Molecular Interactions in Ternary Mixtures Tetra-n ... - Springer Link

0 downloads 0 Views 344KB Size Report
NaH2PO4 (≥0.995), Na2HPO4 (≥0.995), Na3PO4. (≥0.990), Na2CO3 (≥0.999), and Na2SO4 (≥0.990) were purchased from Merck and used as received.
ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2016, Vol. 90, No. 13, pp. 2517–2531. © Pleiades Publishing, Ltd., 2016.

PHYSICAL CHEMISTRY OF SOLUTIONS

Molecular Interactions in Ternary Mixtures Tetra-n-butylammonium Bromide–Inorganic Salts–Water According to Ultrasonic Data at T = 293.15–318.15 K1 Hossein Hooshyara,*, Rahmat Sadeghib, and Behrooz Khezria a

Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran b Department of Chemistry, University of Kurdistan, Sanandaj, Iran *e-mail: [email protected] Received August 1, 2015

Abstract—The ultrasonic velocity and density for ternary liquid mixtures containing tetrabutylammonium bromide and some inorganic salts in water as a function of electrolyte concentration were measured in the temperature range 293–318 K. These data have been used to estimate the acoustical parameters. The observed variation of these parameters helps in understanding the nature of ion-solvent and ion-ion interactions in the liquid mixtures. The results are discussed in terms of structure-making tendency of additive inorganic salts in the mixtures. Keywords: ultrasonic velocity, acoustical parameters, molecular interactions, tetra-n-butylammonium bromide DOI: 10.1134/S0036024416130082

INTRODUCTION Measurement of ultrasonic velocity, derived thermodynamic and acoustical parameters of multicomponent (binary [1, 2] and ternary liquid [3, 4]) mixtures containing polar and nonpolar components have been adequately employed in understanding the intermolecular interactions between the component molecules in pure liquids and liquid mixtures as that finds application in several industrial and technological processes [5]. Since, ultrasonic velocity and the derived acoustical parameters like adiabatic compressibility, free length, relaxation time, acoustic impedance, etc., provide a better insight into molecular environment to various binary and ternary mixtures [6–10] with respect to variation in concentration of the liquids and temperatures., it seemed important to study molecular interactions and structural behavior of molecules and their mixture. In spite of ultrasonic velocity and the derived acoustical parameters importance in understanding the nature of solute-solvent interactions, very limited information has been reported in the literature regarding the effects of salts on the behavior of tetraalkylammonium salts in aqueous solutions and there is no information in the literature about the acoustical parameters of tetrabutylammonium bromide (TBAB)-inorganic sodium salts aqueous solution. Rajendra [11] studied adiabatic compressibility, free length, acous1 The article is published in the original.

tic impedance and relative association of tetraalkylammonium bromides in dioxane-water mixtures at 303.15 K. In our previous research, we determined the phase diagrams, volumetric and compressibility properties of several (salt + salt) aqueous biphasic systems containing TBAB in the absence and presence of inorganic sodium salts at different temperatures [12]. EXPERIMENTAL SECTION Materials Tetrabutylammonium bromide (TBAB) (≥0.990), NaH2PO4 (≥0.995), Na2HPO4 (≥0.995), Na3PO4 (≥0.990), Na2CO3 (≥0.999), and Na2SO4 (≥0.990) were purchased from Merck and used as received. The Na3Cit (>0.990) was purchased from Fluka. These reagents were used without further purification. Double distilled, deionized water was used. Experimental Procedures All the solutions were prepared by mass on a Sartorius CP225D balance having accuracy of ±10−5 g. The density and sound velocity of the mixtures were measured at different temperatures with a digital vibrating-tube analyzer (Anton Paar DSA 5000, Austria) with proportional temperature control that

2517

2518

HOSSEIN HOOSHYAR et al.

kept the samples at working temperature within ±10−3 K. The uncertainties of density and ultrasonic velocity measurements were ±3 × 10−6 g cm−3 and ±10−1 ms−1, respectively. THEORETICAL ASPECT Intermolecular free length (Lf). The intermolecular free length (Lf) is an important parameter, which correlates the strength of interactions with sound speed and density. Jacobson suggested the following relation for the intermolecular free length [13]: (1) Lf = K T β1/2, where β is the adiabatic compressibility and KT = (93.875 + 0.375T) × 10–8 is Jacobson constant. Acoustic impedance (Z). Elpiner has defined specific acoustic impedance by the relation [14]: (2) Z = ud. Relative association (RA). The property, relative association, RA, is obtained using the relation 13

⎛ ⎞ u (3) RA = ⎜ d ⎟ ⎛⎜ 0 ⎞⎟ , ⎝ d0 ⎠ ⎝ u ⎠ where d0 and u0 are the density and ultrasonic velocity of the solvent, d and u are the density and ultrasonic velocity of solution. Relaxation strength (r). Relaxation strength has been calculated from relation, 2

⎛ ⎞ r =1−⎜ u ⎟ , ⎝ uα ⎠

(4)

where uα = 1600 m s −1 Solvation number (ns). The compressibility solvation numbers were calculated using the following equation [15]:

⎛n ⎞⎛ β⎞ (5) ns = ⎜ solvent ⎟ ⎜1 − ⎟ , n β ⎝ solute ⎠ ⎝ 0⎠ where nsolvent and nsolute are the mole number of solvent and the mole number of solute, respectively. RESULTS AND DISCUSION The experimental values of density and ultrasonic velocity as a function of the concentration of TBAB salt in different aqueous solutions at different temperatures have been determined. The variation of experimental densities values for investigated systems as a function of molality of solute and those dependences on temperature and concentration in pure water and in aqueous salt solutions have been calculated using the relation

d = a + bm.

