Microbial degradation of mycotoxins

8 downloads 0 Views 2MB Size Report
Chapter 4 Alberts, J.F., Engelbrecht, Y., Steyn, P.S., Holtzapfel, W.H., van Zyl, ...... indicates horizontal gene transfer and reveals an insertion of IS1166. Anton.
Microbial Degradation of Mycotoxins

By

Johanna Francina Alberts

Dissertation presented for the Degree of Doctor of Philosophy at The University of Stellenbosch

Promoter: Prof. W.H. van Zyl Co-promoter: Prof. A. Botha April 2007

SUMMARY Aflatoxins are mycotoxins predominantly produced by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. Aflatoxin B1 (AFB1), the most abundant aflatoxin, is highly mutagenic, toxic, carcinogenic and teratogenic to humans and animals and is particularly correlated with the incidence of hepatocellular carcinoma in parts of Africa, China and South East Asia. In this regard aflatoxin is classified as a type I human carcinogen by the International Agency for Research on Cancer. Furthermore, aflatoxin contamination of food and feed is responsible for extensive economic losses due to loss of crops and farm animals. In spite of regulations regarding acceptable levels of aflatoxin in food, aflatoxin contamination remains a serious worldwide problem, especially in developing countries where it occurs predominantly in dietary staples. Inactivation of aflatoxin by physical and chemical methods has not yet proved to be effective and economic. However, biological detoxification offers an attractive alternative for eliminating toxins as well as safe-guarding the desired quality of food and feed. In this study, the biological degradation of AFB1 by bacteria and fungi was investigated. Several bacteria, including Rhodococcus spp., as well as white rot fungi have the potential to degrade a wide range of polycyclic hydrocarbon compounds due to the large repertoire of enzymes they produce and therefore the ability of some of these microorganisms to degrade AFB1 was investigated. Effective degradation of AFB1 by intracellular extracts of Mycobacterium fluoranthenivorans sp. nov. DSM 44556T, Nocardia corynebacterioides DSM 20151 and N. corynebacterioides DSM 12676 was demonstrated. Furthermore, AFB1 was effectively degraded by liquid cultures as well as intra- and extracellular extracts of Rhodococcus erythropolis DSM 14303. Significant (P