cl2, 0°C 2h

OAc

(2 dias ~ 50/50)

67 % (5 steps)

85 % (2 steps)

O

OTBS HH

HH

H

Me

62 % (4 steps)

PtO2 (0,3 eq) H2 (1 bar)

OTBS H H

H OH

Me

93 %

OTBS HH

NaBH4 MeOH

AcOH

K2CO3 MeOH

H

H

O

OH

major dias.

(2 dias ~ 50/50)

HH

H

[Au]:

Capnellene Me

Grubbs, R. H. and coll. J. Org. Chem. 1990, 55,843.

Isolated from capnella imbricata

SbF6

Au P t-Bu t-Bu

J. Am.Chem. Soc. 2009, 131, 2993-3006.

Chiral Anion Strategy in Organometallic Catalysis

Ligand

Au

Substrate

Counter-ion

*

For a review on asymmetric gold catalysis, see: Bongers, N.; Krause, N. Angew. Chem. Int. Ed. 2008, 47, 2178

 

For a recent review on ion pair catalysis, see: J. Lacour, D. Moraleda, Chem. Comm. 2009, 45, 7073 See also: D. Zuccaccia, L. Belpassi, F. Tarantelli, A. Macchioni, J. Am. Chem. Soc. 2009, 131, 3170

Chiral Anion Strategy in Organometallic Catalysis

O O

OAg P O (5 mol %)

NHSO2Mes 5 mol% Ph(Me)2PAuCl



SO2Mes N H

benzene, rt

97% yield, 96% ee

Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, D. Science 2007, 317, 496 R. L. LaLonde, Z. J. Wang, M. Mba, A. D. Lackner, F. D. Toste, Angew. Chem. Int. Ed. 2010, 49, 598 Highlighted in Science: Lacour, J.; Linder, D. Science 2007, 317, 462

Ion Pair Formation

iPr

iPr

iPr O

P O + Cl Au P OAg O iPr

iPr

iPr

31P

CD2Cl2

O O

O P

Au

P

O

! (P-Au) = 33 ppm 31P

! (P-Au) = 27 ppm

Gold-Catalyzed Cycloisomerizations Ph Me R

TsN

Ph

PPh3AuCl (5 mol%) I (5 mol%) X

CH2Cl2, rt or ! C6H6, rt or !

TsN

No catalysis Starting material recovered

O O

OAg P R

O I

OAc dppm(AuCl)2 (2.5 mol%) I (5 mol%)

Ph

benzene/MeOH, 9/1 rt then ! , 55% PhO2S

PhO2S PhO2S

PhO2S PPh3AuCl (5 mol%) I (5 mol%)

CH2Cl2/MeOH, 9/1 7d, rt, 98%

OMe ee = 0%

See also: Echavarren, A. M. et al. Chem. Commun. 2012, 48, 52 ; Nguyen, B. N. Organometallics 2012 in press

From Gold- to Iridium-Catalyzed Cycloisomerizations Vaska s Complex

O O L1

O

O

P

?

O M

AEG

L1

L1

L2

N

O

L2

Ar

Cl PPh3 (20 mol%) Ir Ph3P CO AgX (24 mol%)

H Me

DME, 60 °C 55% - 84%

O

P O

M

L1

AEG

N

Ar Me

Shibata,T.; Kobayashi, Y.; Maekawa, S.; Toshida, N.; Takagi, K. Tetrahedron, 2005, 61, 9018

Optimization of the Conditions Ts

N

Ph IrCl(CO)(PPh3)2 (20 mol%) I (24 mol%)

Ts

Ph

N

solvent, 0.067M, T °C, 23 h Me sealed tube

Me

entry

solvent

T °C

yield

ee

1

DME

90 °C

20%

60%

2

CH3CN

90 °C

-

-

3

1,4-dioxane

100 °C

24%

66%

4

(CH2Cl)2

90 °C

28%

44%

5

benzene

80 °C

40%

73%

6

toluene

110 °C

80%

80%

O O

T °C

c

x

1

70 °C

0.067M

20 mol%

71 h unreproductible results

2

90 °C

0.067M

20 mol%

23 h

83%

82%

3

130 °C

0.067M

20 mol%

23 h

71%

76%

4

90 °C

0.01M

20 mol%

23 h

40%

79%

5

90 °C

0.134M

10 mol%

23 h

80%

81%

6

90 °C

0.250M

5 mol%

23 h

74%

80%

yield

P O

I

entry

t

OAg

ee

Chem. Eur. J. 2011, 17, 13789

Screening of the Catalyst Ts

[M] (20 mol%) Ag-salt (24 mol%)

Ph

N

Me

entry

2

3

Ir Cl(CO)(PPh3)2 Ph2 P Ir P Ph2 Ph3P Rh OC Ir

4

N

toluene, 0.067M, 90 °C, 23 h

[M]

1

Ts

+

Br CO Cl PPh3

Cl Ir Cl PPh2

Ph

Me

Ag-salt

yield

ee

I (R = TRIP)

82%

83%

I (R = TRIP)

10%

43%

I (R = TRIP)

69%

48%

I (R = TRIP)

25%

64%

I (R = TRIP)

51%

52%

+ CO atm.