(6)

The coefficients of this equation are listed in Table 1. From Table 1 it is observed that a and b parameters decrease with increasing temperature, and the effectiveness of the investigated salts in these coefficients for TBAB in aqueous solutions is the same order to the Hofmeister series for the strength of the saltingout effects of electrolytes. The variation of ultrasonic velocity as a function of the molality of TBAB and temperature in pure water and in aqueous salt solutions are shown in Fig. 1. The increase in ultrasonic velocity in any mixture indicates the association among molecules of a mixture. This result is in accordance with Arul et al. [16]. Figure 1 also shows that the values of speed of sound in the studied solutions are larger than those in pure water and the effectiveness of the investigated salts in the increasing the densities and speed of sounds of TBAB follows

the order PO34− ≫ Cit3– > HPO 24 − > CO 32 − > SO 24 − ≫ H 2PO 4− > H2O which is the same order to the Hofmeister series for the strength of the salting-out effects of electrolytes. The experimentally measured values of intermolecular free length, Lf; acoustic impedance, Z; relaxation strength, r; and solvation number, Sn; of several (salt + salt) aqueous biphasic systems containing TBAB in the absence and presence of inorganic sodium salts at different temperatures presented in Tables 2–5. Moreover in (Figs. 2–6), the temperature and concentration dependence of these acoustical parameters as a function of the temperature and molality of TBAB in pure water and in aqueous solutions of different electrolytes are plotted. From Fig. 2 it is observed that, for all binary and ternary systems Lf decreases with molality of solution and increases with rise in temperature. At a given concentration for all systems, the increase in Lf with increase in temperature may be due to the weakening of intermolecular attraction due to thermal agitation. Decreased value of free length leads to positive deviation in sound velocity and negative deviation in compressibility. The decrease in Lf with increase in molality of solute may be due to the increasing the number of ions in a given volume or due to interaction of solute-solvent and water molecules and gets associated in the structure by electrostriction thus decreasing the free space available. The variation of acoustic impedance, Z, with concentration is shown in Fig. 3. In the present investigation, it is observed that in all three liquid systems, the values of Z increase with increasing concentration of TBAB and temperature. The acoustic impedance was increasing linearly with concentration indicating solute-solvent interactions [17] may occur in the system and con-

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

MOLECULAR INTERACTIONS IN TERNARY MIXTURES

2519

Table 1. Values of the a and b parameters of Eq. (6) for aqueous solutions of TBAB in the absence and presence of 0.1 mol kg–1 of sodium salts at different temperatures 293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

TBAB + H2O a

0.998235

0.997091

0.995707

0.994100

0.992293

0.990291

b

0.023460

0.022255

0.021122

0.020067

0.019066

0.018136

TBAB + NaH2PO4 a

1.009645

1.008400

1.006929

1.005253

1.003384

1.001335

b

0.020571

0.019382

0.018257

0.017210

0.016217

0.015278

TBAB + Na2SO4 a

1.010923

1.009647

1.008148

1.006447

1.004562

1.002500

b

0.020018

0.018847

0.01775

0.016717

0.015727

0.014796

TBAB + Na2CO3 a

1.009177

1.007905

1.006412

1.004717

1.002834

1.000777

b

0.020519

0.019349

0.018248

0.017206

0.016225

0.015297

TBAB + Na2HPO4 a

1.012079

1.010787

1.009284

1.007575

1.005677

1.003608

b

0.019679

0.018516

0.017409

0.016371

0.015387

0.014452

TBAB + Na3PO4 a

1.021034

1.019654

1.018066

1.016287

1.014332

1.012218

b

0.017049

0.015914

0.01484

0.013825

0.012858

0.011933

TBAB + Na3Cit a

1.016473

1.015164

1.013639

1.011916

1.010007

1.007928

b

0.018629

0.017459

0.01636

0.015322

0.014340

0.013410

firms the presence of molecular association and possibility of molecular interaction between solute and solvent [18, 19]. It can be seen from Fig. 3 that the acoustic impedance intersect approximately at a certain molality 0.41310 mol kg–1 for (TBAB + water), 0.38453 mol kg–1 for (TBAB + NaH2PO4 + water), 0.37659 mol kg–1 for (TBAB + Na2CO3 + water), 0.37690 mol kg–1 for (TBAB + Na2SO4 + water), 0.37135 mol kg–1 for (TBAB + Na2HPO4 + water), 0.36669 mol kg–1 for (TBAB + Na3Cit + water) and 0.35128 mol kg–1 for (TBAB + Na3PO4 + water). As can be seen, the intersection point concentration values of TBAB in pure water are higher as compared to these values of salt aqueous solutions and the effectiveness of the investigated salts for decreasing the intersection point concentration is the same order as determined for the density and speed of sound. The values of relative association for TBAB in pure water and in aqueous salt solutions have been estimated using relation (3) and results are shown in Fig. 4. This parameter is inf luenced by two against factors: RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

(i) breaking up of the associated solvent molecules on addition of solute in it and (ii) the salvation of solute molecule. The former leads to the decrease and later to the increase of relative association. From Fig. 4, it is observed that, the values of RA decrease and increase with the increase in concentration and temperature respectively in the ternary liquid mixture. The decrease and increase in RA is perhaps due to increasing and decreasing in solvation of ions. The values of relaxation strength for studied systems have been calculated using relation (4) and results are plotted against the molality of solute in Fig. 5. From Fig. 5, it is clear that the values of r decrease with increasing concentration of TBAB and temperature. Figure 5, also show that for high TBAB concentration, the values of r increase with increasing temperature. The values of solvation number for TBAB in pure water and in aqueous salt solutions based on the Eq. (5) at different molality and temperature presented in Table 5. Figure 6 represents the variation of solvation number of solution as a function of molality of solute at varying temperatures. It is seen from this

Vol. 90

No. 13

2016

2520

HOSSEIN HOOSHYAR et al.

