modified weighted fair queuing for packet scheduling in mobile wimax ...

3 downloads 457 Views 3MB Size Report
SCHEDULING IN MOBILE WIMAX NETWORKS. 4th International Conference on Graphic and Image Processing. (ICGIP 2012). October 6-7, 2012, Singapore.
MODIFIED WEIGHTED FAIR QUEUING FOR PACKET SCHEDULING IN MOBILE WIMAX NETWORKS

Gandeva Bayu Satrya Informatics Faculty TELKOM INSTITUTE OF TECHNOLOGY Bandung, West Java. Indonesia [email protected]

Tri Brotoharsono Informatics Faculty TELKOM INSTITUTE OF TECHNOLOGY Bandung, West Java. Indonesia [email protected]

4th International Conference on Graphic and Image Processing (ICGIP 2012)

LOGO October 6-7, 2012, Singapore

MODIFIED WEIGHTED FAIR QUEUING FOR PACKET SCHEDULING IN MOBILE WIMAX NETWORKS

Gandeva Bayu Satrya Informatics Faculty TELKOM INSTITUTE OF TECHNOLOGY Bandung, West Java. Indonesia [email protected]

Tri Brotoharsono Informatics Faculty TELKOM INSTITUTE OF TECHNOLOGY Bandung, West Java. Indonesia [email protected]

October 6-7, 2012, Singapore LOGO

Agenda

1 - Introduction 2 - Related Works 3 - WiMAX

4 - Proposed Scheme 5 - Experiment Result 6 - Conclusion

Introduction

Worldwide Interoperability for Microwave Access (WiMAX) large coverage, transmission capacity, and flexibility, for both fixed and mobile stations. alternative solution for wireless broadband access by being able to support variety type of applications

Problem & Objective

Different treatment would be required for each traffic flow in a network, in terms of allocated bandwidth, maximum delay, jitter, and packet loss

The design for an efficient scheduling algorithm, which coordinates all QoS-related functional entities, becomes a critical issue

Agenda

1 – Introduction 2 - Related Works 3 – WiMAX

4 - Proposed Scheme 5 - Experiment Result 6 - Conclusion

Related Works

Wang, Chan, Zukerman, and Harris [12] proposed a prioritybased fair scheduling algorithm for subscriber stations to serve a mixture of uplink traffic from different scheduling services. Ciconetti, Erta, Lenzini, and Mingozzi [4] aims at verifying, via simulation, the effectiveness of rtPS, nrtPS, and BE (but UGS) in managing traffic generated by data and multimedia sources. Ghandour, Frikha, and Tabbane [6] propose a supervisor based scheduling architecture for uplink traffic in WiMAX systems.

Gidlund and Wang [7] proposes two different scheduling algorithms for the uplink (UL) connection on Wireless Access Networks.

Agenda

1 - Introduction 2 - Related Works 3 - WiMAX

4 - Proposed Scheme 5 - Experiment Result 6 - Conclusion

WiMAX

WiMAX offers effective cost and gives alternative connection just like what fiber optic, coaxial, digital subscriber line, or T1 network. The current Mobile WiMAX technology is mainly based on the IEEE 802.16e amendment (IEEE, 2006a), approved by the IEEE in December 2005 [9].