PPh2

5

Ir

Cl Ir Cl

+ PPh3 + CO atm.

6

IrCl(CO)(PPh3) 2

II (R = 4-tBu)

83%

47%

7

IrCl(CO)(PPh3) 2

III (R = 3,5-CF3)

32%

37%

8

IrCl(CO)(PPh3) 2

IV (R = anthracenyl) 74%

85%

Screening of the Substrates ArO2S

R1

N

R2 R3

O

S

PPh3 Cl Ir (10 mol%) Ph3P CO

O

Me

Me O

Me ! = 80%, ee = 81% O O S N

O2N

Me

Ts

N

O

Ph

Me ! = 16%, ee nd

S

Ph

N

Me

S

O

Ph

N

Me Me ! = 77%, ee = 93% O Ph O N Me ! = 38%, ee = 80%

Cl

N

Me ! = 79%, ee = 89%

Me ! = 76%, ee = 86%

Me O

O

Me ! = 73%, ee = 72% Ts

Ts

R2 R3

Me ! = 74%, ee = 87% NO2 O O Ph S N

Ph

! = 79%, ee = 82% OMe

R1

N

toluene, 0.134M, 90 °C, 23 h

Ph

N

ArO2S

I (12 mol%)

N

Me Me

! = 61%, ee = 86%

O

Ts

H N

Ts Ph

PMP ! = 73%, ee = 88%

N

Me

Me

Me

! = 47%, ee = 43%

Me

! = 16%, ee = 17%

E Ph

H

Ph

E Me ! = 0%, ee -

Conclusion! Ts N

O

AcO

N NHNos H HO

OMe

M

H

O

R

N

R

H

Ph

Highly stimulating mechanistic issues !

Endless pleasure !

N N

N Ph BH3

Playing with heteroatoms for new radical processes...

N N

Si O

F

F

O

Si

NC

R

F B

O S

O S

Un travail dʼéquipe…! COS team Dr. Muriel Amatore Dr. Corinne Aubert Dr. Marion Barbazanges Dr. Etienne Derat Dr. Marine Desage - El Murr Dr. Anne-Lise Dhimane Dr. Jean-Philippe Goddard Prof. Max Malacria Dr. Virginie Mouriès-Mansuy Dr. Cyril Ollivier Dr. Marc Petit

Cascade team

Asymmetric team

Christophe Blaszykowski Yohan Contie Julien Coulomb Priscille Devin Audrey Ekomié Alexandre Gross Marie-Hélène Larraufie Emily Mainetti Malika Makhlouf Brahmi Dr. Geoffroy Sorin Dr. Shau-Hua Ueng

Franck Brebion Dr. Victor Certal Hugo Lenormand Rocio Martinez-Mallorquin Dr. Francisco Najera Dr. Kai Song Dr. Guillaume Vincent Maxime Vitale Dr. Qi Wu

Prof. Christine Courillon, U. Paris-Diderot Dr. Emmanuel Lacôte, C2P2 Lyon Prof. Vincent Gandon, ICMMO U. Paris Sud Dr. Serge Thorimbert, IPCM, UPMC

Golden team Mylène Augé Erica Benedetti Matthieu Bernard Nicolas Cadran Kevin Cariou Nicolas das Neves Lisa Diab Pierre Garcia Dr. Gwenaëlle Hervé Dr. Yousseh Harrak Dr. Alexandra Hours Dr. Florian Jaroschik Gilles Lemière Nicolas Marion Dr. Xavier Moreau Antoine Simonneau Dr. Tran Anh Tuan Dr. Riadh Zriba

Prof Jean-Claude Tabet, Dr. Denis Lesage, IPCM, UPMC Dr. Yves Gimbert, UJF - Grenoble Dr. Hani Amouri, IPCM, UPMC Prof. Lahouari Krim, Dr. Emilie-Laure Zins, LADIR UPMC Dr. François Stoffelbach, Dr. Jutta Rieger, LCP UPMC Prof. Ilan Marek, Technion Haifa Prof. Dennis Curran, U. Pittsburgh, Profs. Ilhyong Ryu & Takahide Fukuyama, Osaka Prefecture University

"Radicaux Verts"

"Allenes"

"Credox"

"Sacaor"