Table 2. Experimental free length Lf/(A0) of the aqueous solutions of TBAB in the absence and presence of 0.1 mol kg–1 of sodium salts at different temperatures ma

293.15 K

298.15 K

0.00155 0.01300 0.04921 0.07961 0.12910 0.14639 0.19522 0.27324 0.30728 0.54371 0.77115

13.752407 13.724034 13.636257 13.563010 13.448371 13.410114 13.306231 13.147171 13.080412 12.672159 12.358756

13.756782 13.729933 13.648151 13.582201 13.477097 13.441354 13.345212 13.199378 13.138454 12.766219 12.482983

0.00174 0.03186 0.06391 0.09633 0.12919 0.16503 0.20112 0.26865 0.30284 0.55096 0.77608

13.550449 13.479852 13.404167 13.330789 13.259809 13.183030 13.109215 12.978695 12.914160 12.507772 12.221111

13.561175 13.495422 13.426156 13.358151 13.293611 13.223486 13.155409 13.034863 12.976523 12.607017 12.348957

0.00152 0.01247 0.01870 0.03103 0.06307 0.09641 0.19667 0.25131 0.30347 0.54353 0.76889

13.490154 13.463512 13.448686 13.419752 13.344803 13.272831 13.061968 12.954877 12.859087 12.471807 12.188210

13.501562 13.477230 13.463333 13.436204 13.367819 13.301981 13.108128 13.010372 12.922747 12.571067 12.315882

0.00248 0.01099 0.01897 0.02554 0.03131

13.517913 13.495107 13.475229 13.459879 13.446062

13.528571 13.507951 13.489918 13.475538 13.462740

303.15 K H 2O 13.778842 13.754131 13.679645 13.617642 13.521461 13.488488 13.401012 13.266311 13.210224 12.871000 12.615461 NaH2PO4 13.588102 13.527482 13.463913 13.401722 13.342324 13.277440 13.215201 13.105590 13.051767 12.715808 12.484449 Na2HPO4 13.529617 13.507066 13.494416 13.469416 13.406821 13.346277 13.168537 13.079221 12.999069 12.680372 12.451434 Na2CO3 13.555753 13.536621 13.520315 13.506846 13.495466

308.15 K

313.15 K

318.15 K

13.817596 13.794674 13.727166 13.669356 13.580682 13.550382 13.469767 13.345833 13.294977 12.986019 12.755128

13.871572 13.850569 13.788318 13.735132 13.653692 13.625731 13.551617 13.437675 13.392254 13.110818 12.904388

13.940067 13.920856 13.863518 13.814530 13.739905 13.714081 13.646120 13.542422 13.499971 13.245921 13.060622

13.631130 13.575176 13.517028 13.459226 13.404996 13.345353 13.288641 13.188418 13.139687 12.835209 12.627645

13.688510 13.637295 13.583725 13.529887 13.481137 13.426598 13.374197 13.283216 13.238235 12.963434 12.778163

13.759693 13.713093 13.663994 13.615282 13.569858 13.524693 13.471581 13.388816 13.347942 13.093094 12.936530

13.573260 13.552413 13.541153 13.518141 13.460384 13.404935 13.242219 13.160515 13.087313 12.799366 12.594674

13.631391 13.612733 13.601957 13.580959 13.527829 13.477024 13.327606 13.253821 13.187570 12.927857 12.745836

13.703355 13.685891 13.676459 13.657064 13.608029 13.561617 13.425461 13.358617 13.298107 13.065585 12.904435

13.598218 13.581138 13.567045 13.554425 13.543990

13.656095 13.641281 13.627608 13.616361 13.606298

13.727310 13.714107 13.701610 13.691369 13.682196

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

MOLECULAR INTERACTIONS IN TERNARY MIXTURES

2521

Table 2. (Contd.) ma

293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

0.08043 0.13139 0.17126 0.28544 0.42305 0.77435

13.333375 13.224496 13.140616 12.918289 12.681671 12.207686

13.359050 13.258662 13.182172 12.978780 12.762809 12.335446

13.456213 13.371935 13.307147 13.137731 12.959035 12.613804

13.525937 13.448135 13.389335 13.234875 13.073132 12.764538

13.608497 13.537092 13.483946 13.343190 13.197347 12.922948

0.00156 0.01118 0.01871 0.02499 0.03132 0.08262 0.12973 0.17792 0.29220 0.53567 0.76558

13.515533 13.491167 13.476072 13.459797 13.443904 13.326733 13.225075 13.122171 12.903131 12.504542 12.211029

13.526363 13.504463 13.489940 13.474921 13.460589 13.352650 13.259658 13.165134 12.964301 12.602048 12.338041

13.596854 13.578772 13.565037 13.554019 13.541461 13.450506 13.372457 13.292973 13.124834 12.827629 12.615075

13.654928 13.638356 13.625167 13.615269 13.604593 13.520712 13.449053 13.376337 13.223685 12.954778 12.765121

13.726292 13.711599 13.698631 13.689804 13.680377 13.603433 13.537763 13.471400 13.332792 13.090763 12.922495

0.00271 0.01098 0.01952 0.02442 0.03218 0.07984 0.12947 0.18394 0.28424 0.53418 0.76727

13.431596 13.412359 13.391617 13.382354 13.362261 13.254205 13.146350 13.036124 12.846068 12.442915 12.156774

13.444277 13.426396 13.407515 13.398368 13.380281 13.281288 13.182490 13.081188 12.907504 12.541133 12.283959

13.517699 13.502582 13.487018 13.478478 13.463685 13.380657 13.296709 13.212041 13.067401 12.767067 12.560750

13.576891 13.562530 13.548421 13.540909 13.526748 13.450976 13.374480 13.297111 13.164349 12.894398 12.710846

13.648617 13.635945 13.623161 13.616028 13.602930 13.533922 13.464338 13.393830 13.273090 13.031364 12.868868

0.00158 0.01271 0.01972 0.03241 0.12932 0.19745 0.22471 0.26857 0.30733 0.54459 0.77159

13.335492 13.306554 13.289654 13.260307 13.051350 12.916625 12.863625 12.781700 12.715441 12.353741 12.086319

13.348944 13.323080 13.307799 13.281076 13.089114 12.965969 12.917855 12.842721 12.782523 12.454299 12.215821

13.400437 13.307954 13.237820 13.052046 12.855472 12.470886 Na2SO4 13.553563 13.533610 13.519871 13.506856 13.493340 13.393980 13.308964 13.222144 13.038358 12.709973 12.472723 Na3Cit 13.472866 13.456607 13.439460 13.431237 13.414168 13.323715 13.232837 13.140122 12.981511 12.649393 12.418805 Na3PO4 13.379416 13.355834 13.341799 13.317144 13.140786 13.028737 12.985156 12.916432 12.861764 12.565821 12.353048

13.42519 13.403829 13.391159 13.368522 13.207004 13.104592 13.064714 13.002060 12.952452 12.686784 12.497591

13.484432 13.465400 13.453718 13.433041 13.285053 13.191959 13.156155 13.099161 13.054173 12.816420 12.649640

13.557451 13.540113 13.529474 13.510293 13.375889 13.291653 13.258703 13.207288 13.167038 12.954569 12.808498

a Molality (mol kg–1).

