Mechanisms of optical losses in Bi:SiO2 glass fibers - OSA Publishing

13 downloads 0 Views 2MB Size Report
Abstract: The mechanisms of optical losses in bismuth-doped silica glass. (Bi:SiO2) and fibers were studied. It was found that in the fibers of this composition the ...
Mechanisms of optical losses in Bi:SiO2 glass fibers Alexander S. Zlenko,* Valery M. Mashinsky, Ludmila D. Iskhakova, Sergey L. Semjonov, Vasiliy V. Koltashev, Nikita M. Karatun, and Evgeny M. Dianov Fiber Optics Research Center, Russian Academy of Sciences, 38 Vavilov Street, 119333 Moscow, Russia * [email protected]

Abstract: The mechanisms of optical losses in bismuth-doped silica glass (Bi:SiO2) and fibers were studied. It was found that in the fibers of this composition the up-conversion processes occur even at bismuth concentrations lower than 0.02 at.%. Bi:SiO2 core holey fiber drawn under oxidizing conditions was investigated. The absorption spectrum of this fiber has no bands of the bismuth infrared active center. Annealing of this fiber under reducing conditions leads to the formation of the IR absorption bands of the bismuth active center (BAC) and to the simultaneous growth of background losses. Under the realized annealing conditions (argon atmosphere, Tmax = 1100°C, duration 30 min) the BAC concentration reaches its maximum and begins to decrease in the process of excessive Bi reduction, while the background losses only increase. It was shown that the cause of these background losses is the absorption of light by nanoparticles of metallic bismuth formed in bismuth-doped glasses as a result of reduction of a part of the bismuth ions to Bi0 and their following aggregation. The growth of background losses occurs owing to the increase of the concentration and the size of the metallic bismuth nanoparticles. ©2012 Optical Society of America OCIS codes: (140.3510) Lasers, fiber; (060.2290) Fiber materials; (060.2310) Fiber optics; (160.2540) Fluorescent and luminescent materials.

References and links E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, ―CW bismuth fibre laser,‖ Quantum Electron. 35(12), 1083–1084 (2005). 2. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, ―Efficient all-fiber bismuth-doped laser,‖ Appl. Phys. Lett. 90(3), 031103 (2007). 3. M. P. Kalita, S. Yoo, and J. Sahu, ―Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,‖ Opt. Express 16(25), 21032–21038 (2008). 4. E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and I. A. Bufetov, ―Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 μm,‖ Quantum Electron. 38(7), 615–617 (2008). 5. I. A. Bufetov and E. M. Dianov, ―Bi-doped fiber lasers,‖ Laser Phys. Lett. 6(7), 487–504 (2009). 6. V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, ―Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,‖ Opt. Express 16(21), 16971– 16976 (2008). 7. S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Mel'kumov, I. A. Bufetov, O. I. Medvedkov, A. N. Gur'yanov, and E. M. Dianov, ―Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm,‖ Quantum Electron. 41(7), 581–583 (2011). 8. E. M. Dianov, ―Bi-doped optical fibers: a new active medium for NIR lasers and amplifiers,‖ Proc. SPIE 6890, 68900H (2008). 9. E. M. Dianov, ―Bi-doped fiber lasers and amplifiers for a wavelength range of 1300-1500 nm,‖ in Optical Fiber Communication Conference, OSA Technical Digest (CD), paper OMG6 (2010). 10. E. M. Dianov, ―Amplification in extended transmission bands,‖ in Optical Fiber Communication Conference, OSA Technical Digest, paper OW4D.1 (2012). 11. M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, ―Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band,‖ Opt. Lett. 36(13), 2408–2410 (2011). 12. V. V. Dvoyrin, A. V. Kir'yanov, V. M. Mashinsky, O. I. Medvedkov, A. A. Umnikov, A. N. Guryanov, and E. 1.

#173751 - $15.00 USD

(C) 2012 OSA

Received 2 Aug 2012; revised 14 Sep 2012; accepted 17 Sep 2012; published 25 Sep 2012

8 October 2012 / Vol. 20, No. 21 / OPTICS EXPRESS 23186

13. 14.

15. 16. 17. 18. 19.