QoS service for IEEE 802.16e

1. WRR

Class 2 * bw_fragment for Class 2

Class 3 * bw_fragment for Class 3

Class N * bw_fragment for Class N

WRR Scheduler

ENQUEUE

Packet WRR Classifier

Class 1 * bw_fragment for Class 1

DEQUEUE

2. WFQ fid Based

Queue 2 Weight 2

Queue 3 Weight 3

Queue N Weight N

WFQ Scheduler

ENQUEUE

WFQ Classifier

Queue 1 Weight 1

DEQUEUE

3. Modified WFQ

fid Based

Protocol Based

Queue 1 Weight 1

Queue 3 Weight 3

Queue CBR

Queue TCP Queue 4 Weight 4 Queue Other Queue N Weight N

WFQ Scheduler

Queue 2 Weight 2

Classifying packet

ENQUEUE

WFQ Classifier

Queue RTP

DEQUEUE

Agenda

1 - Introduction 2 - Related Works 3 - WiMAX

4 - Proposed Scheme 5 - Experiment Result 6 - Conclusion

Area Research

Comparison of WFQ & MWFQ fid Based

Queue 2 Weight 2

WFQ Scheduler

ENQUEUE

WFQ Classifier

Queue 1 Weight 1

Queue 3 Weight 3

Original Theory

DEQUEUE

Queue N Weight N

fid Based

Protocol Based

Queue 1 Weight 1

Queue 3 Weight 3

Queue CBR

Queue TCP Queue 4 Weight 4 Queue Other Queue N Weight N

WFQ Scheduler

Queue 2 Weight 2

Classifying packet

ENQUEUE

WFQ Classifier

Queue RTP

DEQUEUE

Modified Theory

Comparison of WFQ & MWFQ in NS-2 Queue 1 Weight Queue 1 Length Queue 2 Weight Queue 2 Length Classifier Data Queue 3 Weight Queue 3 Length

WFQ Scheduler

WFQ Classifier

Queue N Weight Queue N Length

ENQUEUE

Ordering

WFQ Queue Queue 1 Total Packet

DEQUEUE

Original In NS.2.31

WFQ Queue Queue 2 Total Packet Counter WFQ Queue Queue 3 Total Packet WFQ Queue Queue N Total Packet

Queue 1 Weight Queue 1 Length Queue 2 Weight Queue 2 Length Classifier Data

Queue N Weight Queue N Length

WFQ Classifier

ENQUEUE

WFQ Queue RTP

Classifying and ordering

WFQ Queue CBR

WFQ Queue Queue 1 Total Packet

WFQ Queue TCP WFQ Queue Queue 2 Total Packet Counter WFQ Queue Queue 3 Total Packet

WFQ Queue Other WFQ Queue Queue N Total Packet

WFQ Scheduler

Queue 3 Weight Queue 3 Length

DEQUEUE

Modified In NS.2.31

Network Configuration in NS-2

SS-1 VoIP Server b 2M

SS-2 BS-1

.. .

10 Mb

2 Mb Video Server 2M b

SS-10

CE

PE

FTP Server

Agenda

1 – Introduction 2 - Related Works 3 - WiMAX

4 - Proposed Scheme 5 - Experiment Result 6 - Conclusion

Performance Parameter

a) Delay Queue b) Throughput c) Packet Loss d) Jain’s Fairness

Scenario Simulation SS-3 SetDest (-80,140,30)

Format: SS-i (X,Y,Speed)

SS-3 (100,50,30)

BS (0,0) SS-2 (-80,-40,70) SS-2 SetDest (60,-60,70) Experiment from 10 ss, 20ss, and 30ss Condition : Mobile and No Mobile Algorithm : WRR, WFQ, MWFQ QoS : Delay, RT, Th, and Ploss Fairness : Jain’s Fairness