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

2522

HOSSEIN HOOSHYAR et al.

u, m s−1 1660 1640 1620 1600 1580 1560 1540 1520 1500 0

0.2

0.4

0.6

0.8 m, mol kg−1

Fig. 1. Plot of speed of sound, u, of different aqueous solutions of TBAB, against molality of TBAB, m, at 298.15 K (solid line) and 318.15 K (dotted line). •, In pure water; Δ, NaH2PO4; ▼, Na2HPO4; ◊, Na2CO3; ■, Na2SO4; □, Na3Cit; *, Na3PO4.

Lf, Å 14.0 13.8 13.6 13.4 13.2 13.0 12.8 12.6 12.4 12.2

0

0.2

0.4

0.6

0.8 m, mol kg−1

Fig. 2. Plot of intermolecular free length, Lf, of different aqueous solutions of TBAB, against molality of TBAB, m, at 298.15 K (solid line) and 318.15 K (dotted line). •, In pure water; Δ, NaH2PO4; ▼, Na2HPO4; ◊, Na2CO3; ■, Na2SO4; □, Na3Cit; *, Na3PO4.

figure that the Sn values are positive at all temperatures and decreases with increasing concentration and temperature, which suggests that TBAB is preferentially solved by water. The positive values suggesting that the compressibility of the solution will be less than that of the solvent.

For the systems, containing both electrolyte and TBAB, the effect of electrolytes on acoustical parameters is compared in Figs. 2–6. From these figures, it can be concluded that unlike the values of d, u, and Z the other acoustical parameters of TBAB in pure water are larger than those in aqueous sodium salt

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

MOLECULAR INTERACTIONS IN TERNARY MIXTURES

2523

Table 3. Experimental acoustic impedance, Z, of the aqueous solutions of TBAB in the absence and presence of 0.1 mol kg–1 of sodium salts at different temperatures ma

293.15 K

298.15 K

0.00155 0.01300 0.04921 0.07961 0.12910 0.14639 0.19522 0.27324 0.30728 0.54371 0.77115

1.480667 1.483924 1.494112 1.502725 1.516424 1.521071 1.533844 1.553850 1.562417 1.617197 1.662323

1.492945 1.496052 1.505624 1.513468 1.526128 1.530495 1.542383 1.560813 1.568657 1.618608 1.659196

0.00174 0.03186 0.06390 0.09633 0.12918 0.16503 0.20112 0.26865 0.30284 0.55096 0.77608

1.511326 1.519694 1.528764 1.537678 1.546412 1.555993 1.565351 1.582187 1.590660 1.646531 1.688799

1.523071 1.530924 1.539294 1.547607 1.555603 1.564399 1.573064 1.588646 1.596332 1.647062 1.684883

0.00152 0.01247 0.01869 0.03103 0.06307 0.09641 0.19667 0.25131 0.30347 0.54352 0.76889

1.519900 1.523061 1.524850 1.528297 1.537343 1.546163 1.572673 1.586534 1.599177 1.652721 1.694688

1.531601 1.534513 1.536205 1.539456 1.547774 1.555870 1.580385 1.593077 1.604659 1.653202 1.690721

0.00248 0.01099 0.01897 0.02554 0.03131

1.514572 1.517299 1.519666 1.521507 1.523180

1.526328 1.528821 1.530993 1.532728 1.534290

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

303.15 K H 2O 1.503088 1.505970 1.514761 1.522166 1.533818 1.537862 1.548730 1.565783 1.573010 1.618458 1.654872 NaH2PO4 1.532779 1.540062 1.547784 1.555425 1.562809 1.570968 1.578908 1.593061 1.600180 1.646166 1.679845 Na2HPO4 1.541199 1.543913 1.545465 1.548476 1.556129 1.563630 1.586138 1.597746 1.608336 1.652184 1.685600 Na2CO3 1.536006 1.538335 1.540314 1.541947 1.543349 Vol. 90

308.15 K

313.15 K

318.15 K

1.511184 1.513870 1.521889 1.528812 1.539586 1.543313 1.553341 1.569036 1.575592 1.616859 1.649540

1.517391 1.519860 1.527272 1.533657 1.543566 1.547006 1.556225 1.570635 1.576490 1.613911 1.642940

1.521796 1.524056 1.530888 1.536770 1.545847 1.549019 1.557457 1.570546 1.575984 1.609601 1.635465

1.540448 1.547196 1.554282 1.561393 1.568146 1.575655 1.582894 1.595856 1.602260 1.643755 1.673736

1.546277 1.552463 1.558996 1.565618 1.571695 1.578552 1.585227 1.596967 1.602851 1.640107 1.666654

1.556432 1.562162 1.568250 1.574341 1.580095 1.585927 1.592749 1.603633 1.609081 1.644283 1.667483

1.548801 1.551319 1.55271 1.555486 1.562565 1.569451 1.590069 1.600675 1.610326 1.649766 1.679404

1.554531 1.556791 1.558121 1.560656 1.567170 1.573479 1.592386 1.601945 1.610650 1.646017 1.672153

1.564660 1.566808 1.567999 1.570375 1.576483 1.582347 1.599874 1.608699 1.616797 1.649166 1.672927

1.543733 1.545828 1.547552 1.549087 1.550378

1.549493 1.551325 1.552993 1.554365 1.555611

1.553524 1.555174 1.556700 1.557947 1.559085

No. 13

2016

2524

HOSSEIN HOOSHYAR et al.