20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.

33.

34.

35.

36. 37. 38. 39. 40.

41.

M. Dianov, ―Absorption, gain, and laser action in bismuth-doped aluminosilicate optical fibers,‖ IEEE J. Quantum Electron. 46(2), 182–190 (2010). A. V. Kir'yanov, V. V. Dvoyrin, V. M. Mashinsky, Yu. O. Barmenkov, and E. M. Dianov, ―Nonsaturable absorption in alumino-silicate bismuth-doped fibers,‖ J. Appl. Phys. 109, 023113 (2011). L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. P. Suhorukov, A. A. Umnikov, and A. N. Guryanov, ―Absorption and scattering in bismuth-doped optical fibers,‖ Bull. Russ. Acad. Sci., Physics 72(1), 98–102 (2008). L. I. Bulatov, ―Absorption and luminescence properties of bismuth active centers in aluminosilicate and phosphosilicate fibers,‖ PhD. Thesis (2009) [in Russian]. R. A. Lidin, L. L. Andreeva, and V. A. Molochko, edited by R. A. Lidin Constants of Inorganic Substances: A Handbook (New York: Begell House, 1995). C. E. Wicks and F. E. Block, ―Thermodynamic properties of 65 elements—their oxides, halides, carbides and nitrides,‖ US Bureau of Mines Bull. 605, (1963). A. A. Malinin, A. S. Zlenko, U. G. Akhmetshin, and S. L. Semjonov, ―Furnace chemical vapor deposition (FCVD) method for special optical fibers fabrication,‖ Proc. SPIE 7934, 793418, 793418-7 (2011). A. S. Zlenko, V. V. Dvoyrin, V. M. Mashinsky, A. N. Denisov, L. D. Iskhakova, M. S. Mayorova, O. I. Medvedkov, S. L. Semenov, S. A. Vasiliev, and E. M. Dianov, ―Furnace chemical vapor deposition bismuthdoped silica-core holey fiber,‖ Opt. Lett. 36(13), 2599–2601 (2011). L. Newman and D. N. Hume, ―A spectrophotometric study of the bismuth-chloride complexes,‖ J. Am. Chem. Soc. 79(17), 4576–4581 (1957). L. Newman and D. N. Hume, ―A spectrophotometric study of the mixed ligand complexes of bismuth with chloride and bromide,‖ J. Am. Chem. Soc. 79(17), 4581–4585 (1957). A. L. Kartuzhanskii, B. T. Plachenov, I. V. Sokolova, and O. P. Studzinskii, ―Spectroscopic study of the photolysis of bismuth (III) chlorides,‖ J. Appl. Spectrosc. 48(3), 308–311 (1988). S. Radhakrishna and R. Setty, ―Bismuth centers in alkali halides,‖ Phys. Rev. B 14(3), 969–976 (1976). A. Glasner and R. Reisfeld, ―Absorption spectra of mercury, bismuth, and antimony halides in pressed alkali halide disks,‖ J. Chem. Phys. 32(3), 956–957 (1960). C. Merritt Jr., H. M. Hershenson, and L. B. Rogers, ―Spectrophotometric determination of bismuth, lead, and thallium with hydrochloric acid,‖ Anal. Chem. 25(4), 572–577 (1953). P. Zhiwu, S. Qiang, and Z. Jiyu, ―Luminescence of Bi3+ and the energy transfer from Bi3+ to R3+ (R= Eu, Dy, Sm, Tb) in alkaline-earth borates,‖ Solid State Commun. 86(6), 377–380 (1993). G. Blasse and A. Bril, ―Investigation on Bi3+ activated phosphors,‖ J. Chem. Phys. 48(1), 217–222 (1968). G. P. Smith, D. W. James, and C. R. Boston, ―Optical spectra of Tl+, Pb2+, and Bi3+ in the molten lithium chloride-potassium chloride eutectic,‖ J. Chem. Phys. 42(6), 2249–2250 (1965). C. Pedrini, G. Boulon, and F. Gaume-Mahn, ―Bi3+ and Pb2+ centres in alkaline-earth antimonate phosphors,‖ Phys. Status Solidi, A Appl. Res. 15(1), K15–K18 (1973). A. J. Eve and D. N. Hume, ―The Formation of the monoiodobismuth (III) ion,‖ Inorg. Chem. 3(2), 276–278 (1964). N. J. Bjerrum, C. R. Boston, and G. P. Smith, ―Lower oxidation states of bismuth. Bi+ and [Bi5]3+ in molten salt solutions,‖ Inorg. Chem. 6(6), 1162–1172 (1967). I. A. Bufetov, S. L. Semenov, V. V. Vel'miskin, S. V. Firstov, G. A. Bufetova, and E. M. Dianov, ―Optical properties of active bismuth centres in silica fibres containing no other dopants,‖ Quantum Electron. 40(7), 639– 641 (2010). I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, ―Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,‖ Opt. Lett. 36(2), 166–168 (2011). S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, ―Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,‖ Opt. Express 19(20), 19551–19561 (2011). I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov ―Visible luminescence and upconversion processes in Bi-doped silica-based fibers pumped by IR radiation,‖ ECOC 08, Brussels, Belgium, paper Tu.3.B.4, 2, 85–86 (2008). Y. Qiu and Y. Shen, ―Investigation on the spectral characteristics of bismuth doped silica fibers,‖ Opt. Mater. 31(2), 223–228 (2008). Y. Qiu, J. Wang, and Y. Jin, ―Up-converion in bismuth doped fibers,‖ Proc. SPIE 7658, 76581T, 76581T-5 (2010). M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, ―Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,‖ Phys. Rev. B 61(5), 3337–3346 (2000). S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, ―Redox equilibrium and NIR luminescence of Bi2O3containing glasses,‖ Opt. Mater. 31(8), 1262–1268 (2009). O. Sanz, E. Haro-Poniatowski, J. Gonzalo, and J. M. Fernandez Navarro, ―Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption,‖ J. Non-Cryst. Sol. 352, 761– 768 (2006). V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, ―Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications,‖ Appl. Phys. Lett. 92, 041908