Note: SS: SubScriber Station BS: Base Station

Testing Scenario

UGS

RTPS

ERTPS

NRTPS

BE

Skenario 1

6/12/18

1/2/3

1/2/3

1/2/3

1/2/3

Skenario 2

1/2/3

6/12/18

1/2/3

1/2/3

1/2/3

Skenario 3

1/2/3

1/2/3

6/12/18

1/2/3

1/2/3

Skenario 4

1/2/3

1/2/3

1/2/3

6/12/18

1/2/3

Skenario 5

1/2/3

1/2/3

1/2/3

1/2/3

6/12/18

Delay RTP 20ss

Delay CBR 20ss

Delay TCP 20ss

Throughput UGS 20ss

Throughput UGS (20 Mobile-NoMobile) 400.00 364.07 350.00

325.13

301.35

301.35

301.40

301.41

300.00 250.00 176.59

176.09 176.03 176.18 175.79 176.03 176.09

200.00

226.31 225.80

172.45 176.19 176.48

176.75 172.74 158.89 176.28 172.82 176.09

115.82

120.60 121.18 115.84 56.80

150.00 100.00 56.36 50.00 0.00 Scenario 1

Scenario 2 WRR

WFQ

Scenario 3 MWFQ

WRR2

Scenario 4 WFQ2

MWFQ2

Scenario 5

Throughput RTPS 20ss

Throughput RTPS (20 Mobile-NoMobile) 168.40 145.83 168.43 168.40

180.00

145.83

160.00

145.76

140.00 120.00 100.00 80.00 60.00 40.00

47.30

24.84 32.27 32.25 24.32

31.98 12.59

24.21 24.32 20.00

12.02

47.76 31.80 24.49 31.99 31.79

47.17 47.30 31.79 31.7923.61 24.55 24.57

12.23 12.24

0.00 Scenario 1

Scenario 2

WRR

WFQ

Scenario 3

MWFQ

WRR2

Scenario 4

WFQ2

MWFQ2

Scenario 5

Throughput eRTPS 20ss

Throughput ERTPS (20 Mobile-NoMobile) 375.11

400.00

350.00 300.00 245.58 266.77 265.58 267.22 250.00 200.00 150.00

227.09 227.15 225.86 227.18 227.11

225.94 225.94 221.22 168.36 177.74 168.36 177.74 165.68

170.82

136.80 128.59

100.00

226.21 227.25

107.32 106.08 107.32

73.09

72.73

53.84 50.00 0.00 Scenario 1

Scenario 2

WRR

WFQ

Scenario 3

MWFQ

WRR2

Scenario 4

WFQ2

MWFQ2

Scenario 5

111.07

Throughput nRTPS 20ss

Throughput NRTPS (20 Mobile-NoMobile) 450.00

392.01 393.05 376.09 343.88 360.49 358.08

400.00 350.00 271.12 273.96 271.12

300.00 250.00

253.27 261.13 247.04 242.33

198.18 197.57

200.00 150.00

93.43

100.00

86.63

14.62 50.00

131.70 96.10 102.11104.8385.40

29.68 21.43 14.62

52.06

44.13 44.13 34.74

0.00 Scenario 1

Scenario 2 WRR

WFQ

Scenario 3 MWFQ

WRR2

Scenario 4 WFQ2

MWFQ2

Scenario 5

Throughput BE 20ss

Throughput BE (20 Mobile-NoMobile) 722.80 722.80

800.00 700.00 600.00 500.00 400.00

408.89

353.14 353.14 328.75

217.30 200.00 100.00

116.86 126.29 124.52 116.86 36.32

95.38 43.66 66.37 76.20 56.55 39.07 44.59

32.21 32.21

31.62

0.00

Scenario 1

Scenario 2 WRR

WFQ

Scenario 3 MWFQ

WRR2

391.16

350.71

244.88 287.16 284.83 229.51 235.51

300.00

356.14

Scenario 4 WFQ2

MWFQ2

Scenario 5

Packet Loss 20ss

Packet Loss 20 (Mobile-NoMobile) 25.00

Axis Title

20.00

15.00

10.00

5.00

0.00

Scenario 1

Scenario 2

WRR

Scenario 3

Scenario 4

Scenario 5

8.23

WFQ

8.30

5.66

9.83

6.51

19.45

5.68

13.23

6.40

19.91

MWFQ

8.30

5.48

10.54

6.36

19.45

WRR2

6.08

13.52

5.88

10.86

19.71

WFQ2

2.53

13.56

9.77

12.14

19.22

MWFQ2

2.50

5.39

9.63

10.66

14.28

Jain’s Fairness 20ss

Jain's Fairness (20 Mobile-NoMobile ) 1.00 0.90

Percentage (%)

0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

WRR

0.43

0.43

0.47

0.64

0.75

WFQ

0.64

0.42

0.60

0.65

0.92

MWFQ

0.64

0.40

0.48

0.63

0.92

WRR2

0.43

0.37

0.40

0.72

0.60

WFQ2

0.65

0.37

0.53

0.63

0.60

MWFQ2

0.63

0.37

0.72

0.71

0.60

Analysis of Delay 10ss TCP

Delay M

NM

s1



s2



s3



WRR

20ss

RTP

s4





s5





M

CBR

NM

M

TCP

NM

M

30ss

RTP

NM

M

CBR

NM

   





NM

M

NM









 



RTP

M

 