Table 3. (Contd.) ma

293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

0.08043 0.13138 0.17126 0.28544 0.42305 0.77434

1.536789 1.550247 1.560780 1.589532 1.621494 1.690186

1.546904 1.559386 1.569046 1.595432 1.624609 1.686251

1.561136 1.571679 1.579884 1.601879 1.625914 1.675088

1.565467 1.575196 1.582639 1.602646 1.624309 1.667947

1.568113 1.577020 1.583736 1.601898 1.621330 1.659839

0.00156 0.01118 0.01871 0.02499 0.03132 0.08262 0.12973 0.17792 0.29220 0.53567 0.76558

1.516177 1.519065 1.520870 1.522799 1.524700 1.538867 1.551397 1.564339 1.592709 1.647494 1.690727

1.527926 1.530549 1.532290 1.534089 1.535821 1.548963 1.560497 1.572441 1.598520 1.648249 1.686902

1.545250 1.547443 1.549067 1.550438 1.551964 1.563126 1.572857 1.582932 1.604755 1.645272 1.675931

1.550993 1.553004 1.554594 1.555799 1.557105 1.567401 1.576328 1.585535 1.605299 1.641752 1.668882

1.561162 1.562985 1.564499 1.565661 1.566837 1.576439 1.584758 1.593309 1.611592 1.645109 1.669817

0.00271 0.01098 0.01952 0.02442 0.03218 0.07983 0.12947 0.18394 0.28424 0.53418 0.76727

1.529840 1.532155 1.534645 1.535773 1.538215 1.551406 1.564851 1.578854 1.603696 1.659542 1.701999

1.541456 1.543623 1.545909 1.547025 1.549247 1.561413 1.573798 1.586718 1.609471 1.660129 1.698027

1.558517 1.560368 1.562269 1.563317 1.565153 1.575425 1.585987 1.596804 1.615725 1.656919 1.686828

1.564133 1.565890 1.567616 1.568537 1.570295 1.579671 1.589288 1.599151 1.616449 1.653267 1.679634

1.574323 1.575903 1.577492 1.578390 1.580036 1.588717 1.597617 1.606758 1.622778 1.656460 1.680421

0.00158 0.01271 0.01972 0.03241 0.12932 0.19745 0.22471 0.26857 0.30733 0.54459 0.77158

1.544284 1.547836 1.549904 1.553506 1.579529 1.596928 1.603900 1.614858 1.623801 1.674616 1.714828

1.555856 1.559063 1.560950 1.564253 1.588283 1.604242 1.610588 1.620654 1.628782 1.674749 1.710361

1.554967 1.566511 1.575393 1.599524 1.626044 1.681192 Na2SO4 1.537611 1.540018 1.541655 1.543245 1.544884 1.557042 1.567626 1.578625 1.602509 1.647464 1.681952 Na3Cit 1.551031 1.553015 1.555103 1.556114 1.558219 1.569387 1.580814 1.592660 1.613443 1.659213 1.692928 Na3PO4 1.565234 1.568176 1.569917 1.572980 1.595116 1.609661 1.615412 1.624615 1.631987 1.673241 1.704759

1.572606 1.575281 1.576859 1.579678 1.599964 1.613244 1.618497 1.626868 1.633536 1.670355 1.698130

1.578196 1.580578 1.582035 1.584612 1.603172 1.615213 1.619917 1.627503 1.633519 1.666234 1.690503

1.588307 1.590568 1.591914 1.594340 1.611457 1.622548 1.626948 1.633927 1.639415 1.669290 1.691148

a Molality (mol kg–1).

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

MOLECULAR INTERACTIONS IN TERNARY MIXTURES

2525

Table 4. Experimental relaxation strength, r, of the aqueous solutions of TBAB in the absence and presence of 0.1 mol kg–1 of sodium salts at different temperatures ma

293.15 K

298.15 K

0.00155 0.01300 0.04921 0.07961 0.12910 0.14639 0.19522 0.27324 0.30728 0.54371 0.77115

0.140590 0.137261 0.126862 0.118044 0.103996 0.099257 0.086207 0.065709 0.056916 0.000687 –0.045442

0.124243 0.121035 0.111187 0.103167 0.090146 0.085670 0.073485 0.054584 0.046533 –0.00463 –0.045851

0.00174 0.03186 0.06391 0.09633 0.12919 0.16503 0.20112 0.26865 0.30284 0.55096 0.77608

0.124816 0.116153 0.106715 0.097441 0.088345 0.078376 0.068678 0.051166 0.042342 –0.015711 –0.059330

0.108935 0.100739 0.091994 0.083289 0.074941 0.065757 0.056746 0.040470 0.032482 –0.020163 –0.058957

0.00152 0.01247 0.01870 0.03103 0.06307 0.09641 0.19667 0.25131 0.30347 0.54353 0.76889

0.119089 0.115777 0.113954 0.110315 0.100834 0.091624 0.063907 0.049399 0.036179 –0.019797 –0.063386

0.103167 0.100099 0.098367 0.094898 0.086136 0.077584 0.051908 0.038595 0.026460 –0.024233 –0.063000

0.00248 0.01099 0.01897 0.02554 0.03131

0.120144 0.117363 0.114907 0.113013 0.111317

0.10415 0.101604 0.099352 0.097547 0.095956

303.15 K H 2O 0.109808 0.106821 0.097773 0.090146 0.078148 0.073991 0.062867 0.045361 0.037946 –0.008443 –0.045110 NaH2PO4 0.094874 0.087235 0.079132 0.071114 0.063375 0.054827 0.046558 0.031695 0.024362 –0.023246 –0.057517 Na2HPO4 0.089156 0.086279 0.084689 0.081457 0.073365 0.065467 0.041767 0.029578 0.018476 –0.027208 –0.061492 Na2CO3 0.090039 0.087653 0.085598 0.083888 0.082464