#173751 - $15.00 USD

(C) 2012 OSA

Received 2 Aug 2012; revised 14 Sep 2012; accepted 17 Sep 2012; published 25 Sep 2012

8 October 2012 / Vol. 20, No. 21 / OPTICS EXPRESS 23187

(2008). 42. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, ―Multifunctional bismuthdoped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,‖ Adv. Funct. Mater. 18(9), 1407–1413 (2008). 43. M. Peng, C. Zollfrank, and L. Wondraczek, ―Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,‖ J. Phys. Condens. Matter 21(28), 285106 (2009). 44. N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, and M. Peng, ―Broadband tunable near-infrared emission of Bidoped composite germanosilicate glasses,‖ J. Mater. Chem. 22(7), 3154–3159 (2012). 45. S. Y. Park, R. A. Weeks, and R. Zuhr, ―Optical absorption by colloidal precipitates in bismuth-implanted fused silica: annealing behavior,‖ J. Appl. Phys. 77(12), 6100–6107 (1995). 46. Z. Pan, S. H. Morgan, D. O. Henderson, S. Y. Park, R. A. Weeks, R. H. Magruder III, and R. A. Zuhr, ―Linear and nonlinear optical response of bismuth and antimony implanted fused silica: annealing effects,‖ Opt. Mater. 4(6), 675–684 (1995). 47. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons Inc., 1983). 48. S. Onari, M. Miura, and K. Matsuishi, ―Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique,‖ Appl. Surf. Sci. 197–198, 615–618 (2002). 49. E. Haro-Poniatowski, M. Jouanne, J. F. Morhange, M. Kanehisa, R. Serna, and C. N. Afonso, ―Size effects investigated by Raman spectroscopy in Bi nanocrystals,‖ Phys. Rev. B 60(14), 10080–10085 (1999). 50. E. Haro-Poniatowski, M. Jimenez de Castro, J. M. Fernandez Navarro, J. F. Morhange, and C. Ricolleau, ―Melting and solidification of Bi nanoparticles in a germanate glass,‖ Nanotechnology 18(31), 315703 (2007). 51. P. Zacharias, ―Bestimmung optischer konstanten von wismut im energiebereich von 2 bis 40 eV aus elektronenenergieverlustmessungen,‖ Opt. Commun. 8(2), 142–144 (1973). 52. M. Gutierrez and A. Henglein, ―Nanometer-sized Bi particles in aqueous solution: absorption spectrum and some chemical properties,‖ J. Phys. Chem. 100(18), 7656–7661 (1996). 53. K. L. Stokes, J. Fang, and C. J. O’Connor, ―Synthesis and properties of bismuth nanocrystals,‖ 18th International Conference on Thermoelectrics, 374 – 377 (1999). 54. J. Fang, K. L. Stokes, J. A. Wiemann, W. L. Zhou, J. Dai, F. Chen, and C. J. O'Connor, ―Microemulsionprocessed bismuth nanoparticles,‖ Mater. Sci. Engineer. B 83(1-3), 254–257 (2001). 55. Y. W. Wang, B. H. Hong, and K. S. Kim, ―Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra,‖ J. Phys. Chem. B 109(15), 7067–7072 (2005). 