TCP



NM

























 

s2 WFQ





s3

s4

s5 







s2









s3









s4





s5





MWFQ

NM



 

s1

s1

M

 



M

CBR



 





















































Analysis of Throughput 10ss UGS

Throughput

s1

RTPS

M

N M





M

N M

20ss

eRTPS

M

N M



BE

M

N M

M









s2

WRR

nRTPS

UGS N M

M

N M







RTPS

M

N M

eRTPS

M



s4 

s5



M

 

M



UGS N M



M

N M









RTPS

M

N M

M

N M





nRTPS

M

N M

BE

M

N M

 









 





















 

s3

 

s4 

s5

s1

eRTPS





s2

MWFQ

BE



s1

WFQ

N M







nRTPS





s3

N M

30ss











s2







s3











s4













s5







  



 



























































 







 











 























 

 

 









 





Analysis of Percentage PLoss

10ss Algorithm

Scenario

M

s1

20ss

NM

M





30ss

NM

M

NM



 

s2 WRR



s3



s4



s5 s1



s2 WFQ



s3 s4 s5

MWFQ

s1





s2



s3





s4









s5











 





 

Analysis of Jain’s Fairness

10ss

Algorithm

Scenario

M

20ss NM

M

30ss NM

M

NM





















s1



s2 WRR

s3

s4 s5



 

s1 s2 WFQ





s3



s4



s5 s1





 

s2 MWFQ

s3







s4







s5





Conclusion & Recommendation

 By adding a queue based on its protocol type and calculated based on the highest total packet, MWFQ is proven to be better then WRR and WFQ  Some QoS parameters that are still not perfect, for example improvement on delay for CBR and TCP, throughput for nRTPS and BE, and packet loss large number of users. Another study might also be to test the handover mechanism which was not conducted in this study

References [1] A. Syed Ahson and I. Mohammad, WiMAX Application, New York CRC Press, 2008. [2] Ali, N.A., Dhrona, P., and Hassanein, H., A performance study of uplink scheduling algorithms in point-to-multipoint WiMAX networks, Computer Communications 32 (2009) 511–521, Elsevier B.V., 18 September 2008. [3] C. Kwang-Cheng, J. Roberto, and B. de Marca, Mobile WiMAX, IEEE Press, England, 2008. [4] Cicconetti C., Erta A., Lenzini L., and Mingozzi E., Performance Evaluation of the IEEE 802.16 MAC for QoS Support, IEEE Transactions On Mobile Computing, VOL. 6, NO. 1, JANUARY 2007 [5] G. Debalina, G. Ashima, M. Prasant, Scheduling in Multihop WiMAX Networks, ACM Sigmobile Mobile Computing and Communication Vol 12 Issue 2 New York, April 2008. [6] Ghandour F., Frikha M., and TABBANE S., A Supervisor based Scheduling Architecture for 802.16 Systems, IWCMC '10, ACM New York, NY, USA 2010. [7] Gidlund M., and Wang G., Uplink Scheduling Algorithms for QoS Support in Broadband Wireless Access Networks, Journal of Communications, Academy Publisher, VOL. 4, NO. 2, MARCH 2009. [8] J. Fanchun, A. Amrinder, and H. Jinho, Routing and Packet Scheduling for Throughput Maximization in IEEE 802.16 Mesh Networks, Washington. [9] Katz, D.M., Fitzek, F.H.P., WiMAX Evolution, John Wiley & Sons Ltd, United Kingdom. 2009. [10]Peterson L.L., dan Davie B.S., Computer Network 4th Edition, Morgan Kaufmann Publishers. San Francisco. 2007. [11]Szigeti, T., and Hattingh, C., Quality of Service Design Overview, Cisco Press, Dec 17, 2004. [12]Wang Y., Chan S., Zukerman M., and Harris R.J., Priority-based Fair Scheduling for Multimedia WiMAX Uplink Traffic, ICC 2008 proceedings, IEEE, 2008.

Singapore, October 7th 2012

Thank You

Gandeva Bayu Satrya

Tri Brotoharsono

[email protected]

[email protected]

TELKOM INSTITUTE of TECHNOLOGY BANDUNG - INDONESIA LOGO