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

308.15 K

313.15 K

318.15 K

0.097262 0.094469 0.086231 0.079072 0.067967 0.064137 0.053867 0.037774 0.031080 –0.010829 –0.043424

0.086494 0.083924 0.076299 0.069704 0.059500 0.055969 0.046545 0.031805 0.025880 –0.011885 –0.040438

0.077464 0.075109 0.068087 0.062020 0.052699 0.049448 0.040849 0.027545 0.022040 –0.011558 –0.036617

0.082715 0.075614 0.068160 0.060663 0.053575 0.045703 0.038166 0.024634 0.017981 –0.024802 –0.055024

0.072294 0.065769 0.058882 0.051884 0.045520 0.038326 0.031375 0.019145 0.013032 –0.025144 –0.051586

0.063581 0.057644 0.051336 0.045019 0.039098 0.033219 0.026152 0.015105 0.009602 –0.02546 –0.047156

0.089156 0.086279 0.084689 0.081457 0.073365 0.065467 0.041767 0.029578 0.018476 –0.027208 –0.061492

0.066639 0.064234 0.062867 0.060118 0.053186 0.046521 0.026571 0.016556 0.007461 –0.029045 –0.05532

0.058008 0.055751 0.054560 0.052018 0.045618 0.039539 0.021434 0.012424 0.004183 –0.028044 –0.050779

0.07774 0.075602 0.073822 0.072210 0.070897

0.077740 0.075602 0.073822 0.072210 0.070897

0.058591 0.056965 0.055374 0.054061 0.052906

No. 13

2016

2526

HOSSEIN HOOSHYAR et al.

Table 4. (Contd.) ma

293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

0.08043 0.13139 0.17126 0.28544 0.42305 0.77435

0.097096

0.082703

0.070210

0.059512

0.059512

0.043333

0.083122 0.072137 0.042207 0.008955 –0.062252

0.069679 0.059585 0.032064 0.001712 –0.061879

0.048473 0.039857 0.016928 –0.007953 –0.057954

0.048473 0.039857 0.016928 –0.007953 –0.057954

0.033994 0.026978 0.008146 –0.011734 –0.049972

0.00156 0.01118 0.01871 0.02499 0.03132 0.08262 0.12973 0.17792 0.29220 0.53567 0.76558

0.121387 0.118385 0.116529 0.114495 0.112518 0.097737 0.084641 0.071150 0.041535 –0.015573 –0.060411

0.105439 0.102706 0.100881 0.098984 0.097179 0.083385 0.071282 0.058785 0.031486 –0.020302 –0.060166

0.079180 0.076887 0.075085 0.073714 0.072101 0.060312 0.050045 0.039465 0.016593 –0.025333 –0.056463

0.068823 0.066711 0.065008 0.063738 0.062371 0.051470 0.042036 0.032371 0.011703 –0.025827 –0.053074

0.060118 0.058251 0.056564 0.055435 0.054232 0.044237 0.035615 0.026830 0.008196 –0.025131 –0.048768

0.00271 0.01098 0.01952 0.02442 0.03218 0.07984 0.12947 0.18394 0.28424 0.53418 0.76727

0.115236 0.112836 0.110220 0.109065 0.106538 0.092672 0.078568 0.063835 0.037713 –0.020858 –0.065218

0.099411 0.097144 0.094731 0.093565 0.091267 0.078400 0.065346 0.051689 0.027693 –0.025435 –0.064869

0.073401 0.071451 0.069426 0.068317 0.066409 0.055459 0.044237 0.032740 0.012734 –0.030288 –0.061016

0.063170 0.061305 0.059464 0.058482 0.056649 0.046631 0.036400 0.025905 0.007598 –0.030669 –0.057504

0.054511 0.052870 0.051202 0.050264 0.048570 0.039453 0.030169 0.020642 0.004096 –0.029718 –0.052971

0.00158 0.01271 0.01972 0.03241 0.12932 0.16334 0.19745 0.22471 0.26857 0.30733 0.54459 0.77159

0.106408 0.102741 0.100573 0.096787 0.068992 0.059476 0.050569 0.043198 0.031707 0.022225 –0.031824 –0.074021

0.090480 0.087163 0.085179 0.081685 0.055848 0.047070 0.038877 0.032150 0.021570 0.012933 –0.036006 –0.073179

0.058130 0.048826 0.023646 –0.003891 –0.060424 Na2SO4 0.105439 0.102706 0.100881 0.098984 0.097179 0.083385 0.071282 0.058785 0.031486 –0.020302 –0.060166 Na3Cit 0.085419 0.083337 0.081122 0.080067 0.077872 0.066011 0.053916 0.041351 0.019393 –0.028538 –0.063425 Na3PO4 0.076587 0.073534 0.071692 0.068437 0.044494 0.036523 0.028987 0.022880 0.013194 0.005355 –0.038539 –0.071225

0.064585 0.061802 0.060130 0.057123 0.035087 0.027705 0.020890 0.015303 0.006489 –0.00060 –0.039686 –0.068264

0.054292 0.051799 0.050252 0.047497 0.027262 0.020568 0.014373 0.009378 0.001400 –0.004994 –0.039610 –0.064302

0.045813 0.043504 0.042097 0.039539 0.021174 0.015142 0.009565 0.004994 –0.002151 –0.007815 –0.038361 –0.059497

a Molality (mol kg–1).