56. D. Velasco-Arias, I. Zumeta-Dube, D. Diaz, P. Santiago-Jacinto, V.-F. Ruiz-Ruiz, S.-E. Castillo-Blum, and L. Rendon, ―Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,‖ J. Phys. Chem. C 116(27), 14717–14727 (2012). 57. W. S. Boyle, A. D. Brailsford, and J. K. Galt, ―Dielectric anomalies and cyclotron absorption in the infrared: observations on bismuth,‖ Phys. Rev. 109(4), 1396–1398 (1958). 58. E. Gerlach, P. Grosse, M. Rautenberg, and W. Senske, ―Dynamical conductivity and plasmon excitation in Bi,‖ Phys. Status Solidi 75(2), 553–558 (1976) (b). 59. S. Takaoka and K. Murase, ―Studies of far-infrared properties of thin bismuth films on BaF2 substrate,‖ J. Phys. Soc. Jpn. 54(6), 2250–2256 (1985). 60. N. P. Stepanov and V. M. Grabov, ―Effect of electron-plasmon and plasmon-phonon interactions on relaxation in crystals of Bi and Bi1xSbx alloys,‖ Phys. Solid State 45(9), 1613–1616 (2003). 61. N. P. Stepanov and V. M. Grabov, ―Optical effects caused by coincidence between the energies of the plasma oscillations and the band-to-band transition in bismuth crystals doped with an acceptor impurity,‖ Opt. Spectrosc. 92(5), 710–714 (2002). 62. N. P. Stepanov and V. M. Grabov, ―Electron-plasmon interaction in acceptor-doped bismuth crystals,‖ Semiconductors 36(9), 971–974 (2002). 63. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, ―Efficient bismuth-doped fiber lasers,‖ IEEE J. Quantum Electron. 44(9), 834–840 (2008). 64. S. V. Firstov, I. A. Bufetov, V. F. Khopin, A. V. Shubin, A. M. Smirnov, L. D. Iskhakova, N. N. Vechkanov, A. N. Guryanov, and E. M. Dianov, ―2 W bismuth doped fiber lasers in the wavelength range 1300–1500 nm and variation of Bi-doped fiber parameters with core composition,‖ Laser Phys. Lett. 6(9), 665–670 (2009). 65. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, ―High-power cw bismuthfiber lasers,‖ J. Opt. Soc. Am. B 24(8), 1749–1755 (2007). 66. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, ―Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,‖ Opt. Express 15(9), 5473–5476 (2007).

1. Introduction It is known that bismuth fiber lasers, depending on the composition of the core, generate light in the range 1140-1550 nm [1–7]. So, the bismuth-doped fibers are promising as an optical amplifier medium for broadening of the traditional signal transmission spectral range in fiberoptic communication lines [8–11]. However, the most effective bismuth lasers can be created

#173751 - $15.00 USD

(C) 2012 OSA

Received 2 Aug 2012; revised 14 Sep 2012; accepted 17 Sep 2012; published 25 Sep 2012

8 October 2012 / Vol. 20, No. 21 / OPTICS EXPRESS 23188

only at a very low concentration of bismuth, namely