Math 1A03 Fall 2011 Practice Midterm 2 Duration: 90 minutes

6 downloads 129809 Views 121KB Size Report
Math 1A03 Fall 2011 Practice Midterm 2. Duration: 90 minutes. 1) Find the following integrals. No partial credit will be given on this question, so do not forget.
Math 1A03 Fall 2011 Practice Midterm 2 Duration: 90 minutes 1) Find the following integrals. No partial credit will be given on this question, so do not forget the arbitrary constant of integration! Z (x − 1)2 a) dx x4

Z b)

e3x+4 dx

Z c)

sin(x) cos(x) dx

Z d)

1 dx (3 − x)2

page 1 of 8

McMaster University Math 1A03 Fall 2011 Practice Midterm 2 2) Find the following definite integrals. Z 1 (a) x2 e−4x dx 0

Z

5

(b)

10

sin(x) cos(ex + 37x6 ) dx

−5

page 2 of 8

McMaster University Math 1A03 Fall 2011 Practice Midterm 2 3) Find the following indefinite integrals. Z (a) arctan(2x) dx

Z (b)

sin8 (x) cos3 (x) dx

page 3 of 8

McMaster University Math 1A03 Fall 2011 Practice Midterm 2 Z √ 3 + 2x − x2 4) Find the indefinite integral dx. The final answer should not contain any x−1 trigonometric or inverse trigonometric functions.

page 4 of 8

McMaster University Math 1A03 Fall 2011 Practice Midterm 2 Z 5) Find the indefinite integral

2x3 + 16x + 7 dx. x3 + 7x

page 5 of 8

McMaster University Math 1A03 Fall 2011 Practice Midterm 2 6) For each of the numerical integration methods (trapezoidal, midpoint, Simpson’s) R 3 determine 1 how large n should be so that the approximations Tn , Mn and Sn to the integral 1 e x dx are accurate to within 10−3 . 1 The second derivative of the function f (x) = e x is equal to   1 2 1 00 f (x) = + 4 ex 3 x x and the fourth derivative is   1 24 36 12 1 (4) f (x) = + 6 + 7 + 8 ex . 5 x x x x

page 6 of 8

McMaster University Math 1A03 Fall 2011 Practice Midterm 2 Derivatives (xn )0 = nxn−1 , n 6= 0

(a)0 = 0

(ex )0 = ex

(ax )0 = ax ln a

(ln x)0 =

1 x

(loga x)0 =

1 x ln a

(sin x)0 = cos x

(cos x)0 = − sin x

(tan x)0 = sec2 x

(cot x)0 = − csc2 x

(sec x)0 = sec x tan x

(csc x)0 = − csc x cot x

(arcsin x)0 = √ (arctan x)0 =

1 1 − x2

(arccos x)0 = − √

1 1 + x2

(arccot x)0 = −

1 1 − x2

1 1 + x2

Integrals (constants of integration are omitted) Z

Z

xn+1 , n 6= −1 x dx = n+1 n

x

x

Z

Z

e dx = e Z

Z

ax ln a

cos x dx = sin x Z

tan x dx = − ln | cos x | Z

cot x dx = ln | sin x | Z

sec x dx = ln | sec x + tan x | 2

csc x dx = − ln | csc x + cot x | Z

sec x dx = tan x Z

csc2 x dx = − cot x

Z csc x cot x dx = − csc x

sec x tan x dx = sec x Z

ax dx =

Z sin x dx = − cos x

Z

1 dx = ln |x | x

x 1 1 dx = arctan x 2 + a2 a a

Z

page 7 of 8



x 1 dx = arcsin a a2 − x2

McMaster University Math 1A03 Fall 2011 Practice Midterm 2 Trigonometry sec x =

1 cos x

csc x =

1 sin x

tan x =

sin x cos x

cot x =

1 cos x = tan x sin x

sin2 x + cos2 x = 1 1 + tan2 x = sec2 x

1 + cot2 x = csc2 x

sin(2x) = 2 sin x cos x

cos(2x) = cos2 x − sin2 x = 2 cos2 x − 1

sin2 x =

1 − cos(2x) 2

cos2 x =

1 + cos(2x) 2

Approximate integration b

Z

f (x) dx ≈ Mn a

Z

b

       x0 + x1 x1 + x2 xn−1 + xn = ∆x f +f + ··· + f 2 2 2 ∆x [f (x0 ) + 2f (x1 ) + 2f (x2 ) + · · · + 2f (xn−1 ) + f (xn )] 2 ∆x = [f (x0 ) + 4f (x1 ) + 2f (x2 ) + 4f (x3 ) + · · · + 2f (xn−2 ) + 3 +4f (xn−1 ) + f (xn )] n is even

f (x) dx ≈ Tn = a

Z

b

f (x) dx ≈ Sn a

Error bounds: If |f 00 (x) | ≤ K on [a, b], then |ET | ≤

K(b − a)3 , 12n2

|EM | ≤

|ES | ≤

K(b − a)5 . 180n4

If |f (4) (x) | ≤ K on [a, b], then

page 8 of 8

K(b − a)3 . 24n2