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

MOLECULAR INTERACTIONS IN TERNARY MIXTURES

2527

Table 5. Experimental solvation number, Sn, of the aqueous solutions of TBAB in the absence and presence of 0.1 mol kg–1 of sodium salts at different temperatures ma

293.15 K

298.15 K

0.00155 0.01300 0.04921 0.07961 0.12910 0.14639 0.19522 0.27324 0.30728 0.54371 0.77115

35.259735 21.801849 20.080855 19.755690 19.221412 19.011260 18.428420 17.685019 17.397854 15.507172 13.918743

27.765715 19.962509 18.620093 18.125783 17.639664 17.484347 16.980969 16.287653 16.014926 14.253302 12.769696

0.001745 0.031857 0.063905 0.096327 0.129187 0.165029 0.201117 0.268651 0.302839 0.550962 0.776079

2.953601 2.251157 2.232845 2.191662 2.143799 2.107320 2.065794 1.988586 1.956553 1.729494 1.546429

2.581102 2.086423 2.056429 2.022857 1.972082 1.936222 1.899793 1.831523 1.799289 1.586586 1.415390

0.00152 0.01247 0.01870 0.03103 0.06307 0.09641 0.19667 0.25131 0.30347 0.54353 0.76889

2.177629 2.495281 2.490011 2.469739 2.446449 2.369398 2.254420 2.193406 2.131742 1.888850 1.687280

1.203093 2.181880 2.228929 2.251651 2.231292 2.163444 2.066681 2.010024 1.953906 1.728475 1.541083

0.00248 0.01099 0.01897 0.02554 0.03131

2.947754 3.558453 3.518991 3.449506 3.425786

2.751529 3.235406 3.195846 3.156265 3.141306

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

303.15 K H 2O 23.352936 18.089000 16.921475 16.676139 16.196261 16.062596 15.568654 14.967256 14.722242 13.079008 11.691182 NaH2PO4 2.317474 1.917051 1.887187 1.853749 1.808855 1.779105 1.744312 1.678404 1.650214 1.452172 1.291582 Na2HPO4 1.414806 2.054857 2.073492 2.085205 2.052709 1.989338 1.897475 1.843975 1.792082 1.580097 1.404968 Na2CO3 2.576028 3.002523 2.932212 2.909745 2.876575 Vol. 90

308.15 K

313.15 K

318.15 K

20.626823 16.618372 15.369614 15.285320 14.869157 14.746327 14.302976 13.755728 13.513973 11.980633 10.688392

17.635919 15.027799 14.059504 13.996436 13.617079 13.512630 13.110513 12.614513 12.361387 10.945154 9.7266390

18.826027 14.009183 12.951155 12.871614 12.488659 12.397662 12.018543 11.534899 11.324442 9.971146 8.836435

2.100607 1.762591 1.728601 1.704859 1.660029 1.632809 1.598765 1.537416 1.509919 1.324841 1.175341

2.042131 1.613819 1.584677 1.569398 1.518696 1.492891 1.463753 1.404447 1.380577 1.205647 1.066029

1.639334 1.449709 1.434512 1.418486 1.381164 1.332128 1.334356 1.278953 1.256684 1.104624 0.961907

1.818848 1.956327 1.928532 1.929041 1.893948 1.829687 1.739946 1.689889 1.641482 1.440891 1.277055

1.809711 1.766568 1.772728 1.765301 1.734467 1.674044 1.592710 1.542310 1.496025 1.308378 1.155306

2.200952 1.707929 1.656721 1.638914 1.601660 1.538306 1.454945 1.405864 1.363566 1.184402 1.041423

2.747561 2.774955 2.635485 2.641163 2.614521

2.666188 2.463186 2.420256 2.404592 2.403396

2.843196 2.292160 2.231147 2.207072 2.201238

No. 13

2016

2528

HOSSEIN HOOSHYAR et al.

Table 5. (Contd.) ma

293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

0.08043 0.13139 0.17126 0.28544 0.42305 0.77435

3.269371 3.136882 3.072798 2.890753 2.689175 2.255171

3.004153 2.886747 2.823018 2.653994 2.467668 2.061704

2.520255 2.420279 2.371405 2.223058 2.061991 1.707838

2.306169 2.219346 2.168487 2.029414 1.877808 1.546473

2.108076 2.028623 1.975849 1.847325 1.704198 1.394142

0.00156 0.01118 0.01871 0.02499 0.03132 0.08262 0.12973 0.17792 0.29220 0.53567 0.76558

3.418605 2.743399 2.478039 2.530885 2.544566 2.426936 2.346856 2.298084 2.150615 1.901231 1.695193

2.252593 2.350402 2.211137 2.278697 2.291703 2.216171 2.145025 2.103984 1.971808 1.740556 1.548623

1.729866 1.914108 1.902994 1.879885 1.913081 1.856515 1.796610 1.763477 1.652434 1.449513 1.283108

1.617503 1.752523 1.773238 1.734810 1.733990 1.696916 1.642961 1.611791 1.505924 1.317489 1.162327

1.073917 1.496822 1.604674 1.562793 1.554332 1.538572 1.493085 1.465035 1.367045 1.191714 1.047422

0.00271 0.01098 0.01952 0.02442 0.03218 0.07984 0.12947 0.18394 0.28424 0.53418 0.76727

1.525116 1.262020 1.246163 1.187097 1.215015 1.167946 1.134188 1.093698 1.033536 0.909234 0.805712

1.283098 1.139333 1.128734 1.090765 1.110435 1.068912 1.038616 1.002891 0.947431 0.832143 0.735714

0.959854 0.928832 0.922656 0.912735 0.922795 0.891097 0.871097 0.840034 0.792260 0.691642 0.608160

0.631922 0.810568 0.817327 0.806823 0.831765 0.807365 0.790055 0.762945 0.721595 0.626758 0.549288

0.657652 0.736934 0.740272 0.736767 0.761118 0.734739 0.717772 0.693048 0.655144 0.565759 0.493955

0.00158 0.01271 0.01972 0.03241 0.12932 0.19745 0.22471 0.26857 0.30733 0.54459 0.77159

0.419462 0.949346 0.948784 0.932795 0.862584 0.827000 0.816594 0.798936 0.779464 0.686132 0.609550

0.547461 0.869172 0.864580 0.849587 0.790659 0.757672 0.747543 0.731823 0.713596 0.627193 0.555207

2.750352 2.648323 2.589548 2.431576 2.258311 1.879173 Na2SO4 1.931492 2.121123 2.029223 2.058481 2.088338 2.030534 1.963488 1.927652 1.806479 1.590102 1.411537 Na3Cit 1.069339 1.010483 1.010650 0.977062 1.007821 0.973261 0.949013 0.916796 0.866098 0.759108 0.669499 Na3PO4 0.652300 0.809910 0.800983 0.785236 0.726885 0.694239 0.684128 0.669774 0.652657 0.571313 0.504183

0.610764 0.733959 0.724085 0.713264 0.663086 0.633413 0.624327 0.611098 0.595149 0.518363 0.455964

0.756046 0.677653 0.667274 0.654031 0.606103 0.577498 0.568148 0.555943 0.541186 0.468750 0.410449

0.737304 0.620605 0.608796 0.599334 0.549995 0.522985 0.515230 0.503576 0.489477 0.422033 0.367648

a Molality (mol kg–1).

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

MOLECULAR INTERACTIONS IN TERNARY MIXTURES

2529

Z × 10−3, g cm−2 s−1 1.72

1.68

1.64

1.60

1.56

1.52

0

0.2

0.4

0.6

0.8 m, mol kg−1

Fig. 3. Plot of acoustic impedance, Z, of different aqueous solutions of TBAB, against molality of TBAB, m, at 298.15 K (solid line) and 318.15 K (dotted line). •, In pure water; Δ, NaH2PO4; ▼, Na2HPO4; ◊, Na2CO3; ■, Na2SO4; □, Na3Cit; *, Na3PO4.

RA 1.000 0.998 0.996 0.994 0.992 0.990 0.988 0.986 0.984 0

0.2

0.4

0.6

0.8 m, mol kg−1

Fig. 4. Plot of relative association, RA , of different aqueous solutions of TBAB, against molality of TBAB, m, at 298.15 K (solid line) and 318.15 K (dotted line). •, In pure water; Δ, NaH2PO4; ▼, Na2HPO4; ◊, Na2CO3; ■, Na2SO4; □, Na3Cit; *, Na3PO4.

solutions and the effectiveness of the investigated salts in the increasing or decreasing these parameters follows the order PO34− ≫ Cit3– > HPO 24 − > CO 32 − > RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

SO 24 − ≫ H 2PO 4− > H2O which is the same order to the Hofmeister series for the strength of the salting-out effects of electrolytes.

Vol. 90

No. 13

2016

2530

HOSSEIN HOOSHYAR et al.

r 0.12

0.08

0.04

0

−0.04

−0.08 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 0.8 m, mol kg−1

Fig. 5. Plot of relaxation strength, r, of different aqueous solutions of TBAB, against molality of TBAB, m, at 298.15 K (solid line) and 318.15 K (dotted line). •, In pure water; Δ, NaH2PO4; ▼, Na2HPO4; ◊, Na2CO3; ■, Na2SO4; □, Na3Cit; *, Na3PO4.

Sn 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.1

0.2

0.3

0.4

0.5

0.6

0.7 0.8 m, mol kg−1

Fig. 6. Plot of solvation number, Sn, of different aqueous solutions of TBAB, against molality of TBAB, m, at 298.15 K (solid line) and 318.15 K (dotted line). Δ, In NaH2PO4; ▼, Na2HPO4; ◊, Na2CO3; ■, Na2SO4; □, Na3Cit; *, Na3PO4.

CONCLUSION Present investigation reveals that the experimental values of ultrasonic velocity, density and related acoustical parameters for the binary and ternary liquid mixtures of TBAB in the absence and presence of

inorganic sodium salts at different concentrations and experimental temperature. It is concluded that the electrolytes under study (inorganic sodium salts) were found to act as structure makers in the solvent mixtures studied. The effectiveness of the investi-

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

Vol. 90

No. 13

2016

MOLECULAR INTERACTIONS IN TERNARY MIXTURES

gated salts in the salting-out of TBAB in aqueous solutions is the same order to the Hofmeister series for the strength of the salting-out effects of electrolytes. ACKNOWLEDGMENTS The authors are thankful to department of chemistry, university of Kurdistan, Sanandaj, Iran for their kind support in the present research work. REFERENCES 1. N. V. Sastry and S. R. Patel, Int. J. Therm. Phys. 5, 1153 (2000). 2. S. Prabakar and Rajagopal, Indian J. Pure Appl. Ultra 4, 27 (2005). 3. K. C. Kalra, Romi, and A. Katoch, Indian J. Chem. 42, 292 (2003). 4. J. Asghar, F. Liakath Ali Khan, and K. Subramani, Rasayan J. Chem. 3, 697 (2010). 5. S. Thirumaran and J. Jayakumar, Indian J. Pure Appl. Phys. 47, 265 (2009).

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A

2531

6. M. K. Praharaj, A. Satapathy, S. Mishra, and P. R. Mishra, Int. J. Chem. Pharm. Sci. 3, 6 (2012). 7. S. L. Oswet and A. T. Patel, J. Chem. Eng. Data 40, 194 (1995). 8. A. Ali, Nain, and A. K. Abida, J. Chinese Chem. Soc. 51, 477 (2004). 9. M. K. Praharaj, A. Satapathy, S. Mishra, and P. R. Mishra, Arch. Phys. Res. 3, 192 (2012). 10. R. Paikaray and S. Mishra, J. Acoust. Soc. India 37, 20 (2010). 11. V. Rajendran, Indian J. Pure Appl. Phys. 32, 523 (1994). 12. H. Hooshyar and R. Sadeghi, J. Chem. Thermodyn. 67, 120 (2013). 13. B. Jacobson, Acta Chem. Scand. 5, 1485 (1952). 14. K. N. Malhotra and M. Chauhan, J. Pure Appl. Ultrason. 18, 118 (1996). 15. TRC Thermodynamic Tables (Thermodyn. Res. Center, Texas A&M Univ., College Station, TX, 1994). 16. G. Arul and L. Palaniappan, Indian J. Pure Appl. Phys. 39, 561 (2001). 17. S. Baluja and S. Oja, Fluid Phase Equilib. 178, 233 (2001). 18. A. K. Nain, Int. J. Therm. Phys. 28, 1228 (2007). 19. N. A. Anil Kumar, Bull. Chem. Soc. Jpn. 79, 1688 (2006).

Vol. 90

No. 13

2016